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Abstract

This paper presents a new characterization result for competitive allocations in

quasilinear economies. This result is informed by the analysis of non-cooperative

dynamic search and bargaining games. Such games provide models of decentralized

markets with trading frictions. A central objective of this literature is to investigate

how equilibrium outcomes depend on the level of the frictions. In particular, does

the trading outcome become Walrasian when frictions become small? Existing

specifications of such games provide divergent answers. The characterization result

is used to investigate what causes these differences and to generalize insights from

the analysis of specific search and bargaining games.
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1 Introduction

In a dynamic matching and bargaining game, a large population of traders interacts

repeatedly in a decentralized market.1 Every trading period, traders are matched to

form small groups where they bargain over the terms of trade. If they fail to reach an

agreement, they can wait at some cost until the next period to be rematched into a

new group. These waiting costs are the frictions of trading in the decentralized market.

A major question in the literature concerns the trading outcome when frictions become

small: Does the outcome become Walrasian? Ideally, one would like not only to find

answers for particular trading institutions, but also to gain a general understanding of

the conditions under which trading with vanishing frictions has this property and the

conditions under which it does not. In this paper I use methods from cooperative and

non-cooperative game theory to address this question. Recent contributions that fall into

the framework of this paper include work by Moreno and Wooders (2002), Mortensen and

Wright (2002), Satterthwaite and Shneyerov (2007), and De Fraja and Sakovics (2001).

The main result modifies a characterization result from cooperative game theory for

quasilinear economies by Shapley and Shubik (1971): If an allocation is feasible then it is

competitive if and only if it is pairwise efficient (pairwise stable). I weaken the requirement

that the outcome must be pairwise efficient for all pairs of traders. Instead, I require the

outcome to be pairwise efficient for traders who trade with probability less than one. I

introduce two new conditions (Monotonicity and No Rent Extraction) to characterize the

trading outcome for traders who trade with certainty.

The characterization result is informed by the analysis of non-cooperative dynamic

matching and bargaining games. The reason for weakening pairwise efficiency to a subset

of traders is that, in such games, traders with types who transact with probability one

leave the market quickly. Other traders might therefore not be matched with them and

the allocation does not need to be pairwise efficient with respect to these types.2

As an illustration of the main result, I use a parameterized class of steady-state search

and bargaining games that is similar to the one used by Gale (1987). There is a continuum

1The literature on dynamic matching and bargaining games is vast. Osborne and Rubinstein (1990)
and Gale (2000) are excellent surveys. Diamond (1971) demonstrated that small frictions can lead to
severe distortions. Subsequent work was done by Gale (1986, 1987), Rubinstein and Wolinsky (1985,
1990), McLennan and Sonnenschein (1991) and extended in various directions by DeFraja and Sakovics
(2001), Serrano (2002), Mortensen and Wright (2002), Kunimoto and Serrano (2004), Satterthwaite and
Shneyerov (2007, 2008), Atakan (2007), and Shneyerov and Wong (2010)

2Dagan, Serrano, and Volij (2000) also combine cooperative and non-cooperative elements to analyze
dynamic matching and bargaining games. However, they assume that all coalitions can form and they
provide a characterization result for a general economy.
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of buyers who have unit demand and valuations (types) v ∈ [0, 1] for an indivisible good,

and there is a continuum of sellers who have unit capacity and costs c ∈ [0, 1]. These

traders are matched into small groups. In these groups, they bargain, and, if they reach

an agreement, they trade. The groups are connected to form a large market by allowing

unsuccessful traders to be matched into new groups in the next period. Integration,

however, is imperfect because there is a probability (exit rate) that a trader dies while

waiting. These are the frictions of trading. Finally, at the end of each period, there is an

exogenous inflow of new buyers and sellers.

This class of games allows for a variety of specifications of the matching technology and

of the bargaining protocol. Regardless of how matching and bargaining is specified, the

game and its solution concept will give rise to an outcome that consists of (a) probabilities

of trading for entering types and (b) expected equilibrium payoffs. An outcome is called

feasible if it is consistent with an allocation for the quasilinear economy defined by the

distribution of buyer’s valuations and seller’s costs.

Suppose there is some sequence of exit rates ("frictions") that converges to zero. In

addition, suppose that for each exit rate an equilibrium outcome of a specific trading game

is selected. This defines a sequence of outcomes. I state conditions on this sequence that

are jointly necessary and sufficient for convergence to the competitive outcome. The first

condition, Monotonicity, requires that trading probabilities are monotone–buyers with

higher valuations are more likely to trade, while sellers with higher costs are less likely to

trade. The second condition, No Rent Extraction, requires that traders receive some part

of the surplus they generate. Technically, this is a condition on the slope of the payoffs.

The third and the fourth conditions are jointly equivalent to pairwise efficiency of types

who do not trade with certainty. Specifically, the third condition, Availability, requires

that traders who do not trade with certainty are available. In the application, a type

is available if others are matched frequently with traders having such types. The fourth

condition, Weak Pairwise Efficiency, requires that for all pairs of buyers and sellers who

are both available the sum of their expected payoffs is at least as large as the payoffs

they could realize by trading with each other. The Availability condition relates to the

matching technology, whereas the other conditions relate to the bargaining protocol. The

main result (Proposition 1) is essentially this: A sequence of feasible outcomes converges

to the Walrasian outcome if and only if the four conditions hold.

I apply this result to the parameterized dynamic matching and bargaining game

introduced before. I show how to verify each of the conditions. Importantly, I argue that

the conditions often follow from basic equilibrium restrictions onto outcomes. It is not
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necessary to actually compute the equilibrium outcomes. The main result applies to all

trading games that map quasilinear economies into trading outcomes. It extends therefore

well beyond the parameterized example and its particular form of trading frictions. I

comment extensively on how the conditions of the result can be verified for general

matching technologies and bargaining protocols.

Whenever convergence fails in some model, at least one of the conditions must be

violated, which allows a "classification" of such failures. I show that the failure in

Rubinstein and Wolinsky (1990) and in Serrano (2002) can be linked to a failure of

Weak Pairwise Efficiency (the fourth condition), the failure in Lauermann (2011) to rent

extraction (a failure of the second condition), and the failure in Rubinstein and Wolinsky

(1985) and in De Fraja and Sakovics (2001) can be linked to a failure of feasibility; that is,

the limit outcome does not correspond to an allocation that is feasible in the benchmark

economy. By stating necessary conditions, the main result suggests conditions under

which decentralized trading is not well approximated by market clearance.

2 The Model

I consider a trading environment that consists of buyers and sellers who want to trade an

indivisible good. This trading environment, together with the feasibility condition, defines

the general model. The traders (or agents) have quasilinear preferences and maximize

expected payoffs. The sellers each have one unit of the good, and their costs of trading

are given by c ∈ [0, 1]. The buyers each want to buy one unit of the good, and their

valuations of the good are given by v ∈ [0, 1]. If a seller trades with a buyer at a price

p, the payoffs are p− c and v − p, respectively. An abstract economy is characterized by

two functions GS (c) and GB (v) that map the unit interval into itself. The functions are

zero at zero, and they are strictly increasing and continuously differentiable.

The functions GS (c) and GB (v) are interpreted as defining a large, static economy

with transferable utility (quasilinear preferences). GS (c) is the mass of sellers with costs

below c, and GB (v) is the mass of buyers with valuations below v.3 (In Section 4, GS

and GB define a constant exogenous inflow of new traders into a dynamic economy.) Let

pw be defined as the Walrasian price such that the mass of sellers having costs below pw

is equal to the mass of buyers having a valuation above pw, GS (pw) = GB (1)−GB (pw).

Since GS and GB are strictly increasing and continuous functions, the market clearing

3In general, GS (1) and GB (1) do not need to be one, which allows modelling large economies with a
different mass of agents on each side.
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price exists and is unique.

A trading outcome is a vector A =
[
V S, V B, QS, QB

]
, where V S (c) and V B (v) are the

expected payoffs, and QS (c) and QB (v) are the trading probabilities of the sellers and

buyers. An outcome does not explicitly specify the transfers that are made between buyers

and sellers. However, in a quasilinear environment with risk-neutral agents, the difference

between the expected consumption value vQB (v) and the expected payoff V B (v) is equal

to the transfer made by the buyer, and the sum of the expected cost cQS (c). Similarly,

the expected payoff V S (c) is equal to the transfer received by the seller. I do not include

transfers explicitly in the outcome because the previous discussion implies that transfers

would be redundant. Let Σ denote the set of measurable functions f : [0, 1]→ [0, 1]. Any

element of Σ4 constitutes an outcome.

An outcome defines a feasible allocation for an economy given by GS (c) and GB (v) if

the following two statements are true. First, the total mass of the buyers who trade equals

the total mass of the sellers who trade, that is,
∫ 1
0
QS (c) dGS (c) =

∫ 1
0
QB (v) dGB (v).

