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ABSTRACT 
This paper considers the classical newsvendor model when demand is normally distributed 
but with a large coefficient of variation. This leads to observe with a non-negligible 
probability negative values that do not make sense. To avoid the occurrence of such negative 
values, first, we derive generalized forms for the optimal order quantity and the maximum 
expected profit using properties of singly truncated normal distributions. Since truncating at 
zero produces non-symmetric distributions for the positive values, three alternative models 
are used to develop confidence intervals for the true optimal order quantity and the true 
maximum expected profit under truncation. The first model assumes traditional normality 
without truncation, while the other two models assume that demand follows (a) the log-
normal distribution and (b) the exponential distribution. The validity of confidence intervals is 
tested through Monte-Carlo simulations, for low and high profit products under different 
sample sizes and alternative values for coefficient of variation. For each case, three statistical 
measures are computed: the coverage, namely the estimated actual confidence level, the 
relative average half length, and the relative standard deviation of half lengths. Only for very 
few cases the normal and the log-normal model produce confidence intervals with acceptable 
coverage but these intervals are characterized by low precision and stability.  
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1. INTRODUCTION 
Newsvendor models are used to develop optimal order quantity decisions for products 

whose life-cycle of demand lasts a single relatively short period. In the classical form of the 

newsvendor model (Khouja, 1999), the optimal order quantity that maximizes expected profit 

is determined by equating the probability of demand not to exceed order quantity to a critical 

fractile whose value depends on selling price, salvage value, and purchase and shortage costs. 

When the critical fractile is greater than 0,5 (less than), the product is classified as high-profit 

product (low-profit) (Schweitzer and Cachon, 2000). 

For such models, developing optimal inventory policies has been based on the 

assumption that parameters of demand distribution are known. But the extent of applicability 

of newsvendor models in inventory management to determine the level of customer service 

depends upon the estimation of demand parameters. And research on studying the effects of 

demand estimation on optimal inventory policies is limited (Conrad 1976; Nahmias, 1994; 

Agrawal and Smith, 1996; Hill, 1997; Bell, 2000). Besides, none of these works addressed the 

problem of how sampling variability of estimated values of demand parameters influences the 

quality of estimation concerning optimal inventory policies. 

Assuming that demand follows the normal distribution, Kevork (2010) explored the 

variability of estimates for the optimal order quantity and the maximum expected profit. His 

analysis showed that the weak point of applying the classical newsvendor model to real life 

situations is the significant reductions in precision and stability of confidence intervals for the 

true maximum expected profit when high shortage costs occur. But coefficients of variation 

(CV) for the normal distributions that were used in Kevork’s experimental framework never 

exceeded 0,2. The reason was that in the process of modeling demand by the normal 

distribution, the use of large CV results in probabilistic laws that generate negative values 

with a non-negligible probability (Lau, 1997; Strijbosch and Moors, 2006). The solution to 

avoid the occurrence of such negative values is to accept that demand follows a normal 

distribution singly truncated at zero. 

Practically, truncated samples of normal distribution appear in cases where recorded 

measurements exist only for part of the variable, with Lee (1915) to provide the first solution 

for cases of normal demand in estimating population parameters from censored data. Fischer 

(1931) extracted maximum likelihood estimators for the mean and standard deviation. Hald 

(1952) presented among others the cumulative distribution and density of the truncated 

normal distribution. Halperin (1952a) examined large sample properties of truncated samples 
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for a single parameter population and was the first to extract the maximum likelihood 

estimator in the case of truncated samples from exponential populations. Harpaz et al. (1982) 

used Bayesian methods to tackle the problem. Braden and Freimer (1991) examined the 

sufficiency issue in the case of truncated distribution and named the class of distributions with 

sufficient statistics as newsboy distributions. These distributions exclude normality. 

There are a number of papers in the existing literature related to parameters’ 

estimation of the original population, relying on data from the truncated distribution (Gupta 

1952; Halperin 1952b). Cohen (1950, 1961, 1991) examined the maximum likelihood 

estimation for the doubly truncated normal distributions in an example of a non-steep 

exponential family. Cohen solved numerically the likelihood equation showing that there is 

one solution only if the coefficient of variation for the sample considered is less than 1. In the 

case of values greater than 1 the maximum likelihood estimator yields a distribution of the 

one-parameter exponential family. Davis (1952) showed the use of the singly truncated 

normal distribution in the notion of reliability. Castillo and Puig (1999) found that the 

likelihood ratio test for singly truncated normal against exponentiality can be found in terms 

of the coefficient of variation of the sample considered. Barr and Sherrill (1999) estimated the 

maximum likelihhod estimators for the mean and variance of a truncated normal distribution 

relying on the full sample from the original distribution. 

