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Abstract

We wish to study optimal dynamic nonlinear income taxes. Do real

world taxes share some of their features? What policy prescriptions

can be made? We study a two period model, where the consumers and

government each have separate budget constraints in the two periods, so

income cannot be transferred between periods. Labor supply in both

periods is chosen by the consumers. The government has memory,

so taxes in the �rst period are a function of �rst period labor income,

whereas taxes in the second period are a function of both �rst and second

period labor income. The government cannot commit to future taxes.

Time consistency is thus imposed as a requirement. The main results

of the paper show that time consistent incentive compatible two period
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taxes involve separation of types in the �rst period and a di¤erentiated

lump sum tax in the second period, provided that the discount rate is

high or utility is separable between labor and consumption. In the

natural extension of the Diamond (1998) model with quasi-linear utility

functions to two periods, an equivalence of dynamic and static optimal

taxes is demonstrated, and a necessary condition for the top marginal

tax rate on �rst period income is found.

Keywords: Optimal Income Taxation; Time Consistency; Incentive

Compatibility; Sequential Information Revelation; Optimal Dynamic

Taxation

JEL Codes: H21, D82, J22
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1 Introduction

We wish to study optimal dynamic nonlinear income taxes. What do they

look like? How do they change over time? Do real world taxes share some

of their features? What policy prescriptions can be made? How do these

prescriptions di¤er from those of the static model? In particular, must the

top marginal tax rate be zero?

The public �nance literature considers mainly static taxation. The macro-

economic literature considers mostly proportional taxes1 (possibly on multiple

income sources) over time, and thus is more closely related to the optimal com-

modity tax literature. For instance, information accumulated about the type

of a particular taxpayer in one period typically cannot be used in the next,

since the tax rate is unique (the same for all income from a source); thus, type

di¤erentiated lump sum taxes are excluded. Another feature of this literature

is ex ante tax policies, implying either commitment or that information re-

vealed is not used to formulate tax policy. A third feature of this literature is

the assumption that current period taxes are a function only of current period

income, precluding the possibility that current period taxes are a function of

previous periods� revelations of income.2 Each paper in the literature employs

at least one and possibly more than one of these features, thus distinguishing it

from our work. Examples include Krusell et al (1997), Benhabib et al (2001),

Benhabib and Rustichini (1997), Persson and Tabellini (2002), Albanesi and

Sleet (2006), Kocherlakota (2005), Doepke and Townsend (2006), and Bisin

and Rampini (2006)3. In defense of these models, the main purpose is to in-

troduce heterogeneity of consumers using information asymmetries rather than

to investigate the dynamics of sequential information revelation, our focus.

We study a two period model as a beginning. The consumers and the

1Often, taxes with a transfer (either positive or negative) at zero are excluded, so when

the macroeconomic literature says �linear,� it means �proportional.� Of greater importance,

the reader should note that given the standard result that the marginal rate faced by the

highest ability person in the economy is zero for an optimal tax, the only linear taxes that

are second best are uniform lump sum taxes. Thus, the restriction to linear taxes often

employed in this literature simpli�es the analysis, but generally forces taxes to be third best

and inferior to nonlinear taxes.
2Our view is that optimal taxes could rely only on current period but not past periods�

income revelations, but that this should be derived endogenously from the optimal income

tax problem.
3Two features of this last model are that hidden e¤ort is chosen only once, and that

it is never optimal to separate types in the second period when there is no government

commitment.
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government each have independent budgets in each of the two periods, so

wealth cannot be transferred over time. The government has memory, so �rst

period tax liability is a function of �rst period income only, but second period

tax liability can be a function of both �rst and second period income. Taxes

are general (possibly nonlinear) functions of income. The government cannot

commit to future tax functions, so time consistency is imposed as a restriction

on taxes. Our main results involve analysis of the �rst and second order

conditions for incentive compatibility in the consumer problem, followed by

characterizations of optimal taxes under time consistency. The major theorem

says that time consistent, incentive compatible income taxes typically involve

separation of types in the �rst period followed by a di¤erentiated lump sum

tax in the second period, provided that the discount rate is high or utility is

separable between labor and consumption. Thus, the second period tax rate

as a function of second period income is constant. The separation of types

in the �rst period is incentive compatible, in the sense that consumers know

what�s coming in the second period but choose to reveal their types anyway.

In the context of the natural extension of the Diamond (1998) model to

dynamics, utilities are time separable, quasi-linear and involve discounting.

We �nd an equivalence between optimal taxes in our dynamic extension and

static optimal income taxes. In general, there is a continuum of optimal

dynamic taxes corresponding to a given optimal static tax. Moreover, we �nd

that not only does the separation of types in the �rst period occur, followed

by a di¤erentiated lump sum tax in the second period, but this equivalence

allows us to give a necessary condition on the marginal tax rate at the top of

the income distribution for income in the �rst period.

The basic structure of this paper is to proceed from the most general to

the most speci�c framework. Of course, as more assumptions are imposed,

more results follow.

The two papers in the literature most closely related to our work are Brito,

Hamilton, Slutsky and Stiglitz (1991), henceforth BHSS, and Roberts (1984).

BHSS study a model with government commitment concerning future taxes,

two types of taxpayers, and an in�nite time horizon. One focus of their study

is the relationship between static randomized taxes and nonstationary dynamic

taxes. They �nd, for example, that under some conditions the nonstationary

dynamic optimal income taxes are �rst best, but under other conditions, they

are not. Revelation or separation of types occurs in the �rst period in this

model, since the government has committed itself not to use this information
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in future periods. The possibility that pooling might occur in the �rst period,

and the possibility that incentive constraints for periods beyond the �rst might

bind, is not considered in this work. Roberts (1984) studies optimal income

taxation under no commitment with discrete types and an in�nite time horizon.

He �nds (see his Proposition 8) that separation of types will never occur over

the in�nite horizon. This work ignores the case where government revenue

requirements are large and a pooling equilibrium (where all consumers earn the

same income and pay the same tax) might bankrupt lower ability consumers.

In that case, a pooling equilibrium is not feasible.

In more recent work, Battaglini and Coate (2008) study a model with two

types of agents, quasi-linear utility, and an in�nite time horizon. Their focus

is on stochastic type changes from period to period, while allowing government

commitment to tax policies, though they do discuss conditions under which

optimal policies with commitment are the same as those without commitment.

Battaglini (2007) studies the analogous problem in the principal-agent frame-

work with two time periods. In an in�nite horizon model, Acemoglu et al

(2008) studies a similar model where the government is self-interested and

there are stochastic type changes. In contrast, we do not consider stochastic

type changes over time.

We feel that our assumptions are natural. We do not assume that gov-

ernment commitment is possible, because it usually isn�t available. We use

a �nite time period approach, since actors (particularly taxpayers) are �nite-

lived.4 And this assumption makes for a large contrast between our results

and those of Roberts (1984).5 Finally, we use a continuum of types, since

this makes the analysis much easier by employing the �rst order approach to

incentive compatibility.

