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1 Introduction

Finite horizon economies have been extended to an infinite horizon via two main ap-

proaches. The first one considers a finite number of infinitely-lived agents.1 The second

approach assumes that agents are finitely lived and succeeded by their offspring form-

∗Corresponding author.
1This approach was used in General Equilibrium Theory (GET) by Bewley (1972) for complete

markets and by Magill and Quinzi (1994, 1996), Florenzano and Gourdel (1996), Hernandez and Santos

(1996), Arujo, Páscoa and Torrez-Mart́ınez (2002) and Páscoa and Seghir (2009), among others, for

incomplete markets.
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ing a sequence of Overlapping Generations Models (OLG).2 This paper focuses on the

latter approach to investigate intergenerational transfers and altruistic motives from a

general equilibrium perspective.

In the last two decades, the importance of non economic motives behind economic

actions, such as intergenerational transfers and altruistic behavior, on public policy,

fiscal policy or social security systems has been extensively emphasized in economics.3

Generally speaking, intergenerational transfers among family members can be based on

two different grounds: Altruism models and Exchange models. On one hand, altruism

models assume that family members have interdependent utility functions where an

increase in consumption of one member increases the utility of other members as in

Bergstrom (1999) and Horri (1989). On the other hand, Exchange models are con-

cerned with economic motives behind intergenerational transfers. This paper uses a

combination of these two approaches.

In a recent paper, Seghir and Torres-Mart́ınez (2008) study, from a general equilibrium

perspective, a model of wealth transfer in the presence of uncertain lifetimes and de-

fault when agents have only forward altruistic motives through bequests. They prove

the existence of equilibrium in an OLG economy of finitely lived agents and in an

OLG economy when some agents may have at least one infinite life time path through

the event tree. Our aim in this paper is to provide a more general notion of kinship

altruism, namely two-sided (forward and backward) altruism and study the effect of al-

truism and dynastic/individualistic behaviors on the possibility of doing Ponzi schemes

and the equilibrium existence. To this end, we consider an exchange economy with

incomplete financial markets of real assets when default is allowed. As in Geanakoplos

and Zame (1995), borrowers are required to constitute collateral in terms of durable

goods. This collateral is seized and given to the lenders in case of default. Agents may

have backward altruistic motives towards their ancestors through inter-vivos transfers.4

Moreover, individuals care about their offspring (forward altruism) by not leaving a debt

2This approach was used in GET by Balasko and Shell (1980) for complete markets and by Geanako-

plos and Polemarchakis (1991), Floenzano, Gourdel and Páscoa (2001), Schmachlenberg (1988), Seghir

(2006) and Seghir and Torres-Mart́ınez (2008) among others, for incomplete markets.
3See for instance, among recent contributions, the importance of altruism into economic research

on public policy (Philippe and Thibault, 2007), fiscal policy (Lambrecht et al. 2006), family economics

(Bergstrom 1997) or social security systems (Fuster 2000).
4Many authors have emphasized the importance of inter vivos transfers. For example, Gale and

Scholz (1994) notice that inter vivos transfers constitute roughly 20 percent (or more) of U.S welath.

Similar figures are found in France as statistics show that the total amount of declared inter vivos

transfer represents one quarter of total transfers in the 1970’s and 1980’s (see Arrondel and Laferrére

(2001)).
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that their backward altruistic descendants may choose to pay. More precisely, agents’

backward altruistic motives are represented by a disutility from not paying their par-

ents’ debt when the latter cannot honor their promises. Descendants may decide to pay

their parents’ debt, when the latter are not able to honor their promises, either because

they have backward altruistic motives or in order to increase their parents’ estate and

therefore increase the inheritance they will receive when their parents pass way. A

descendant may pay the debt of his ancestor either by getting a loan5or by using his

available resources (the returns of his long positions or his initial endowments).6 On the

other hand, an ancestor’s forward altruistic motives are represented by (i) a disutility

proportional to his own amount of default, (ii) a disutiltiy for letting his descendants

pay his debt in case he cannot pay it.7 The presence of durable goods and financial

assets allow us to introduce physical and financial inheritances (i.e.: intergenerational

transfers) in our model. In our model, the utility function of each agent depends not

only on his own decision variables but also on the decision variables of other members

of his dynasty towards whom he has backward or forward altruism (e.g. how much debt

transfer each agent is going to carry from her parents, the level of inter vivos transfer

from her offspring, and so on). Besides the classical rational expectations hypothesis

that agents perfectly anticipate future prices when making their decisions, we assume

that, individuals can perfectly predict the behavior of their offspring based on past

experiences and observations about these members of their family.

The objective of this paper is twofold. In the first part, we consider a model with

two-sided altruistic (finitely-lived) agents in which each agent maximizes his own in-

tergenerational utility function (Individualstic structure). We prove that equilibrium

exists for such a structure under standard assumptions, regardless of agents’ degree

of altruism. In the second part, we are interested in the case when members of each

dynasty act in a collectivistic way, i.e. a sequence of members of a dynasty acts as

if they are maximizing the utility of the dynasty (Collectivistic structure). We show

5A descendant may be able to get a loan while his ancestor cannot as the former has better financial

stability and longer lifetime expectancy.
6A descendant may not be able to get a loan if, for instance, he cannot constitute the required

collateral. Moreover, a descendant may be able to get a loan but he may still prefer to use the returns

of his long positions to pay his ancestor’s debt if the interest rate on a new credit is higher than the

interest rate on his ancestor’s debt.
7Utility penalties proportional to the real amount of default have been introduced by Dubey,

Geanakoplos and Shubik (2005) for a finite-horizon model and also used by Páscoa and Seghir (2009)

for an infinite-horizon model with a finite number of infinitely-lived agents. Dubey, Geanakoplos and

Shubik (2005) interpret utility penalties, among other things, as unmodeled reputation loss or third

party punishment.
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that, similarly to the case of infinitely-lived agents, members of a dynasty may end up

doing Ponzi schemes and, therefore, equilibrium may fail to exist, provided that there

exists a benevolent dictator whose objective is to maximize a collective utility function

by solving for the allocation of all members of the dynasty. Moreover, we show that

Ponzi schemes are ruled out and equilibrium existence is restored if there are some

selfish agents, always in the future. In other words, we prove that an Individualistic

structure always lead to equilibrium existence while a Collectivistic structure leads to

equilibrium existence only if some members of a dynasty are selfish.

Our Collectivistic structure is consistent with the idea in Bergstrom (1997) that there

is a complete class of models (Unitary models) where single members of the family act

as if they are maximizing the family’s utility function. To capture this structure, some

models define agents to be altruistic if their preferences are represented by a weakly

separable utility function and each agent prefers a change in consumption of another

family member if it makes the latter better off. These papers show that each agent

preferences can be represented by the Bergson-Samuelson social utility function, im-

plying that each agent maximizes the collective utility function of the whole family (see

for instance Winter (1969) and Bergstrom (1971a,b)). Other models like in Samuelson

(1956) and Varian (1984) assume the existence of a benevolent dictator who solves for

the allocation of all agents in the family to maximize his collective utility function. We

refer to Bergstrom (1997) for more details about Unitary models.

The paper proceeds as follows. The next section presents the model. Section 3 is de-

voted to equilibrium existence for an individualistic structure. In Section 4, we illustrate

the possibility of doing Ponzi schemes in a collectivistic (i.e. dynastic) environment.

Then, we show that Ponzi schemes are ruled out and equilibrium existence is restored if

there exist, always in the future, some agents who are not too altruistic either towards

their parents or their offspring. Finally, an appendix is devoted to technical proofs.