Bebu and Mathew (2009) use normal or lognormal distribution to construct 

confidence intervals for the mean and variance of the limited or truncated random variables. 

They also report the coverage probability of the large sample confidence interval from the 

delta method where the coverage turns out to be below the nominal confidence level even in 

cases of samples sizes smaller than 80. Barndorff and Nielsen (1978) examined the maximum 

likelihood estimator for the doubly truncated bormal distributions as exponential family. 

Efron (1978) and Letac and Mora (1990) showed that the singly truncated normal 

distributions is an example of a non-steep exponential family. Expressions of the moments for 

doubly truncated distributions are presented for the Weibull and gamma distributions. Jawitz 

(2004) derives truncated moment expressions for normal, lognormal, gamma, exponential, 

Weibull and Gumbel distributions for the double truncated case. These distributions are 

presented in details in Johnson et al. (1994). Nauman and Buffham (1983) and Consortini and 

Conforti (1984) analyze the upper truncation on measured moments of exponential and 

lognormal distributions respectively. 

  Using, therefore, normal distributions with high CV, to ignore the possibility of a 

negative value to appear is a potential scenario. But in the environment of performing Monte-
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Carlo simulations such negative values eventually will be present. Removing, however, such 

negative values from the data set, the distribution of the remaining positive observations will 

display an “artificial non-symmetric picture”. This remark reveals a serious problem. When 

real life data follows skewed distributions, there is a certain degree of ambiguity whether 

skewness in the data is an outcome of truncation or it is due to some parent non-symmetric 

probabilistic laws generating the observed values. 

The current paper addresses this problem by investigating the consequences of 

modeling positive demand data after truncation by (a) the log-normal distribution, (b) the 

exponential distribution, and (c) by the traditional normal distribution ignoring completely 

that truncations has already taken place. At a first stage, we derive generalized forms for the 

optimal order quantity and the maximum expected profit when demand is modeled as normal 

distribution singly truncated at zero. To do so, the expected profit is rewritten to a suitable 

form that enables the use of properties of truncated normal distributions. In a similar manner 

we derive the optimal order quantity and the maximum expected profit for the log-normal and 

the exponential using again properties of their corresponding truncated distribution. Under the 

three hypothetical distributions, appropriate estimators for the optimal order quantity and the 

maximum expected profit are considered and their asymptotic distributions are stated. Then 

the validity of the derived asymptotic confidence intervals using the three hypothetical 

distributions “for the true optimal order quantity and the true maximum expected profit under 

truncation” is explored for finite samples through Monte-Carlo simulations. The evaluation is 

based on three statistical criteria which are computed under different combinations of sample 

size, and values of coefficient of variation, for low and high profit products. For each 

combination, the criteria summarize the actual confidence level that the interval can succeed 

as well as the precision and stability that it can attain. 
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2. OPTIMAL ORDERING POLICIES WHEN DEMAND FOLLOWS THE 
TRUNCATED NORMAL 

 
Under a normal demand singly truncated at zero with mean μ and variance σ2, the 

profit function for the classical newsvendor problem given in Khouja (1999) is modified as: 
 

 
    
   







QD      if         DQsQcp

QD0   if   DQvpQcp

tt

tt , (1) 

 
where, tD the size for demand for period t, Q  the order quantity, p the selling price per unit, 

c  the purchase cost per unit, v  the salvage value and s  the shortage cost per unit. The 

expected value of (1) is derived in Appendix, and is given by 
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with z ,   to be density functions of the standard normal evaluated respectively at 

   Qz  and  CV , CV the coefficient of variation, and z ,   the 

corresponding distribution functions. 

The optimal order quantity, *Q ,  maximizing (2) satisfies the equation  
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leading to  

 R
* zQ   (3) 

where Rz  is the inverse function of the standard normal evaluated at R. Replacing Q with  
*Q into (2), the maximum expected profit is given by 

 

       
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
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Truncating a normal distribution at point “zero” and taking only the positive values, an 

“artificial non-symmetric picture” is produced. This is evident from figures (1a) and (1b). 

