
Munich Personal RePEc Archive

Confidence intervals in stationary

autocorrelated time series

Halkos, George and Kevork, Ilias

University of Thessaly, Department of Economics

2002

Online at https://mpra.ub.uni-muenchen.de/31840/

MPRA Paper No. 31840, posted 26 Jun 2011 10:23 UTC



 
 
Confidence intervals in stationary   
         autocorrelated time series 

 
   
 
                
   George E. Halkos   and    Ilias S. Kevork 

  Department of Economics, University of Thessaly 
 
 
 
 
ABSTRACT 
 
In this study we examine in covariance stationary time series the consequences of constructing 
confidence intervals for the population mean using the classical methodology based on the 
hypothesis of independence. As criteria we use the actual probability the confidence interval of 
the classical methodology to include the population mean (actual confidence level), and the ratio 
of the sampling error of the classical methodology over the corresponding actual one leading to 
equality between actual and nominal confidence levels. These criteria are computed analytically 
under different sample sizes, and for different autocorrelation structures. For the AR(1) case, we 
find significant differentiation in the values taken by the two criteria depending upon the 
structure and the degree of autocorrelation. In the case of MA(1), and especially for positive 
autocorrelation, we always find actual confidence levels lower than the corresponding nominal 
ones, while this differentiation between these two levels is much lower compared to the case of 
AR(1).  
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1. INTRODUCTION 
The basic assumption required at the stage of constructing confidence intervals for the 

mean, μ, of normally distributed populations is the observations in the sample to be independent. 

In a number of cases, however, the validity of this assumption should be seriously taken under 

consideration, and as a representative example we mention the problem of constructing 

confidence intervals for the average delay of customers in queuing systems. In such a case, it is 

very common the delays in a sample of n successive customers to display a certain degree of 

dependency at different lags, and therefore the application of the classical confidence interval 

estimator for the steady-state mean, μ, 
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based on independent, identical, and normal random variables not to be recommended. 

Fishman (1978) shows that the variance of the mean of a sample X1, X2, …, Xn from a 

covariance stationary process is  
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and ρs to be the sth lag theoretical autocorrelation coefficient between any two variables whose 

time distance is s. Covariance stationary means that the mean and variance of {Xt, t = 1, 2, …} 

are stationary over time with common finite mean μ and common finite variance 2
 . Moreover 

for a covariance stationary process, the covariance between Xt and Xt+s depends only on the lag s 

and not on their actual values at times t and t+s. 

 For the last two decades, alternative estimators for (2) have been proposed in the literature 

in the context of estimating steady-state means in stationary simulation outputs. The reason for 

developing such variance estimators and not using directly the estimated values of the 
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autocorrelation coefficients in (2) is that, for s close to n, the estimation of ρs (s=1,2,…,n-1) will 

be not accurate as it will be based on few observations. On the other hand, Kevork (1990) showed 

that fixed sample size variance estimators, based on a single long replication, have two serious 

disadvantages. First, in finite samples they are biased. Second, the recommended values for their 

parameters at the estimation stage differ significantly according to the structure and the degree of 

the autocorrelation, which characterizes the process under consideration. Taking these two 

disadvantages into consideration at this stage, we are asked ourselves in what extent the 

application of these complicated variance estimators of (2) is necessary for covariance stationary 

processes. In other words can we avoid their use by investigating the consequences of applying 

the simple confidence interval estimator (1) to covariance stationary processes so that after 

making appropriate modifications to improve its performance? 

 Answers to the above questions are given in the current study. More specifically, 

assuming that the process under consideration follows either the first order autoregressive model, 

AR(1), or the first order moving average model, MA(1), we investigate the consequences of 

using (1) for estimating the steady-state mean in the light of the following two criteria: a) the 

difference between the nominal confidence level and the corresponding actual confidence level 

which is attained by (1); and b) the ratio of the sampling error of (1) over the corresponding real 

sampling error which ensures equality among nominal and actual confidence levels. These two 

criteria are computed analytically for the AR(1) and MA(1) under different values of the 

parameters φ and θ respectively, and for different sample sizes. The results for the AR(1) verify 

that the use of the complicated variance estimators for (2) is inevitable, especially when φ is 

positive and less than one. On the other hand, for the MA(1) the difference between a nominal 

confidence level of 95% and the achieved actual one is predictable as in low positive 

autocorrelations it ranges at 5%, while for moderate and high autocorrelations the difference 

remains almost constant with an average of 10%.  