Second, the total amount of transfers collectively made by buyers equal the total amount of

transfers received by sellers,
∫ 1
0

(
v QB (v)− V B (v)

)
dGB (v) =

∫ 1
0

(
V S (c) + cQS (c)

)
dGS (c).

An outcome that meets these two requirements satisfies the feasibility condition.

Given an outcome, the trading surplus is defined as S (A) ≡
∫ 1
0
V B (v) dGB (v) +

∫ 1
0
V S (c) dGS (c). The surplus coincides with the ex-ante expected payoffs. The object of

interest is the maximal surplus that can be realized subject to the feasibility constraint.

The maximal surplus is denoted by S∗. If the outcomes are feasible, the transfers cancel,

and the surplus is solely determined by the allocation of the indivisible good given by the

trading probabilities Q =
[
QS, QB

]
. Denote the set of Walrasian allocations by QW (it

is a set because QS and QB are not determined at the point pw). It is straightforward to

verify that an outcome is efficient if and only if the allocation of the good is Walrasian

(this is the analogue of the First and SecondWelfare Theorem for a quasilinear economy).4

Lemma 1 For all outcomes that satisfy feasibility: S (A) = S∗ if and only if Q ∈
[
QW

]
,

where QW is the set of functions such that for sellers, QS (c) = 1 if c < pw and QS (c) = 0

if c > pw and for buyers, QB (v) = 1 if v > pw and QB (v) = 0 if v < pw.

Suppose that for any pair of types c and v the sum of their interim expected payoffs

V S (c) + V B (v) is weakly larger than their private surplus v − c. Intuitively, all gains

4The surplus does not change if a zero measure of traders has trading probabilities different from QW .
Therefore, I state the lemma for the equivalence class of the set QW , which is denoted by

[
QW

]
. Two

functions are equivalent if the integral of their difference is zero.
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from trade are exhausted. Following Feldman (1973), such an outcome is called pairwise

efficient. Pairwise efficiency is equivalent to pairwise stability. Let V W denote Walrasian

payoffs, where V W =
(
V S, V B

)
, with V S = max {pw − c, 0}, and V B = max {v − pw, 0}.

Let AW denote the set of Walrasian outcomes with Q ∈ QW and V = V W . The following

Lemma restates a well-known result by Shapley and Shubik (1971), which is readily

extended to the continuum case considered here.

Lemma 2 Suppose an outcome A satisfies Feasibility. Then,

A ∈
[
AW

]
⇔ V S (c) + V B (v) ≥ v − c ∀v, c.

3 The Main Result

3.1 Summary and Conditions

Let {Ak}
∞

k=1 be a sequence of outcomes. In Section 4, I obtain such a sequence as the

sequence of outcomes of equilibria of a dynamic matching and bargaining game when the

exit rate converges to zero. I define conditions onto such sequences. Because I want to

state conditions that are necessary for convergence to a Walrasian limit, these conditions

are stated directly onto limits. The main result is that a sequence of outcomes that has

uniformly bounded variation and satisfies feasibility becomes Walrasian if and only if

these conditions hold.

The assumption that the sequence has uniformly bounded variation5 ensures that a

pointwise convergent subsequence exists (by Helley’s selection theorem; see Kolmogorov

and Fomin, 1970).6 A sufficient condition for a set of functions to have uniformly bounded

variation is that the functions are monotone (see the discussion following Corollary 1).

Let Ā be the limit of some convergent subsequence, Ā =
(
V̄ S, V̄ B,Q̄S, Q̄B

)
. The following

conditions are with respect to Ā.

The first two conditions are both requirements with respect to the slope of the elements

of limit outcomes. A sequence of outcomes satisfies Monotonicity (Condition 1) if, for

any limit outcome, Q̄S is nonincreasing and Q̄B is nondecreasing.

5A family Φ of functions f : [0, 1]→ [0, 1] has a uniformly bounded variation if there is some constant
C s.t.

∑n

k=1 |f (xk)− f (xk−1)| ≤ C for every finite partition 0 = x1 < x2 < · · · < xn = 1.
6Uniformly bounded variation is a technical condition that ensures that the set of outcomes is

sequentially compact. I would not need this condition (the condition would be trivial) if I would work

with a finite set of N types. With a finite set of types, the set of outcomes would be [0, 1]
2N
(payoffs and

trading probabilities for each type), which is compact.
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No Rent Extraction (Condition 2) requires that, first, a − b ≤ V̄ S (b) − V̄ S (a) ≤ 0 if

a ≤ b, and, second, whenever Q̄S (cx) = 1 for some cx, then V̄
S (c) ≥ V̄ S (cx) + (cx − c)

for all c. Thus, the sellers’ payoffs must be nonincreasing in costs, and the difference

between the payoffs of any two types must be no more than the difference between the

types. Furthermore, whenever some type cx trades with probability one, then all other

sellers must receive at least the same payoff plus the difference in costs (cx − c). Similarly,

for buyers, first, 0 ≤ V̄ B (b)− V̄ B (a) ≤ b−a if a ≤ b, and, second, whenever Q̄B (vx) = 1,

then V̄ B (v) ≥ V̄ B (vx) + (v − vx).

A sequence of outcomes satisfies Pairwise Efficiency of Available Types, if, for any pair

of types cx and vx for which it is true that Q̄
B (v) < 1 for all v below vx and Q̄

S (c) < 1

for all c above cx, then payoffs are V̄
S (c) + V̄ B (v) ≥ v − c for all v < vx and c > cx.

Thus, payoffs are pairwise efficient for those types who do not trade with probability one.

For interpretations and applications, this condition is split into two parts. For this

split, I use two sequences of functions which act as indicator functions. Let Ljk : [0, 1] ×

Σ4 → [0, 1] with j ∈ {B, S}. Given the sequence, let the limits be L̄B (v) ≡ lim inf LBk (v, Ak)

and L̄S (c) ≡ lim inf LSk (c, Ak). The interest in these functions is in whether their limit is

equal to one or not. The desired interpretation of these indicator functions in search and

bargaining games is as matching probabilities: L̄B (v) is the probability to be matched

with a buyer having valuation above v and L̄S (c) is the probability to be matched with

a seller having costs below c. Given this interpretation, each of the following conditions

has a distinct economic meaning, and each condition can fail independently.

A sequence of outcomes satisfiesAvailability (Condition 3) relative to a pair of sequences

of functions LBk and L
S
k if Q̄

B (v) < 1 for all v below some vx implies that L̄
B (v) = 1 for

all v < vx and if Q̄
S (c) < 1 for all c above some cx implies that L̄

S (c) = 1 for all c > cx.

Thus, traders who do not trade with certainty are available in the limit, with availability

defined as LB or LS converging to one.

A sequence of outcomes satisfies Weak Pairwise Efficiency (Condition 4) relative to

a pair of functions LBk and L
S
k if for any pair of types c and v for which L̄

S (c) = 1 and

L̄B (v) = 1, the sum V̄ S (c)+ V̄ B (v) ≥ v−c. Thus, for all pairs of traders v and c who are

available, the sum of the expected payoffs exceeds the private surplus between the types.

By construction, Availability and Weak Pairwise Efficiency hold if and only if Pairwise

Efficiency of Available Types is true.
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3.2 Main Result

In this section, I state and prove my main result. A sequence of outcomes converges is

said to converge pointwise to the set AW if it converges pointwise everywhere, except

possibly at pw. The result weakens the pairwise efficiency requirement from Lemma 2 and

requires pairwise efficiency only for a subset of “available” types. The No Rent Extraction

condition is then used to extend pairwise efficiency to all pairs.

Proposition 1 Suppose some sequence {Ak}
∞

k=1 satisfies feasibility and has uniformly

bounded variation. Then, the sequence converges pointwise to the Walrasian outcome AW

if and only if the sequence satisfies Monotonicity, No Rent Extraction, and Weak Pairwise

Efficiency of Available Types.

Proof of Proposition 1: Every sequence of functions with uniformly bounded variation

has a pointwise convergent subsequence by Helley’s selection theorem, see above. Therefore,

I can work with the limit of some convergent subsequence, Ā.

Given the limit Ā, define cutoff types cx and vx as the highest cost and lowest valuation

such that traders with these types trade with certainty: cx ≡ sup
{
c|Q̄S (c) = 1

}
if there

is some c such that Q̄S (c) = 1 and cx = 0 otherwise. Similarly, vx ≡ inf
{
v|Q̄B (v) = 1

}

if Q̄B (v) = 1 for some v and vx = 1 otherwise. First, I show that the No Rent Extraction

condition implies

V̄ S (c) ≥ V̄ S (cx) + (cx − c) for all c,

and V̄ B (v) ≥ V̄ B (vx) + (v − vx) for all v.