In an interesting, related paper, Kapicka (2006) considers optimal nonlinear

income taxation in an in�nite horizon model. Steady states are examined when

the time of consumers can be spent on schooling, leisure or labor. Human

capital is accumulated through schooling. Kapicka �nds that optimal tax

rates are lower in this framework than in the static framework due to the

4One could conceive of an in�nitely lived government with �nitely lived taxpayers. We

conjecture that this leads to results similar to ours, even in an overlapping generations

framework. In particular, the government would impose a di¤erentiated lump sum tax on

the older workers, and an optimal income tax on the younger, whose types are currently

unknown.
5In particular, consider the possibility that the Roberts results are only true if the time

horizon is in�nite.
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additional ine¢ciencies caused by lower human capital accumulation in the

dynamic context as opposed to the static context. A key assumption made

by Kapicka is that current period tax liability depends only on current period

income. Thus, it is assumed that the government has no memory.6 In

contrast, our two period model allows the government to use information on

income gleaned from the �rst period tax when formulating the second period

tax, so the government has memory. One of our main results says that when

the government has memory and imposes a time consistent tax, then it will

not be optimal for the government to forget the information it obtained in the

�rst period when formulating the second period tax, though it has this option.

In fact, it is precisely this dynamic information revelation question that makes

analysis of our problem so di¢cult. Actually, in our model the government

does not need to see a long history of incomes, but just one previous period�s

incomes, in order to separate types.

We note in passing that most of the literature also completely neglects the

problem of existence of an optimal tax.

For those readers better acquainted with the principal-agent literature on

incentives, it is useful to outline the comparisons between the (static) optimal

income tax model and the standard principal-agent model. First, sometimes

there are one or few agents in the principal-agent model, while there is often

(but not always) a continuum in the optimal income tax model. Second,

in the optimal income tax model, once an agent or taxpayer chooses their

action (labor supply), there is no residual uncertainty for the agent. In the

principal-agent model, sometimes there is residual uncertainty, speci�cally a

non-degenerate distribution over outcomes. This makes a di¤erence in the

formal structure of the model (speci�cally in the second order conditions for

incentive compatibility). Third, in the principal-agent literature, linear or

quasi-linear utility is generally employed. The focus of the optimal income tax

model is on the consumption-leisure trade-o¤, so more general utility functions

are used. Fourth, the optimal income tax model has a revenue constraint,

while the principal-agent model does not. Fifth, the principal-agent model

has voluntary participation or individual rationality constraints, whereas the

optimal income tax model does not.

There is, however, a related problem in the optimal income tax literature.

The income earning ability of each taxpayer is limited by the income they

6In other words, the model uses an in�nitely repeated static optimal income tax frame-

work, modi�ed by the accumulation of human capital over time.
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could earn if they worked all of the time and had no leisure. This �capacity

constraint� is type-speci�c and is usually ignored in the literature; see Berliant

and Page (2001) for a formal statement and analysis. Another way of making

this comparison between models is to note that in the principal-agent model,

consumption is not bounded below, while in the optimal income tax model,

income and consumption are bounded below by zero and above by the ca-

pacity constraint. In a model with quasi-linear utility but without voluntary

participation or capacity constraints, one can achieve �rst best (i.e., the in-

centive constraints are not binding). Optimal income taxation often gives up

quasi-linear utility and imposes capacity constraints; principal-agent models

impose voluntary participation constraints. Each leads to interesting impli-

cations. However, if one replaces the Pareto criterion with a social welfare

function, then one might not be able to attain its optimal value in a world with

quasi-linear utility and no capacity or voluntary participation constraints.

These di¤erences between the principal-agent and optimal income tax model

are obvious and super�cial. There is, however, one deeper and more impor-

tant di¤erence. In the principal-agent literature, the objective is usually to

maximize the welfare of the principal. This leads to an opposition of interests

between the principal and agent. In the optimal income taxation literature,

the goal is to �nd (constrained) Pareto optimal allocations, though sometimes

a social welfare function is used as the objective. This leads to a congruence

of interests between the government and taxpayers.

The point is that there are substantial formal di¤erences, as well as simi-

larities, between the two frameworks.

With this discussion in hand, it is important to discuss the �Ratchet E¤ect�

in the context of optimal income taxation. For the principal-agent model, this

is the name given to the idea that in a multi-period environment where there

is no commitment, the agent is loathe to reveal the information it has early on

because once the principal has this information, it can extract all the remaining

surplus. Of course, the agent is aware of this and reacts appropriately, specif-

ically by pooling in early periods. See La¤ont and Tirole (1993) or Salanié

(1997) for more complete explanations.

Naturally, an analog of the e¤ect can be found in the optimal income tax

model, though it is altered by the di¤erences between the two models detailed

above. Of these, the most important are the presence of capacity constraints in

the optimal income tax model and the di¤erence in objectives between the two

models. The capacity constraint can rule out pooling with types at the low end
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of the distribution, since the utility of a high type from pretending to be a low

type can be very small. In other words, in order to pool with low types in early

periods but still satisfy their capacity constraints, the income and consumption

of all types must be very low. Second, the objectives of the government and

the taxpayers are not opposed, as they are in the principal-agent model, so

the taxpayers do not need to worry as much about the government extracting

all the remaining surplus once the taxpayers reveal their type. In fact, they

might wish to reveal it. Thus, it is not at all obvious that the results from

contract theory carry over the optimal income tax model.

Dillén and Lundholm (1996) discuss the Ratchet E¤ect in the optimal in-

come tax model when utilities are (a concave function of) a quasi-linear func-

tion in each time period. Linear tax functions with two types and a utilitarian

planner are employed. The main results compare the characteristics of static

with dynamic optimal income taxes. Linear tax functions in this context are

particularly troubling, for two reasons we have already given. First, with only

two instruments (the slope and intercept of the tax function) and a budget in

each period, there is only one degree of freedom in the choice of tax function

in each period. For example, with more than two types, the planner might

not have enough freedom to discriminate e¤ectively between types. Second,

as already remarked, linear taxes are generally dominated by nonlinear taxes.

A comparison between static and dynamic optimal nonlinear income taxes is

of course desirable, but is much more di¢cult than in the linear case both

because there is no unique, well-de�ned marginal tax rate, and because even

the characterization of static optimal nonlinear taxes is so di¢cult. In fact,

for the quasi-linear case, we show in Theorem 4 below that such a comparison

is fruitless, because many dynamic optimal taxes correspond exactly to each

static optimal tax. Finally, if randomization of income by agents is neglected,

the two type model yields equilibria in which there is always either full pooling

or full separation. We strongly suspect that equilibria in models with more

types involves more complex behavior.