2 The Model

2.1 Stochastic structure

We consider a discrete time economy with infinite horizon and uncertainty. The stochas-

tic structure is described by an infinite event tree. We denote by T = {0, 1, ...}

the countable set of periods. We denote the history of realization of uncertainty by

st = (s0, . . . , st−1) where s0 is the unique state of nature at first period and there exists

a finite set S(st) of states of nature at period t. A node of the economy is an information

set ξ = (t, st, s), with t ≥ 1 and s ∈ S(st) where the initial node at t = 0 is represented
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by ξ0. The set of nodes in the economy (i.e.: the event–tree) is denoted by D. Given two

nodes ξ = (t, st, s) and µ = (t′, st′ , s
′), we say that µ is a successor of ξ, and we write

µ ≥ ξ, if both t′ ≥ t ≥ 1 and (st′ , s
′) = (st, s, . . .). For each node ξ = (t, st, s), the set of

immediate successors of ξ is denoted by ξ+ := {µ ∈ D : µ ≥ ξ, t(µ) = t(ξ) + 1}. More-

over, the unique predecessor, ξ−, of node ξ, satisfies both ξ− ≤ ξ and t(ξ−) = t(ξ)− 1.

Finally, we define D(ξ) = {µ ∈ D : µ ≥ ξ} as the subtree of nodes which succeed ξ and

by DT (ξ) := {µ ∈ D(ξ) : t(µ) ≤ t(ξ) + T} the subset of nodes of D(ξ) at date T.

2.2 Commodity, financial and demographic structure.

At each node ξ ∈ D, a finite number G of physical goods, indexed by g = 1, . . . , G, are

traded on spot markets by alive consumers. Commodity price process is denoted by

p = (p(ξ), ξ ∈ D) ∈ IR
G×D, where p(ξ) = (p(ξ, g); g ∈ G) ∈ RG

+ \ {0} denotes the spot

price of commodities at ξ. Commodities may depreciate from one node to the other.

The structure of depreciation is given by a collection of G×G matrices Y := {Y (ξ)}ξ∈D

with non negative entries.

At each node ξ ∈ D, there is a set J(ξ) consisting of a finite number, ι(ξ), of one-

period real assets. Each asset j ∈ J(ξ) is characterized by a vector of real promises

Aj(µ) ∈ IR
G
+, at each µ ∈ ξ+. Let q = (q(ξ); ξ ∈ D) ∈

∏
ξ∈D

IR
J(ξ)
+ be the financial price

process, where q(ξ) = (qj(ξ))j∈J(ξ) denotes the asset price vector at ξ.

We denote by I the set of agents in the economy. In our model, agents’ lifetime

is affected by uncertainty. For each agent i ∈ I, we define a finite subset Di ⊂ D at

which agent i can trade on the spot markets. For each agent i ∈ I, we also define

Di :=
{
µ ∈ Di \ {ξ0} : µ− /∈ Di

}
∪

(
{ξ0} ∩ Di

)
the set of agent i’s initial nodes. Agent

i ∈ I is said to be financially active at a node ξ ∈ Di if he can exchange assets and

he is able to pay, partially or fully, his debt at node ξ.8 We denote by D′i ⊂ Di

the subset of nodes at which agent i is financially active. We assume that agents

cannot exit the economy at a node and reappear afterward. Formally, for each i ∈ I,

D(µ) ∩ Di = ∅,∀µ ∈ D \ Di. Let I(ξ) := {i ∈ I : ξ ∈ Di} be the non-empty set of

agents who are alive at node ξ ∈ D. We suppose that the number, n(ξ) =: #I(ξ), of

agents who are alive at ξ, is finite.

For each agent i ∈ I, we denote by:

• wi =
(
wi(ξ, g), (ξ, g) ∈ Di × G

)
∈ IR

Di×G
+ agent i’s initial endowment process.

To simplify notations, agent i’s accumulated endowment up to node ξ ∈ Di will

8An agent i who is not financially active at a node ξ ∈ Di \ Di can still receive returns on his long

positions made at node ξ−, if any.
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be denoted by W i(ξ) := wi(ξ) + YξW
i(ξ−), with W i(ξ−) = 0 if ξ ∈ Di.

• A consumption plan xi :=
(
xi(ξ); ξ ∈ Di

)
∈ IR

G×Di

+ , where xi(ξ) ∈ IR
G
+ denotes

agent i’s consumption bundle at node ξ ∈ Di. Note that, when agent i uses the

services of a bundle x ∈ IR
G
+, at ξ ∈ Di, he receives, at each immediate successor

µ ∈ ξ+ ∩ Di, a bundle Yµx.

• θi = (θi
j(ξ)) ξ∈D′i

j∈J(ξ)

agent i’s long positions.

• ϕi = (ϕi
j(ξ)) ξ∈D′i

j∈J(ξ)

agent i’s short positions.

As in Geanakoplos and Zame (1995), at each node ξ ∈ D′i, borrower i of one unit of

asset j ∈ J(ξ) has to constitute a collateral Cj(ξ) ∈ IR
G
+ \{0} in terms of durable goods.

This collateral will be seized and given to the lenders in case of default.

For each agent i ∈ I and for each node ξ ∈ D′i, agent i’s debt at node µ ∈ ξ+ (in-

duced by his sales of ϕi
j(ξ) units of asset j ∈ J(ξ) at node ξ) is given by p(µ)Aj(µ)ϕi

j(ξ)

and his effective payment (in units of account), at node µ ∈ (ξ+ ∩ Di), is denoted by

∆i
j(µ). A borrower i of ϕi

j(ξ) units of asset j ∈ J(ξ), at node ξ ∈ D′i, has a real default
p(µ)Aj(µ)ϕi

j(ξ)−∆i
j(µ)

p(µ)b(µ) at each node µ ∈ (ξ+ ∩ Di), where b(µ)=(b(µ, g), g ∈ G) ∈ IR
G
++ is

a fixed reference bundle.

2.3 Two–sided altruism

In the current paper, we are interested in the case when agents have altruistic motives

towards both their ancestors (backward altruism) and descendants (forward altruism).

This generalizes a model by Seghir and Torres-Mart́ınez (2008) where agents have only

altruistic motives towards their descendants through bequests. In our model, agents’

altruism is represented by utility penalties. More precisely, agents who have forward

altruistic motives towards their descendants suffer utility penalties proportional to their

real amount of default. Similarly, agents who have backward altruistic motives towards

their ancestors suffer utility penalties proportional to their ancestors’ real amount of

default. Formally, for each agent i ∈ I, we denote by Di
F ⊂ Di the set of nodes at

which agent i has forward altruistic motives and by Di
B ⊂ Di the set of nodes at

which agent i has backward altruistic motives. For each i ∈ I and ξ ∈ Di
B, we denote

by Ii
B(ξ) ⊂ I(ξ−) the set of agents for whom agent i has backward altruistic motives at

node ξ. Moreover, for each i ∈ I and ξ ∈ Di
F , we denote by Ii

F (ξ) ⊂
(
I(ξ)∪

⋃
µ∈ξ+ I(µ)

)

the set of agents for whom agent i has forward altruistic motives at node ξ.9

9For ease of notations, we consider one-period altruism, that is agents have backward altruistic

motives towards their immediate predecessors and forward altruistic motives towards their immediate
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Due to backward altruistic motives towards his ancestor k, agent i may choose to pay,

at node ξ ∈ D′i \ D′k an amount ∆i,k
j (ξ), of his ancestor k’s debt induced by the sales

of asset j ∈ J(ξ−) by ancestor k. That is:

0 ≤ ∆i,k
j (ξ) ≤ p(ξ)Aj(ξ)ϕ

k
j (ξ

−) − min{p(ξ)Y (ξ)Cj(ξ−), p(ξ)Aj(ξ)}ϕk
j (ξ

−). (1)

Note that ∆i,k
j (ξ) = 0 for ξ ∈ Di

B \ (D′i ∪ D′k). On the other hand, due to forward

altruistic motives, agent i’s effective payment, ∆i
j(ξ), at node ξ ∈ D′i \Di, on his (own)

debt induced by the sales of asset j ∈ J(ξ−) may exceed the minimum between the

original promise and the value of the depreciated collateral. That is:

min{p(ξ)Y (ξ)Cj(ξ−), p(ξ)Aj(ξ)}ϕi
j(ξ

−) ≤ ∆i
j(ξ) ≤ p(ξ)Aj(ξ)ϕ

i
j(ξ

−). (2)

Note that ∆i
j(µ) = min{p(µ)Aj(µ)ϕi

j(ξ), p(µ)Y (µ)Cj(ξ)ϕi
j(ξ)} for µ ∈ ξ+ ∩ (Di

B \D′i).

