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Abstract

In this paper, we forecast EU-area inflation with many predictors using

time-varying parameter models. The facts that time-varying parameter mod-

els are parameter-rich and the time span of our data is relatively short mo-

tivate a desire for shrinkage. In constant coefficient regression models, the

Bayesian Lasso is gaining increasing popularity as an effective tool for achiev-

ing such shrinkage. In this paper, we develop econometric methods for using

the Bayesian Lasso with time-varying parameter models. Our approach al-

lows for the coefficient on each predictor to be: i) time varying, ii) constant

over time or iii) shrunk to zero. The econometric methodology decides auto-

matically which category each coefficient belongs in. Our empirical results

indicate the benefits of such an approach.
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1 Introduction

The goal of this paper is to forecast EU area inflation using many predictors.
Our application (and many similar applications in macroeconomics) has several
characteristics that require the development of statistical methods that depart
from standard regression-based methods. To explain these departures and moti-
vate our statistical methods, we begin with a generalized Phillips curve specifica-
tion where inflation, πt, depends on lags of inflation and other predictors (xt). In
this case, the generalized Phillips curve suitable for forecasting h periods ahead
(using the direct method of forecasting) is:

πt+h = α +

p−1∑

j=0

ϕjπt−j + γxt + εt+h. (1)

On its own, such a model may be inappropriate for a couple of reasons. First of
all the number of parameters to estimate may be large relative to the number of
observations in the data set. That is, xt may contain many predictors. In macro-
economic forecasting, we typically having hundreds of variables to choose from.
For instance, De Mol, Giannone and Reichlin (2008) forecast with a regression in-
volving over 100 variables. Banbura, Giannone and Reichlin (2010) forecast using
a vector autoregression (VAR) with over 100 variables. Estimation of such models,
where the number of parameters is large relative to the number of observations,
can lead to imprecise estimation and over-fitting (i.e. the model can fit the noise
in the data, rather than finding the pattern useful for forecasting). Both of these
can lead to poor forecast performance. This has led many papers (including De
Mol, Giannone and Reichlin 2008, and Banbura, Giannone and Reichlin 2010) to
use Bayesian methods which use shrinkage to reduce over-fitting problems and
improve forecast performance. Closely related to the idea of shrinkage is the idea
of variable selection (which can be thought of as shrinking the coefficient on a
predictor to zero). The challenge faced by the researcher is often that there are
many potential predictors, most are likely to be unimportant but the researcher
does not know, a priori, which ones are unimportant. Sequential hypothesis test-
ing procedures run into serious pre-testing problems, which has led researchers
to adopt various variable selection measures (see, e.g., George and McCulloch
1997 or Chipman, George and McCulloch, 2001). In the present paper, we draw
on one promising approach to shrinkage and variable selection, the Lasso1 (Park
and Casella, 2008).

A second drawback of (1) is that it assumes parameters are constant over time.
There is a plethora of evidence of structural breaks and other kinds of parameter
change in macroeconomic variables (see, among many others, Stock and Watson,
1996, Cogley and Sargent, 2001, 2005, Primiceri 2005, Sims and Zha, 2006, and

1Lasso is an abbreviation for “least absolute shrinkage and selection operator”.
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D’Agostino, Gambetti and Giannone, 2009). The negative consequences for fore-
casting of ignoring such parameter change has been stressed by, among many
others, Clements and Hendry (1998, 1999) and Pesaran, Pettenuzzo and Tim-
merman (2006). In this paper, we use a time-varying parameter (TVP) regression
model to model parameter change. Constant coefficient models such as (1) can
already be over-parameterized. Adding time variation in parameters may exac-
erbate this problem, suggesting that shrinkage may be useful with TVP models.
However, there have been relatively few papers which attempt to ensure shrink-
age in TVP models (exceptions include Koop and Korobilis, 2009 and Koop, Leon-
Gonzalez and Strachan, 2009).

The purpose of the present paper is to develop an econometric methodology
which surmounts these two drawbacks and use it to forecast EU inflation. In par-
ticular we develop an econometric methodology which falls in the class of TVP
regression models. However, it uses Bayesian shrinkage methods (based on the
Lasso) to automatically classify coefficients into three categories: i) those which
are time-varying, ii) those which are constant over time and iii) those which are
zero (and, thus, the associated predictor does not appear in the model at all).

We extend ideas from the Bayesian Lasso literature (see Park and Casella, 2008)
to the case of TVP regression models. TVP regression models are state space mod-
els, in order to extend Bayesian Lasso methods, we draw on and extend ideas re-
lating to model selection in state space models developed in Frühwirth-Schnatter
and Wagner (2010). The paper is organized as follows: section 2 of the paper dis-
cusses our econometric methods. Section 3 uses these methods in an empirical
exercise which forecasts EU inflation. We compare our TVP regression methods,
involving hierarchical shrinkage, to a range of other common forecast procedures
and find Lasso shrinkage to be particularly important on the time-varying coeffi-
cients. Section 4 concludes.

2 Econometric Methods

2.1 Overview

The TVP version of the generalized Phillips curve given in (1) can be written as a
state space model:

πt+h = θ∗t zt + εt+h (2)

θ∗t = θ∗t−1 + ηt

where the variable of interest is h-step ahead inflation defined as πt+h = (log (Pt+h)− log (Pt)),
zt = [1,∆ log (Pt) , ..,∆ log (Pt−p+1) , xt], xt is a q × 1 vector of exogenous predic-
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tors, and θ∗t =
(
α′t, ϕ

′

t,0, ..., ϕ
′

t,p, γ
′

t

)
′

.2 For the errors we assume εt ∼ N (0, σ2t ) and
ηt ∼ N (0,Ω). The errors are assumed to be independent of each other and inde-
pendent at all leads and lags. Note that Ω is of dimension k × k with k = 1+ p+ q
which can be large relative to the number of observations. To keep the model
relatively parsimonious, we assume Ω is a diagonal matrix, Ω = diag (ω21, ..., ω

2
k).

It is through Ω that we introduce shrinkage in the time-variation in coefficients
(i.e. if ω2i is zero then the ith coefficient is constant over time, but larger values of
ω2i allow for more variation). Note that we are allowing for heteroskedasticity in
the measurement equation. In particular, we will assume a standard stochastic
volatility specification for σ2t .