In the next section, we give notation. In section 3 we write down the

optimization problems of the consumers and the government. The �rst or-

der approach to incentive compatibility is studied in section 4, while section

5 examines necessary conditions for a time consistent, incentive compatible

tax; these conditions apply directly to time consistent optimal income taxes.

Section 6 considers the Diamond (1998) example in our framework. Section

7 comments on conclusions and extensions, while an appendix contains two
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longer proofs.

2 Notation

Consumers di¤er by an ability parameter, w, often interpreted as a wage. Let

w 2 [w;w] = W � <++. The types of individuals are completely speci�ed

by w. All references to measure-theoretic concepts are to Lebesgue measure

m on <. There is a population density function f : W ! <++, where f

is integrable. The density function is common knowledge, but each agent�s

ability is private information. The only anonymous lump sum taxes that can

be used are thus uniform, but even such taxes must be bounded by the earning

capacity of the lowest ability individual.

We denote consumption by c 2 <+ and labor by l 2 [0; 1], where the

total amount of labor that can be supplied in a period is 1. Leisure is given

by 1 � l. In this two period model, we denote time period by subscripts.

All consumers are identical except for their wage. Their utility is given by

a twice continuously di¤erentiable function U : (<+ � [0; 1])
2 ! <. We

write U(c1; l1; c2; l2). We sometimes assume that @U
@c1

> 0, @U
@l1
< 0, @U

@c2
> 0,

@U
@l2
< 0. Often we will use special cases. We say that U is time separable if

U(c1; l1; c2; l2) = u(c1; l1)+u(c2; l2), where the felicity functions of all consumers

are the same twice continuously di¤erentiable functions u; u : <+� [0; 1]! <.

We say that U is time separable with discounting when it is time separable and

u(c; l) = � �u(c; l). In this special case, all consumers have a common discount

factor � 2 <++ and time separable utility: U(c1; l1; c2; l2) = u(c1; l1) + � �

u(c2; l2).

We de�ne gross income in a period as y = w � l. If there are no taxes, then

c = y. Let Y = [0; w], the set of possible incomes.

An income tax (in a given period) is an indirect mechanism, since it is

based on a revelation of income rather than type. It is not hard to map from

a tax on types to an income tax and vice versa, provided that (endogenous)

income is an increasing function of type. We use indirect mechanisms in this

paper only because direct mechanisms would complicate notation.

Let a measurable function t1 : Y ! < denote a �rst period tax function,

and let T1 denote the set of all measurable maps from Y into <. Let a

measurable function t2 : Y � Y ! < denote a second period tax function, and

let T2 denote the set of all measurable maps from Y � Y into <. It accounts

for both �rst and second period incomes, since information might be revealed
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in the �rst period. A tax system is a pair (t1; t2) 2 T1 � T2. The idea here is

that the �rst period tax function t1 is a (measurable) function of revealed �rst

period income only. The second period tax function t2 is a function of both

revealed second period income y2 and information (income) y1 revealed in the

�rst period.

3 Statement of the Problem

We assume that the government has memory, so that the problem is not simply

a repeated one period optimization. In a two period model, there are many

possible regimes. For instance, one could have a pooling equilibrium (all

incomes are the same) in the �rst period, and a separating tax in the second

period. More interesting is the case where one has a separating tax in the

�rst period such that the consumers reveal their types even though they know

that the government will impose a type speci�c (di¤erentiated) lump sum tax

in the second period. To �nd the optimal tax, one must �nd the optimum in

each of these classes (and any others possible), and take the best among them.

We will sometimes assume (as is standard in the literature) that the gov-

ernment has a utilitarian objective:

Z

W

U(c1(w); l1(w); c2(w); l2(w)) � f(w)dw

where c1 : W ! <+, l1 : W ! [0; 1], c2 : W ! <+, l2 : W ! [0; 1] are

all measurable functions. Alternatively, we will use the concept of second

best Pareto optimality, which we will de�ne formally below. The government

also has revenue constraints. Let R1 be the (exogenous) revenue to be raised

in period 1 and let R2 be the (exogenous) revenue to be raised in period 2.

Perhaps this revenue is used to fund a public good that is additively separable

in consumers� utility.

This brings up the issue of saving on the parts of either or both of the

government and consumers. Can the consumers save, and can the govern-

ment issue debt or buy bonds? These are issues peripheral to the one we are

studying, namely sequential information revelation, and would only compli-

cate the problem by adding more endogenous variables, namely the choice of

consumption or saving.7 We relegate these issues to future work.

7It could also complicate the problem because capital income might be treated di¤erently

from labor income by the income tax.
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Given a tax system, consumers of type w have the following optimization

problem:

max
c1;c22<+
l1;l22[0;1]

U(c1; l1; c2; l2) (1)

subject to

l1 � w � t1(l1 � w) � c1

l2 � w � t2(l1 � w; l2 � w) � c2

Hence, the government�s problem is:

max
(t1;t2)2T1�T2

Z

W

U(c1(w); l1(w); c2(w); l2(w)) � f(w)dw (2)

subject to

c1(w); l1(w); c2(w); l2(w) measurable and solving (1) almost surely in w 2 W ,
Z

W

t1(l1(w) � w) � f(w)dw � R1
Z

W

t2(l1(w) � w; l2(w) � w) � f(w)dw � R2

A utilitarian optimal tax system (t1; t2) 2 T1�T2 is de�ned to be a solution

to this problem.

A tax system (t1; t2) 2 T1 � T2 is called feasible if there exist

c1(w); l1(w); c2(w); l2(w) measurable and solving (1) almost surely in w 2 W ,
Z

W

t1(l1(w) � w) � f(w)dw � R1
Z

W

t2(l1(w) � w; l2(w) � w) � f(w)dw � R2

A (second best8) Pareto optimal tax system (t1; t2) 2 T1 � T2 is a feasible tax

system (with associated c1(w); l1(w); c2(w); l2(w)) such that there is no other

feasible tax system (t01; t
0
2) 2 T1�T2 (with associated c

0
1(w); l

0
1(w); c

0
2(w); l

0
2(w))

such that U(c01(w); l
0
1(w); c

0
2(w); l

0
2(w)) � U(c1(w); l1(w); c2(w); l2(w)) almost

surely in w 2 W , with strict inequality holding for a measurable set W 0 � W ,

where
R

W 0
f(w)dw > 0. Notice that any utilitarian optimal tax system is

necessarily Pareto optimal.9

8The tax system is called second best due to the incentive compatibility constraints.
9It is often useful to characterize Pareto optima using a weighted utilitiarian objective

function, so the utilitarian and Pareto criteria can be merged. Of course, the Pareto frontier

can only be characterized in this way if the utility possibilities set is convex. In second best

systems where incentive constraints appear, such as our system, the utility possibilities sets

are often truncated in a way that renders them nonconvex; see Guesnerie (1995).
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4 The First Order Approach to Incentive Com-

patibility

We examine problem (1) under the assumption of di¤erentiability of tax and

utility functions, using the de�nitions y1(w) = l1(w) �w and y2(w) = l2(w) �w.