 Under the above considerations, the structure of the paper is as follows: In section 2 we 

review the existing literature concerning the available variance estimators for (2). In section 3, we 

derive analytic forms for the special function of autocorrelation coefficients, h(ρs), for AR(1) and 

MA(1). In the same section we specify the conditions when this function takes positive values 

less or greater than one. In section 4, we establish the methodology for computing analytically 

the actual confidence levels attained by using (1), that is, the actual probability this interval to 
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include the real steady-state mean of the covariance stationary process. Additionally, we present 

the actual confidence levels that (1) achieves in AR(1) and MA(1), for different degrees of 

autocorrelation under different sample sizes. Finally, the last section presents the main findings 

and conclusions of this research.   

 

2. LITERATURE REVIEW 
The presence of autocorrelation in simulation output may be a challenge for Inferential 

Statistics. This is because the lack of independence in the data becomes a serious problem and the 

calculation of elementary statistical measures like the standard error of the sample mean is 

incorrect. In particular, when time series data are positively autocorrelated the use of the classical 

standard error of the sample mean creates biases, which as a consequence reduces the coverage 

probabilities of confidence intervals.  

Looking at the existing literature we may find different methods to overcome the 

problems of autocorrelation in the construction of confidence intervals for steady-state means. 

These methods are classified as, sequential, truncation and fixed sample size. Sequential 

confidence interval methods have as objective to determine the run length (sample size) of 

realizations of stationary simulation output processes which guarantees both an adequate 

correspondence between actual and nominal confidence levels and a pre-specified absolute or 

relative precision, as these terms are defined by Law (1983). Law and Kelton (1982a) distinguish 

these methods as regenerative and non-regenerative. Fishman’s (1977) and Lavenberg and 

Sauer’s (1977) methods belong to regenerative category while the methods developed by 

Mechanic and McKay (1966), Law and Carson (1978), Adam (1983) and Heidelberger and 

Welch (1981a) have been characterized as non-regenerative.  

For the truncation methods the objective is the elimination of initialization bias effects on 

the estimation of the steady-state mean. These methods provide estimators for the time point t* 

(1 t* n) for which the absolute value of the difference between the expected value of the 

sample mean from the steady-state mean is greater than a pre-specified very small positive 

number e for any t<t*. Generating r replications of a simulation output process {Xt} under the 

same initial conditions, some of the truncation methods estimate t* by applying the truncation 

rule to each replication (Fishman 1971, 1973b; Schriber, 1974; Heidelberger and Welch, 1983). 

Some others, however, estimate t* from a pilot study, which is carried out on a number of 
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exploratory replications. Then the estimated value of t* is used as the global truncation point in 

any other replication for which we use the same initial conditions (Conway, 1963; Gordon, 1969; 

Gafarian et al. 1978; Kelton and Law, 1983). 

Fixed sample size confidence intervals methods propose different, asymptotically 

unbiased, estimators for the variance of the sample mean and these estimators may be used in the 

construction of confidence intervals. A number of confidence interval methods have been 

developed in the last decades in order to handle the problem.  

The simplest fixed sample size confidence interval method is based on generating, for the 

process under consideration, k>1 independent replications of size m using independent steams of 

random numbers. When k is large enough, the variance of the k sample means is defined and 

used in the construction of confidence intervals, as these means are considered as independent, 

identical and normal random variables. But this method has practical difficulties, as it requires 

enormous systems and many hours of working time for the generation of just a single estimate.  

Alternatively we may use single replication methods like the non-overlapping batch 

means (NOBM). This method (Law and Kelton, 1991; Fishman, 1999) divides a single long run 

into consecutive non-overlapping batches of size m, and from each batch an estimate of the 

performance measure is obtained. As it becomes obvious, these estimates are considered as 

equivalent to the corresponding ones, which are taken using independent replications. 

Specifically, if {Xt} is a covariance stationary output process, the non-overlapping batch means 

method is based on generating a single long replication of {Xt}. Then, this replication is 

partitioned into k>1 contiguous and non-overlapping batches of size m. Provided that m is large 

enough and 





s

s , Law and Garson (1978) showed that the non-overlapping batch means 

can be considered approximately uncorrelated and normal random variables. But as Song (1996) 

claims, the approximation of the correct batch size is possible but not trivial. At the same time, 

the construction of a confidence interval for a steady-state mean requires the satisfaction of 

normality and independency of the batch means. 