Before defining agents’ utility functions, we need to introduce the following notations

for each agent i ∈ I :

Γi(ξ) :=
{

k ∈ I : k ∈ Ii
F (ξ) and i ∈ Ik

B(ξ)
}

, for each node ξ ∈ Di,

ϕ−i := (ϕk
j (ξ

−))
ξ∈Di

B

k∈Ii
B(ξ)

, ∆k,i := (∆k,i
j (µ))

ξ∈Di
F

, µ∈ξ+\D′i

k∈Γi(ξ)

,

∆h,k := (∆h,k
j (ξ))

ξ∈Di
B

k∈(Ii
B(ξ)∩ Ih

B(ξ))\{i}

, η−i :=
(
ϕ−i, ∆k,i, ∆h,k

)
.

Agent i’s preferences are represented by an additively time-node separable utility func-

tion U i defined as follows:

U i
(
(p, η−i), (xi, θi, ϕi,∆i,∆i,k)

)

:= vi(xi) −
∑

ξ∈Di
F \Di

∑

j∈J(ξ−)

λi
j(ξ)

[
p(ξ)Aj(ξ)ϕ

i
j(ξ

−) − ∆i
j(ξ)

]

p(ξ)b(ξ)

+
∑

{ξ/∈D′i:

ξ−∈Di
F }

∑

j∈J(ξ−)

p(ξ)Aj(ξ)ϕ
i
j(ξ

−) −
∑

k∈Γi(ξ−)

γi, k
j (ξ)∆k, i

j (ξ)

p(ξ) b(ξ)

−
∑

ξ∈Di
B

∑

k∈Ii
B(ξ)

∑

j∈J(ξ−)

δi,k
j (ξ)

[
p(ξ)Aj(ξ)ϕ

k
j (ξ

−) −
∑

h 6=i: k∈Ih
B(ξ)

∆h,k
j (ξ))

]
− ∆i,k

j (ξ)

p(ξ)b(ξ)
,

descendants. Our results remain unaffected if we extend this altruism structure to a more general one

in which agents have altruistic motives towards more subsequent generations.
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where vi : IR
G×Di

+ −→ IR+ for all i ∈ I, ξ ∈ D. The first term on the right hand side of

the equation above represents the utility agent i gets from consuming xi. The second

and third terms represents agent i forward altruism while the fourth term represents i’s

backward altruism. More precisely, the second term is a disutility that agent i suffers

for transferring his debt (or his bad default history) to his descendants. The third term

is agent i’s disutility if his altruistic descendants k ∈ Γi(ξ) pays, fully or partially, his

debt at a node ξ ∈ D′i. Finally, the fourth term represents agent i’s disutility propor-

tional to his financially inactive ancestors’ default. Note hat the higher the payment of

agent i or his siblings on their ancestors’ debt the higher is agent i’s utility.

The coefficients λi
j(ξ) and γi, k

j (ξ) represent agent i’s degree of forward altruism to-

wards descendants k ∈ Ii
F (ξ) while the coefficients δi,k

j (ξ) represent agent i’s degree of

backward altruism towards ancestors k ∈ Ii
B(ξ).

Due to markets anonymity and borrowers’ (possible) altruism, lenders will have a degree

of uncertainty about the returns of their long positions. As in Dubey, Geanakoplos and

Shubik (2005), we denote by
(
Kj(ξ) ∈ [0, 1], ξ ∈ D, j ∈ J(ξ−)

)
the expected delivery

rates, at node ξ ∈ D, on asset j ∈ J(ξ−). This variable is taken as given by the agents

and will be determined endogenously in equilibrium.

Since goods may be durable in our model and agents may have access to the financial

markets even at the last period of their lifetime, a part of their (financial and/or

physical) wealth may be left over when they pass away. In order to regulate the sharing

of these physical and financial allocations amongst legitimate beneficiaries, we introduce

exogenous intestacy rules that regulate wealth distribution. When an agent passes away,

his estate is equal to the depreciated value of his collateral along with the net returns

of his portfolios. In Seghir and Torres-Mart́ınez (2008), borrowers deliver the minimum

between the original promise and the depreciated collateral, as the unique punishment

in case of default is the seizure of the depreciated collateral. In such a case, the net

returns of a portfolio are equal to the minimum between the debt and the depreciated

collateral times the net positions (i.e.: the long positions less the short positions). In

our model, due to altruistic motives, borrowers will deliver at least the depreciated

value of the collateral but may choose to deliver more than that. Therefore, the net

returns on agents’ portfolios when they pass away must take into account that the

returns on their long positions may be greater than the minimum between borrowers’

original promise and the depreciated value of the collateral. More precisely, when an

agent passes away, we define the net returns on his portfolios as the total expected

deliveries from his long positions at the previous node less the minimum between his
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original debt induced by his short positions at the previous node and the depreciated

value of his collateral. Formally, for each agent i ∈ I and each node ξ ∈ Di, we define

the value of agent i’s estate at µ ∈ ξ+ \ Di as follows:

ei
µ

(
p(µ), K(µ),

(
xi, θi, ϕi

))
= p(µ)Yµxi(ξ)+

∑

j∈J(ξ)

(
Kj(µ)p(µ)Aj(µ)θi

j(ξ)−βj(µ) ϕi
j(ξ)

)

(3)

where βj(µ) = min{p(µ)Aj(µ), p(µ)Y (µ)Cj(ξ)}. The first term on the right hand side

of Equation (3) represents the value of depreciated consumption of agent i that served

as collateral or not while the second term represents the net returns on his portfolios. As

in Seghir and Torres-Mart́ınez (2008), we assume that (i) contracts can be enforced by

markets when borrowers pass away and (ii) lenders are paid back before the distribution

of the testamentary rights among the legitimate beneficiaries. Formally, for each i ∈ I,

for each node ξ ∈ Di and for each immediate successor µ ∈ ξ+ \ Di, we define Ii(µ) ⊂

I(µ) as the set of agent i’s legitimate beneficiaries. Moreover, for each µ ∈ ξ+ \ Di

and for each k ∈ Ii(µ), we define αi
k(µ) ∈ [0, 1] as the proportion of agent i’s positive

estate that agent k will receive at µ, where
∑

k ∈ Ii(µ)

αi
k(µ)ei

µ=ei
µ.

Due to market anonymity, agents may not know their legal forced shares guaranteed by

civil laws in case of their ancestors’ death. Hence, for each i ∈ I and each ξ ∈ Di, we

denote by si(ξ) ∈ IR+ the amount of anonymous nominal transfer that agent i expects

to receive as inheritance from his ancestors at node ξ via civil law jurisdictions. This

variable is taken as given by agents and will be determined endogenously in equilibrium.

Finally, we define our economy E as follows:

E :=




(
vi, ωi, (λi(ξ))ξ∈Di

F
, (γi

k(ξ)) ξ∈Di
F

k∈Ii
F (ξ)

, (δi
k(ξ)) ξ∈Di

B

k∈Ii
B(ξ)

, (αi
k)k∈Ii

)

i∈I

, A,
(
Cj(ξ)

)
ξ∈D

j∈J(ξ)
, Y



 .

3 Individualistic Structure.

Definition 3.1 [Budget sets].