It proves convenient to write (2) in an equivalent way, separating out the initial
condition, as:

πt+h = θzt + θtzt + εt+h

θt = θt−1 + ηt (3)

θ0 = 0,

where θ = θ∗0 and θt = θ
∗

t − θ. This is the well-known result that, in TVP regression
models, the initial condition for the states plays the role of a regression effect.
Thus, (3) breaks the coefficients into a constant part (i.e. θ) and a time-varying
part.

In order to incorporate shrinkage priors, in the TVP regression, we use one
more transformation. We use notation where θi is the ith constant coefficient,
θi,t is the ith state and adopt a similar subscript i, t notational convention with

other variables and let θ̃i,t =
θi,t
ωi

. With these conventions, we can write the TVP
regression model as:

πt+h =
∑k

i=1
θizi,t +

∑k

i=1
ωiθ̃i,tzi,t + εt+h

θ̃i,t = θ̃i,t−1 + ui,t (4)

θ̃i,0 = 0

where ui,t ∼ N (0, 1) for i = 1, .., k. Fruhwirth-Schnatter and Wagner (2010) refer
to this as a non-centered parameterization in their analysis of the dynamic linear
trend model and argue for the advantages of this parameterization. Tradition-
ally, Bayesian researchers have used inverted Gamma priors on error variances
in state equations such as ω2i . Fruhwirth-Schnatter and Wagner (2010) argue (and
present strong evidence) in favor of using a normal prior on ωi. In this paper, we
follow this approach and use a hierarchical normal prior for ωi motivated by the

2Note that, when forecasting with h = 12, this means our dependent variable is an annual in-
flation rate, but our explanatory variables are lags of monthly inflation. Such a timing convention
has been found useful in many recent forecasting papers such as Stock and Watson (2011).
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Bayesian Lasso of Park and Casella (2008). We will also adopt a Lasso prior for θi
(where θi for i = 1, .., k are the constant coefficients on the predictors). We will
explain these priors shortly, but note first that the Lasso provides shrinkage and,
in terms of (4), we will have a model with the properties:

1. If ωi is shrunk to 0, but θi is not shrunk to 0, then we have a model with a
constant parameter on predictor i.

2. If ωi is shrunk to 0, and θi is shrunk to 0, then predictor i is irrelevant for
forecasting inflation.

3. If ωi is not shrunk to 0, but θi is shrunk to 0, then we have a small time-
varying coefficient on predictor i (since θi,0 = 0 the coefficient is restricted
to start at a value of zero).

4. If ωi is not shrunk to 0, and θi is not shrunk to 0, then we have an unre-
stricted time-varying coefficient on predictor i.

Thus, we have a methodology which decides, in an automatic fashion whether
any predictor is important for forecasting inflation and, if so, whether it has a
coefficient which is constant over time or time-varying.

2.2 The Prior

The model given by (4) is parameterized in terms of θ = (θ1, .., θk)
′, θ̃ =

(
θ̃1,t, .., θ̃k,t

)
′

,

ω = (ω1, .., ωk)
′ and σ2t . For σ2t we adopt a standard stochastic volatility specifi-

cation (see the Technical Appendix for details). Our innovation lies in the use
of Lasso-type shrinkage priors for the remaining parameters. Such priors have
been used with constant coefficient regressions in many places. For instance,
Park and Casella (2008) is an important statistical exposition and De Mol, Gian-
none and Reichlin (2008) is an influential econometric treatment. To explain the
basic ideas underlying the Lasso, consider the familiar normal linear regression
model:

y = Xβ + ε,

where X is a T × k matrix of regressors, β = (β1, .., βk)
′ and ε is N (0, σ2I). Lasso

estimates of β are penalized least squares estimates where β is chosen to mini-
mize:

(y −Xβ)′ (y −Xβ) + λ

k∑

j=1

∣∣βj
∣∣
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where λ is a shrinkage parameter. Bayesian treatment of the Lasso arises by not-
ing that Lasso estimates of β are equivalent to Bayesian posterior modes if inde-
pendent Laplace priors are placed on the elements of β. Additional insight (and
the MCMC algorithm used for Bayesian analysis) is obtained by noting that the
Laplace distribution can be written as a scale mixture of normals with an expo-
nential mixture density. Thus, Lasso shrinkage can be obtained by using a normal
hierarchical prior for β. In this section, we describe how to extend this approach
to our TVP regression model.

For the constant coefficients, θ, we use a hierarchical mixtures of normal prior
inspired by the traditional Lasso. In particular, θi for i = 1, .., k are assumed to be,
a priori, independent with

θi|τ
2

i ∼ N
(
0, τ 2i

)

and exponential mixing density:

τ 2i |λ ∼ Exp

(
λ2

2

)
.

This prior is almost the same as the traditional Lasso and has similar shrinkage
properties.3

The state equation gives us a prior for θ̃t (for t = 1, .., T ) of the form:

θ̃t|θ̃t−1 ∼ N
(
θ̃t−1, Ik

)

where θ̃0 = 0.
We extend the Lasso approach to the time-varying coefficients by using a hier-

archical prior for ω, each element of which is, a priori, conditionally independent
with:

ωi|ξ
2

i ∼ N
(
0, ξ2i

)
,

also with exponential mixing density:

ξ2i |κ ∼ Exp

(
κ2

2

)
.

Note that, following Fruhwirth-Schnatter and Wagner (2010), we have a nor-
mal prior for ωi. However, the hierarchical nature of the prior gives us the Lasso-
type shrinkage of the elements ofω (thus, ensuring shrinkage on the time-varying
coefficients).

3The one difference arises since the traditional Lasso has a prior variance of σ2τ2
i

instead of
our τ2

i
. Since we allow for stochastic volatility and, thus, σ2 is not constant over time, we cannot

adopt the traditional approach.
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The shrinkage parameters λ and κ lie at the bottom of the hierarchy and re-
quire priors of their own. For these we assume:

λ2 ∼ Gamma (a1, a2)

and

κ2 ∼ Gamma (b1, b2) .

Note that the only prior hyperparameters which must be elicited are a1, a2, b1, b2
and the priors for the parameters in the stochastic volatility specification for σt.

4

The Technical Appendix discusses their elicitation.

2.3 Posterior Computation (MCMC algorithm)

In the constant coefficient regression model, an advantage of the Lasso prior is
that, conditional on τ 2i , we have a normal linear regression model with normal
prior and standard textbook results can be used to derive the posterior, condi-
tional on τ 2i . An algorithm for drawing τ 2i and λ is all that is required to complete
an MCMC algorithm and this is provided by Park and Casella (2008). Our MCMC
algorithm draws on this strategy to provide blocks for drawing θ, τ 2i and λ (condi-
tional on the states and the other parameters in the model).