Song and Schmeiser (1995) established the overlapping batch means method (OBM), 

which has smaller mean squared error in the estimation of the sample mean variance. 

Specifically, if n is the run length (sample size) of a single long replication of a covariance 

stationary output process {Xt}, the jth overlapping batch mean of size m [Xj(m)] may be defined 
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and in this context Welsh (1987) proposed for large m and n/m the following sample mean 

variance estimator 






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1mn

1j

2
nj

2
OBM ]X)m(X[

)1mn(n
mˆ . But Sargent et al. (1992) claim that 

NOBM is preferable to OBM when we construct confidence intervals relying on small samples 

and probably equivalent in the case of using large samples. 

Next, let us consider the standardized time series methods. If {Xt} is strictly stationary 

(the joint distribution of 
n21 ttt X ..., ,X  ,X  is the same as the joint distribution of 

ststst n21
X ..., ,X  ,X   for every t1, t2,…, tn and s) and assuming also that this process is phi-

mixing (for large s the correlation of Xt and Xt+s becomes negligible; see Law, 1983), the 

standardized time series methods use a functional central limit theorem to transform the sample 

X1, X2,…, Xn into a process which is asymptotically distributed as a Brownian Bridge process. 

Dividing a single long replication into k>1 contiguous and non-overlapping batches of size m, for 

m large and by using Brownian Bridge properties, Schruben (1983) derived four methods for 

estimating the variance of the sample mean. The area method, the maximum method, the 

combined area non-overlapping batch means method and the combined maximum non-

overlapping batch means method. The standardized time series methods are easy to use and 

asymptotically have advantages over NOBM, but require long runs.  

In these lines and as a parametric time series modeling of simulation output data, we 

consider the autoregressive method of Fishman (1978). This method assumes that {Xt} is 

covariance stationary and can be represented by a pth order autoregressive process, AR(p). Voss 

et al. (1996) derived good estimates of the steady state average queue delay using data from the 

transient phase of the simulation using a high-order AR(p) model. But such an autoregressive 

method is improper for widespread use as general ARIMA models are complex and assumptions 

for ARIMA modeling may be invalid for some particular simulation models.  

The regenerative method was developed for the case in which the simulated process is 

characterized by the regenerative property and by enough regeneration cycles. This method was 

developed by Crane and Iglehart (1974a,b,c; 1975). Its principle is based on the identification of 

random points, where the process probabilistically starts over again. These points are called 

regeneration points. For instance, studying the delay in queue in the M/M/1 model, the indices of 

customers who find the system empty can be considered as regeneration points. The amount of 

data between two regeneration points is called the regeneration cycle. Then, the regeneration 
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points are used to obtain independent random variables to which inferential methods can be 

applied. In this context, two methods have been developed for estimating the steady state mean 

and producing confidence intervals, the classical and the Jacknife. A very good description of 

these methods is provided in Law and Kelton (1982b). It is worth mentioning here that the main 

disadvantage of these methods is the identification of regeneration points, especially for 

complicated simulation models. Specifically, the problem with this method exists when either 

there are no regeneration points for the output process or when the simulation cannot produce 

enough cycles.  

A new and more recent approach to simulation output analysis relies on resampling 

methods, such as the Jackknife and the Bootstrap (Quenouille, 1949; Tuckey, 1958; Efron, 1979; 

Efron and Tibshirani, 1993), which provide non-parametric estimates of bias and standard error. 

The Bootstrap method relies on pseudo-data created by re-sampling the actual data, but it requires 

independency, which is not always the case in simulation outputs. The application of this method 

to time series data may work by re-sampling sets of consecutive observations in order to capture 

the autocorrelation structure. Various forms of the Bootstrap method appear in the literature. 

First, the Moving Blocks Bootstrap (MBB), which relies on random re-sampling of fixed size 

overlapping blocks with replacement (Künsch, 1989; Liu and Singh, 1992; Hall et al., 1995). 

However, this method requires subjective inputs from the researcher and its estimates vary 

considerably.  