For all types c ∈ [cx, 1], the first inequality follows directly by the No Rent Extraction

condition: if cx < c, No Rent Extraction requires that (cx − c) ≤ V̄ S (c) − V̄ S (cx). For

types c ∈ [0, cx], the inequality is trivially true if cx = 0; if cx > 0, one can choose

ε ≥ 0 arbitrarily close to zero with Q̄S (cx − ε) = 1 by definition of cx. Hence, for all c ≤

cx− ε, the No Rent Extraction condition implies that V̄
S (c) ≥ V̄ S (cx − ε)+ (cx − c)− ε.

Because the No Rent Extraction condition implies (Lipschitz-)continuity of the payoffs

and because ε is arbitrary, V̄ S (c) ≥ V̄ S (cx) + (cx − c). So, the first inequality holds for

all c ∈ [0, 1]. The second inequality follows for buyers by symmetric reasoning. Adding

the two inequalities yields a lower bound on the sum of the payoffs of all types c and v:

V̄ S (c) + V̄ B (v) ≥ v − c+ V̄ S (cx) + V̄
B (vx)− (vx − cx) . (1)
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Weak Pairwise Efficiency of Available Types implies that the right-hand side is at least

(v − c). Consider two cases for the ordering of cx and vx. First, suppose vx − cx > 0.

By the definition of cx and vx, the trading probabilities Q̄
S (c) < 1 for all c > cx and

Q̄B (v) < 1 for all v < vx. Therefore, by Weak Pairwise Efficiency of Available Types and

by continuity of payoffs, the sum of the expected payoffs V S (cx)+ V̄
B (vx) ≥ vx−cx in the

first case. Now, consider the second case, vx− cx ≤ 0. This case is trivial: Since (vx − cx)

is non-positive and payoffs are non-negative, the sum V̄ S (cx) + V̄
B (vx) ≥ vx − cx. So,

for both possible orderings of cx and vx, the sum of the last three terms from equation

(1) is positive; hence, for all v and for all c, V̄ S (c) + V̄ B (v) ≥ v − c (payoffs are pairwise

efficient).

By continuity of the integral operator, feasibility of each Ak implies feasibility of the

limit. According to Lemma 2, feasibility and pairwise efficiency of the limit outcome

implies Ā ∈
[
AW

]
. By Monotonicity of the limit functions, the limit trading probabilities

must be exactly inQW .7 Similarly, continuity of payoffs implies that the limit payoffs must

be exactly in V W . (Otherwise, if for some type c, V̄ S (c) > pw − c, the continuity of V̄ S

would imply that payoffs are higher than pw− c for an open set of sellers’ types, implying

that S
(
Ā
)
> S∗, a contradiction.) Thus, I have proven that the limit of every convergent

subsequence is AW , which implies that limk→∞Ak = A
W for the original sequence.

Necessity of the conditions is shown as follows. Suppose the sequence {Ak} becomes

Walrasian. Monotonicity: The limit trading probabilities of sellers are monotone because

those sellers with costs below pw trade with probability one, while those with costs

above pw trade with probability zero. (Trading probabilities at pw are not determined.)

A symmetric observation applies to buyers. No Rent extraction: Sellers’ payoffs are

decreasing at a slope equal to minus one if c < pw and payoffs have a slope of zero for all

c > pw. So, the slope is bounded within [−1, 0], and the slope is equal to −1 if Q̄S (c) = 1.

Again, a symmetric observation applies to buyers. Weak Pairwise Efficiency of Available

Types: Weak Pairwise Efficiency holds for all types because the Walrasian outcome is

such that V̄ S (c) + V̄ B (v) ≥ (v − pw) + (pw − c) for all v and all c. QED.

Intuition. The proof starts by defining cut-off types cx and vx such that types above

cx and below vx trade with probability less than one. The outcome for intermediate types

with valuations and costs below vx and above cx is pairwise efficient by Weak Pairwise

Efficiency of Available Types. The No Rent Extraction allows extending this efficiency

result to the extreme types (buyers with valuations above vx and sellers with costs below

7This is the only place where monotonicity is used.
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cx) who might not be available. This implies pairwise efficiency for all types. Lemma 2

implies that the outcome must be equivalent to the competitive outcome. Monotonicity

and No Rent Extraction imply that the limit outcome is exactly Walrasian.

Independence of Conditions. Given Feasibility and Uniformly Bounded Variation,

the No Rent Extraction condition and the Weak Pairwise Efficiency condition jointly

imply that every limit outcome is equivalent to the Walrasian outcome. Monotonicity is

therefore essentially implied by the other conditions. Monotonicity is stated as a separate

condition because the cost of requiring it in applications is low and because it ensures

exact convergence to the Walrasian outcome.

No Rent Extraction and Weak Pairwise Efficiency of Available Types are independent,

either conditional on Feasibility and Uniformly Bounded Variation or not. An example

where the No Rent Extraction fails but not Weak Pairwise Efficiency is discussed on

p.19. Examples where No Rent Extraction may hold but Weak Pairwise Efficiency fails,

are outcomes from models with entry, see Section 5.1, and models where bargaining is

according to a simultaneous double auction, see p.22.

Feasibility and Uniformly Bounded Variation of the elements of the sequence are

independent of the three conditions onto the limit. Feasibility is not implied by any

combination of the other conditions. Examples of a sequence of outcomes satisfying all

conditions except feasibility are outcomes from models with exogenous stocks, discussed in

Section 5.2. Feasibility implies neither No Rent Extraction nor Weak Pairwise Efficiency.

All failures of convergence to the competitive outcomes discussed in Section 4 are examples.

4 An Application of the Main Proposition

4.1 A Parameterized Class of Games

I introduce a parameterized example of a steady-state dynamic matching and bargaining

game that illustrates how Proposition 1 can be applied. The parameterized example is

a simplification of models by Gale (1987), Mortensen and Wright, and by Satterthwaite

and Shneyerov (2008).

Traders interact repeatedly in a stationary market over infinitely many periods. At

the beginning of each period, there is a stock of traders. This stock is characterized by

the distribution of the types. ΦS (c) is the mass of sellers in the stock with costs below

c, and ΦB (v) is the mass of buyers with valuations below v. The stock is endogenously

determined. Within each period, the interaction of traders is as follows:

1. Matching. Buyers and sellers from the stock are randomly matched into groups

9



consisting of either one buyer and one seller or one buyer and two sellers, depending

on a parameter ζ. The probability that a buyer is matched with one or two sellers is

(1− ζ) Φ
S(1)
M

and ζ

2
ΦS(1)
M
, respectively, with M = max

{
(1− ζ) ΦS (1) + ζ

2
ΦS (1) ,ΦB (1)

}
.

The probability that a seller is matched either alone with a buyer or together with another

seller and a buyer is (1− ζ) Φ
B(1)
M

and ζ Φ
B(1)
M
, respectively. If ζ = 0, all matches are in

pairs of one buyer and one seller, and if ζ = 1 all matches are between one buyer and

two sellers. The parameter ζ measures the degree of direct competition between sellers.8

Matching is independent of the types so that the type of any given trader in a match is

distributed according to the distribution of types in the stock. The matching technology

is similar to De Fraja and Sakovics (2001) and allows me to capture one-to-one, and

two(“many”)-to-one matching. Sellers do not observe whether they have a competitor.

2a. Bargaining: Observation. Within each group, the buyer observes the type(s) of the

seller(s). Seller(s) observe a signal, v̂ = (1− η) v+ ηε: The parameter η ∈ [0, 1] measures

how noisy the signal is, with noise ε being distributed according to the standard normal.

If η = 0, the type is perfectly observed and bargaining is with symmetric information. If

η = 1, nothing about the type is observed and bargaining is with asymmetric information.

Past actions are private, that is, a trader’s history is private information.

2b. Bargaining: Offers. Having observed types and signals, one market side is chosen

to be the proposer of a price offer; the other side is chosen to be the responder. With

probability β, the buyer makes a price offer, and with probability (1− β), the seller(s)

make(s) a price offer. The other market side can either accept or reject the offer. If the

buyer is chosen to propose and if there are two sellers and both accept the offer, each

seller gets to trade with probability 1
2
. If there are two sellers and they are chosen to

propose, the buyer can accept the lower of the two prices. The parameter β measures the

bargaining power of the buyer.

3. Exit and Entry. After the bargaining stage, traders exit and enter the market. Those

pairs of traders who reached an agreement leave the market and consume the good.

Of those traders who did not reach an agreement, a share δ exits (“dies”) and looses

the possibility of trading. A share (1− δ) of these traders remains for the next period.

Finally, there is entry by a mass GB (1) of buyers and a mass GS (1) of sellers with types

distributed according to the functions GS and GB, defined in Section 2.