Given prices, expected deliveries and anonymous nominal transfers (p, q,K, si), the

budget set Bi(p, q,K, si) of an agent i ∈ I, is the set of
(
xi, θi, ϕi,∆i, (∆i, k(ξ))

ξ∈Di
B

k∈Ii
B(ξ)

)

in IR
G×Di

×
∏

ξ∈D′i

IR
i(ξ) ×

∏

ξ∈D′i

IR
i(ξ) ×

∏

ξ∈D′i

IR
i(ξ−) ×

∏

ξ∈Di
B

IR
i(ξ−) such that:

• At each initial node ξ ∈ Di,
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p(ξ)xi(ξ)+p(ξ)C(ξ)ϕi(ξ)+q(ξ)
(
θi(ξ) − ϕi(ξ)

)
+

∑

j∈J(ξ−)

∑

k∈Ii
B(ξ)

∆i,k
j (ξ) ≤ p(ξ)wi(ξ)+si(ξ);

(4)

• At each ξ ∈ D′i \ Di,

p(ξ)xi(ξ) + p(ξ)C(ξ)ϕi(ξ) + q(ξ)
(
θi(ξ) − ϕi(ξ)

)
+

∑

j∈J(ξ−)

∆i
j(ξ) +

∑

j∈J(ξ−)

∑

k∈Ii
B(ξ)

∆i,k
j (ξ)

≤ p(ξ)
(
wi(ξ) + Yξx

i(ξ−)
)

+ si(ξ) +
∑

j∈J(ξ−)

Kj(ξ)p(ξ)Aj(ξ)θ
i
j(ξ

−) (5)

• At each ξ ∈ Di \ (D′i ∪ Di),

p(ξ)xi(ξ) ≤ p(ξ)
(
wi(ξ) + Yξx

i(ξ−)
)

+ si(ξ) +
∑

j∈J(ξ−)

Kj(ξ)p(ξ)Aj(ξ)θ
i
j(ξ

−) (6)

Definition 3.2 [Individualistic Equilibrium].

An individualistic equilibrium of E is a vector
(
p, q, K, (si)i∈I ,

(
xi, θ

i
, ϕi,∆

i
, (∆

i, k
(ξ))

ξ∈Di
B

k∈Ii
B(ξ)

)

i∈I

)

such that p(ξ) > 0, for all ξ ∈ D and satisfying:

(i) For each agent i ∈ I,
(
xi, θ

i
, ϕi,∆

i
,∆

i, k
(ξ))

ξ∈Di
B

k∈Ii
B(ξ)

)
maximizes the objective

function U i over Bi(p, q, K, si).

(ii) Physical and financial markets clear at each node ξ ∈ D, that is:

∑

i∈I(ξ)

θ
i
(ξ) =

∑

i∈I(ξ)

ϕi(ξ) and
∑

i∈I(ξ)

xi(ξ) =
∑

i∈I(ξ)

ωi(ξ) +
∑

i∈I(ξ)

Y (ξ)xi(ξ−).

(iii) For each agent i ∈ I and for each node ξ ∈ Di, expected anonymous transfers are

equal to effective transfers agent i receives from his ancestors, that is:

si(ξ) =
∑

k∈I:i∈Ik(ξ)

αk
i ek

ξ

(
p(ξ), (xk, θ

k
, ϕk)

)
.

(iv) For each node ξ ∈ D \ {ξ0}, for each asset j ∈ J(ξ−), total expected deliveries to

lenders is equal to the total effective deliveries made by the sellers and/or their

descendants, that is:
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K
j
(ξ)

∑

i∈I(ξ−)

p(ξ)Aj(ξ)θ
i

j(ξ
−) =

∑

i∈I(ξ)

∆
i
j(ξ) +

∑

i∈I(ξ−)\I(ξ)

∑

{k∈I(ξ): i∈Ik
B(ξ)}

∆
k,i
j (ξ).

Remark 3.1 As pointed out by Dubey et al. (2005), Páscoa and Seghir (2009), Stein-

ert and Torres-Mart́ınez (2007), among others, the existence of an (pure spot market)

equilibrium in a trivial way can be easily shown when returns from asset purchases are

endogenous. Indeed, if for any ξ ∈ D and j ∈ J(ξ), asset prices and expected delivery

rates
(
q(ξ, j), (Kj(µ))µ∈ξ+

)
are zero, then any spot market equilibrium constitutes an

equilibrium for the economy. That is, if agents are over–pessimistic (i.e.: borrowers are

expected to make zero payments), there will be no financial transaction (see Steinert

and Torres-Mart́ınez (2007) for more details). To overcome the absence of financial

trade as a consequence of zero delivery rates, the existence of an equilibrium in which

expected delivery rates are strictly positive needs to be guaranteed. That is an equi-

librium in which either there is financial trade or delivery rates are nonnull needs to be

secured. On the other hand, if the credit constraint functions have nonpositive values,

then there will be no financial trade in equilibrium. This brings about the following

definition.

Definition 3.3 [Non–trivial individualistic equilibrium]

A non–trivial individualistic equilibrium
(
p, q, K, (si)i∈I , (x

i, θ
i
, ϕi,∆

i
)
i∈I

,∆
i, k

(ξ))
ξ∈Di

B

k∈Ii
B(ξ)

)

of E is an individualistic equilibrium such that for any (ξ, j), we have
(
θj(ξ), ϕj(ξ)

)
6= 0

or K
j
(ξ) > 0.

Theorem 3.1 Assume that the following assumptions hold:

[A.1] For each node ξ ∈ D and for each asset j ∈ J(ξ), Cj(ξ) 6= 0.

[A.2] For each agent i ∈ I and for each node ξ ∈ Di, W i(ξ) ≫ 0.

[A.3] For each agent i ∈ I, vi is continuous, monotone and concave.

Then, a non–trivial individualistic equilibrium exists.

Proof. See Appendix.

Assumptions [A.1]-[A.3] are standard in finite–horizon economies with default and col-

lateral requirement. The non-nullity of the required collateral assumed in [A.1] guaran-

tees that short–sales are bounded node by node. The survival assumption [A.2] ensures

that the interior of the budget correspondences are lower semicontinuous. Assumption

[A.3] assures that individuals’ maximization problems have a solution.
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4 Collectivistic Structure.

In the previous section, we proved that an equilibrium exists, in an individualistic set-

ting regardless of agents’ degree of altruism. In fact, when borrowers are required to

constitute collateral in terms of durable goods, the feasibility condition (ii) in Defini-

tion 3.2 guarantees that short-sales are endogenously bounded node by node which is

sufficient to guarantee equilibrium existence when finitely-lived agents act in an indi-

vidualistic way. In this section, we show that a dynasty of finitely–lived agents may

end up doing Ponzi schemes in it acts collectively in order to maximize a total utility

function. However, we show that occasional selfishness rules out Ponzi schemes.

4.1 Equilibrium Definition.

Definition 4.1 Let ı̃ ∈ I. We define N ı̃ as the set of agents who have backward or

forward altruistic motives towards agent ı̃ and agents for whom agent ı̃ has backward

or forward altruistic motives. Formally, for each agent ı̃ ∈ I, we define:

N ı̃ :=
{

k ∈ I : ∃ξ ∈ D such that k ∈ I ı̃
B(ξ) ∪ I ı̃

F (ξ) or ı̃ ∈ Ik
B(ξ) ∪ Ik

F (ξ)
}

.

We define the dynasty d(̃ı) of agent ı̃ as follows:

d(̃ı) :=
⋃

k∈N ı̃

Nk.

The preferences of each dynasty d(̃ı) are represented by the following collectivistic util-

ity function:

V d(̃ı)
((

U i((p, η−i), (xi, θi, ϕi, ∆i,∆i,k

ξ∈Di
B

k∈Ii
B(ξ)

))

i∈d(̃ı)

)
=

∑

i∈d(̃ı)

U i
(
(p, η−i), (xi, θi, ϕi,∆i,∆i,k

ξ∈Di
B

k∈Ii
B(ξ)

)i∈I

)
.

Definition 4.2 [Collectivistic Equilibrium].