Second, for stationary time series the Stationary Bootstrap (SB) was developed, where the 

data are re-sampled by contaminated blocks, which have a randomly chosen starting point and 

with their length geometrically distributed according to some chosen mean (Politis and 

Romano,1994). Under the same principle, Kim et al. (1993a) developed the Binary Bootstrap 

(BB) to analyze autocorrelated binary data.  Kim et al. (1993b) introduced the Threshold 

Bootstrap (TB) extending the BB, and Park and Willemain (1999) modified the TB introducing 

the Threshold Jackknife (TJ). They claim that for various ARMA models, the TB has a better 

performance compared to MBB and SB in terms of estimating the standard error of the sample 

mean, if we optimize each re-sampling scheme with respect to the size of the re-sampling unit. 

They also show that the MBB has generally a poor performance.  

Park et al. (2001) test the TB as a non-parametric method of output analysis and show 

that the TB is an effective alternative to the batch means and relatively easy. They also show that 
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the TB is more effective in the construction of confidence intervals for the steady state mean and 

median delay in the M/M/1 model, and establish the asymptotic unbiasedness and consistency of 

the TB estimators when we refer to the sample mean.  

Finally, we have the spectral method where the process {Xt} is assumed to be covariance 

stationary. At zero frequency, the power spectrum f(0) is estimated either by using the Tukey 

spectral window (Fishman (1973 a,b; Duket and Pritsker, 1978; Law and Kelton, 1984) or by 

using the periodogram coordinates as presented in Heidelberger and Welch (1981a,b).  

 

3. THE FUNCTION h(ρs) IN AR(1) AND MA(1) 
 

3.1 AR(1) 
 
This model is defined by t1tt XX   , and is stationary when 1 . The εt’s are 

uncorrelated and normal random variables with mean zero and common variance 2
 . 

Substituting the sth theoretical autocorrelation coefficient of this model, s
s  , to (3) we take 
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the function  sh   takes for the AR(1) the form 
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 Subtracting –1 from both sides of (5) 
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 Given 1 , for any n2,   ,n  takes always values in the interval (0,1), and this is 

illustrated in figures 1a, 1b, and 1c. Especially, when –0.50<<1,   ,n  converges 

exponentially to zero. On the contrary, for –1<<-0.50, when n is small   ,n  displays some 

oscillation which is getting larger and larger as  approaches –1, while for n large this oscillation 

vanishes and the function converges again exponentially to zero. 

 The behaviour of   ,n  leads us to the conclusion that when  is positive, namely, the 

autocorrelation function converges exponentially to zero taking only positive values (positive 

autocorrelation), for any n, the function  sh   takes values always greater than 1. This means that 

using the classical confidence interval estimator (1) we underestimate the real sampling error that 

the interval should have, and as a result we attain actual confidence levels lower that the 

corresponding nominal ones. On the other hand for –1<<0, that is, the autocorrelation function 

converges to zero oscillating between negative and positive values (negative autocorrelation), for  

n2 the half width of the classical estimator (1) overestimates the real sampling error, and this 

results in actual confidence levels greater than the corresponding nominal ones. The size of 

overestimating (or underestimating) the real sampling error by using (1), which is equal to 

  5.0
s(h  , is displayed for different n and φ in table 1. When n is large (e.g. n>50), for the case of 

positive autocorrelation, the half width of the classical estimator (1) is at least 4 times narrower 

than the real sampling error, whereas for negative autocorrelation the real sampling error is 

overestimated approximately 3 times. 
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Figure 1α:   ,n  for 10   

 

Figure 1b:   ,n  for 050.0   

 

 

Figure 1c:   ,n  for 50.01   
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Table 1: Overestimating or underestimating the real sampling error in AR(1) 
 

N  = -0.80  = -0.50  = -0.20  = 0.20  = 0.50  = 0.80  = 0.90 
2 2.24 1.41 1.12 0.91 0.82 0.75 0.73 
3 1.67 1.41 1.15 0.88 0.74 0.63 0.60 
4 2.33 1.51 1.17 0.86 0.70 0.57 0.53 
5 2.03 1.53 1.18 0.85 0.67 0.53 0.48 
6 2.41 1.57 1.18 0.85 0.65 0.50 0.45 
7 2.26 1.59 1.19 0.84 0.64 0.47 0.42 
8 2.48 1.60 1.19 0.84 0.63 0.45 0.40 
9 2.40 1.62 1.20 0.84 0.63 0.44 0.38 