Each graph refers to a single realization of 5000 observations from a normal distribution with 

mean 300 and standard deviations 300 and 450 respectively. It is obvious that raising CV 

skewness becomes more severe. Ignoring, therefore, truncation, we could model such a 

situation by assuming that a classical non-normal probabilistic law governs the generation of 

demand data. In the current work, we shall investigate the consequences of such an action by 
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assuming that demand follows (a) the log-normal distribution, and (b) the exponential 

distribution.  

 

 Figure 1(a) Figure 1(b) 
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Demand follows the log-normal distribution if   LNLN ,N~Y  and Y
t eD  . In 

Appendix we show that the optimal order quantity, *
lnQ , and the maximum expected profit, 

 *
lnE  , satisfy the equations 

LNRLN
*
ln zQln    (5) 

and 

    ssvplnEln
LNRz

LN
LN

*
ln 




 



. (6) 

 
On the other hand, when demand at period t follows the exponential distribution with 

mean λ, the expected value of (1) is derived in Appendix, and is given by 
 
           Q

exp esvpvpQsvpQscpE  (7) 
 
First order condition for maximizing (7) leads to    svpscpe Q  , or 
 

  R
svp
scpeQDPr Q

t 



   

 
Thus, the optimal order quantity is taken from  RlnQ*   and the maximum expected 

profit from         RlnvccpE *
exp  . 
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3. ALTERNATIVE ESTIMATORS FOR Q* AND Ε(π)* 
  

Let T, D,...,DD  , be a sequence of random variables representing demand for a 

sample of T successive periods. In the current section, we shall evaluate confidence intervals 

for the true optimal order quantity given in (3) and the true maximum expected profit given in 

(4) using alternative estimators for each quantity based on the following three models:  

 

Normal Model: In this case we shall ignore that truncation has taken place and we shall 

assume that demand follows the normal distribution with mean μ and variance σ2. For this 

situation, kevork (2010) suggested the following 95% confidence intervals for *Q  and  *E  : 
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where  ˆzˆQ̂ R

*
NM ,        RˆscpˆcpÊ

Rz
*
NM   are the corresponding 

estimators for period T+1, and ̂ , ̂  the maximum likelihood estimators for μ and σ2. 

 

Log-Normal Model: Denoting by TDlnˆ
T

t
tLN 



  and   TˆDlnˆ
T

t
LNtLN 



  , from 

(5) and (6) the following estimators for period T+1 are defined: LNRLN
*
LN ˆzˆQ̂ln   and 

    ssvplnˆˆÊln ˆzLNLN
*
LN R

 
 . Having been assumed that 

  LNLNt ,N~Dln , and using form (12) of Kevork (2010), the suggested 95% confidence 

interval for *Q  will be 
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In Appendix, we also show that for T sufficiently large, an approximate 95% confidence 

interval for  *E   will be  
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Exponential Model: Taking 
T

D
ˆˆ

T

t
t

 , the following estimators are defined:  

 RlnˆQ̂*
EXP   and         RlnvccpˆÊ *

EXP  . Using the central limit 

theorem for ̂ , the suggested 95% confidence intervals for *Q  and  *E   will be 
 

 Rln
T
ˆ

,Q̂*
EXP 


  (12) 

  

        Rlnvccp
T
ˆ

,Ê *
EXP 


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To study the performance of the three models, we generated 10000 replications of 

1000 positive observations from the truncated normal with mean 300 and CV=1, and 1,5. 

More details for the random number generator which has been used can be found in kevork 

(2010). To obtain estimates for *Q  and  *E   according to the three models, values for p, c, 

v, s have been chosen in order to satisfy the following principles: 

(a) Increasing R larger profit margins were set due to the high/low profit product 

principle stated by Schweitzer and Cachon (2000). 

(b) Salvage value was set less than the purchase cost 

(c) With R being fixed, to avoid the problem of changing both s and v, we set s , 

assuming that effective customer communication policies have been developed in order 

not to loose customers when they do not find the product which they are looking for. 

Table 1 displays the values for p, c and v as well as the values for the true optimal order 

quantity and the maximum expected profit. 