The endogenous objects in this market are the distributions of types, ΦS and ΦB, and

the actions in the bargaining stage. The actions are denoted by aS =
[
pS (c, v̂) , rS (c)

]

8These matching probabilities arise if first a share ζ of sellers are bound into pairs. The resulting mass
of individual sellers and pairs of sellers is (1− ζ) ΦS (1) + ζ

2
ΦS (1). Then, all individuals and pairs of the

short side of the market are matched randomly with the long side, so the longer side is rationed.
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and aB =
[
pB (v, c1, c2) , r

B (v)
]
, where p and r denote the price-offer and acceptance

(reservation-price) strategies. For example, pB (v, c1, c2) is the offer of type v when facing

two sellers with costs c1 and c2. (The price offer to a single seller is encoded by setting

c2 = 2 as p
B (v, c1, 2).) The buyer accepts a price offer p if and only if p ≤ r

B (v) . I collect

these endogenous objects in the market constellation σ =
[
ΦS,ΦB, aS, aB

]
. Note that the

exit rate acts similar to a discount rate on the individual level of the agents.9 There is no

explicit discounting. On the aggregate level, the exit rate ensures that a unique steady

state exists for all strategy profiles; see Nöldeke and Tröger (2009).

Each market constellation σ determines payoffs for the traders. I denote by qS (c, a) the

per-period trading probability of a seller with cost c who uses action a given σ. I denote

by QS (c, a) the probability to trade at some time (rather than exiting), the so-called

lifetime trading probability. Let P (c, a) denote the expected price conditional on trading.

A seller’s expected payoff from taking action a is denoted by US (c, a). Payoffs are equal

to the expected trading probability times the profit conditional on trade, US (c, a) =

QS (c, a) (P (c, a)− c). (If a seller does not trade, the profit is zero.) I define qB, QB, P ,

and UB (v, a) symmetrically for the buyer. Given a constellation σ, maximized payoffs

are denoted by V B (v) = supaU
B (v, a) and V S (c) = supaU

S (c, a) .

Steady State. The stock of buyers at the beginning of a period is characterized by ΦB.

The mass of buyers at the end of the period is the sum of the entering buyers and the

initial buyers who neither traded nor died. ΦB is a steady-state stock if and only if the

stock at the end of a period is the same as the stock in the beginning; that is,

GB (v) + (1− δ)

∫ v

0

(
1− qB (τ , a (τ))

)
dΦB (τ) = ΦB (v) .

A similar condition has to hold for the distribution of sellers’ types.

Steady-State Equilibrium. A market constellation σ∗ constitutes an equilibrium if (a)

the steady-state conditions hold, if (b) the actions are mutually optimal, and if (c) the

acceptance decision is such that an offer is accepted if and only if it makes the receiver

better off than continuation, r∗ (c) = (1− δ)V S (c) + c and r∗ (v) = v − (1− δ)V B (v).

This latter requirement is a refinement that captures sequential rationality. Without this

refinement, traders would be free to reject any off-equilibrium price offer.

9Butters (1979) and McAfee (1993) introduced the usage of an exit rate.
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4.2 Example: Unavailable Traders

I discuss a simple example in which the limit outcome is not pairwise efficient. The

example illustrates that traders who trade quickly are not available. The specification

of the parameterized model is as follows: Information is symmetric (sellers observe the

valuation of the buyer), matching is pairwise, and buyers have no bargaining power (only

sellers make price offers), η, ζ, β = (0, 0, 0). This specification allows a straightforward

equilibrium characterization. The economy is very simple: All sellers have costs of zero

and there are only two types of buyers, one high valuation type, v = 1, and one low

valuation type, v = 0.1. The mass of sellers is two, and the mass of each type of buyer is

one.

When the exit rate is sufficiently low, it is shown that it is an equilibrium that sellers

offer a price equal to one to all buyers. The equilibrium payoffs of sellers are V S (0) = 1/2

while the payoffs to buyers are V B (v) = 0 for both types. Sellers trade with probability

one-half, buyers having a low valuation do not trade at all, and buyers having high

valuations trade with probability one.

Observation: Let η, ζ, β = (0, 0, 0). Then the following is an equilibrium for all δ ≤ 4/5:

The bargaining profile is pS (0, v̂) = 1, rS (0) = (1− δ) 0.5 and pB (v, c1, c2) = 1 and

rB (v) = v, v ∈ {0.1, 1}. The stocks are ΦS (c) ≡ 1 + 1/δ for all c, ΦB (v) = 0 if v < 0.1,

ΦB (v) = 1/δ if 0.1 ≤ v < 1, GB (1) = 1/δ + 1. The equilibrium outcome is unique and

given by V S (0) = 0.5, V B (v) = 0, QS (0) = 0.5, QB (0.1) = 0, QB (1) = 1.

Proof: Step 1. The stock satisfies the steady-state conditions given the bargaining profile.

A buyer and a seller trade if and only if the buyer’s valuation is high. There is an

equal mass of buyers and sellers in the stock. Therefore, high valuation buyers trade

with probability one in any given period, qB (1, a) = 1. Low valuation buyers trade with

probability zero. The per-period trading probability of sellers is qS = 1/ (1/δ + 1). The

steady-state conditions are easily verified. For example, the steady-state condition for

buyers requires that at v = 0.1, 1 + (1− δ) (1− 0) 1/δ = 1/δ, which holds. Intuitively,

if the mass of low valuation buyers in the stock is 1/δ, then in any period the mass of

buyers who exit (die) is (1/δ) δ, which is equal to the mass of such buyers who enter.

Step 2. The expected payoffs are V S (0) = 1/2 and V B (0.1) = V B (1) = 0.

This is immediate for buyers, since sellers always offer a price equal to one. For

sellers, note that their lifetime trading probability is recursively defined as QS = qS +

(1− δ)
(
1− qS

)
QS, and, hence, QS = qS

qS+δ−δqS
= 0.5, using qS = 1/ (1/δ + 1). Intuitively,

a mass one of buyers with high valuations enter the market and trade. Therefore, the

mass of sellers who end up trading has to be equal to one, too. Since the total mass of
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entering sellers is two, this implies QS = 0.5. Finally, V S (0) = QS (p− c) = 0.5 (1− 0)

implies the claim.

Step 3. The bargaining profile constitutes an equilibrium.

Given payoffs characterized before, reservation prices satisfy the equilibrium conditions.

The buyers’ price offers are trivially optimal because buyers never make offers (offers

need to be only ex-ante optimal). Sellers’ price offers are optimal if and only if there

is no incentive to decrease prices to trade with low valuation buyers. There will be

no such incentive if the low valuation is below the sellers’ continuation payoffs, that is,

0.1 ≤ (1− δ) 0.5, which holds if and only if δ ≤ 4/5.

Step 4. The outcome is unique when δ ≤ 4/5.

First, note that buyers’ payoffs are zero in every equilibrium because sellers have all

the bargaining power. Second, every equilibrium in which sellers trade only with high

valuation buyers is outcome equivalent to the one described before. Third, if in some

equilibrium sellers also trade with buyers having low valuations, then the share of low

valuation buyers in the stock is smaller. This implies that sellers have a higher probability

of trading with high valuation buyers, which implies that their continuation payoffs are

higher than (1− δ) 0.5. Thus, offering a price equal to 0.1 would not be optimal if δ ≤ 4/5.

Contraction. QED.

The limit outcome is not pairwise efficient: For v = 1 and c = 0, V̄ B (1) + V̄ S (0) =

0.5 < 1−0. Thus, there are “unrealized gains from trade” between those types. This is an

equilibrium even when δ → 0 is because buyers with high valuations trade immediately

and are not available. Intuitively, only a fraction of sellers can be successfully matched

with buyers having a high type, since there are more sellers than buyers with such types

who come to the market. Thus, the fact that buyers having high valuations are not

available is driven by feasibility constraints.

4.3 Verification and Interpretation of the Conditions

The previous example illustrates that it is not immediate that outcomes are pairwise

efficient in the limit. I now discuss how Proposition 1 can be applied to the class of

dynamic matching and bargaining games introduced before.

Take a vanishing sequence of exit rates {δk} with δk → 0. Assume that there exists

at least one equilibrium for each δk. Pick one equilibrium for each k, and denote the

corresponding outcome by Ak. This gives a sequence of outcomes {Ak}. In the following,

I denote equilibrium magnitudes corresponding to δk by subscripts k, such as p
S
k , p

B
k ,...

I argue in the remaining subsections that this sequence satisfies the conditions of the
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proposition and that the limit of the sequence is therefore competitive in two cases which

are similar to the settings of Gale (1987) and Satterthwaite and Shneyerov (2008).10

The main purpose of the proof of the following Corollary is to demonstrate how the

conditions are applied in a particular game. I also comment extensively on how the

conditions can be verified for general matching technologies and bargaining games. The

central observations are that (i) Availability follows if the matching technology is such that

there is a positive probability to be matched with any set of traders from the other market

side who make up a positive share of the stock, (ii) No Rent Extraction and Monotonicity

hold in games where preferences (valuations and costs) are private information, (iii) Weak

Pairwise Efficiency holds if the bargaining game is "not too inefficient," in a sense to be

made precise.