10 2.54 1.63 1.20 0.83 0.62 0.43 0.37 
11 2.50 1.64 1.20 0.83 0.62 0.42 0.36 
12 2.59 1.64 1.20 0.83 0.61 0.41 0.35 
13 2.57 1.65 1.21 0.83 0.61 0.41 0.34 
14 2.63 1.66 1.21 0.83 0.61 0.40 0.33 
15 2.62 1.66 1.21 0.83 0.60 0.39 0.32 
16 2.66 1.66 1.21 0.83 0.60 0.39 0.32 
17 2.66 1.67 1.21 0.83 0.60 0.39 0.31 
18 2.69 1.67 1.21 0.83 0.60 0.38 0.31 
19 2.70 1.67 1.21 0.83 0.60 0.38 0.30 
20 2.72 1.68 1.21 0.83 0.60 0.38 0.30 
50 2.87 1.71 1.22 0.82 0.59 0.35 0.25 
100 2.94 1.72 1.22 0.82 0.58 0.34 0.24 
200 2.97 1.73 1.22 0.82 0.58 0.34 0.24 
500 2.99 1.73 1.22 0.82 0.58 0.33 0.23 

 

3.2 ΜΑ(1) 
 
 It is given by 1tttX  , and although the model is stationary for any θ, the 

invertibility condition restricts θ in the interval (-1,1). Substituting the autocorrelation function 
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into (2) we take    
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It is obvious that when θ is positive (negative), the function  sh   takes values greater (positive 

and smaller) than one. So, as in the case of AR(1), under a positive (negative) autocorrelation the 

real sampling error is underestimated (overestimated) by using (3), attaining actual confidence 

levels lower (greater) than the nominal ones.  Table 2, similar to table 1, illustrates for positive 

and negative autocorrelations the size of underestimating and overestimating respectively the real 

sampling error when we use the classical confidence interval estimator. Comparing the two tables 

we observe that the size of underestimation is smaller in MA(1) under positive autocorrelation 

especially in large samples, but for negative autocorrelation, the real sampling error is much more 

overestimated in MA(1) compared with the AR(1).  

 

Table 2: Overestimating or underestimating the real sampling error in MA(1) 
 

n  = -0.80  = -0.50  = -0.20  = 0.20  = 0.50  = 0.80  = 0.90 
2 1.40 1.29 1.11 0.92 0.85 0.82 0.82 
3 1.69 1.46 1.16 0.89 0.81 0.78 0.78 
4 1.93 1.58 1.19 0.88 0.79 0.76 0.76 
5 2.13 1.67 1.20 0.87 0.78 0.75 0.75 
6 2.31 1.73 1.21 0.87 0.77 0.74 0.74 
7 2.47 1.78 1.22 0.87 0.77 0.74 0.73 
8 2.61 1.83 1.23 0.86 0.77 0.73 0.73 
9 2.74 1.86 1.23 0.86 0.76 0.73 0.73 

10 2.86 1.89 1.24 0.86 0.76 0.73 0.73 
11 2.97 1.91 1.24 0.86 0.76 0.73 0.72 
12 3.08 1.94 1.24 0.86 0.76 0.73 0.72 
13 3.17 1.96 1.25 0.86 0.76 0.73 0.72 
14 3.26 1.97 1.25 0.86 0.76 0.72 0.72 
15 3.34 1.99 1.25 0.86 0.76 0.72 0.72 
16 3.42 2.00 1.25 0.86 0.76 0.72 0.72 
17 3.50 2.01 1.25 0.86 0.76 0.72 0.72 
18 3.57 2.02 1.25 0.86 0.75 0.72 0.72 
19 3.63 2.03 1.25 0.86 0.75 0.72 0.72 
20 3.70 2.04 1.26 0.86 0.75 0.72 0.72 
50 4.77 2.15 1.27 0.85 0.75 0.71 0.71 
100 5.41 2.19 1.27 0.85 0.75 0.71 0.71 
200 5.85 2.21 1.27 0.85 0.75 0.71 0.71 
500 6.16 2.23 1.27 0.85 0.75 0.71 0.71 
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4. ACTUAL CONFIDENCE LEVELS ATTAINED BY THE CLASSICAL 
INTERVAL ESTIMATOR IN AR(1) AND MA(1) 
 