A collectivistic equilibrium of E is a vector
(
p, q, K, (si)i∈I ,

(
xi, θ

i
, ϕi,∆

i
, (∆

i, k
(ξ))

ξ∈Di
B

k∈Ii
B(ξ)

)

i∈I

)

such that p(ξ) > 0, for all ξ ∈ D and satisfying items (ii), (iii) and (iv) in Definition

3.2 and the following optimality condition:

(i’) For each dynasty d(̃ı), the allocation
(
xi, θ

i
, ϕi,∆

i
, (∆

i, k
(ξ))

ξ∈Di
B

k∈Ii
B(ξ)

)

i∈d(̃ı)

maxi-

mizes the collectivistic objective function V d(̃ı) over
∏

i∈d(̃ı)

Bi(p, q, K, si).
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Definition 4.3 [Non–trivial collectivistic equilibrium]

A non–trivial collectivistic equilibrium
(
p, q, K, (si)i∈I ,

(
xi, θ

i
, ϕi,∆

i
, (∆

i, k
(ξ))

ξ∈Di
B

k∈Ii
B(ξ)

)

i∈I

)

of E is a collectivistic equilibrium such that for any (ξ, j), we have
(
θj(ξ), ϕj(ξ)

)
6= 0

or K
j
(ξ) > 0.

4.2 Assumptions.

We make the following assumptions on E :

[A.4] For each dynasty d(̃ı), one has:

(i) The collectivistic utility function V d(̃ı) is time–node additively separable, in

the sense that,
∑

i∈d(̃ı)

vi(xi) =
∑

i∈d(̃ı)

∑

ξ∈Di

vi
ξ(x

i(ξ)).

(ii) For each plan xd(̃ı) := (xi)i∈d(̃ı) ∈ ℓ∞+ (IRG×D), the (possibly) infinite sum
∑

i∈d(̃ı)

∑

ξ∈Di

vi
ξ(x

i(ξ)) is finite.10

[A.5] The depreciation structure is given by: [Y (ξ)] = [diag[a(ξ, g)]]g∈G

and there exists ̟ ∈ (0, 1) such that for each node ξ ∈ D, max
g∈G

{a(ξ, g)} ≤ ̟.

[A.6] There exists W ∈ IR
G
++ such that for each node ξ ∈ D,

∑

i∈I(ξ)

W i(ξ) ≤ W.

[A.7] The sequence (n(ξ))ξ∈D belongs to ℓ∞+ (IRD).

4.3 Opportunity of doing Ponzi schemes in a collectivistic environ-

ment.

This section illustrates how Ponzi schemes may reappear in a collectivistic environ-

ment. More precisely, we show that a dynasty can always improve upon any bud-

getary feasible plan by changing the short-sales and the payments of its members.

In such a case, the problem of maximizing the collectivistic utility function of a dy-

nasty has no solution. Formally, let (p, q,K, (sh)h∈I) be a system of prices, expected

deliveries and expected monetary transfers. Let ı̃ ∈ I and consider an allocation((
xh, θh, ϕh,∆h, (∆h, k(ξ))

ξ∈Dh
B

k∈Ih
B(ξ)

)

h∈d(̃ı)

)
in

∏

h∈d(̃ı)

Bh(p, q,K, si). Let ξ ∈ D such that

ξ ∈ Dı̃. Consider the following changes, from node ξ onwards, for each agent k ∈ d(̃ı)

such that D′k ∩ D(ξ) 6= ∅:

10Given a set S, ℓ∞+ (IRS) = {x = (x(s); s ∈ S) ∈ IR
S
+ : max

s∈S
x(s) < +∞}.
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∀σ ∈ D(ξ) ∩ D′k, ϕ̃k
j (σ) = ϕk

j (σ) + ε, ε > 0,

∀σ ∈ D+(ξ) ∩ D′k, ∆̃k
j (σ) = ∆k

j (σ) + p(σ)Aj(σ)ε,

∀σ ∈ D+(ξ)\D′k, ∆̃h,k
j (σ) = ∆h,k

j (σ)+
p(σ)Aj(σ) ε

γk,h
j (σ−)

, for some agent h such that k ∈ Ih
B(σ).

That is, we change the short positions and effective payments of all members of a

dynasty from some ancestor ı̃ onwards. More precisely, from node ξ onwards, the

short-sales of each agent k ∈ d(̃ı) are increased by ε > 0 at each node σ ∈ D(ξ) ∩ D′k.

Moreover, the additional debt induced by these additional sales will be fully paid, at

each node µ ∈ σ+, either by agent k if he is financially active (i.e.: if σ ∈ D′k) or by a

descendant h if k is not financially active (i.e.: if σ /∈ D′k).

It is easy to verify that for each agent h ∈ d(̃ı),
(
xh, θh, ϕ̃h, ∆̃h, (∆h,k)k∈Ih

B

)
satisfies

the budget constraints (4) and (5) at nodes σ ∈ D(ξ) ∩ Dh if the following conditions

are satisfied:

∃jξ ∈ J(ξ) : p(ξ)Cj(ξ) − qj(ξ) < 0. (7)

∀σ ∈ D+(ξ), ∃jσ ∈ J(σ) : p(σ)Cjσ(σ)− qjσ(σ) < p(σ)[Y (σ)Cjσ− (σ−)−Ajσ− (σ)]. (8)

In addition, the plans
(
(ϕ̃k)k∈Ih

B
, ϕ̃h, ∆̃h, (∆̃h,k)k∈Ih

B

)
and

(
(ϕk)k∈Ih

B
, ϕh, ∆h, (∆h,k)k∈Ih

B

)

lead to the same total default level for the dynasty d(̃ı). That is, by choosing this new

plan, agent ı̃ can consume strictly more at node ξ and there will be no change on

the utility of the other members of dynasty d(̃ı). Therefore, this new allocation leads

to a higher total utility for dynasty d(̃ı) and it is budgetary feasible, provided that

conditions (7) and (8) are satisfied. Then, dynasty d(̃ı) can always improve upon any

budgetary feasible allocation in order to increase the utility of ancestor ı̃ and, therefore,

the maximization problem of dynasty d(̃ı) has no solution.

4.4 Occasional selfishness and equilibrium existence.

As illustrated in the previous paragraph, a dynasty may end up doing Ponzi schemes in

a collectivistic setting in the presence of altruistic motives. In this section, we introduce

an assumption on the degree of agents’ selfishness that rules out Ponzi schemes.

[A.8] For each dynasty d(̃ı) ⊂ I, for each node ξ ∈ D, at least one of the following

conditions is satisfied:
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(i) There exists an agent i ∈ d(̃ı) and there exists a date t(i) > t(ξ) such

that at any node σ : t(σ) = t(i) such that σ ∈ (Di
F \ Di), if ϕi

j(σ
−) ≤

1
‖Cj(σ−)‖1

W ·n(σ−)
1−̟

, then:

∑

j∈J(σ−)

λi
j(σ)

p(σ)Aj(σ)ϕi
j(σ

−) − Dj(σ)ϕi
j(σ

−)

p(σ) b(σ)
≤ vi

σ(ωi(σ)), (9)

(ii) There exists an agent i ∈ d(̃ı) and there exists a date t(i) > t(ξ) such that

at any node σ : t(σ) = t(i) such that σ ∈ Di \ (D′i ∪ Di), if ϕi
j(σ

−) ≤
1

‖Cj(σ−)‖1

W ·n(σ−)
1−̟

, then

∑

j∈J(σ−)

p(σ)Aj(σ)ϕi
j(σ

−)

p(σ) b(σ)

( ∑

k∈Γi(σ−)

γi, k
j (σ) − 1

)
≤ vi

σ(ωi(σ)), (10)

(iii) There exists an agent i ∈ d(̃ı) and there exists a date t(i) > t(ξ) such that at

any node σ : t(σ) = t(i) such that σ ∈ Di
B, if ϕk

j (σ
−) ≤ 1

‖Cj(σ−)‖1

W ·n(σ−)
1−̟

,

for each k ∈ Ii
B(σ), then

∑

k∈Ii
B(σ)

∑

j∈J(σ−)

δi,k
j (σ)

p(σ)Aj(σ)ϕk
j (σ

−) − Dj(σ)ϕk
j (σ

−)

p(σ) b(σ)
≤ vi

σ(ωi(σ)), (11)

where Dj(σ) := min{p(σ)Aj(σ)), p(σ)Y (σ)Cj(σ−)}.