Corollary 1 If {Ak} is a sequence of outcomes generated by equilibria for a vanishing

sequence of exit rates {δk}, then the sequence converges to the competitive outcome A
W if

(i) information is asymmetric, β = 0, η = 1, ζ ∈ [0, 1] or if (ii) information is symmetric

η = 0, matching is pairwise, ζ = 0, and the buyer has bargaining power, β ∈ (0, 1).

In the following sections, I verify the four conditions. For the result above to be

indeed a corollary to Proposition 1, it is necessary to show that Ak has a uniformly

bounded variation and that it satisfies Feasibility. Feasibility follows immediately from

the steady-state conditions. The fact that the sequence has a uniformly bounded variation

is verified together with Monotonicity and No Rent Extraction.

Remark. Let me discuss the remaining cases. Without providing a proof, I conjecture

that the limit is competitive whenever the distribution of bargaining power is interior,

β ∈ (0, 1), for all η and ζ. If sellers have all the bargaining power, β = 0, the outcome

converges if either information is asymmetric, η > 0, or if there is competition among

sellers with some probability, ζ > 0. If β = 0 (sellers have all the bargaining power) and

both, η = 0 (no noise) and ζ = 0 (no competition), convergence fails, see the discussion

in Section 4.5. If buyers have all the bargaining power, β = 1, convergence fails for all η

and ζ, by the same argument as for β = 0.

10An important difference is the existence of an entry stage in these models, see Section 5.1. In addition,
the set of types is discrete in the model by Gale (1987), rather than a continuum. An analogous statement
of Proposition 1 for an economy with a discrete set of types would imply that the limit outcome becomes
close to the competitive outcome when the set of types becomes dense in the unit interval.
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4.4 Availability

The function LBk (v, Ak) is interpreted as the probability that a seller in the stock is

matched at least once during his lifetime with a buyer having a type larger than v before

being forced to exit, given the exit rate δk and the outcome Ak. Similarly, L
S
k (c, Ak) is the

probability that a buyer is matched at least once with a seller having costs below c. With

this interpretation, Availability is a property of the matching technology. Availability

holds for all parameter choices of ζ, β, and η, and it holds for all action profiles (not just

equilibrium profiles). For this, I show first that the steady-state conditions imply that

types who do not trade with probability one must make up a positive share of the stock.

Then, I show that the matching technology implies that, whenever a set of types makes

up a positive share of the stock, the probability to match with such a type is strictly

positive and non-vanishing; this implies Availability. The Availability condition is easily

violated when there is an entry stage. Entry is discussed in Section 5.1.

The basic observation is the following: Traders who are less likely to trade, stay in

the stock for a longer period of time and make up a larger share of it. The steady-state

condition can be rewritten to show that:11

ΦB (v′)− ΦB (v′′) =
1

δ

∫ v′

v′′

(
1−QB (τ) + δQB (τ)

)
dGB (τ) . (2)

The mass of any given type in the stock is proportional to the probability of not being

able to trade, which is
(
1−QB (τ)

)
, and the mass in the inflow, dGB. This implies,

in particular, that buyers who do not trade with probability one make up a positive,

non-vanishing share of the stock of traders: By equation (2), the mass of these buyers is

proportional to δ−1
(
1−QB

) (
GB (v′)−GB (v′′)

)
, while the total mass of all buyers (and

sellers) is at most δ−1GB (1) (by taking the integral from 0 to 1 at QB = 0). The relation

between the probability of not trading and the share in the stock is independent of the

specific matching technology and follows mechanically from the steady-state conditions.

The probability to be matched in any given period with a buyer with type at least as

large as v is denoted by XB (v), and the probability to be matched with a seller with type

at most as high as c is denoted by XS (c). For example, the probability of being matched

with a buyer from the set [v, 1] is XB (v) =
(
ΦB (1)− ΦB (v)

)
M−1. The probability for

11Evaluating the steady conditions for ΦB (v′′) − ΦB (v′) and reordering terms implies that
∫ v′′
v′

(
1− (1− δ)

(
1− qB (τ , a (τ))

))
dΦB (τ) = GB (v′′)−GB (v′). Multiplying both sides of the identity

pointwise by
(
1− (1− δ)

(
1− qB

))−1
, yields ΦB (v′) − ΦB (v′′) =

∫ v′′
v′

(
1

qB+δ−qBδ

)
dGB . Rewriting

further by using QB = qB

qB+δ−qBδ
implies the claim.
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a seller to be matched at least once during his lifetime with a buyer who has a type at

least as large as v is denoted by LB,12

LB (v) = XB (v) +
(
1−XB (v)

)
(1− δ)LB (v) . (3)

As apparent from the definition, when δk → 0, the probability LBk (v) converges to one

if and only if the per-period matching probability is large relative to the exit rate,

LBk (v)→ 1 ⇔
XB
k (v)

δk
→∞. (4)

I show that the prior observations imply that the Availability condition holds. Suppose

there is some vx such that the limit trading probability is smaller than one for all types

below. Take any v′′ and v′ below vx to define an interval [v
′′, v′] below vx for which the

probability of not trading is strictly positive. Using equation (2), I have argued that the

share of these types in the stock must be strictly positive and non-vanishing in the limit.

The probability that a seller is matched in any given period with a buyer who has valuation

at least v′′ is equal to the share of buyers with these types in the stock. Therefore, the

previous observation that the share of these types is strictly positive and non-vanishing

in the limit implies that lim infXB
k (v

′′) > 0. Hence, the ratio XB
k (v) /δk diverges to

infinity, and, by observation (4), types v ≥ v′′ become available, LBk (v
′′) → 1. Thus, I

have now demonstrated that the Availability condition holds in the model relative to LB

as defined before, for all parameters ζ, β, and η. The Availability condition for the seller’s

side relative to an analogously defined function LS follows from the same logic. I have not

used any assumption on the bargaining profile. Availability is indeed a property of the

matching technology only. Except for the steady state conditions, no further equilibrium

conditions are used.

One can extend the arguments from before to other matching technologies beyond the

parameterized example. First, the relation between the trading probability and the share

of types in the stock, documented in equation (2), follows solely from the steady-state

conditions. Therefore, it is sufficient for Availability that the matching technology is such

that there is a strictly positive, non-vanishing probability to be matched with any set

of types that make up a positive share of the stock. Importantly, it is not necessary to

calculate an equilibrium to check whether or not a given matching technology implies

12Note that by (2), the trading probabilities QBk and the exit rate δk uniquely determine the stock Φ
B

and, therefore, the matching rate XB
k (v). Thus, for given δk, (2) allows to define Lk (v,Ak) as a function

of Ak only, without reference to Φ
B , as required for the application of the conditions.
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a positive matching probability with types having a positive share in the stock. In the

current example, this property follows immediately from the matching function.

Let me discuss the requirement that the trading probabilities are below one for all

types that are above cx or below vx, respectively. The condition could be relaxed to

require only that there is some arbitrarily small ε such that for all types in (cx, cx + ε)

or (vx − ε, vx) trading probabilities are below one. What is needed is that the set of

such type has positive mass. In particular, if the set of types were discrete rather than

a continuum, an equivalent condition would require availability of any single type who

trades with probability less than one. It is because of this reason that I summarize this

condition as requiring availability of those types who do not trade with certainty, despite

the fact that the statement of the condition imposes the much stronger requirement that

all types above (below) do not trade with certainty, too.

Failure of Availability with Entry. Availability does not hold in models with an entry

stage: Agents who do not enter are not available even though they trade with probability

zero. Entry is discussed in Section 5.1.

4.5 Monotonicity and No Rent Extraction

TheMonotonicity and the No Rent Extraction conditions are immediate whenever bargaining

takes place under asymmetric information. With asymmetric information, the trading

probability and the expected price paid by an agent depend only on the action that is

chosen in the bargaining game but not on the type. In such games, Monotonicity and No

Rent Extraction follow from incentive compatibility conditions.

Bargaining is said to be under asymmetric information if the sellers’ signals about the

buyers’ willingness to pay are not informative, η = 1, and if the buyers never make offers,

β = 0.13 I discuss the sellers’ side (the buyer’s side is analogous). In equilibrium, the

optimality condition requires that the action that is chosen by a type c, a (c), maximizes

expected payoffs, a (c) ∈ argmaxUS (c, a), and the equilibrium payoff is given by V S (c) =

maxaQ
S (a, c) (P (c, a)− c). If η = 1 and β = 0, the trading probability and the expected

price do not depend on the type but only on the action, that is, QS (a, c′) = QS (a, c′′) and

P (c′, a) = P (c′′, a) for all actions and for all types c′ and c′′. Now, the desired properties

follow from standard reasoning about Bayesian incentive compatibility when expected

utility is linear in the type (see, e.g., Mas-Colell, Whinston, and Green, 1995, Proposition

13Buyers should never make offers, because, by assumption, buyers observe the types of the sellers.
This assumption is made to keep the notation simple and, if buyers make offers but do not observe the
sellers’ types, symmetric arguments apply.
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23.D.2). Optimality of equilibrium actions requires that for any two types c′ and c′′,

V S (c′) = QS (a (c′) , c′) (P (c′, a (c′))− c′) ≥ QS (a (c′′) , c′′) (P (c′′, a (c′′))− c′)

= V S (c′′) +QS (a (c′′) , c′′) (c′′ − c′) .