Similar intuition can be used to develop an algorithm for drawing θ̃t (for t =
1, .., T ) conditional on ω (and other parameters). That is, conditional on these
other parameters, the model becomes a normal linear state space model and
standard methods for posterior simulation from such models can be used to draw

θ̃t. We use the algorithm of Carter and Kohn (1994). All that is required to com-
plete an MCMC algorithm is a method for drawing ω and κ (conditional on all the
other model parameters). However, these have simple forms.

The precise steps in our MCMC algorithm are given by.

1. Draw θ from the normal conditional posterior:

N
((
z̃′z̃ + V −1θ

)
−1
z̃′ỹ,

(
z̃′z̃ + V −1θ

)
−1
)

where V −1θ = [diag (τ 21, ..., τ
2
k)]

−1
,z̃ =

[
z1
σ1
, ..., zT

σT

]
′

, ỹ = [ỹ1, ..., ỹT ]
′ and ỹt =

yt−ωθ̃tzt
σt

.

2. Draw θ̃ using the algorithm of Carter and Kohn (1994) for the state space
model

ŷt = θ̃txt + σtεt

θ̃t = θ̃t−1 + ui,t

4The formulae in this paper parameterize the Gamma distribution so that its mean is a1

a2
.
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where xt = ωzt, ŷt = yt − θzt, ui,t ∼ N (0, 1)and the initial condition is zero

(θ̃0 = 0).

3. Draw ω from the normal conditional posterior

ω ∼ N
((
ẑ′ẑ + V −1ω

)
−1
ẑ′ŷ,

(
ẑ′ẑ + V −1ω

)
−1
)

where V −1ω =
[
diag

(
ξ21, ..., ξ

2

k

)]
−1

, ẑt =
β̃tzt
σt

and ŷt =
yt−βzt
σt

.

4. Draw τ 2 using the fact that 1

τ2
i

each have independent inverse-Gaussian5

conditional posteriors

IG

(√
λ2

β2i
, λ2

)
, for i = 1, ..., k

5. Draw ξ2 using the fact that 1

ξ2i
each have independent inverse-Gaussian con-

ditional posteriors

IG

(√
κ2

ω2i
, κ2

)
, for i = 1, ..., k

6. Draw λ2 from the Gamma conditional posterior

Gamma

(
k + a1,

1

2

∑k

j=1
τ 2j + a2

)

7. Draw κ2 from the Gamma conditional posterior

Gamma

(
k + a1,

1

2

∑k

j=1
ξ2j + a2

)

8. Draw σ2t using the algorithm of Kim, Shephard and Chib (1998) for drawing
from stochastic volatility models.

Draws from the predictive density are obtained using simulation methods as
described, e.g., in section 2.1 of Cogley, Morozov and Sargent (2005). A nonpara-
metric kernel smoothing algorithm is then used on these draws to obtain an ap-
proximation of the predictive density.

5If x is an inverse-Gaussian random variable with parameters a and b, then its p.d.f. is given by

p (x) =

√
b

2π
x−

3

2 exp

(
−
b (x− a)

2

2a2x

)

for x > 0.
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3 Empirical Results

We investigate the performance of our TVP model with hierarchical shrinkage us-
ing a relatively short data set where there are potentially a large number of predic-
tors. We are primarily interested in whether LASSO shrinkage is a useful addition
to TVP regression models and focus our empirical results on this issue. Accord-
ingly, in addition to our full model described above (labelled “Lasso on constant
and TVPs”), we consider several restricted special cases which are the same as the
full model (with the same prior choices) except in certain specified dimensions.
To be precise, we produce results for the following restricted versions of our full
model:

1. Lasso only on constant coefficients: This model omits the Lasso prior on
the time-varying coefficients and uses a relatively noninformative (non-
hierarchical) normal prior for ω (see the Technical Appendix for details).

2. Lasso only on TVPs: This model omits the Lasso prior on the constant co-
efficients and uses a relatively noninformative (non-hierarchical) normal
prior for θ (see the Technical Appendix for details).

3. TVP regression model: This model omits the Lasso prior everywhere, using
the same priors for ω and θ as used in 1. and 2., respectively.

4. Constant coefficient model: This model nearly removes the TVP part of the
model by setting prior hyperparameters b1 = 100000, b2 = 0.001 which im-
plies an extremely tight prior on ω with prior mass concentrated very close
to zero.

We consider variants of all models with stochastic volatility (see the Techni-
cal Appendix for details) and without. The latter homoskedastic models use the
standard noninformative prior for the error variance. For the prior hyperpara-
meters at the lowest level of the hierarchy, noninformative values of a1 = a2 =
b1 = b2 = 0.001 are chosen unless otherwise specified.

3.1 Data

We forecast overall and core inflation using a variety of predictors reflecting a
range of theoretical considerations. We use real-time data such that, at all points
in time, we are using the data that would have been available to the forecaster
at that point in time.6 We have monthly EU data from February 1994 through

6The data is obtained from the ECB’s Statistical Data warehouse with variables being updated
in real time taken from its Real Time Data base. Complete descriptions of all variables can be
found on the ECB’s website. For some of the predictors complete real time data is only available
from January 2001. For these variables we use non-real time data before this time. Our forecast
evaluations begin in January 2001.

9



November, 2010. Precise definitions of our variables follow.
Inflation is constructed as described after (2) based on the harmonized in-

dex of consumer prices (HICP). We use overall inflation as well as core inflation
(which excludes energy and unprocessed food). Both measures are of interest to
policymakers. Neither measure of inflation is seasonally adjusted.

The following predictors are used:

1. I_1MO: 1-month Euribor (Euro interbank offered rate).

2. I_1YR: 1-year Euribor (Euro interbank offered rate).

3. SENT: Percentage change in economic sentiment indicator.

4. STOCK_1: Percentage change in equity index - Dow Jones, Euro Stoxx, Eco-
nomic sector index financial.

5. STOCK_2: Percentage change in equity index - Dow Jones Eurostoxx 50 in-
dex.

6. EXRATE: Percentage change in ECB real effective exchange rate (CPI de-
flated, broad group of currencies against euro).