For type w the problem reduces to:

max
y1;y22Y

U(y1 � t1(y1);
y1

w
; y2 � t2(y1; y2);

y2

w
)

Using subscripts on U to denote derivatives, the �rst order conditions are:

U1 � (1�
@t1

@y1
) + U2 �

1

w
� U3 �

@t2

@y1
= 0 (3)

U3 � (1�
@t2

@y2
) + U4 �

1

w
= 0 (4)

The �rst order conditions for the purely static (period 2 only) model are

the second set of conditions, (4). This corresponds exactly to expressions

obtained in the literature. In the standard static case, we obtain an ordinary

�rst order di¤erential equation for incentive compatible tax systems. Here we

obtain a (nicely behaved) system of partial di¤erential equations. The third

term in equation (3) is an �extra term� in the system relative to the literature

on the static case. It represents the e¤ect of increased income in the �rst

period on tax liability in the second period.

In the special case of time separability and discounting, using subscripts to

denote partial derivatives of u, we obtain �rst order conditions for incentive

compatibility:

u1(y1 � t1(y1);
y1

w
) � (1�

@t1

@y1
) + u2(y1 � t1(y1);

y1

w
) �
1

w
� (5)

� � u1(y2 � t2(y1; y2);
y2

w
) �
@t2

@y1
= 0

� � u1(y2 � t2(y1; y2);
y2

w
) � (1�

@t2

@y2
) + � � u2(y2 � t2(y1; y2);

y2

w
) �
1

w
= 0 (6)

Theorem 1 (Second Order Conditions) Assume time separability and dis-

counting in the utility function. Further assume that u1 � 0, u11 � 0, u22 < 0,

u12 � 0,
@2t1
(@y1)2

� 0, @2t2
(@y1)2

� 0, @t1
@y1
� 1, @t2

@y2
� 1. Then there exists � > 0 such

that 8� < �, the second order condition for consumer optimization in y1 holds,

so the �rst order condition (5) characterizes optima. If, in addition, u2 � 0,
@2t2(y1;y2)
@y1@y2

� 0 and @t2
@y1

� 0, then if either u12 is su¢ciently close to zero (or

12



zero) or if � is su¢ciently small, then dy1(w)
dw

> 0, and in particular y1 is one

to one.

Proof: See Appendix.

These conditions are su¢cient, but of course they are not necessary.

It is important to discuss the signi�cance of this result. Notice �rst that

some of the assumptions of the theorem are imposed on an endogenous object,

namely the tax function. We have been unable to push these assumptions back

to primitives. Second, the last part of the Theorem, that implies separation of

types in the �rst period, is of paramount interest to us. The �rst part of the

theorem, that tells us that the �rst order conditions characterize the solutions

to the consumers� optimization problems, is needed so that the second part of

the theorem yields the result we want. It is of little independent interest.

Theorem 2 Suppose that U(c1; l1; c2; l2) = V (c1 + c2; l1 + l2). Then any

incentive compatible tax satis�es: @t1
@y1
= @t2

@y2
� @t2

@y1
.

Proof: Equations (3) and (4) reduce to:

V1 � (1�
@t1

@y1
) + V2 �

1

w
� V1 �

@t2

@y1
= 0

V1 � (1�
@t2

@y2
) + V2 �

1

w
= 0

Simplifying, the result follows.�

5 Necessary Conditions for a Time Consistent

Tax

As a preamble to the consideration of time consistent taxes, consider optimal

income taxes in our framework. Two regimes of interest are:

� Nothing is revealed in the �rst period (all incomes are the same), and

an optimal static income tax is imposed in the second period. Thus,

R1 > w
R

W
f(w)dw implies this regime is impossible.

� A separating equilibrium occurs in the �rst period, and a di¤erentiated

(type-dependent) lump sum tax is imposed in the second period. In this

case, t2 is constant as a function of y2. That is,
@t2(y1;y2)

@y2
= 0 8y1; y2 2 Y .
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In the �rst case, obviously the top marginal tax rate is zero in the second

period for the usual reasons. In the second case, in the second period each

individual is facing a lump sum tax, so their marginal rates are always zero.

However, tax as a function of equilibrium income will not necessarily appear

to have a top marginal rate of zero, since the individualized lump sum taxes

could be increasing in type.

It is natural to try to advance an argument that when revelation of types

occurs in the �rst period, and the government has memory, that the second

period tax should be a di¤erentiated lump sum tax. Here is how that argu-

ment, a proof by contradiction, would go. Suppose that the second period tax

is not lump sum, i.e. it is a function of period 2 income as well as period 1

income. (Di¤erentiated lump sum taxes will have zero derivative with respect

to period 2 income.) Next we design a new tax system that Pareto dominates.

Keep the �rst period tax the same. Now replace the second period tax with

a di¤erentiated lump sum tax that assigns each consumer (separated in the

�rst period) the same tax liability as in the original second period tax, so

there is no deadweight loss. This would clearly generate the same tax revenue,

and would Pareto dominate the original tax. The problem is that the new

tax might not be incentive compatible in the �rst period, since the incentive

constraints are more severe. There is a trade-o¤ between an e¢ciency gain in

the second period from moving from a distorting to a non-distorting tax, but

a possible e¢ciency loss in the �rst period since second period tax liability

is now a function only of �rst period income (as is �rst period tax liability),

so consumers have more of an incentive to pretend to be someone with lower

income and ability, since it a¤ects their second period tax liability. The result

appears not to be true in general, and probably requires some very technical

conditions concerning this trade-o¤. For instance, in the general case, it�s

possible that an optimum involves having the government (commit to) forget

�rst period income when imposing the second period tax, that is, making the

second period tax a function of second period income only. Then the problem

reduces to a repeated static optimal income tax problem.

There is an entirely di¤erent argument for why the second period tax must

be a di¤erentiated lump sum tax. Suppose we impose subgame perfection

or time consistency on the equilibrium concept (in particular, for the govern-

ment). Suppose we impose the conditions of Theorem 1, so the �rst period

tax separates. Will the government want to impose a second period tax that

ignores revelation in the �rst period? It cannot credibly commit to do so, since

14



once it gets to the second period decision node, given a Pareto or utilitarian

objective, it will want to impose a non-distorting tax in the second period.

So the use of this time consistency concept implies, in itself, that the second

period tax will be a di¤erentiated lump sum tax. And thus the second period

tax will not be a function of second period income. It is possible, however,

that a Nash equilibrium without time consistency Pareto dominates the one

with time consistency.

De�nition 1 A tax system (t1; t2) 2 T is called utilitarian time consistent

if t2 solves the following optimization problem given t1 2 T1 and c1(w), l1(w)

measurable.

max
t0
2
2T2

Z

W

U(c1(w); l1(w); c
0
2(w); l

0
2(w))df(w)

subject to
Z

W

t02(l1(w) � w; l
0
2(w) � w)df(w) � R2

and subject to

c02(w); l
0
2(w) measurable and solving

max
c0
2
2<+

l0
2
2[0;1]

U(c1(w); l1(w); c
0
2; l

0
2)

subject to

l02 � w � t
0
2(l1 � w; l

0
2 � w) � c

0
2 almost surely in w 2 W .