For each combination of R, CV and sample size T, three statistical measures were 

computed to summarize the performance of confidence intervals (8)-(13): (a) the Coverage 

(COV) computed as the percentage of confidence intervals containing the true value, (b) the 

Relative Average Half Length (RAHL) which is computed dividing the average half-length 

by *Q  or  *E  , and (c) the Relative Standard Deviation of Half Lengths (RSDHL) computed 

by dividing the standard deviation of half lengths by *Q  or  *E  . 



 9 

Table 1: Input parameters for simulation experiments, μ=300, s=0 
 R=0,4 R=0,8 
 p c v Q* E(π)* p c V Q* E(π)* 
CV=1 200 190 165,14 224,00 1205,41 200 160 147,53 552,49 11289,16 
CV=1,5 200 190 149,32 185,99 959,25 200 160 145,39 678,73 13298,15 
 

Table 2 displays the coverage attained by confidence intervals generated using the 

three models under consideration. For any R, coverage is reduced when sample size is getting 

larger. Besides, the three models fail to produce acceptable confidence intervals for low-profit 

products (R=0,4). The exponential model also fails to achieve acceptable coverage for both 
*Q  and  *E   even in the case of high-profit products (R=0,8). For R=0,8, only the log-

normal model achieves coverage of *Q  close or greater than 0,95 with sample sizes less than 

50 observations. Regarding  *E  , acceptable confidence intervals can be produced either 

with the normal or the log-normal model, when CV takes values close to one for specific 

sample sizes. Particularly, with the normal model, acceptable coverage is attained with 

sample sizes around 20 observations, while with the log-normal model the sample size should 

be between 20 and 100 observations.  

 
Table 2: Coverage of 95% confidence interval for *Q  and  *E   
  Q* E(π)* 
  R=0,4 R=0,8 R=0,4 R=0,8 
Model  CV=1 CV=1,5 CV=1 CV=1,5 CV=1 CV=1,5 CV=1 CV=1,5 
Normal T         
 20 0,4993 0,077 0,8888 0,8145 0,9064 0,8404 0,9351 0,9229 
 30 0,3234 0,0121 0,879 0,7513 0,8985 0,8006 0,933 0,9013 
 40 0,1999 0,0017 0,8593 0,6881 0,8781 0,7503 0,9234 0,8846 
 50 0,1146 0,0003 0,8472 0,6289 0,8682 0,7023 0,9206 0,8691 
 100 0,0044 0 0,7617 0,381 0,786 0,452 0,8893 0,762 
 500 0 0 0,2647 0,0037 0,1558 0,0004 0,5384 0,1363 
 1000 0 0 0,0611 0 0,0068 0 0,2302 0,0068 
Log-Normal T         
 20 0,8321 0,4833 0,9912 0,982 0,4222 0,0717 0,9278 0,8978 
 30 0,844 0,4098 0,9874 0,967 0,369 0,0305 0,9382 0,9049 
 40 0,8397 0,3368 0,9783 0,9487 0,3195 0,0122 0,9425 0,9082 
 50 0,8462 0,2779 0,968 0,9211 0,2814 0,0034 0,9492 0,9142 
 100 0,8588 0,0978 0,8781 0,732 0,1298 0 0,9565 0,9166 
 500 0,8371 0 0,124 0,0112 0,0002 0 0,8747 0,8291 
 1000 0,8091 0 0,0034 0 0 0 0,7822 0,7166 
Exponential T         
 20 0,7824 0,5756 0,8747 0,8483 0 0 0,095 0,025 
 30 0,7363 0,4084 0,8362 0,7924 0 0 0,0235 0,0031 
 40 0,6835 0,2769 0,7896 0,7339 0 0 0,0054 0,0003 
 50 0,6282 0,1802 0,7557 0,6777 0 0 0,0009 0 
 100 0,407 0,0163 0,5646 0,4235 0 0 0 0 
 500 0,0042 0 0,025 0,0025 0 0 0 0 
 1000 0,0001 0 0 0 0 0 0 0 
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For the cases where acceptable coverage is attained table 3 displays RAHL and 

RSDHL. The following three important remarks are pointed out: (a) Precision and stability of 

confidence intervals is reduced as CV is getting larger, (b) the normal model produces 

confidence intervals for  *E   with higher precision and stability compared with the log-

normal model, and (c) wherever acceptable coverage is achieved, confidence intervals show 

low precision and stability. For example, with R=0,8, CV=1 and T=50: 