7. IP: Percentage change in industrial production index.

8. LOANS: Percentage change in loans (total maturity, all currencies combined).

9. M3: Annual percentage change in monetary aggregate M3.

10. CAR: Registrations of new passenger cars.

11. OIL: Percentage change in oil price (brent crude -1 month forward).

12. ORDER: Change in order-book levels.

13. UNEMP: Standardised unemployment rate (all ages, male & female).

In addition, p lags of the logged first difference of the price index are used as
predictors, as described after (2). All of the predictors are standardized to have
mean zero and variance one. The dependent variable is standardized to have
variance one.7 Since our inflation variables are not seasonally adjusted, we also
include an intercept and monthly dummies (omitting the January dummy). We
forecast inflation a month ahead and a year ahead (h = 1 and h = 12).

7The standardization is re-done at each period in our recursive forecasting exercise using in-
formation available at the time the forecast is being made.
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The results in the body of the paper always use an intercept, p = 12, 11 monthly
dummies and the 13 predictors listed above. Thus, we have 37 (possibly time-
varying) coefficients to estimate with fewer than 18 years of data. In the Empiri-
cal Appendix, we present results using various subsets of the 37 variables. These
include the case where the 13 predictors are omitted, leading to TVP-AR models,
as well the case where the 13 variables and all lags are excluded from the model.
This latter case leads to the unobserved components stochastic volatility (UCSV)
model of Stock and Watson (2007).8 Thus, we are investigate the usefulness of hi-
erarchical shrinkage in the context of several popular classes of forecasting mod-
els.

3.2 Full Sample Results

Before comparing the forecast performance of the many models we consider, we
present some full sample parameter estimates using our model with Lasso pri-
ors on constant and time-varying coefficients. For the sake of brevity, we present
only results for core inflation. We focus on the parameters of most direct rela-
tion to the shrinkage properties of the model: ω2 and τ 2. To gain a feeling for
the magnitude of these parameters, remember that they are the prior variances
of the errors in the state equations and on the constant coefficients, respectively
and that our variables have all been standardized to have a variance of one. We
present results using both the h = 1 and h = 12 models. Table 1 presents results
for the predictors, Table 2 for the lags and Table 3 for the monthly dummies.

Note first that ω2 tends to be much smaller than τ 2. This is as expected, since
ω2 controls the degree of time-variation in coefficients and even a small amount
of monthly time-variation can lead to a large degree of change in coefficients. For
instance, a value ω2 = 10−4 implies a value of ω = 0.01 and a standard deviation
of the error in the state equation of this magnitude will allow for a moderate de-
gree of change in coefficients over the course of a year. However, if ω2 = 10−6,
then very little change in coefficients is allowed for. With regards to the constant
coefficients, if τ 2i = 0.01 then, approximately, 95% of the prior probability for θi
is allocated to the interval [−0.2,+0.2] and, thus, this value for τ 2i ensures a fairly
high degree of shrinkage, whereas if τ 2i = 0.1, then the prior is much more dis-
persed and the shrinkage much less.

An examination of the tables indicate a moderate, but not dogmatic, amount
of shrinkage in most cases. Furthermore, the coefficients in the h = 1 case tend to
be shrunk more than those with h = 12. However, the degree of shrinkage varies
across coefficients. For both forecast horizons, both constant and time-varying
coefficients on the intercept tend to be shrunk less than the coefficients on the
other variables. When h = 1, we find the 12th lag and the December dummy to

8Although we always include the monthly dummies (with possibly time varying coefficients)
so our models are not exactly equivalent to the TVP-AR or UCSV models.
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be shrunk much less than other lags and monthly dummies. This finding is not
repeated when h = 12.

Among the other predictors, for h = 12 the unemployment rate has both con-
stant and time-varying coefficients which are shrunk less than coefficients on
most of the other predictors. This indicates that the role of the unemployment
rate’s coefficient in important and time-varying. In contrast, the constant coef-
ficient on the one-year interest rate has a moderately high degree of shrinkage
on its constant coefficient, but has very little shrinkage on its time-varying coef-
ficients. This pattern is consistent with this interest rate having having a smaller
role, but a role that is changing over time. These patterns are not repeated for
h = 1, although here the consumer sentiment, car registration and order book
level variables exhibit more time variation in their coefficients than the other pre-
dictors.
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Table 1: Posterior means of ω2 and τ 2 for predictors (st.dev. in parentheses)

h = 1 h = 12
Predictor ω2 τ 2 ω2 τ 2

Intercept
6.5×10−3(
2.9× 10−4

) 0.061
(0.035)

3.7×10−3(
2.3× 10−4

) 0.926
(0.302)

I_1MO
7.6×10−5(
2.4× 10−5

) 0.014
(0.018)

3.9×10−6(
4.0× 10−6

) 0.187
(0.127)

I_1YR
1.7×10−5(
1.8× 10−5

) 0.022
(0.023)

0.010(
7.5× 10−4

) 0.090
(0.107)

SENT
2.0×10−3(
1.2× 10−4

) 0.014
(0.019)

5.3×10−5(
1.9× 10−5

) 0.088
(0.102)

STOCK1
8.2×10−5(
1.8× 10−5

) 0.018
(0.021)

4.2×10−5(
8.2× 10−6

) 0.133
(0.129)

STOCK2
3.0×10−4(
3.1× 10−5

) 0.022
(0.023)

3.3×10−3(
2.1× 10−4

) 0.089
(0.109)

EXRATE
1.1×10−6(
1.6× 10−6

) 0.013
(0.018)

1.5×10−4(
2.4× 10−5

) 0.108
(0.107)

IP
2.0×10−3(
2.0× 10−4

) 0.016
(0.018)

3.0×10−4(
4.1× 10−5

) 0.071
(0.097)

LOANS
3.4×10−4(
2.3× 10−5

) 0.020
(0.021)

6.2×10−4(
3.2× 10−5

) 0.108
(0.111)

M3
7.7×10−6(
6.0× 10−6

) 0.014
(0.019)

1.2×10−3(
7.6× 10−5

) 0.098
(0.109)

CAR
2.3×10−3(
1.5× 10−4

) 0.013
(0.017)

1.8×10−3(
1.2× 10−4

) 0.086
(0.119)

ORDER
1.1×10−3(
4.7× 10−5

) 0.016
(0.024)

7.0×10−6(
3.9× 10−6

) 0.068
(0.098)

OIL
2.2×10−5(
9.4× 10−6

) 0.015
(0.018)