De�nition 2 A tax system (t1; t2) 2 T1 � T2 is called Pareto time consistent

if the following holds given t1 2 T1 and c1(w), l1(w) measurable. There is no

t02 2 T2 such that U(c1(w); l1(w); c
0
2(w); l

0
2(w)) � U(c1(w); l1(w); c2(w); l2(w))

almost surely in w 2 W , with strict inequality holding for a measurable set

W 0 � W , where
R

W 0
f(w)dw > 0, and such that

Z

W

t02(l1(w) � w; l
0
2(w) � w)df(w) � R2

with

c02(w); l
0
2(w) measurable and solving

max
c0
2
2<+

l0
2
2[0;1]

U(c1(w); l1(w); c
0
2; l

0
2)

subject to

l02 � w � t
0
2(l1 � w; l

0
2 � w) � c

0
2 almost surely in w 2 W .
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Equivalent de�nitions can be formulated using backward induction, but

they are much messier. Notice that any utilitarian time consistent tax is

necessarily Pareto time consistent.

It is very important to note that the concept of time consistency employed

in a model must be logically related to the government objective function in

the following way. The set of taxes generated using time consistency must

be a set at least as small as the set generated by optimizing the government

objective function in the second period. For instance, using a Pareto objec-

tive with Pareto time consistency is �ne, as is using utilitarian consistency

with a utilitarian objective. Employing a Pareto objective with utilitarian

time consistency works �ne as well. Consider, however, employing a utilitar-

ian objective in conjunction with Pareto time consistency. In this case, the

government may wish, when it reaches its decision node in the second period,

to impose a utilitarian optimal income tax (given �rst period decisions) rather

than one that is only Pareto optimal (but perhaps not utilitarian optimal).

Thus, it is natural to require that the notion of time consistency employed in

a model be compatible, in the sense we have given, with the objective function

of the government. For otherwise "time consistency" does not mean that the

government will hold to its decision when it reaches the second period.

Theorem 3 Let (t�1; t
�
2) 2 T1�T2 be a Pareto time consistent tax system such

that y�1 is one to one. Then
@t�
2
(y�
1
(w);y�

2
(w))

@y2
= 0 almost surely for fw 2 W j

f(w) > 0g.

Proof: Suppose that there is a measurable setW 0 such that
@t�
2
(y�
1
(w);y�

2
(w))

@y2
6=

0 for w 2 W 0and
R

W 0
f(w)dw > 0. We claim that this tax is not Pareto time

consistent. Consider the alternative tax system t2 2 T2 given by t2(y1; y2) =

t�2(y1; y
�
2(y

��1
1 (y1))). Here, y��11 denotes the inverse of the function y�1, which

is well-de�ned by assumption. Notice that this alternative tax system does

not depend on second period income, but only on �rst period income.

Z

W

t2(l
�
1(w) � w; l2(w) � w)df(w)

=

Z

W

t�2(y1(w); y
�
2(y

��1
1 (y1(w))))df(w)

=

Z

W

t�2(y1(w); y
�
2(w))df(w) � R2

Incentive compatibility follows trivially from the de�nitions of c2(w) and

l2(w). Fix w 2 W 0. Then evaluated at (c�1(w); l
�
1(w); c

�
2(w); l

�
2(w)), (4) tells
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us that o¤ering tax t2, where t2(y
�
1(w); y

�
2(w)) = t

�
2(y

�
1(w); y

�
2(w)) and

@t2
@y2
= 0,

leads to a local utility improvement for type w.�

The theorem implies that any time consistent tax system is a lump sum

tax in the second period. In general, it will be a lump sum tax di¤erenti-

ated by consumer type, which is revealed in the �rst period. The consumers

understand this when they make their �rst period labor supply decision.

Since any utilitarian time consistent tax system is also Pareto time consis-

tent, the theorem applies to these tax systems as well.

Corollary 1 Let (t�1; t
�
2) 2 T1 � T2 be a Pareto time consistent tax system

satisfying the assumptions of Theorem 1. Then
@t�
2
(y�
1
(w);y�

2
(w))

@y2
= 0 almost

surely for fw 2 W j f(w) > 0g.

Corollary 2 Suppose that U(c1; l1; c2; l2) = V (c1 + c2; l1 + l2), and that y
�
1 is

one to one. Then any Pareto time consistent tax system has
@t�
2
(y�
1
(w);y�

2
(w))

@y2
= 0

almost surely for fw 2 W j f(w) > 0g, so Theorem 2 applies and @t1
@y1
= � @t2

@y1
.

In this special case, it is typical that @t2
@y1

� 0 so @t1
@y1

� 0. This case

allows us to highlight the role of period 1 information in reducing the period

2 distortion in labor supply. With no government memory, one would expect

that @t1
@y1

= @t2
@y2
, and the labor supply distortion is the same in both periods.

But with memory, @t2
@y1
6= 0, and the labor supply distortion in the second period

disappears. This utility function allows the transfer of revenues between

periods without inducing reductions in labor supply relative to some given

lump sum tax in each period.

De�nition 3 A utilitarian time consistent optimal tax is a tax system (t1; t2) 2

T1� T2 that solves problem (2) subject to the additional constraint that (t1; t2)

is utilitarian time consistent.

De�nition 4 A Pareto time consistent optimal tax (t1; t2) 2 T1�T2 is a feasi-

ble, Pareto time consistent tax system (with associated c1(w); l1(w); c2(w); l2(w))

such that there is no other feasible, Pareto time consistent tax system (t01; t
0
2) 2

T1�T2 (with associated c
0
1(w); l

0
1(w); c

0
2(w); l

0
2(w)) such that U(c

0
1(w); l

0
1(w); c

0
2(w); l

0
2(w)) �

U(c1(w); l1(w); c2(w); l2(w)) almost surely in w 2 W , with strict inequality

holding for a measurable set W 0 � W , where
R

W 0
f(w)dw > 0. A tax system

is called monotonic if dy1
dw
> 0.

De�nition 5 A tax system (t1; t2) 2 T1�T2 is Pareto time consistent optimal

among monotonic tax systems if it is feasible (with associated c1(w); l1(w); c2(w); l2(w)),
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Pareto time consistent, and monotonic, and there is no other feasible, Pareto

time consistent, monotonic tax system (t01; t
0
2) 2 T1 � T2 (with associated

c01(w); l
0
1(w); c

0
2(w); l

0
2(w)) such that U(c

0
1(w); l

0
1(w); c

0
2(w); l

0
2(w)) � U(c1(w); l1(w); c2(w); l2(w))

almost surely in w 2 W , with strict inequality holding for a measurable set

W 0 � W , where
R

W 0
f(w)dw > 0.