Using a similar revealed preference argument for V S (c′′) implies the following bound on

the payoff difference:

QS (a (c′) , c′) (c′′ − c′) ≥ V S (c′)− V S (c′′) ≥ QS (a (c′′) , c′′) (c′′ − c′) . (5)

This bound holds for every exit rate. Given a sequence of equilibrium trading probabilities

and payoffs with pointwise limits Q̄S and V̄ S, it must be true that

Q̄S (c′) (c′′ − c′) ≥ V̄ S (c′)− V̄ S (c′′) ≥ Q̄S (c′′) (c′′ − c′) . (6)

Suppose that c′′ > c′. The inequalities (6) imply that the equilibrium trading probabilities

are monotone non-increasing, Q̄S (c′) ≥ Q̄S (c′′). Thus, trading probabilities satisfy the

Monotonicity condition. Moreover, the No Rent Extraction condition holds. Suppose

that c′ > c′′. The first part of the condition is immediate since Q̄S (c′) (c′′ − c′) ≤ 0 and

Q̄S (c′′) ≤ 1 together imply that the slope of the payoffs is bounded between zero and

minus one, 0 ≥ V̄ S (c′)− V̄ S (c′′) ≥ (c′′ − c′) for c′ > c′′, as required. For the second part

of the condition, suppose that Q̄S (c′′) = 1. Then, the second inequality from (6) implies

that V̄ S (c′) ≥ V̄ S (c′′) + (c′′ − c′), as required.

Bounded Variation. With asymmetric information, every sequence of equilibrium

outcomes has uniformly bounded variation. The inequalities (5) imply that the equilibrium

trading probabilities and the equilibrium payoffs must be monotone functions for all exit

rates. Thus, if {Ak} is a sequence of equilibrium outcomes, all of the elements of the

sequence are monotone functions. Moreover, by definition, the trading probabilities and

the payoffs are uniformly bounded by zero and one. For a family of uniformly bounded

functions, monotonicity is a sufficient condition for uniformly bounded variation (see

Kolmogorov and Fomin, 1970); so, the claim follows.

With asymmetric information, it is not necessary to fully characterize equilibrium in

order to check whether or not it is true that the Monotonicity and the No Rent Extraction

conditions hold. Instead, with asymmetric information, the Monotonicity and the No Rent

Extraction condition follow from the fact that equilibrium outcomes must satisfy standard

incentive compatibility constraints.
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Failure of No Rent Extraction with Symmetric Information. According to the discussion

before, the No Rent Extraction condition is most likely to fail in a situation with symmetric

information. Consider the basic example with symmetric information in which only sellers

make price offers (β = 0, η = 0, ζ = 0). This case is analyzed in Lauermann (2011).14

It is shown that the limit outcome is not the Walrasian outcome. The reason for the

failure of convergence is the failure of the No Rent Extraction. Since sellers have all the

bargaining power, they receive the whole trading surplus. Consequently, buyers’ payoffs

are zero, independent of their type; that is, the rent of the buyers is extracted (this is

what motivated the name of the condition). Because it can be shown that there must be

some interior type of buyer who trades with probability one in the limit, the fact that

the buyers’ payoffs are constant at zero implies that the No Rent Extraction condition is

violated. The other three conditions continue to hold.

Interior Bargaining Power. In Gale’s (1987) original model, buyers can make offers

as well; that is, β is strictly positive. In this case, the basic example with symmetric

information has a property that makes it similar to a game with asymmetric information.

Consider, again, the basic example with symmetric information and pairwise matching.

But, in contrast to the case considered in the previous paragraph, suppose buyers have

some bargaining power (β ∈ (0, 1) , η = 0, ζ = 0). Although it is still true that a trader of

type v does not need to receive the same offers as a trader of type vx, such a type can

make the same offers when chosen to be the proposer. Importantly, in equilibrium, payoffs

depend only on the offers made when chosen to be the proposer. (If a trader is chosen to

be the responder, the offer is such that the responder is just indifferent between accepting

and rejecting.) Therefore, a buyer of type v can mimic the strategy of another type vx just

as the buyer can mimic the actions of another type with asymmetric information. This

is sufficient to restore No Rent Extraction.15 Since the other conditions hold as well, this

implies that the bargaining game with symmetric information is Walrasian. Somewhat

surprisingly, it turns out that interior bargaining power and private information play a

similar role, namely, ensuring that the No Rent Extraction condition is satisfied.

The Role of Information. Intuition derived solely from the Myerson-Satterthwaite

14Lauermann (2011) considers homogenous sellers only. However, the analysis extends to sellers having
costs distributed according to a smooth distribution on the unit interval.
15Given some equilibrium σ∗, let PP (v) and QP (v) be the expected price and trading probabilities of

a buyer having type v who rejects all offers when chosen to respond, but who makes optimal offers when
chosen to propose. By the reasoning in the text, equilibrium payoffs of a trader depend only on the offers
made when the trader is chosen to propose. Therefore, V B (v) = QP

(
v − PP

)
. This implies that, for

any two types v and v′, V B (v) ≥ V B (v′) +QP (v′) (v − v′). Together with the observation that QPk (v)
converges to one along any sequence of equilibria for which Qk (v) converges to one, Monotonicity and
No Rent Extraction follow.
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impossibility theorem suggests that asymmetric information is detrimental to efficiency.

However, this is not the case here. Asymmetric information directly implies that two of

the four conditions hold. Moreover, consider the example in which sellers have all the

bargaining power and face no direct competition, β = 0 and ζ = 0. Then, the limit

outcome is efficient if information is asymmetric (η = 1), but the limit is inefficient if

information is symmetric (η = 0), as shown in Lauermann (2011) and as discussed in

the previous paragraphs. The current framework allows interpreting the counterintuitive

findings about private information as ensuring the No Rent Extraction condition.

4.6 Weak Pairwise Efficiency

Bargaining protocols with symmetric information that specify a surplus sharing rule–such

as Nash bargaining–satisfy Weak Pairwise Efficiency since the total expected surplus

is always realized. In general, it is critical that the bargaining protocol is not “too

inefficient.” This is a new characterization of bargaining protocols. Specifically, a bargaining

protocol is said to be not too inefficient, if, whenever the expected surplus between two

traders is positive, at least one of the traders can realize a positive, non-vanishing fraction

of this surplus (a formal definition follows).16 Conversely, if the sum of the expected

payoffs for two types of traders is zero despite the existence of a positive expected surplus

for each of them, the condition does not hold. Two reasons for the existence of unrealized

surplus are discussed at the end of this section. First, in the bargaining phase, traders

might be stuck in a “bad” Nash equilibrium when actions are chosen simultaneously.

Second, traders might not try to realize existing surplus for fear of “punishment” in the

future.

Consider an exit rate δ and a constellation σ. Given a pair of types (v, c), I define

∆(v, c) = max
{
v − c− (1− δ)

(
V S (c) + V B (v)

)
, 0
}
,

x (v, c) = min
{
XB (v) , XS (c)

}
,

where ∆ is the surplus available between the types, and where x is the minimum of the

probabilities that the seller is matched with a buyer of type at least v, and the probability

that the buyer is matched with a seller with cost at most c. When V S and V B are

monotone with absolute slopes bounded by one, ∆ is increasing in v and decreasing in c.

If x (v, c)∆ (v, c) is positive, then, for each type, the expected surplus that is available in

any given match is positive.

16This is again a condition on outcomes (of bargaining) to ensure that the analysis is general.
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I rewrite payoffs recursively. Let πS be the expected net gain conditional on trading.

Payoffs are V S = qS
(
πS + (1− δ)V S

)
+
(
1− qS

)
(1− δ)V S. Reordering terms yields

δV S = qSπS. Given some specification of the game, let γS be a uniform lower bound

such that δV S ≥ γSx∆ for all types c, all exit rates δ, and all equilibria. The parameter

γS measures how much of the expected surplus is realized by the seller. Let γB be an

analogous uniform bound for buyers, so that δV B ≥ γBx∆. Such bounds exists trivially

because γS = γB = 0 suffice. A bargaining protocol for which the sum of the bounds

γS + γB is not trivial is said to be “not too inefficient.” As shown below, most standard

bargaining protocols are not too inefficient.