1.5×10−3(
1.2× 10−4

) 0.103
(0.120)

UNEMP
5.9×10−5(
2.9× 10−5

) 0.016
(0.018)

2.2×10−3(
1.0× 10−4

) 0.257
(0.147)
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Table 2: Posterior means of ω2 and τ 2 for lags (st. dev. in parentheses)

h = 1 h = 12
Lag ω2 τ 2 ω2 τ 2

1
1.6×10−3(
7.6× 10−5

) 0.019
(0.021)

6.4×10−4(
3.5× 10−5

) 0.109
(0.115)

2
3.9×10−4(
9.5× 10−5

) 0.016
(0.018)

6.2×10−3(
2.6× 10−4

) 0.085
(0.116)

3
1.8×10−6(
2.0× 10−6

) 0.029
(0.026)

7.5×10−4(
4.6× 10−5

) 0.104
(0.103)

4
3.5×10−5(
7.1× 10−6

) 0.013
(0.018)

4.0×10−4(
5.0× 10−5

) 0.108
(0.112)

5
3.6×10−4(
6.7× 10−5

) 0.013
(0.018)

1.5×10−4(
2.5× 10−5

) 0.108
(0.114)

6
1.8×10−4(
5.3× 10−5

) 0.023
(0.020)

9.2×10−5(
2.3× 10−5

) 0.082
(0.100)

7
1.7×10−4(
1.8× 10−5

) 0.020
(0.023)

1.7×10−3(
3.3× 10−4

) 0.075
(0.115)

8
1.2×10−5(
5.8× 10−6

) 0.012
(0.015)

2.2×10−4(
5.3× 10−5

) 0.069
(0.107)

9
1.5×10−4(
2.9× 10−5

) 0.012
(0.019)

5.6×10−4(
1.5× 10−4

) 0.097
(0.114)

10
1.0×10−4(
1.0× 10−5

) 0.013
(0.018)

6.6×10−5(
3.2× 10−5

) 0.072
(0.102)

11
7.3×10−5(
1.8× 10−5

) 0.019
(0.022)

5.3×10−3(
4.4× 10−4

) 0.094
(0.106)

12
5.1×10−5(
8.5× 10−6

) 0.085
(0.040)

1.4×10−4(
3.2× 10−4

) 0.096
(0.114)
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Table 3: Posterior means of ω2 and τ 2 for dummies (st. dev. in parentheses)

h = 1 h = 12
ω2 τ 2 ω2 τ 2

February
6.7×10−4(
1.1× 10−4

) 0.041
(0.028)

1.2×10−3(
3.1× 10−4

) 0.169
(0.146)

March
1.4×10−3(
4.5× 10−4

) 0.027
(0.024)

1.4×10−3(
4.2× 10−4

) 0.088
(0.104)

April
8.9×10−5(
4.1× 10−5

) 0.015
(0.020)

2.8×10−4(
2.9× 10−4

) 0.136
(0.122)

May
1.4×10−5(
1.5× 10−5

) 0.034
(0.026)

8.5×10−6(
1.6× 10−5

) 0.071
(0.112)

June
3.8×10−5(
4.5× 10−5

) 0.016
(0.020)

4.3×10−5(
3.6× 10−5

) 0.073
(0.094)

July
3.6×10−5(
2.9× 10−5

) 0.014
(0.020)

2.2×10−5(
3.6× 10−5

) 0.101
(0.114)

August
1.7×10−4(
2.2× 10−4

) 0.015
(0.020)

4.5×10−4(
1.4× 10−4

) 0.078
(0.100)

September
1.1×10−4(
9.8× 10−5

) 0.016
(0.020)

4.3×10−5(
5.0× 10−5

) 0.072
(0.088)

October
1.4×10−4(
5.9× 10−5

) 0.028
(0.023)

5.1×10−4(
2.0× 10−4

) 0.145
(0.133)

November
1.6×10−3(
1.4× 10−4

) 0.022
(0.020)

2.4×10−4(
1.5× 10−4

) 0.081
(0.099)

December
1.5×10−4(
1.4× 10−4

) 0.079
(0.036)

5.1×10−4(
1.1× 10−4

) 0.118
(0.126)

3.3 Forecasting Results

Most Bayesians prefer to use predictive likelihoods for evaluating forecast perfor-
mance. Our posterior and predictive simulation algorithm provides us with the
predictive density for forecasting yτ+h given information through time τ , which
we denote by p (yτ+h|Dataτ ). This predictive density is evaluated for τ = τ 0, .., T −
hwhere τ 0 is January, 2001 and h = 1 and 12. If we let yoτ+h be the observed value of
yi,τ+h, then the predictive likelihood is p

(
yτ+h = y

o
τ+h|Dataτ

)
and we use the mean

of the log predictive likelihoods (MLPL) for forecast evaluation:

MLPL =
1

T − h− τ 0 + 1

T−h∑

τ=τ0

log
[
p
(
yτ+h = y

o
τ+h|Dataτ

)]
.

In the tables, MLPL results are presented relative to those produced by our
full model (i.e. the model with hierarchical shrinkage on both constant and time-
varying coefficients and which has stochastic volatility in the measurement equa-
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tion). Since MLPL is measured in log units, we take the difference between the
MLPL for the full model and the restricted model. Thus, positive numbers indi-
cate our full model is forecasting better than the restricted model.

We also present the mean of the squared forecast errors (MSFE) and the mean
of the absolute value of the forecast errors (MAFE). In contract to the predictive
likelihoods, which evaluate the performance of the entire predictive distribution,
MSFEs and MAFE only evaluate the performance of the point forecast. We use
the predictive median as our point forecast. Again, we present results relative
to the full model. The tables present MSFEs and MAFEs for a restricted model
divided by those for the full model. Thus, a number greater than one indicates
our full model is forecasting better, using MSFE or MAFE as a metric.

3.3.1 Results for Core Inflation

Tables 4 and 5 present results for core inflation. Consider first results for h = 1
(see Table 4). Regardless of whether we use MLPL, MSFE or MAFE to evaluate
forecast performance, we find evidence that the inclusion of stochastic volatility
causes forecast performance to deteriorate. The predictive likelihoods are sub-
stantially higher in the homoskedastic models suggesting that stochastic volatil-
ity may not be present in this data set.9 It is worth noting that the TVP regres-
sion model with stochastic volatility (which could be a popular benchmark for
the researcher working in this literature, but not interested in adding shrinkage)
produces the worst forecasts. And our full model is the second best forecasting
model among the set of models with stochastic volatility. This suggests caution
should be taken when forecasting with TVP regression models without shrinkage
and suggests the importance of shrinkage such as that provided by the Lasso. But
beyond this we will say no more about the models with stochastic volatility and
focus on the better-forecasting homoskedastic models.