Since the set of utilitarian time consistent taxes could be a strict subset of

Pareto time consistent taxes, it could be the case that a Pareto time consistent

optimal tax Pareto (or even utilitarian) dominates a utilitarian time consistent

optimal tax.

Corollary 3 Presuming either the conditions of Theorem 1 or directly that y�1
is one to one, any [utilitarian or Pareto] time consistent optimal tax is Pareto

time consistent, so Theorem 3 applies and
@t�
2
(y�
1
(w);y�

2
(w))

@y2
= 0 almost surely for

fw 2 W j f(w) > 0g.

6 The Diamond Model

We extend the static Diamond (1998) model using time separable utility and

discounting.

The utility function used by Diamond (1998) in our notation is:

u(c; l) = c+ v(1� l) (7)

where v : [0; 1] ! < and v is C2. Let v0 denote the derivative of v, and

let v00 be its second derivative. Assume that v0 > 0, v00 < 0. We refer to this

speci�cation as �the Diamond model.�

Proposition 1 For the Diamond model, u12 = 0, so any incentive compatible

income tax satisfying the strict second order conditions locally, inequality (13),

with @2t1
(@y1)2

� 0, @t2
@y2
� 1, @

2t2(y1;y2)
@y1@y2

� 0 and @t2
@y1
� 0 has separation (dy1

dw
> 0) in

the �rst period, regardless of the discount rate �.

The proof follows directly from the proof of Theorem 1. Alternatively, we

could apply Theorem 1. We will generally assume that dy1
dw
> 0 in this section.

Equations (5) and (6) reduce to:

1�
@t1

@y1
� v0(1�

y1

w
) �
1

w
� � �

@t2

@y1
= 0 (8)

1�
@t2

@y2
� v0(1�

y2

w
) �
1

w
= 0 (9)
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Notice that in this case, equation (9) gives us

1� v0(1�
y2

w
) �
1

w
=
@t2

@y2

Since the �rst period tax is separating (that is, dy1
dw
> 0), then time consis-

tency implies @t2
@y2
= 0 and the equation

v0(1�
y2

w
) = w (10)

completely determines y2 and l2.

The next result will give an equivalence between dynamic and static taxa-

tion in the Diamond model. In order to simplify its presentation, we provide a

statement of the static optimal income tax problem. Let a tax system for the

static model be represented by a measurable function t : Y ! <, and let T be

the collection of all such measurable functions. Consumption is represented

by c 2 <+ whereas labor supply is represented by l 2 [0; 1]. All consumers

have the same utility function u : <+� [0; 1]! <. For the next result, we will

be using the speci�cation (7). Each consumer of type w solves the problem

max
c2<+
l2[0;1]

u(c; l) (11)

subject to

l � w � t(l � w) � c

If solutions to these problems exist, we denote them by c(w) and l(w),

where c : W ! <+ and l : [0; 1] ! <+ are both measurable functions. Of

course, we de�ne y = c � l and y(w) = c(w) � l(w). Given R 2 <, the revenue

constraint for the static problem is

Z

W

t(l(w) � w) � f(w)dw � R (12)

De�nition 6 A tax system t 2 T is called feasible if there exist measurable

c(w) and l(w) solving (11) almost surely in w, and that also satisfy (12). A

tax system t 2 T is called (second best) Pareto optimal in the static model

if it is feasible (with associated c(w) and l(w)) and there is no other feasible

tax system t0 2 T (with associated c0(w) and l0(w)) such that u(c0(w); l0(w)) �

u(c(w); l(w)) almost surely in w 2 W , with strict inequality holding for a

measurable set W 0 � W , where
R

W 0
f(w)dw > 0. We call a tax system t in

the static model monotonic if dy

dw
> 0. A tax system t 2 T is called (second
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best) Pareto optimal in the static model among monotonic tax systems if it

is feasible (with associated c(w) and l(w)) and monotonic, and there is no

other feasible, monotonic tax system t0 2 T (with associated c0(w) and l0(w))

such that u(c0(w); l0(w)) � u(c(w); l(w)) almost surely in w 2 W , with strict

inequality holding for a measurable set W 0 � W , where
R

W 0
f(w)dw > 0.

In order to prepare for the statement of the next result, it is important

to inform the reader about some implicit assumptions. For the remainder of

the paper, we shall assume that consumers can transfer consumption between

periods at interest rate �. In other words, we assume that c1 and c2 can take

on any real values, subject to c1+� �c2 � 0. The analog in the static Diamond

model, which we will also use, is c � 0. The capacity constraint, mentioned

in the introduction, has not required an explicit statement to this point. We

give one now.10 Since total time for work and leisure for any consumer in each

time period is 1, the capacity constraints in our two period model are y1 � w,

y2 � w. The analog in the static Diamond model will be y � w.

Theorem 4 Consider the Diamond model, and set R = R1 + �R2. If a tax

system (t�1; t
�
2) is Pareto time consistent optimal with

dy�
1

dw
> 0 in the two period

model, then t�(y) = t�1(y) + � � t
�
2(y) is Pareto optimal among monotonic tax

systems in the static model. If a tax system t� is Pareto optimal and dy�

dw
> 0 in

the static model, then every tax system (t�1; t
�
2) satisfying t

�(y) = t�1(y)+� �t
�
2(y)

is Pareto time consistent optimal among monotonic tax systems in the two

period model.

Thus, the optima of the dynamic Diamond model are equivalent to those of a

properly formulated static Diamond model. Suppose that (t�1; t
�
2) is Pareto time

consistent optimal and monotonic. Then the static tax t(y) = t�1(y) + � � t
�
2(y)

is optimal among monotonic tax systems (note that t�2 is a function of only

period 1 income, since it is a di¤erentiated lump sum tax in period 2).

Given an optimal income tax t� in the static Diamond (1998) model, for

example one computed by Diamond, any feasible tax system (t1; t2) satisfying

t�(y) = t1(y) + � � t2(y) and the conditions of Theorem 1 or Proposition 1 (or
dy1
dw
> 0) will be Pareto time consistent optimal among monotonic tax systems.

There are many such tax systems. In fact, there are so many that neither the

10Up to this point, we have examined only necessary conditions implied by various types

of taxes. In the next theorem, we will actually have to prove that a particular tax is optimal,

and thus must satisfy the appropriate capacity constraints.
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�rst nor the second period tax alone might look like the optimal tax in the

static model.

The intuition behind the theorem is as follows. Under the assumptions

of the Diamond model, labor supply is independent of consumption in each

period. The use of di¤erentiated lump sum taxes, which are �rst best, in the

second period �xes labor supply in that period, so taxes do not depend on

second period income at all. The distribution of tax payments across periods

a¤ects neither labor supply nor utility. So the planner is actually choosing

only the marginal tax rate in period 1 and the present value of tax liability

for each type, both of which depend only on �rst period labor supply. The

present value of tax liabilities can be divided in many ways, making the tax

system in the two period model indeterminate.