If a positive share of the surplus can be realized, Weak Pairwise efficiency holds. Take

a sequence of market constellations σk, and suppose that types vx and cx become available.

By definition of γS and γB, the sum of their payoffs is bounded from below by

V Sk (cx) + V
B
k (vx) ≥

(
γS + γB

) xk
δk
∆k.

Suppose there are non-trivial lower bounds such that
(
γS + γB

)
> 0. Since the types vx

and cx are available by hypothesis, xk/δk →∞, from (4). Therefore, it must be the case

that the surplus between cx and vx becomes zero, ∆k → 0, for otherwise the right-hand

side of the displayed equation would become infinite. If ∆k → 0, then, by definition of

∆k, payoffs become pairwise efficient, V̄
S+ V̄ B ≥ vx−cx. Thus, Weak Pairwise Efficiency

holds whenever nontrivial uniform lower bounds exist, that is, whenever the bargaining

protocol is not too inefficient.

Let me consider a model similar to Gale (1987) with symmetric information, η = 0,

no competition, ζ = 0, and β ∈ (0, 1), where β measures the distribution of bargaining

power. It is straightforward to verify that the buyer and the seller can expect a share

γB = β and γS = (1− β), respectively. I verify this for the seller. The seller’s payoffs are

δV S (cx) = (1− β)

∫
∆(cx, v) dX

B (v) .

This equation holds because, whenever a seller is matched with a type v and chosen

to be the proposer, the seller makes an acceptable offer that captures the entire surplus

∆(cx, v). When chosen to be the responder, the seller captures nothing over and above the

continuation value. Observing that in equilibrium the surplus ∆(cx, v) is nondecreasing

in v, the above formula implies in particular that δV S (cx) ≥ (1− β) x (v, cx)∆ (v, cx) for

all v; therefore, γS = (1− β) is indeed a uniform lower bound on the seller’s share of

the expected surplus x∆. The bound is independent of the type, the exit rate, and the
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equilibrium as required.

Finally, let me consider a model that is similar to Butters (1979), Satterthwaite and

Shneyerov (2008), and Lauermann (2008). In these models, offers are exclusively made

by sellers, β = 0, and information is asymmetric, η = 1.17 There may be competition

ζ ∈ [0, 1). With asymmetric information, bargaining cannot be efficient. Still, traders can

expect to realize a non-zero share of the expected surplus. In fact, for these parameters,

γS = (1− ζ). To see why, suppose the seller offers a price that is equal to the maximal

willingness to pay of some type vx; that is, suppose that px = r (vx), were r (vx) =

vx− (1− δ)V
B (vx) by the equilibrium requirement. In equilibrium, the reservation price

is increasing in the buyer’s valuation so that all buyers with valuations v ≥ vx accept the

offer. The probability to be matched with such a buyer is XB (vx). The probability to

have no competitor is (1− ζ). Therefore, the price offer is accepted with a probability

of at least (1− ζ)XB (vx). The payoff from offering px provides a lower bound on the

equilibrium payoff,

δV S (cx) ≥ x (1− ζ)
(
px − cx − (1− δ)V

S (cx)
)

= x (1− ζ)
(
vx − (1− δ)V

B (vx)− cx − (1− δ)V
S (cx)

)
= (1− ζ) x∆.

Therefore, γS = (1− ζ) is a uniform lower bound of the seller’s share of the expected

surplus.18 The bound is independent of the type, the exit rate, and the equilibrium.

As I have demonstrated, it is not necessary to fully calculate the equilibrium in order

to check whether equilibrium payoffs admit a nontrivial lower bound. It is sufficient to

show that individual agents have actions available that ensure a minimal payoff. I did

use an equilibrium requirement on reservation prices that implies that the other agents

accept an offer whenever accepting the offer is individually rational. The example below

demonstrates the significance of this requirement.

Failure of Weak Pairwise Efficiency with Simultaneous Auctions. Serrano (2002)

specifies the bargaining protocol as a simultaneous double auction.19 He shows that

equilibrium outcomes do not need to become competitive. I can replicate the main features

of his bargaining protocol in the basic example by dropping the equilibrium requirement

on reservation prices and analyzing the larger set of “Nash equilibria” instead. Suppose

17In Satterthwaite and Shneyerov (2008), the roles of buyers and sellers are reversed: A random number
of buyers make price offers to a single seller. The seller cannot commit to an optimal ex-ante reservation
price, but, ex post, he can either accept or reject the highest offered price.
18It can be verified that γS + γB > 0 if ζ = 1 and sellers face competitors with certainty.
19His interest stems from the prior use of simultaneous auctions in dynamic matching and bargaining

games in the context of common values.
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matching is pairwise and sellers are always chosen to propose, ζ = 0 and β = 0. Consider

the following action profile with trading at an arbitrary price p̄: Sellers offer the price

p̄ if c ≤ p̄ and they offer p = 1 otherwise. Buyers choose a reservation price r = p̄

if v ≥ p̄ and r = 0 otherwise. This action profile constitutes a mutual best response

for all δk. Thus, the action profile together with the induced steady state stock implies

an equilibrium outcome for every exit rate. Fixing an action profile with a price p̄ as

described before for a sequence of exit rates defines a sequence of equilibrium outcomes.

The sequence of outcomes satisfies Monotonicity, No Rent Extraction, and Availability

for every p̄. Availability holds for every p̄ because, by the observations from Section

4.4, the matching technology is such that Availability holds for every bargaining profile.

Monotonicity and No Rent Extraction are immediate as well. Moreover, if the price p̄ is

equal to the Walrasian price, then the limit outcome will be Walrasian. However, if the

price p̄ is not equal to the Walrasian price, then no limit of the sequence is Walrasian and,

as argued in the next paragraph, the Weak Pairwise Efficiency condition fails. Thus, the

non-convergence result can be attributed to the failure of Weak Pairwise Efficiency.

To see that Weak Pairwise Efficiency fails, suppose that p̄ > pw. By the specification

of the bargaining profile, buyers with a valuation below p̄− ε never trade and, therefore,

Q̄B (p̄− ε) = V̄ B (p̄− ε) = 0. Since their trading probability is below one, these buyers are

available. For sellers, note that all types below pw make the same offer and, therefore, these

types trade with the same probability. This trading probability must be bounded away

from one by the feasibility constraints.20 The fact that the sellers’ trading probability is

below one implies that, (i), sellers’ payoffs are bounded away from (p̄− c), V̄ (c) < (p̄− c)

and, (ii), sellers with costs below p̄ are available. Take some pair of types with c < p̄

and v = p̄ − ε. Since these types are available, Weak Pairwise Efficiency requires that

V̄ S (c)+ V̄ B (p̄− ε) ≥ p̄− c− ε for all ε. However, the earlier observations imply that, for

small enough ε, (p̄− c− ε) > V̄ S (c)+V̄ B (p̄− ε), since V̄ B (p̄− ε) = 0 and V̄ S (c) < p̄−c.

Failure of Weak Pairwise Efficiency with Observable Actions. I use the fact that the

continuation payoffs are fixed when proving Weak Pairwise Efficiency. The assumption

that continuation payoffs are independent of a trader’s current action is motivated by

the assumptions that histories are private information and that there is a continuum of

traders. Therefore, deviations cannot trigger a change in continuation payoffs, since, given

the random matching technology, a trader will almost never meet the same partner again

(or the partner’s partner or the partner’s partner’s partner, etc. ).

20The mass of buyers with valuations above p̄ exceeds the mass of sellers below p̄, since, by definition
of pw and the assumption that p̄ > pw, GS (p̄) > 1 − GB (p̄). Thus, feasibility implies that the trading
probability of the sellers cannot be one; see Section 4.2.
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If actions are publicly observable, however, Weak Pairwise Efficiency might fail. Traders

do not necessarily have an incentive to deviate from the equilibrium in order to realize sure

gains from trade because of the potentially negative impact of their deviation on their

future trading opportunities. (Or, alternatively, because rejecting an offer is rewarded

by a subsequent increase of the continuation payoffs.) Rubinstein and Wolinsky (1990)

construct non-competitive equilibria in a model with a finite number of agents and

observable actions. They also assume that traders are not forced to break up the match

after no agreement is reached. The non-competitive equilibrium can be interpreted as a

community enforcement of “fair” prices. In a recent paper, Gale and Sabourian (2005)

introduce “complexity costs” and show that, if traders prefer “simple” strategies, such

non-competitive equilibria cannot be supported.

5 Extensions and Conclusion

5.1 Entry

Many steady-state models include an entry stage. With an entry stage, traders who

choose not to enter are unavailable even though they do not trade with probability one.

An entry stage typically implies multiplicity of equilibrium because it is an equilibrium

for all traders to not enter. If no other trader enters, not entering is a best response. A

sequence of no-trade equilibrium outcomes violates the last two conditions of the main

result. The trading probability is zero for every pair of types but the sum of their payoffs

is not pairwise efficient.