Among the homoskedastic models with h = 1, our model with Lasso prior
on both constant and time-varying coefficients forecasts the best when we use
predictive likelihoods to evaluate forecast performance. When we use MAFE
or MSFE, the constant coefficient model forecasts best. However, our model is
a close second best in terms of the latter forecast metrics. In this data set, at
this forecast horizon, it appears that there is little need for time-varying coeffi-
cients and, thus, our model is forecasting roughly as well as a constant coeffi-
cient model. However, it is important to stress that our approach discovered this
fact automatically. That is, it allows the researcher to begin with a very flexible
model, allowing for features which might be important for forecasting (such as
parameter change), but then the statistical methodology decides which aspect

9Note that the product of predictive likelihoods over the entire sample is the marginal likeli-
hood. Thus, MLPL can be used as a method of model selection and here indicates support for
homoskedasticity.
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is important and which is not. Here our approach is shrinking the time-varying
coefficients so as to mostly “turn off” this part of the model. The standard TVP re-
gression model does not do this and exhibits poorer forecast performance. At the
other extreme, a researcher who simply began with a constant coefficient model
might have been unknowingly working with a badly mis-specified model. Our
approach allows the data to decide whether the coefficients are time-varying and,
if so, by how much they vary.

The story at the annual forecast horizon (h = 12) is a bit different, but also
indicates the benefits of using the Lasso, especially on the TVPs. In terms of pre-
dictive likelihoods, our full model (including Lasso prior on constant and time-
varying coefficients and stochastic volatility) forecasts best. In terms of MSFE
and MAFE, our full model also forecasts well, but it is the homoskedastic version
of our model which does even better. In this case, our different measures of fore-
cast performance are telling a somewhat conflicting story (especially with regards
to the need for stochastic volatility). This is a point we will return to below.

For h = 1, we found the simple constant coefficient model to forecast well.
For h = 12, this is not so. In this case, allowing to time-variation in coefficients
is important in achieving a good forecast performance. However, the TVP regres-
sion model does not forecast well. It is allowing for too much time-variation in
coefficients. The Lasso prior is allowing for us to estimate the correct degree of
time-variation in coefficients in order to obtain a good forecast performance.

Table 4: Measures of Forecast Performance for Core Inflation (h = 1)

Constant Variance Stochastic Volatility
MLPL MSFE MAFE MLPL MSFE MAFE

Lasso on constant and TVPs -0.42 0.77 0.83 0.00 1.00 1.00
Lasso only on constant coeffs. -0.29 0.88 0.87 2.00 1.93 1.94
Lasso only on TVPs -0.37 0.85 0.86 0.30 1.59 1.11
TVP regression model 0.09 1.08 0.95 2.54 3.64 1.69
Constant coeff. model -0.40 0.66 0.78 0.01 0.91 0.94

Note: All results are relative to the benchmark model (Lasso on constant & TVPs)

Table 5: Measures of Forecast Performance for Core Inflation (h = 12)

Constant Variance Stochastic Volatility
MLPL MSFE MAFE MLPL MSFE MAFE

Lasso on constant and TVPs 12.83 0.95 0.95 0.00 1.00 1.00
Lasso only on constant coeffs. 2.80 0.88 0.90 0.89 1.23 1.09
Lasso only on TVPs 11.64 1.18 1.02 0.19 1.31 1.14
TVP regression model 3.45 1.27 1.06 1.07 1.80 1.28
Constant coeff. model 6.33 1.09 0.98 0.14 12.48 10.31

Note: All results are relative to the benchmark model (Lasso on constant & TVPs)
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Tables 4 and 5 present evidence on average forecast performance. To investi-
gate whether forecast performance varies over time and to shed light on why the
MLPL results conflict with the MAFE and MSFE results in Table 5, we present Fig-
ures 1 and 2. These are produced using the model with Lasso prior on both con-
stant and time-varying coefficients with h = 12 (but similar patterns are found
with the other models). Figure 1 plots the forecast errors squared for the ho-
moskedastic and heteroskedastic versions of the model. Figure 2 plots the logs
of the predictive likelihood in the same format. Note first that forecast perfor-
mance does vary over time with a deterioration of forecast performance at the
time of the financial crisis and in 2001.

Looking at Figure 1, it can be seen that the homoskedastic and heteroskedas-
tic versions of our model are forecasting roughly as well as each other, in terms
of their point forecasts. A similar pattern holds for the predictive likelihoods (see
Figure 2) for most of the time. However, at the time of the financial crisis, the ho-
moskedastic version of the model has much lower predictive likelihoods and it is
this time period which drives the inconsistency between MLPL and MSFE noted
in Table 5. What is happening is that the homoskedastic version of the model is
missing the large increase in volatility which began with the financial crisis. This
has little impact on the point forecasts and thus, the forecast errors squared do
not differ by much between the homoskedastic and heteroskedastic versions of
the model. However, the homoskedastic version of the model has an error vari-
ance which is much too small. This makes it appear that the point forecast is far
in the tails of the predictive density, leading to a very small predictive likelihood.
The heteroskedastic version of this model does not run into this problem. Pol-
icymakers are increasingly interested in forecast uncertainty and, hence, want
more than just a point forecast. Figure 2 shows how the appropriate modelling
of the error variance can be crucial in obtaining reliable inference about forecast
uncertainty.
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Figure 1: Forecast errors squared for models with Lasso prior on

constant and time-varying coefficients, h=12
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Figure 2: Log predictive likelihoods for models with Lasso prior

on constant and time-varying coefficients, h=12
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3.3.2 Results for Overall Inflation

Tables 6 and 7 are the same as Tables 4 and 5, except that the former are for overall
inflation.

For h = 1, we are finding that homoskedastic models tend to do better than
those with stochastic volatility (although to a lesser extent than for core infla-
tion). The homoskedastic version of our model with Lasso prior on both time
varying and constant coefficients exhibits the best forecast performance regard-
less of whether one uses MLPL, MSFE or MAFE. Note also that, to a greater extent
than with core inflation, our model is forecasting better than two popular bench-
marks: the TVP regression model and the constant coefficient model.