Item (i) assumes that there exists, always in the future, an agent whose utility from

consuming his current endowment when he is financially active is higher than the

penalty associated with the maximum default. This assumption is satisfied for instance

if an agent does not care about a bad reputation he may transfer to his descendants.

Item (ii) requires, always in the future, the existence of an agent whose utility from

consuming his initial endowment when he is financially inactive is higher than the

disutility he suffers if his descendants pay his full debt. Such an assumption is satisfied

for instance when an agent is totally selfish towards his descendants. Finally, Item (iii)

assumes that there exists, always in the future, an agent whose utility from consuming

his current endowment when he is financially active is higher than the disutility he

suffers from not paying his ancestors’ debt when the latter is financially inactive. This

assumption is satisfied for instance when an agent is totally selfish towards his ancestors.

Theorem 4.1 Under assumptions [A.1]–[A.8], the economy E has a non-trivial collec-

tivistic equilibrium.

Proof. See Appendix.
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Appendix

Proof of Theorem 3.1.

To prove Theorem 3.1, we first prove that each truncated (finite–horizon) economy has

an equilibrium. Then, we prove that the cluster point of the equilibrium sequence is

an equilibrium of the original (infinite–horizon) economy.

Let ET be the truncated economy associated with the original economy E , which has

the same characteristics as E , but where we suppose that agents cannot access spot

markets after period T and cannot exchange assets after period T − 1. Formally, for

each T > 0, let us define the following sets:

DT = {ξ ∈ D : t(ξ) ≤ T}, IT = {i ∈ I : Di ⊂ DT }, KT := [0, 1]
(

∑

ξ∈DT
ι(ξ))

,

ΠT−1 :=

{
(p, q) ∈ IR

DT×G
+ ×

∏

ξ∈DT

IR
ι(ξ)

∣∣∣∣∣
∀ξ : t(ξ) < T, ‖p(ξ)‖1 + ‖q(ξ)‖1 = 1,

∀ξ : t(ξ) = T, ‖p(ξ)‖1 = 1.

}
,

and for each i ∈ IT ,

DiT = Di ∩ DT ,

XiT = {(xi(ξ), ξ ∈ Di) ∈ Xi | ∀ξ : t(ξ) > T, xi(ξ) = 0},

ZiT =

{(
zi(ξ) := θi(ξ) − ϕi(ξ)

)

ξ∈Di
∈ Zi | ∀ξ : t(ξ) ≥ T, θi(ξ) = ϕi(ξ) = 0

}
.

Moreover, given (p, q,K, (si)i∈IT ), the budget set, BiT (p, q,K, (si)i∈IT ), of an agent

i ∈ IT for the truncated economy is defined as the set of
(
xi, θi, ϕi,∆i, (∆i, k(ξ))

ξ∈Di
B

k∈Ii
B(ξ)

)

satisfying the budget constraints (4), (5) and (6) at nodes ξ ∈ DT . In addition, for each

agent i ∈ IT , the utility function U iT for each truncated economy ET is defined as
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follows:

U iT
(
(p, η−i T ), (xi, θi, ϕi, ∆i,∆i,k)

)

:= vi(xiT ) −
∑

ξ∈(Di
F \Di)∩DT

∑

j∈J(ξ−)

λi
j(ξ)

[
p(ξ)Aj(ξ)ϕ

i
j(ξ

−) − ∆i
j(ξ)

]

p(ξ)b(ξ)

+
∑

{ξ/∈D′i:

ξ−∈Di
F∩DT }

∑

j∈J(ξ−)

p(ξ)Aj(ξ)ϕ
i
j(ξ

−) −
∑

k∈Γi(ξ−)

γi, k
j (ξ)∆k, i

j (ξ)

p(ξ) b(ξ)

−
∑

ξ∈Di
B∩DT

∑

k∈Ii
B(ξ)

∑

j∈J(ξ−)

δi,k
j (ξ)

[
p(ξ)Aj(ξ)ϕ

k
j (ξ

−) −
∑

h: k∈Ih
B(ξ)

∆h,k
j (ξ))

]
− ∆i,k

j (ξ)

p(ξ)b(ξ)
,

Definition 4.4 [Equilibria of the truncated economies]

An individualistic equilibrium of the truncated economy ET is a vector(
pT , qT , K

T
, (siT )i∈IT ,

(
xiT , θ

iT
, ϕiT ,∆

iT
, (∆

iT, k
(ξ))

ξ∈Di
B

k∈Ii
B(ξ)

)

i∈IT

)
satisfying:

(a) For each agent i ∈ IT , (xiT , θ
iT

, ϕiT ,∆
iT

,∆
iT, k

) maximizes U iT over BiT (pT , qT , K
T
, sT ),

where sT := (siT )i∈IT ,

(b) Conditions (ii)–(iv) of Definition 3.2 hold at (xiT , θ
iT

, ϕiT ,∆
iT

,∆
iT, k

)i∈IT for

ξ ∈ DT , with ϕT (ξ) = 0 when t(ξ) = T.

An individualistic equilibrium of ET is said to be non–trivial if it satisfies the following

condition:

(c) For any (ξ, j), either
(
θj(ξ), ϕj(ξ)

)
is different from 0 or K

j
(ξ) > 0.

Lemma 4.1 Under Assumption [A2], for each ξ ∈ DT , there exists MT (ξ) such that

for each allocation
(
xi, θi, ϕi,∆i, (∆i, k(ξ))

ξ∈Di
B

k∈Ii
B(ξ)

)

i∈IT

satisfying the conditions of Def-

inition 4.4, one has: for each agent i ∈ I(ξ),
∥∥∥∥∥∥

(
xi, θi, ϕi,∆i, (∆i, k(ξ))

ξ∈Di
B

k∈Ii
B(ξ)

)

i∈IT

∥∥∥∥∥∥
max

< MT (ξ).

Proof. The upper bound MT (ξ) can be obtained using similar arguments to Páscoa-

Seghir (2009). Indeed, the feasibility conditions guarantee that individual consumption

allocations are bounded, node by node, by the aggregate initial endowments. Assump-

tion [A1] ensures then that short–sales are bounded, node by node. Financial market
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feasibility implies that long-positions are bounded, node by node, as well. Finally, Con-

ditions (1) and (2) guarantee that payments are bounded, node by node

Note that the feasibility conditions (iii) ensure that for each node ξ ∈ DT , for each

agent i ∈ IT , anonymous nominal transfers si(ξ) are also bounded node by node, by

some ζi(ξ). For each ξ ∈ DT , let us define ζ(ξ) = max
i∈IT

ζi(ξ). Finally, let us define

ST (ξ) = {sT (ξ) : sT (ξ) ≤ ζ(ξ)} and ST =
∏

ξ∈DT

ST (ξ).

For each node ξ ∈ DT , let us define MT = max
ξ∈DT

MT (ξ). Now, for each i ∈ I, let us

define:

BiT (p, q,K, s, M) =






(xi, θi, ϕi,∆i,∆i, k) ∈ BiT (p, q,K, s)

∣∣∣∣∣∣∣∣∣∣∣∣∣

xi(ξ, g) ≤ MT

θi
j(ξ) ≤ MT

ϕi
j(ξ) ≤ MT

∆i
j(ξ) ≤ MT

∆i,k
j (ξ) ≤ MT






.

Let ET (M) be the compactified economy which has the same characteristics as ET

except for the budget constraints which are now defined by the sets BiT (p, q,K, s, M).