An example of a steady-state model with entry is considered in Gale (1987). Abstracting

from sequences of equilibria in which the number of actual trades vanishes, it is shown that

every sequence of equilibrium outcomes becomes competitive when frictions become small.

Since the stated conditions of Proposition 1 are necessary for convergence, sequences of

equilibrium outcomes with non-vanishing trade satisfy the conditions. However, for a

model with entry it is not possible to directly verify the Availability condition, with

availability defined as in the parameterized model: With an entry stage, there are some

strategy profiles for which the life-time matching probabilities for some types are zero even

though the trading probability is below one (this is trivial if the types do not enter). Thus,

to prove that sequences of outcomes with non-vanishing trades satisfy the Availability

condition, one would need to calculate equilibrium outcomes first.

It is possible to modify the Availability and Weak Pairwise Efficiency condition so that

they are directly verifiable. Specifically, one may require the following: If, for any pair of
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types cx and vx for which it is true that there is either a non-empty interval (c
′, cx) such

that 0 < Q̄S (c) < 1 for all c ∈ (c′, cx) or there is a non-empty interval (vx, v
′) such that

0 < Q̄B (v) < 1 for all v ∈ (vx, v
′), then payoffs are V̄ S (c)+V̄ B (v) ≥ v−c for all c ∈ (c′, cx)

and v ∈ (vx, v
′). The requirement of a strictly positive trading probability ensures that

types from the respective intervals must have entered. This modified condition can be

directly verified in models with entry without deriving equilibrium. Intuitively, if there is a

set of types (c′, cx) who enter the stock and who trade with probability less than one, then

these types must make up a large share of the stock and buyers must be matched frequently

with such types. One can prove the following analogous result to Proposition 1: Let Ak

be a sequence of feasible outcomes with uniformly bounded variation and non-vanishing

trading volume.21 Then, a limit outcome exists and is equal to the Walrasian outcome

if and only if the sequence satisfies Monotonicity, No Rent Extraction, and the modified

condition discussed above.

The conditions can be verified directly22 in the models by Gale (1987) and by Satterthwaite

and Shneyerov (2008), using the methods introduced in Section 4. One finding is that,

with entry, convergence requires a more efficient bargaining protocol. This is reflected by

the modified condition which requires pairwise efficiency already if only one market side

is “available” (trades with probability strictly between zero and one).23

5.2 Exogenous Stocks and the Failure of Feasibility

In their seminal paper on dynamic matching and bargaining games, Rubinstein and

Wolinsky (1985) consider a model where the stock of agents is exogenous. The composition

and the size of the stock are kept constant over time by replacing exiting agents. A model

with a similar feature has also been used by De Fraja and Sakovics (2001). Since the

stock is exogenous, it is natural to interpret the stock of traders as the relevant economy.

In both models it is shown that when discounting is removed, outcomes generically do not

becomeWalrasian with respect to the economy defined by the stock of traders. Rubinstein

and Wolinsky’s finding of a non-competitive yet “frictionless” limit outcome has sparked

21Formally, the trading volume must satisfy lim inf
∫
QSkdG

S +
∫
QBk dG

B > 0.
22However, outcomes fail the feasibility condition because of the presence of discounting and entry costs

in these models. The feasibility condition requires that the expected payoff equals the trading surplus
exactly while discounting and entry costs may lead to "waste". This failure is not consequential; one
needs only feasibility of the limit outcome which holds in both models.
23For example, Satterthwaite and Shneyerov (2008) cannot allow the seller to run an optimal auction

with an ex-ante reservation price, for otherwise the limit fails to be competitive. In constrast to the
model with entry, one can use the current results to show that in an analogous model without entry the
limit is also competitive when sellers use optimal auctions (set ex-ante reservation prices).
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much of the interest in dynamic matching and bargaining games. In the following, I will

relate their result to the failure of the feasibility condition.

Rubinstein and Wolinsky (1985) prove that the limit outcome is characterized by a

price p̂ which depends on the parameters of the game (the bargaining power). Given the

price, payoffs are v − p̂ for the buyers and p̂ − c for the sellers. Therefore, the outcome

is pairwise efficient: V B (v) + V S (c) ≥ v − p̂ + p̂ − c = v − c. Lemma 2 implies that

a pairwise efficient outcome is competitive if and only if it is feasible. Therefore, limit

outcomes from Rubinstein and Wolinsky (1985) are, in fact, competitive whenever they

are feasible. However, as shown by Rubinstein andWolinsky, for generic bargaining power,

the price is not competitive relative to the stock of traders. Thus, generically, the outcome

is also not feasible relative to the stock. De Fraja and Sakovics (2001) report a similar

finding: The limit outcome is characterized by trade at a common price and the limit is

pairwise efficient. Therefore, limit outcomes are competitive if and only if they are feasible.

But, again, it is shown that the common trading price is generically not competitive

and, by Lemma 2, the outcome is generically not feasible, too.24 Thus, in these papers,

non-convergence to the competitive outcome is implied by the fact that limit outcomes

are not feasible. Outcomes that are not feasible cannot possibly be competitive.25

The fact that the stock is exogenous has two implications. First, all types are available.

A trader has a positive chance to be matched with any set of types that has a positive

share in the stock. Therefore, in the limit, all pairs are formed frequently, which helps in

establishing pairwise efficiency directly. Second, since the stock is exogenous, it is possible

that all traders from a large set of sellers trade with a small set of buyers, as measured by

their shares in the stock. This allows for the failure of feasibility of the outcome relative

to the stock. For example, in Rubinstein and Wolinsky’s model, even if the mass of sellers

in the stock exceeds the mass of buyers, all sellers can end up trading in equilibrium. This

is not possible in a model in which the inflow is exogenous: If the mass of sellers exceeds

the mass of buyers in the inflow, only a fraction of the sellers can trade, see Section 4.2.

Gale (1987) makes two well-known observations about the finding by Rubinstein and

Wolinsky (1985). These observations are different from the observation that the feasibility

constraints fail. First, he argues for making the stock an endogenous equilibrium object

24De Fraja and Sakovics show that there exist parameter combinations for their model for which
the trading price is competitive, see their Proposition 5 and Proposition 7. This set of parameter
combinations is a plane in the three-dimensional parameter space of their model. Generically, the price
is not competitive.
25Note that the observations follow already from the original characterization result by Shapley and

Shubik (1971). Thus, the observations from this section demonstrate the usefulness of cooperative
characterization results in general rather than the usefulness of the Proposition 1 in particular.
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instead of taking the stock as a primitive. His main argument is that, in many economic

applications, the stock and, hence, the matching probabilities are endogenous (Gale, 1987,

p. 21). Second, he argues that, in his model, the exogenous flow is the appropriate static

economy relative to which one should interpret the limit price. The stock is not the

appropriate benchmark because, in his model, the stock is endogenously determined by

the equilibrium conditions and, therefore, the stock cannot be interpreted as a primitive

of the model (Gale, 1987, p. 28).

5.3 Concluding Remarks

The paper introduces a modification of a well-known characterization result from cooperative

game theory for quasilinear economies which states that a feasible outcome is competitive

if and only if it is pairwise efficient. I argue that this existing characterization result

cannot be used effectively to argue when and why outcomes of decentralized markets are

competitive when frictions are small. In particular, I provide a simple example which

demonstrates that in a dynamic search and bargaining game not all traders are available

to be matched with. The reason is that it is inherently difficult to match with those types

that trade fast. Thus, there might be unrealized gains from trade for pairs of types when

one type is not available.

Motivated by this observation, I derive a new characterization result: An outcome is

equivalent to the competitive outcome if and only if (i) it is pairwise efficient for a subset

of types that trade with probability less than one and (ii) payoffs have a slope that is

bounded in a particular way. I argue that these conditions are directly verifiable in many

games–in contrast to the original characterization result. I discuss extensively what

properties of the matching technology and of the bargaining protocol ensure that these

conditions holds and I explain for what properties the conditions fail. A parameterized

example demonstrates how the characterization result can be used to investigate what

causes divergent results in the literature and how the characterization result generalizes

insights from the analysis of specific dynamic search and bargaining games.

Decentralized markets typically lack clearly specified trading procedures.26 Aumann

(1987) argues that methods from cooperative game theory are particularly well suited to

gain insights into such "amorphous" economic environments. This paper demonstrates

that cooperative methods might indeed be useful for the analysis of decentralized markets.

26"The markets which are best organized from a competitive standpoint are those in which purchases
and sales are made by auctions . . . . City streets with their stores and shops of all kinds –baker’s,
butcher’s, grocer’s, taylor’s, shoemaker’s, etc.– are markets where competition, though poorly organized,
nevertheless operates quite adequately." (Walras, 1874); quoted in Daggan, Serrano, Volij (2000).
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