For h = 12, Table 7 is showing a similar pattern to Table 5. That is, in terms
of MLPL, TVP models with stochastic volatility forecast best – but only if a Lasso
prior is used on the time-varying coefficients. However, if we look at MSFE or
MAFE, models with constant coefficients forecast best. This discrepancy be-
tween the MLPL and MSFE results is due to the same reason discussed previously
(and illustrated in Figures 1 and 2). However, it is worth noting that, even if we
use only MSFE and MAFE for forecast comparison, models with Lasso priors on
TVPs forecast much better than the unrestricted TVP regression model.

In summary, in cases where there is time-variation in coefficients, putting a
Lasso prior on these coefficients does lead to better forecast performance than
unrestricted TVP models. The shrinkage is beneficial in keeping the time-varying
coefficients from wandering too widely. In cases where there is little evidence of
time-varying coefficients (i.e. where constant coefficient models forecast well),
the Lasso prior can automatically discover this lack of time-variation and lead to
forecasting results that are almost as good as the constant coefficient model. In
these latter cases, unrestricted TVP models can forecast very poorly.

Table 6: Forecast Performance for Overall Inflation (h = 1)

Constant Variance Stochastic Volatility
MLPL MSFE MAFE MLPL MSFE MAFE

Lasso on constant and TVPs -0.24 0.75 0.85 0.00 1.00 1.00
Lasso only on constant coeffs. -0.14 0.85 0.96 1.99 1.51 1.23
Lasso only on TVPs -0.18 0.86 0.94 0.04 1.06 1.04
TVP regression model -0.04 1.00 1.04 1.99 1.56 1.27
Constant coeff. model 0.15 0.85 0.89 0.10 1.03 0.94

Note: All results are relative to the benchmark model (Lasso on constant & TVPs)
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Table 7: Forecast Performance for Overall Inflation (h = 12)

Constant Variance Stochastic Volatility
MLPL MSFE MAFE MLPL MSFE MAFE

Lasso on constant and TVPs 26.75 0.85 0.95 0.00 1.00 1.00
Lasso only on constant coeffs. 8.43 0.91 0.96 0.81 1.04 1.02
Lasso only on TVPs 16.37 0.97 0.96 -0.08 1.02 1.01
TVP regression model 4.69 1.05 1.02 0.99 1.23 1.08
Constant coeff. model 8.11 0.63 0.80 -0.05 0.76 0.89

Note: All results are relative to the benchmark model (Lasso on constant & TVPs)

3.3.3 Robustness to Different Specifications

Our empirical results are based on large set of explanatory variables. In the Em-
pirical Appendix we investigate the robustness of our results to changes in this
set. The reader is referred to the Empirical Appendix for details. We do find our
results to be quite robust. We briefly summarize our findings here.

If we omit the 13 predictors listed in Section 3.1, we still have a model with
many explanatory variables (an intercept, 11 monthly dummies and 12 lags) and,
thus, Lasso-type shrinkage is potentially useful. Table A.1 through A.4 in the Em-
pirical Appendix shows that it is indeed useful in a similar manner to what we
found in Tables 4 through 7. This indicates the usefulness of hierarchical shrink-
age even in time-varying AR(p) models.

The Empirical Appendix also includes results for models where all predic-
tors and all lags are excluded. Hence, the models include only a (potentially
time-varying) intercept and monthly dummies. With the inclusion of stochastic
volatility, we have models which are similar to the popular UCSV model of Stock
and Watson (2007). For these models, the benefits of hierarchical shrinkage are
smaller, but still evident.

4 Conclusions

The macroeconomist often has many variables which can be used in a forecast-
ing exercise. She may also wish to work with a model which allows for the pa-
rameter change which is empirically evident in many macroeconomic data sets.
These considerations can often lead to models with many parameters, leading
to over-fitting and poor forecast performance. In regressions and VARs with con-
stant coefficients, there have been many approaches which try to overcome these
problems by shrinking coefficients. However, with TVP models (where we would
expect the need for shrinkage to be even greater than in constant coefficient
models), few shrinkage approaches have been suggested. In this paper, we have
developed a new approach to shrinkage in TVP models based on the Lasso. We
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have extended Lasso methods, which are popular with constant coefficient mod-
els, to TVP models and developed Bayesian methods for posterior and predictive
inference.

To investigate the performance of our approach, we use an EU data set which
is relatively short and involves many predictors. Our findings are moderately en-
couraging in that use of the Lasso on the time-varying coefficients does lead to
substantial improvements in forecast performance relative to unrestricted TVP
models. Relative to constant coefficient models, a TVP model with Lasso shrink-
age in some cases exhibits improved forecast performance. But we find that an
advantage of using a TVP model with Lasso shrinkage is that it can automati-
cally produce a model which is similar to a constant coefficient model in the
cases where a constant coefficient model is the appropriate forecasting model.
Thus, the researcher using the TVP model with Lasso prior can be confident
that the risks of mis-specification associated with constant coefficient models
are avoided, while at the same time avoid the risks of over-parameterization as-
sociated with unrestricted TVP models.
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Technical Appendix

Stochastic volatility
We use a standard stochastic volatility specification for the error variance in

the measurement equation. In particular, if ht = ln (σt), then:

ht+1 = ht + ut,

where ut is N (0,W ) and is independent over t and of εt and ηt. We use the algo-
rithm of Kim, Shephard and Chib (1998) to draw the volatilities. The prior for the
initial volatility is:

h0 ∼ N (−0.5, 0.5) .

Since the dependent variable is standardized to have a variance of one, this is
only very weakly informative, but is centered over a plausible value for h0. The
prior forW−1 is Gamma with prior mean of 104 and two prior degrees of freedom.

Priors for λ2 and κ2

Unless otherwise specified, our empirical results set a1 = a2 = b1 = b2 = 0.001
which implies proper but very noninformative priors (i.e. the prior mean of these
priors is one, but the prior variance is 1000). One of our models almost totally
removes the TVP part of the model altogether by setting b1 = 100000. This value
for b1 implies prior mean of 100 for κ (a value which ensures shrinkage of ω to very
near zero) and the prior variance is 0.1 ensuring a tight prior around this value.

Priors when Lasso is not used
For models without the Lasso prior on the TVP coefficients, ξ2i and κ do not

appear in the model and we use a non-hierarchical prior for ω of the form:

ω ∼ N (0, I) .