Given that the random variables X1, X2, …, Xn from a covariance stationary process are normally 

distributed with steady-state mean μ and common standard deviation σΧ, the actual confidence 

interval for μ is derived from  
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where N1   is the nominal confidence level. Assuming, therefore, that Xt’s are independent, 

and using the classical interval estimator (1), we ignore the function h(ρs) of the theoretical 

autocorrelation coefficients. The omittion of h(ρs) from (1) has as a result that although (1) is 

aimed at a nominal confidence level of N1  , the attained actual probability to include μ is 

different from N1  . We shall call this probability actual confidence level of the interval. This 

probability is analytically computed by  
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where  *
2N

z  is the cumulative distribution function of the standard normal evaluated at 
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s

2*
2 h

z
z N

N 
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for a nominal confidence level N1  . 

With reference to AR(1) and MA(1), at nominal confidence level 0.95, tables 3 and 4  

present the actual confidence levels attained by the classical interval estimator (1) under different 

values of φ and θ respectively. These actual confidence levels have been computed analytically 

after substituting the exact values of  s(h  , obtained by using the values of φ and θ in (5) and (6) 

respectively, into (7).  Regarding AR(1), for 0<φ<1, the actual confidence levels not only are 

lower than 0.95, but also are declining as the sample size increases. The same holds for a given n 

where, as φ approaches one, the actual confidence levels are decreasing again. The last two 

remarks make obvious that for large n and heavy autocorrelations, using (1) we attain actual 

confidence levels which are far away from the corresponding nominals. On the other hand, with 

φ taking values on the interval  (-1,0), the actual confidence levels, being always greater than the 

nominal one, are increasing by drawing larger and larger samples. 

 Similar pattern of changes for the actual confidence levels are observed in the MA(1). 

However, for θ close to one, the differences between the actual and nominal levels are not so 

great as these differences were in the case of AR(1). Additionally, given n, the attained 

confidence levels for the MA(1) display some stability at certain intervals of θ. So, for low values 

of θ and large samples (n50) the difference between the nominal and the actual confidence level 

is approximately at 5%, while for moderate and large values of θ (θ>0.50) this difference ranges 

on average at 10%. On the contrary, for θ negative, in large sample the actual confidence level is 

very close to 100%.  
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Table 3: AR(1): Actual confidence levels of the classical confidence interval estimator 
for the stationary mean at nominal confidence level 95% 
  

n  = -0.80  = -0.50  = -0.20  = 0.20  = 0.50  = 0.80  = 0.90 
2 1.00 0.99 0.97 0.93 0.89 0.86 0.84 
3 1.00 0.99 0.98 0.92 0.85 0.79 0.76 
4 1.00 1.00 0.98 0.91 0.83 0.73 0.70 
5 1.00 1.00 0.98 0.91 0.81 0.70 0.66 
6 1.00 1.00 0.98 0.90 0.80 0.67 0.62 
7 1.00 1.00 0.98 0.90 0.79 0.65 0.59 
8 1.00 1.00 0.98 0.90 0.78 0.63 0.57 
9 1.00 1.00 0.98 0.90 0.78 0.61 0.55 

10 1.00 1.00 0.98 0.90 0.78 0.60 0.53 
11 1.00 1.00 0.98 0.90 0.77 0.59 0.52 
12 1.00 1.00 0.98 0.90 0.77 0.58 0.51 
13 1.00 1.00 0.98 0.90 0.77 0.57 0.49 
14 1.00 1.00 0.98 0.90 0.77 0.57 0.48 
15 1.00 1.00 0.98 0.90 0.76 0.56 0.48 
16 1.00 1.00 0.98 0.90 0.76 0.56 0.47 
17 1.00 1.00 0.98 0.89 0.76 0.55 0.46 
18 1.00 1.00 0.98 0.89 0.76 0.55 0.45 
19 1.00 1.00 0.98 0.89 0.76 0.54 0.45 
20 1.00 1.00 0.98 0.89 0.76 0.54 0.44 
50 1.00 1.00 0.98 0.89 0.75 0.51 0.38 
100 1.00 1.00 0.98 0.89 0.75 0.50 0.36 
200 1.00 1.00 0.98 0.89 0.74 0.49 0.35 
500 1.00 1.00 0.98 0.89 0.74 0.49 0.35 
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Table 4: MA(1): Actual confidence levels of the classical confidence interval estimator 
for the stationary mean at nominal confidence level 95% 
 