Proof: See Appendix.

Corollary 4 A Pareto time consistent optimal tax (t�1; t
�
2) for the Diamond

model satisfying
dy�
1

dw
> 0 also satis�es [

@t�
1
(y1)

@y1
+ �

@t�
2
(y1;y2)

@y1
] jy1=w�l1(w), y2=w�l2(w)=

0.11

Proof: Any Pareto time consistent optimal tax must generate a tax t�

that is Pareto optimal among monotonic taxes in the static model, as given by

Theorem 4. The induced utility function in the static model is separable (and

in fact, quasi-linear) in consumption and leisure, so consumption is noninferior.

By Seade (1977, Theorem 1), dt
�(y)
dy

jy=w�l(w)= 0, and the result follows.
12
�

7 Conclusions and Extensions

We have examined optimal income taxes in a two period model, beginning with

the �rst and second order conditions for incentive compatibility. Then impos-

ing time consistency of taxes, we �nd that if the discount rate is su¢ciently

high or utility is separable in labor and consumption, a time consistent tax

has consumers revealing their types in the �rst period, so the second period

tax is independent of second period income; it is essentially a type di¤erenti-

ated lump sum tax. Incentive constraints on �rst period consumer income are

11In fact, we also know that
@t�

2
(y1;y2)
@y2

= 0 everywhere.
12Although Seade assumes that the tax is Pareto optimal among all taxes, not just

monotonic ones, this fact is not used in his proof. Actually, his proof shows that if an

optimal tax t� with dy�

dw
> 0 has a top marginal rate di¤erent from zero, then it can be

Pareto dominated by a tax that is monotonic.
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brutal, as the consumers know what�s going to happen in the second period.

In the special case of stationary, time separable, quasi-linear utility with dis-

counting, we �nd an equivalence between static and dynamic optimal income

taxes. In this case, an implication is that the present discounted value of the

marginal tax rate on �rst period income at the top of the distribution must be

zero. There is a huge number of optimal dynamic tax systems that correspond

to a single optimal static tax; all that is required is that the present discounted

value of the dynamic tax is equal to the static tax for any �rst period income.

In this sense, the optimal one period tax in a two period model is not identi�ed.

The next step is to examine time consistent taxes when the discount rate

is low. We conjecture that all we will �nd is that at the top of an interval

that has separation in the �rst period, the marginal tax rate on �rst period

income must be zero.

Our long term goal is to integrate the theory of optimal income taxation

with mechanism design. Each area brings useful ideas and techniques to the

other. A �rst step in this direction is to examine the relationship between

direct and indirect mechanisms in our context of dynamic revelation of infor-

mation, namely the revelation and taxation principles.

Time consistent, incentive compatible taxes might also be useful for pur-

poses of positive political economy, where one replaces the Pareto or utilitarian

objective with a voting mechanism.

We leave examination of the question of existence of optimal taxes to future

work. Probably this issue can be addressed using the techniques of Berliant

and Page (2001).

As mentioned in section 3, it would be interesting to examine the implica-

tions of allowing consumers or the government to transfer wealth across time,

and to see how this alters our results.

Finally, we have examined the case where the correlation of a consumer�s

type in the �rst and second periods is perfect. The case when there is no

correlation between types in the two periods is simply a repeated static optimal

income tax problem. Intermediate cases are clearly of interest.

8 Appendix

Proof of Theorem 1: For the purpose of this proof, de�ne G(y1; y2; w) =

u(y1�t1(y1);
y1
w
)+��u(y2�t2(y1; y2);

y2
w
). We remind the reader that subscripts

on functions represent partial derivatives with respect to the appropriate ar-
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guments except for the function t, where a subscript denotes the time period.

Note also that all terms with a � attached to them are evaluated at second

period bundles, while all terms without a � attached to them are evaluated at

�rst period bundles. The �rst order conditions are given by

G1 = u1(y1 � t1(y1);
y1

w
)(1�

@t1(y1)

@y1
) +

1

w
� u2(y1 � t1(y1);

y1

w
)� � � u1(y2 � t2(y1; y2);

y2

w
)
@t2

@y1
= 0

G2 = � � [u1(y2 � t2(y1; y2);
y2

w
)(1�

@t2

@y2
) + u2(y2 � t2(y1; y2);

y2

w
) �
1

w
] = 0

Useful second derivatives are

G11 = u11�(1�
@t1(y1)

@y1
)2+

1

w
�u12�(1�

@t1(y1)

@y1
)�u1�

@2t1

@(y1)2
+
1

w
�u21�(1�

@t1(y1)

@y1
)+

1

w2
� u22 + � � u11 � [

@t2

@y1
]2 � � � u1 �

@2t2

@(y1)2

= u11 � (1�
@t1(y1)

@y1
)2 +

2

w
u12 � (1�

@t1(y1)

@y1
)� u1 �

@2t1

@(y1)2
+
1

w2
� u22

+ � � u11 � [
@t2

@y1
]2 � � � u1 �

@2t2

@(y1)2

G12 = G21 = �� � [u11 � (1�
@t2

@y2
) �
@t2

@y1
+ u12 �

1

w
�
@t2

@y1
+ u1 �

@2t2

@y1@y2
]

G22 = � � [u11 � (1�
@t2

@y2
)2 +

1

w
� u12 � (1�

@t2

@y2
)� u1 �

@2t2

@(y1)2
+
1

w
� u21 � (1�

@t2

@y2
) +

1

w2
� u22]

= � � [u11 � (1�
@t2

@y2
)2 +

2

w
� u12 � (1�

@t2

@y2
)� u1 �

@2t2

@(y1)2
+
1

w2
� u22]

G13 = �
y1

w2
� u12 � (1�

@t1(y1)

@y1
)�

1

w2
� u2 �

y1

w3
� u22 + � �

y2

w2
� u12 �

@t2

@y1

G23 = � � [�
y2

w2
� u12 � (1�

@t2

@y2
)�

y2

w3
� u22 �

1

w2
� u2]

Checking term by term, under the stated assumptions, G11 < 0, G22 < 0.

Let A =

"

G11 G12

G21 G22

#

. For the second order conditions, it is su¢cient to

prove that A is negative de�nite, or

j A j= G11 �G22 � (G12)
2 > 0 (13)
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The result follows by noticing that the �rst few (negative) terms in G11 are

the only ones in the expression without � in them, whereas all terms in G22

and G12 have � in them. Hence (G12)
2 tends to zero with �2 while G11 � G22

tends to zero at rate �.

For the second part of the theorem, notice thatA�1 = 1
G11G22�(G12)2

"

G22 �G12

�G12 G11

#

.