Definition 4.5 A non–trivial individualistic equilibrium of the compactified economy

ET (M) is a vector
(
pT , qT ,K

T
, (siT )i∈IT ,

(
xiT , θ

iT
, ϕiT , ∆

iT
, (∆

iT, k
(ξ))

ξ∈Di
B

k∈Ii
B(ξ)

)

i∈IT

)

verifying conditions (b) and (c) of Definition 4.4 and such that:

(a’) ∀i ∈ IT , (xiT , θ
iT

, ϕiT ,∆
iT

,∆
iT, k

) maximizes U iT over BiT (pT , qT , K
T
, sT , MT ).

It is easy to show that each compactified economy ET (M) has a non-trivial equilib-

rium.11 Equilibrium existence for each truncated economy can then be guaranteed

11A straightforward adaptation of the arguments in Páscoa and Seghir (2009) can be used to prove

equilibrium existence for each truncated economy. The arguments differs from Páscoa and Seghir (2009)

only by introducing fictitious agents in the generalized game who choose si(ξ) in order to minimize(
si(ξ) −

∑

k∈IT : i∈Ik(ξ)

αk
i ek

ξ

(
p(ξ), (xk, θk, ϕk)

))2

. The arguments in Páscoa and Seghir (2009) can also

be easily adapted to prove the non-triviality of equilibrium. Indeed, one can easily show that the

delivery rates can be set greater or equal to min{p(ξ)Aj(ξ), p(ξ)Y (ξ)Cj(ξ−)}

p(ξ)Aj(ξ)
(where p is different from zero

at equilibrium as preferences are monotone), which is bounded from below by min{1,
y(ξ) cj(ξ−) δj(ξ)

A
j
(ξ)

},

with: y(ξ) = min{a(ξ, g) : a(ξ, g) > 0}, cj(ξ) = min{Cj
g(ξ) : Cj

g(ξ) > 0}, A
j
(ξ) = max{Aj

g(ξ), g ∈ G}

and δj(ξ) =
∑

g∈S(ξ,j)

p(ξ, g) , where S(ξ, j) = {g ∈ G : a(ξ, g) > 0 and Cj
g(ξ) > 0}. We omit the proof

of non–triviality of the equilibrium as the similarities with the proof in Páscoa and Seghir (2006) are

substantial.
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using classical convexity arguments.

Now, let
(
pT , qT ,K

T
, (siT )i∈IT ,

(
xiT , θ

iT
, ϕiT ,∆

iT
, (∆

iT, k
(ξ))

ξ∈Di
B

k∈Ii
B(ξ)

)

i∈IT

)
be a non–

trivial individualistic equilibrium of ET . In view of Lemma 4.1, one can assume, without

loss of generality, that
(
pT , qT ,K

T
, (siT )i∈IT ,

(
xiT , θ

iT
, ϕiT ,∆

iT
, (∆

iT, k
(ξ))

ξ∈Di
B

k∈Ii
B(ξ)

)

i∈IT

)

converges to η :=
(
p, q, K, (si)i∈I ,

(
xi, θ

i
, ϕi,∆

i
, (∆

i, k
(ξ))

ξ∈Di
B

k∈Ii
B(ξ)

)

i∈I

)
. Moreover, η

clearly satisfies conditions (ii)–(iv) of Definition 3.2. Let us show that for each agent

i ∈ I, Σ
i
:=

(
xi, θ

i
, ϕi,∆

i
, (∆

i, k
(ξ))

ξ∈Di
B

k∈Ii
B(ξ)

)
is optimal in Bi

(
p, q, K, (si)i∈IT

)
. Assume

that there exists an agent i ∈ I, there exists Σi :=
(
xi, θi, ϕi,∆i, (∆i, k(ξ))

ξ∈Di
B

k∈Ii
B(ξ)

)

in Bi
(
p, q, K, (si)i∈IT

)
such that U i(Σi) > U i(Σ

i
). Without loss of generality, we can

suppose that, the budget constraints are strictly satisfied. Let us choose T large enough

to have U iT (Σi) > U iT (Σ
iT

) and all the budget constraints are strictly verified with(
pT , qT , K

T
, (siT )i∈IT

)
which contradicts the optimality of Σ

iT
. ✷

Proof of Theorem 4.1. To prove Theorem 4.1, we also prove that each truncated

(finite–horizon) economy has an equilibrium and, then, we prove that the cluster point

of the equilibrium sequence is an equilibrium of the original (infinite–horizon) economy.

However, the techniques are quite different due to the infinite lifetime of the dynasties as

opposed to finitely-lived individuals in Theorem 3.1. We define the truncated economy

ET and the associated sets as in the proof of Theorem 3.1. We define a dynasty dT (̃ı) for

each agent ı̃ ∈ IT as follows: dT (̃ı) = dT (̃ı)∩IT . Moreover, for each dynasty dT (̃ı) ⊂ IT ,

the collectivistic utility function V dT (̃ı) for each truncated economy ET is defined as

V dT (̃ı)
((

U i((p, η−i), (xi, θi, ϕi,∆i, ∆i,k))
)

i∈dT (̃ı)

)
=

∑

i∈dT (̃ı)

U i
(
(p, η−i), (xi, θi, ϕi,∆i,∆i,k)

)
.

Definition 4.6 [Collectivistic equilibria of the truncated economies]

A non–trivial collectivistic equilibrium of the truncated economy ET is a vector(
pT , qT , K

T
, (siT )i∈IT ,

(
xiT , θ

iT
, ϕiT ,∆

iT
, (∆

iT, k
(ξ))

ξ∈Di
B

k∈Ii
B(ξ)

)

i∈IT

)
satisfying conditions

(b) and (c) of Definition 4.4 and such that:

(a”) For each dynasty dT (̃ı), the allocation
(
xiT , θ

iT
, ϕi,∆

iT
, (∆

iT, k
(ξ))

ξ∈Di
B

k∈Ii
B(ξ)

)

i∈dT (̃ı)

maximizes the collectivistic objective function V dT (̃ı) over
∏

i∈dT (̃ı)

Bi(pT , qT ,K
T
, siT ).
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One can easily reconstruct the generalized game in the proof of Theorem 3.1 taking into

account the new objective functions and dynasties’ characteristics to prove that each

truncated economy has a non–trivial collectivistic equilibrium which will be denoted

by
(
pT , qT ,K

T
, (siT )i∈IT ,

(
xiT , θ

iT
, ϕiT , ∆

iT
, (∆

iT, k
(ξ))

ξ∈Di
B

k∈Ii
B(ξ)

)

i∈IT

)
:= ηT .

Lemma 4.2 Under the assumptions of Theorem 4.1, the sequence
(
ηT (ξ)

)

T≥t(ξ)
is

bounded, for each node ξ ∈ D.

Proof. The feasibility conditions together with assumptions [A1] and [A5]-[A7] guar-

antee that each decision variable is uniformly bounded along the event–tree. Since the

bounds depend on the node but not on the horizon of the truncation, one gets that the

sequence of truncated equilibrium variables at each node is bounded.

Given that the event-tree D is a countable set, it follows from Tychonov’s theorem

that the equilibrium variables, passing to a subsequence if necessary, converge node by

node. That is,
(
pT , qT ,K

T
, (siT )i∈IT ,

(
xiT , θ

iT
, ϕiT ,∆

iT
, (∆

iT, k
B )

)

i∈IT

)
converges to

(
p, q, K, (si)i∈I ,

(
xi, θ

i
, ϕi,∆

i
, (∆

i, k
B )

)

i∈I

)
.

Let us introduce the following notations:

Σ
iT

:=
(
xiT , θ

iT
, ϕiT ,∆

iT
, (∆

iT, k
B )

)
, Ω

T
:=

(
pT , qT ,K

T
, (siT )i∈IT

)
,

Σ
i
:=

(
xi, θ

i
, ϕi,∆

i
, (∆

i, k
B )

)
and Ω :=

(
p, q, K, (si)i∈I

)
.

The cluster point
(
Ω, (Σ

i
)i∈I

)
clearly satisfies conditions (ii), (iii), (iv) of Definition

3.2 . It remains to show that (Σ
i
)i∈d(̃ı) is optimal for each dynasty d(̃ı), if condition (i),

(ii) or (iii) of Assumption [A.8] is satisfied.