n  = -0.80  = -0.50  = -0.20  = 0.20  = 0.50  = 0.80  = 0.90 
2 0.99 0.99 0.97 0.93 0.90 0.89 0.89 
3 1.00 1.00 0.98 0.92 0.89 0.87 0.87 
4 1.00 1.00 0.98 0.92 0.88 0.86 0.86 
5 1.00 1.00 0.98 0.91 0.87 0.86 0.86 
6 1.00 1.00 0.98 0.91 0.87 0.85 0.85 
7 1.00 1.00 0.98 0.91 0.87 0.85 0.85 
8 1.00 1.00 0.98 0.91 0.87 0.85 0.85 
9 1.00 1.00 0.98 0.91 0.87 0.85 0.85 

10 1.00 1.00 0.98 0.91 0.86 0.85 0.85 
11 1.00 1.00 0.98 0.91 0.86 0.85 0.84 
12 1.00 1.00 0.99 0.91 0.86 0.85 0.84 
13 1.00 1.00 0.99 0.91 0.86 0.84 0.84 
14 1.00 1.00 0.99 0.91 0.86 0.84 0.84 
15 1.00 1.00 0.99 0.91 0.86 0.84 0.84 
16 1.00 1.00 0.99 0.91 0.86 0.84 0.84 
17 1.00 1.00 0.99 0.91 0.86 0.84 0.84 
18 1.00 1.00 0.99 0.91 0.86 0.84 0.84 
19 1.00 1.00 0.99 0.91 0.86 0.84 0.84 
20 1.00 1.00 0.99 0.91 0.86 0.84 0.84 
50 1.00 1.00 0.99 0.91 0.86 0.84 0.84 
100 1.00 1.00 0.99 0.90 0.86 0.84 0.84 
200 1.00 1.00 0.99 0.90 0.86 0.84 0.84 
500 1.00 1.00 0.99 0.90 0.86 0.84 0.84 

 

5. CONCLUSIONS 
 In this study, we examined in covariance stationary processes the performance of the 

classical confidence interval estimator for the steady-state mean. One of the assumptions for 

deriving this estimator refers to the independence of random variables in the sample. The 

following two criteria were used: a) The actual probability, called as actual confidence level, the 

classical confidence interval estimator to include the steady-state mean, given the nominal 

confidence level; and b) the ratio of the sampling error of the classical confidence interval 

estimator over the corresponding true one which ensures equality between actual and nominal 

confidence levels. These criteria are computed analytically for the stationary AR(1) and MA(1) 

models, for different values of φ and θ respectively. 
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 For the AR(1), when the autocorrelation converges exponentially to zero taking on 

positive values, the actual confidence levels attaining by the classical estimator, being always 

lower than the corresponding nominal confidence levels, are decreasing as the sample is getting 

larger and larger. Especially, for the case of heavy autocorrelation and large samples, the actual 

confidence levels are dramatically low as they range even less than 40%. In such cases the 

classical confidence interval estimator underestimates the true sampling error over four times. On 

the contrary, when the autocorrelation function converges to zero oscillating between positive 

and negative values, the classical estimator overestimates the true sampling error, and as a result, 

we always attain actual confidence levels greater than the corresponding nominal ones. As a 

concluding remark for the AR(1), therefore, we can say that the behaviour of the two criteria 

under consideration is differentiated substantially according to the structure and the level of 

autocorrelation. 

 Regarding MA(1), we always observe for positive autocorrelation actual confidence 

levels lower than the corresponding nominal ones. However, the discrepancies between these two 

levels are much smaller and more predictable compared to the case of AR(1). Particularly, for 

large samples, when the autocorrelation is light, these discrepancies range at 5%, while for 

moderate or heavy autocorrelations the discrepancies display very little differentiation at an 

average level of 10%. It is also worthwhile to mention that in MA(1), for negative 

autocorrelations the actual confidence levels are almost 100%, and this is due the fact that the 

true sampling error is highly overestimated. Especially in large samples the half-width of the 

classical confidence interval estimator overestimates the true sampling error by more than five 

times. 
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