By the implicit function theorem,

"

@y1(w)
@w

@y2(w)
@w

#

= �A�1�

"

G13

G23

#

= �1
jAj
�

"

G22 �G13 �G12 �G23

�G12 �G13 +G11G23

#

.

We�re actually only interested in the top part of the vector. G22 < 0, G23 > 0.

Under the additional assumptions of the theorem, G12 � 0. If u12 is su¢-

ciently close to zero (or is zero) or if � is su¢ciently small, then G13 > 0 and

we have @y1(w)
@w

> 0. �

Proof of Theorem 4: Suppose that (t�1; t
�
2) is Pareto time consistent optimal

among monotonic tax systems in the two period model, but t�(y) = t�1(y) + � �

t�2(y) is not Pareto optimal and monotonic in the static model. Then there is a

measurable t : Y ! < such that
R

W
t(w�l(w))dw � R = R1+�R2,

d(w�l(w))
dw

> 0,

where c(w); l(w) solvemaxc;l c+v(1�l) subject to w�l�t(w�l) � c a.s.(W ), and

such that c(w)+v(1�l(w)) � c�(w)+v(1�l�(w)), with strict inequality holding

for a measurable set W 0 with
R

W 0
f(w)dw > 0. We will �nd a contradiction,

in that there is a feasible (t1; t2) that Pareto time consistent dominates (t
�
1; t

�
2).

De�ne t1(y1) =
R1

R1+�R2
� t(y1) and t2(y1; y2) =

R2
R1+�R2

� t(y1).
13 In fact, second

period labor supply is the same for both tax systems, and determined by (10).

Evidently, the �rst order condition for incentive compatibility of the system

(t1; t2) is, from (8),

1�
@t1

@y1
� v0(1�

y1

w
) �
1

w
� � �

@t2

@y1

= 1�
R1

R1 + �R2
�
dt

dy
� � �

R2

R1 + �R2
�
dt

dy
� v0(1�

y1

w
) �
1

w

= 1�
dt

dy
� v0(1�

y1

w
) �
1

w

= 0

The last line follows from the �rst order conditions for incentive compatibil-

ity of t, from the static model, so y1(w) = y(w). In fact, it is clear from these

calculations that the second order conditions for incentive compatibility are

the same for (t1; t2) (namely
dy1
dw
> 0) and t (namely dy

dw
> 0).14 Since dy

dw
> 0

by assumption, dy1
dw
> 0. The same arguments apply for y� and y�1; since the

13There are actually many ways to de�ne (t1; t2).
14Although we have not proved formally that these are, in fact, the second order condi-
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optimization problems for each type are the same, so are the solutions. We

will use this repeatedly in the sequel.

Z

W

t1(y1(w)) � f(w)dw

=
R1

R1 + �R2
�

Z

t(y1(w)) � f(w)dw

� R1

Z

W

t2(y1(w)) � f(w)dw

=
R2

R1 + �R2
�

Z

t(y1(w)) � f(w)dw

� R2

So (t1; t2) is feasible. Now from incentive compatibility, y(w) = y1(w). So

c1(w) + � � c2(w) + v(1� l1(w)) + � � v(1� l2(w))

= y1(w)� t1(y1(w)) + � � [y2(w)� t2(y1(w); y2(w))] + v(1�
y1(w)

w
) + � � v(1�

y2(w)

w
)

= y(w)� [t1(y(w)) + � � t2(y1(w); y2(w))] + � � y2(w) + v(1�
y(w)

w
) + � � v(1�

y2(w)

w
)

= y(w)� t(y(w)) + v(1�
y(w)

w
) + � � y2(w) + � � v(1�

y2(w)

w
)

= c(w) + v(1�
y(w)

w
) + � � y2(w) + � � v(1�

y2(w)

w
)

� c�(w) + v(1� l�(w)) + � � y2(w) + � � v(1�
y2(w)

w
)

= y�(w)� t�(y�(w)) + v(1� l�(w)) + � � y�2(w) + � � v(1�
y�2(w)

w
)

= c�1(w) + �c
�
2(w) + v(1� l

�
1(w)) + � � v(1�

y�2(w)

w
)

with strict inequality holding on W 0. So (t1; t2) Pareto time consistent

dominates (t�1; t
�
2) among monotonic tax systems.

To prove the second part of Theorem 4, we prove its contrapositive. Sup-

pose that (t1; t2) is feasible and Pareto time consistent dominates (t
�
1; t

�
2) among

monotonic tax systems. Note that since by de�nition, t2 satis�es (9) and (10),

tions, notice that in a rather trivial way (due, in part, to separability of the utility function),

agents facing either tax system are actually solving the same optimization problem. So the

solutions are the same.
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t2 is independent of y2. De�ne t(y) = t1(y)+� � t2(y). The optimization prob-

lem for consumers in the static model facing tax system t is thus

max
y
y � t1(y)� � � t2(y) + v(1�

y

w
)

The �rst order condition for incentive compatibility in the static model is

1�
dt1(y)

dy
� � �

dt2(y)

dy
� v0(1�

y

w
) = 0

This is the same as (8). Moreover, since (t1; t2) satis�es the second order

conditions for incentive compatibility (namely dy1
dw
> 0), so does t (hence dy

dw
>

0).15 So y(w) = y1(w).

Z

W

t(y(w)) � f(w)dw

=

Z

W

t1(y(w)) � f(w)dw + � �

Z

W

t2(y(w)) � f(w)dw

� R1 + � �R2 = R

c(w) + v(1� l(w))

= y(w)� t(y(w)) + v(1�
y(w)

w
)

= y1(w)� t1(y1(w))� � � t2(y1(w)) + v(1�
y1(w)

w
)

= c1(w) + �[c2(w)� w � l2(w)] + v(1� l1(w))

Now (t1; t2) Pareto time consistent dominates (t
�
1; t

�
2), so

c1(w) + � � c2(w) + v(1� l1(w)) + � � v(1� l2(w))

� c�1(w) + � � c
�
2(w) + v(1� l

�
1(w)) + � � v(1� l

�
2(w))

with strict inequality holding for a measurable set W 0 with
R

W 0
f(w)dw >

0. Since by incentive compatibility of (t1; t2) and (t
�
1; t

�
2), (9) holds for both,

y2(w) = y
�
2(w) and l2(w) = l

�
2(w). So

c1(w) + �[c2(w)� w � l2(w)] + v(1� l1(w))

� c�1(w) + �[c
�
2(w)� w � l

�
2(w)] + v(1� l

�
1(w))

15Please see the previous footnote.
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Hence

c(w) + v(1� l(w))

� c�1(w) + �[c
�
2(w)� w � l

�
2(w)] + v(1� l

�
1(w))

= c�(w) + v(1� l�(w))

with strict inequality holding for a measurable set W 0 with
R

W 0
f(w)dw > 0.

Thus, t(y) = t1(y) + � � t2(y) Pareto time consistent dominates t
�(y) = t�1(y) +

� � t�2(y) and
dy�

dw
> 0.�
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