Let us fix a dynasty d(̃ı) and assume, by contradiction, that there exists ε > 0 and

Σ̂d(̃ı) := (Σ̂i)i∈d(̃ı) := (x̂i, θ̂i, ϕ̂i, ∆̂i, (∆̂i,k)k∈Ii
B
)
i∈d(̃ı)

in
∏

i∈d(̃ı)

Bi(p, q, K, s) such that:

V d(̃ı)
(
(U i((p, η̂−i), Σ̂i)))i∈d(̃ı)

)
− V d(̃ı)

(
(U i((p, η−i),Σ

i
)))i∈d(̃ı)

)
> ǫ.

Then, there exists T1 ∈ IN such that for each T > T1, one has:

V dT (̃ı)
(
(U i((p, η̂−i), Σ̂i)))i∈dT (̃ı)

)
− V d(̃ı)

(
(U i((p, η−i),Σ

i
)))i∈d(̃ı)

)
> ǫ.

(a) Let us show that Item (i) of Assumption [A.8] guarantees the optimality of the clus-

ter point. Fix T2 > T1 such that for each node σ : t(σ) = T2+1, item (i) of Assumption
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[A.8] is satisfied for some agent i ∈ d(̃ı). Note that σ ∈ D′i, for all σ : t(σ) = T2+1. For

each plan a := (a(ξ), ξ ∈ D) and for each (p, q,K, s), let us define the correspondence:

Rd(̃ı)(a) := ΨT2(a) ∩
∏

i∈d(̃ı)

Bi T2(p, q,K, s), where

ΨT2(a) :=
{

(bi)i∈dT2 (̃ı) : V dT2 (̃ı)((U i((p, b−i), (bi)))i∈dT2 (̃ı)) > V d(̃ı)((U i((p, a−i), (ai)))i∈d(̃ı))
}

.

Using the same arguments in Páscoa and Seghir (2009), one can easily prove that the

correspondence Rd(̃ı) is lower semicontinuous with respect to product topologies on

L∞(D). It follows that there exists T3 large enough and a sequence (Σ̂iT )i∈dT (̃ı) that

converges, node by node, to Σ̂d(̃ı) such that (Σ̂iT )i∈dT (̃ı) in Rd(̃ı)(Σ
iT

) for all T ≥ T3.

Without loss of generality, one can assume that T3 > T2. Take T = T3 to get that

V dT2 (̃ı)
(
(U i((pT3 , η̂−i T3), Σ̂i T3))i∈dT2 (̃ı)

)
> V dT3 (̃ı)

(
(U i((pT3 , η−i T3),Σ

i T3))i∈dT3 (̃ı)

)
and

Σ̂dT3 (̃ı) satisfies the budget constraints till T2 at (pT3 , qT3 ,K
T3 , sT3). Let us consider the

following changes on agent i’s plans:

xiT (ξ) =






x̂iT (ξ) if ξ ∈ DT2 ∩ Di

ωi(ξ) if t(ξ) = T2 + 1

0 if t(ξ) > T2 + 1

, θiT (ξ) =

{
θ̂iT (ξ) if ξ ∈ DT2 ∩ D′i

0 if t(ξ) ≥ T2 + 1

ϕiT (ξ) =

{
ϕ̂iT (ξ) if ξ ∈ DT2 ∩ D′i

0 if t(ξ) ≥ T2 + 1
, ∆iT

j (ξ) =






∆̂iT
j (ξ) if ∈ DT2 ∩ D′i,

Dj(ξ) ϕ̂iT
j (ξ−), if t(ξ) = T2 + 1,

0 if t(ξ) > T2 + 1.

∆iT,k
j (ξ) =

{
∆̂iT,k

j (ξ) if ∈ DT2 ∩ D′i,

0 if t(ξ) ≥ T2 + 1.

where Dj(ξ) := min{pT (ξ) Aj(ξ) , pT (ξ) Y (ξ) Cj(ξ−))}.

The new plan (xiT , θiT , ϕiT , ∆iT , ∆iT,k) satisfies the budget constraints till period T3.

Moreover, item (i) of Assumption [A.8] guarantees that dynasty d(̃ı) still prefers this

new allocation to (xiT , θ
iT

, ϕiT ,∆
iT

,∆
iT,k

)i∈d(̃ı), contradicting the optimality of the

latter.

(b) Let us show that Item (ii) of Assumption [A.8] also ensures the optimality of the

cluster point. Fix T2 > T1 such that for each node σ : t(σ) = T2 + 1, item (ii)

of Assumption [A.8] is satisfied for some agent i ∈ d(̃ı). Note that σ /∈ D′i, for all

σ : t(σ) = T2 + 1. One can use the same techniques above and consider the following

changes on agent i’s plans:
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xiT (ξ) =






x̂iT (ξ) if ξ ∈ DT2 ∩ Di

ωi(ξ) if t(ξ) = T2 + 1

0 if t(ξ) > T2 + 1

, θiT (ξ) =

{
θ̂iT (ξ) if ξ ∈ DT2 ∩ D′i

0 if t(ξ) ≥ T2 + 1

ϕiT (ξ) =

{
ϕ̂iT (ξ) if ξ ∈ DT2 ∩ D′i

0 if t(ξ) ≥ T2 + 1
, ∆iT

j (ξ) =






∆̂iT
j (ξ) if ∈ DT2 ∩ D′i,

Dj(ξ) ϕ̂iT
j (ξ−), if t(ξ) = T2 + 1,

0 if t(ξ) > T2 + 1.

∆iT,k
j (ξ) =

{
∆̂iT,k

j (ξ) if ∈ DT2 ∩ D′i,

0 if t(ξ) ≥ T2 + 1.

where Dj(ξ) := min{pT (ξ) Aj(ξ) , pT (ξ) Y (ξ) Cj(ξ−))}.

The modified plan (xiT , θiT , ϕiT ,∆iT ,∆iT,k) satisfies the budget constraints of agent i

till period T3. Moreover, item (ii) of Assumption [A.8] guarantees that agent i prefers

this new plan regardless of the payments of his descendants on his own debt . Keeping

the plans of all other members of the dynasty unchanged, the total utility of dynasty

d(̃ı) will increase, a contradiction.

(c) Let us show that the cluster point is optimal if Item (iii) of Assumption [A.8] is sat-

isfied. Fix T2 > T1 such that for each node σ : t(σ) = T2 + 1, item (iii) of Assumption

[A.8] is satisfied for some agent i ∈ d(̃ı). Note that σ ∈ D′i, for all σ : t(σ) = T2 + 1.

Let k ∈ Ii
B(σ) and consider the following changes on agent i’s plans:

xiT (ξ) =






x̂iT (ξ) if ξ ∈ DT2 ∩ Di

ωi(ξ) if t(ξ) = T2 + 1

0 if t(ξ) > T2 + 1

, θiT (ξ) =

{
θ̂iT (ξ) if ξ ∈ DT2 ∩ D′i

0 if t(ξ) ≥ T2 + 1

ϕiT (ξ) =

{
ϕ̂iT (ξ) if ξ ∈ DT2 ∩ D′i

0 if t(ξ) ≥ T2 + 1
, ∆iT

j (ξ) =

{
∆̂iT

j (ξ) if ∈ DT2+1 ∩ D′i,

0 if t(ξ) > T2 + 1.

∆iT,k
j (ξ) =

{
∆̂iT,k

j (ξ) if ∈ DT2 ∩ D′i,

0 if t(ξ) ≥ T2 + 1.

The modified plan (xiT , θiT , ϕiT ,∆iT ,∆iT,k) satisfies the budget constraints of agent i

till period T3. Moreover, item (iii) of Assumption [A.8] guarantees that agent i prefers

this new plan, although his payments on his ancestor k’s debt has decreased at period

T2 + 1. Therefore, this modified plan together with the original plans for the other

members of the dynasty leads to a higher total utility, a contradiction.
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