For models without the Lasso prior on the constant coefficients, τ 2i and λ do
not appear in the model and we use a non-hierarchical prior for θ of the form:

θ ∼ N (0, 9× I) .
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Empirical Appendix

In this sub-section, we present results for a few additional specifications to show
that the results in the body of the paper are robust. Results are presented in the
same format as in Tables 4 through 7. That is forecast performance is measured
relative to the full model with the same explanatory variables. Tables A.1 and A.2
present results without any of the predictors listed in Section 3.1 (i.e. simply us-
ing an intercept, the monthly dummies and p = 12). It can be seen that the same
patterns noted in Tables 4 through 7 hold. For instance, Table A.1 shows that
using the Lasso on the time-varying coefficients leads to substantive forecast im-
provements over unrestricted TVP models for h = 1. It is worth noting, however,
that the MLPLs are roughly the same in Tables A.1 and A.2 as in Tables 4 through
7 and the MSFEs and MAFEs are in many cases, somewhat lower in the former ta-
bles. This suggests that, in this application, the predictors are adding little. This
re-emphasizes the importance of shrinkage methods such as those introduced
in this paper. That is, if the researcher is working with a data set with many pre-
dictors, our TVP shrinkage methods can, in an automatic fashion, uncover the
fact that the predictors are adding little. This may be preferable to a model selec-
tion strategy where the researcher seeks to find a single parsimonious forecasting
model.

Tables A.3 and A.4 repeat the analysis for models with only an intercept and
monthly dummies. Similar patterns to those noted previously are found, although
in this relatively parsimonious model, the benefits of Lasso-type shrinkage are
smaller. Note, however, that with core inflation, the constant coefficient model
does quite poorly (especially when h = 1) which contrasts with the results we
found with more parameter-rich models.
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Table A.1: Forecast Performance for Core Inflation: No Predictors

Constant Variance Stochastic Volatility
MLPL MSFE MAFE MLPL MSFE MAFE

h = 1
Lasso on constant and TVPs -0.46 0.67 0.77 0.00 1.00 1.00
Lasso only on constant coeffs. -0.38 0.73 0.81 2.19 1.79 1.31
Lasso only on TVPs -0.43 0.66 0.79 0.01 0.99 0.94
TVP regression model -0.31 0.82 0.85 2.14 1.87 133
Constant coeff. model -0.46 0.56 0.74 -0.16 0.70 0.82
h = 12
Lasso on constant and TVPs 50.29 1.15 1.10 0.00 1.00 1.00
Lasso only on constant coeffs. 31.93 1.16 1.09 1.07 1.51 1.22
Lasso only on TVPs 53.72 1.30 1.18 0.10 1.02 1.05
TVP regression model 28.70 1.25 1.14 1.09 1.59 1.26
Constant coeff. model -0.44 0.72 0.87 0.05 0.86 0.95

Note: All results are relative to the benchmark model (Lasso on constant & TVPs) for each forecast horizon h

Table A.2: Forecast Performance for Overall Inflation: No Predictors

Constant Variance Stochastic Volatility
MLPL MSFE MAFE MLPL MSFE MAFE

h = 1
Lasso on constant and TVPs -0.50 0.66 0.79 0.00 1.00 1.00
Lasso only on constant coeffs. -0.47 0.67 0.82 1.64 1.13 1.03
Lasso only on TVPs -0.52 0.63 0.79 -0.06 0.86 0.88
TVP regression model -0.42 0.72 0.86 1.60 1.48 1.22
Constant coeff. model -0.28 0.69 0.80 -0.18 0.72 0.81
h = 12
Lasso on constant and TVPs 50.14 1.02 0.96 0.00 1.00 1.00
Lasso only on constant coeffs. 41.84 1.09 0.98 1.13 1.47 1.18
Lasso only on TVPs 58.14 1.06 1.01 0.16 0.91 1.05
TVP regression model 30.75 1.25 1.07 1.19 1.49 1.26
Constant coeff. model 0.26 0.58 0.76 -0.07 0.63 0.81

Note: All results are relative to the benchmark model (Lasso on constant & TVPs) for each forecast horizon h
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Table A.3: Forecast Performance for Core Inflation: No Predictors nor Lags

Constant Variance Stochastic Volatility
MLPL MSFE MAFE MLPL MSFE MAFE

h = 1
Lasso on constant and TVPs -0.36 0.77 0.85 0.00 1.00 1.00
Lasso only on constant coeffs. -0.36 0.74 0.85 0.89 1.09 1.06
Lasso only on TVPs -0.22 0.78 0.87 0.13 1.13 1.03
TVP regression model -0.15 0.78 0.86 0.93 1.05 1.01
Constant coeff. model 0.65 2.70 1.55 0.71 3.02 1.67
h = 12
Lasso on constant and TVPs 56.70 0.81 0.89 0.00 1.00 1.00
Lasso only on constant coeffs. 35.07 0.81 0.89 -0.71 0.81 0.88
Lasso only on TVPs 58.98 0.81 0.89 -0.13 0.87 0.91
TVP regression model 39.31 0.81 0.89 -0.75 0.83 0.90
Constant coeff. model -1.15 0.74 0.88 1.46 1.08 1.11

Note: All results are relative to the benchmark model (Lasso on constant & TVPs) for each forecast horizon h

Table A.4: Forecast Performance for Overall Inflation: No Predictors nor Lags

Constant Variance Stochastic Volatility
MLPL MSFE MAFE MLPL MSFE MAFE

h = 1
Lasso on constant and TVPs -0.32 0.78 0.90 0.00 1.00 1.00
Lasso only on constant coeffs. -0.27 0.85 0.90 0.40 1.33 1.16
Lasso only on TVPs -0.30 0.77 0.88 0.05 1.08 1.05
TVP regression model -0.23 0.89 0.92 0.49 1.19 1.09
Constant coeff. model -0.03 1.02 1.03 0.28 1.06 1.02
h = 12
Lasso on constant and TVPs 55.99 1.40 1.14 0.00 1.00 1.00
Lasso only on constant coeffs. 55.23 1.40 1.14 -0.20 1.37 1.13
Lasso only on TVPs 55.53 1.39 1.14 0.25 1.02 0.95
TVP regression model 44.81 1.39 1.14 -0.08 1.38 1.13
Constant coeff. model -0.16 0.62 0.82 -0.36 0.58 0.76

Note: All results are relative to the benchmark model (Lasso on constant & TVPs) for each forecast horizon h

28