(i) Confidence intervals for *Q  using the log-normal model will have an average total length 

of approximately 754 units 

(ii)) Confidence intervals for  *E   using the normal model will have an average total length 

of approximately 5353 monetary units 

 
Table 3: Precision and stability of 95% confidence intervals for *Q  and  *E   when R=0,8 
 Q* E(π)* 
 log-normal model normal model log-normal model 
 CV = 1 CV = 1,5 CV = 1 CV =1 

T RAHL RSDHL RAHL RSDHL RAHL RSDHL RAHL RSDHL 
20 1,06523 0,54230 1,21044 0,60435 0,36642 0,05919 0,75795 0,19358 
30 0,87585 0,34416 0,99711 0,38984 0,30344 0,03953 0,62675 0,12928 
40 0,76031 0,25556 0,86511 0,28306 0,26411 0,02990 0,54596 0,09832 
50 0,68221 0,20524 0,77624 0,22462 0,23707 0,02385 0,49004 0,07956 

100       0,35011 0,04025 
 

 

4. CONCLUSION 
When real-life data (representing variables taking on only positive values) follows 

skewed distributions, we should not exclude the case that the observed skewness might be 

caused by a parent normal distribution with a large coefficient of variation for which 

truncation at point zero has been occurred. This case was investigated in the current work 

regarding optimal ordering policies for the classical newsvendor problem when shortage cost 

is zero. Particularly, we assumed that the true distribution generating demand data was the 

normal singly truncated at zero, and erroneously the remaining part of data after truncation 

had been modeled as (a) a log-normal, (b) an exponential, and (c) a traditional normal 

distribution without truncation. 

Estimators for the optimal order quantity and the maximum expected profit were 

considered for each one of the three hypothetical distributions. Based on the asymptotic 

distribution of the estimators, alternative confidence intervals were suggested for the true 
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optimal order quantity and the true maximum expected profit under truncation. The 

performance of the confidence intervals was evaluated through Monte-Carlo simulations in 

different sample sizes from the truncated normal with CV=1 and 1,5. The evaluation was 

based on the coverage, namely, the estimated actual confidence level the interval can attain, 

the average half length, and the standard deviation of half lengths. The latter two measures 

were divided by the true values of the optimal ordered quantity and the maximum expected 

profit.  

For low profit products (R<0,5), confidence intervals derived using the three 

hypothetical distributions fail to attain coverage close to the nominal confidence level. For R 

high (e.g. R=0,8), confidence intervals of the normal and the log-normal distribution can 

succeed acceptable coverage but only for a limited range of small sample sizes. 

Unfortunately, for the three hypothetical distributions the coverage of their confidence 

intervals for both the true optimal order quantity and the maximum expected profit is reduced 

as the sample size is getting larger tending eventually to zero when the sample size becomes 

sufficiently large. But, even for those cases where acceptable confidence intervals in terms of 

coverage are produced, their precision and stability are too low offering little information at 

the stage of decision making. 

 

 

APPENDIX 
Proof of (2) 

            QDPrQDDEQvpQcpE ttt  

     QDPrQDDEQs ttt  . (A1) 

Using results on the truncated normal regarding its probability density function and mean 

(Maddala, 1983, p. 366), we obtain: 

 

































 
















 




z

Q

uQ Q

t duedxeQDPr , (A2.1) 

 








z

z
tt QDDE , (A2.2) 

 
z

z
tt QDDE




 , (A2.3) 

The result follows after replacing (A2.1)-(A2.3) into (A1). 
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Proof of (5) 

From Johnson et al. (1994, p. 241), and Maddala (1983, p. 369), we obtain: 

     
LNzLN

LN

LN
tt zZPr

Qln
ZPrQlnDlnPrQDPr 











  (A3.1) 

 
LN

LNLN
LN

LN

z

z
tt eQDDE




 






 (A3.2) 

 
LN

LNLN
LN

LN

z

z
tt eQDDE




 






 (A3.3) 

Replacing (A3.1)-(A3.3) into (2), 

       
LNLN

LN
LN

LN
LN

LN zzLN esvpseQsvpQscpE 













 (A4) 

The result follows from 

      


LNz
LN svpscp

dQ
dE

 

and 

  R
svp
scpzZPr

Qln
ZPr R

LN

LN
zLN
















  

having used the following derivatives: 

QdQ
Qlnd

Qlnd
dz

dz
d

dQ
d

LNLNLN zLN

LN

zz










  

 
 
























LN

LN

LNLNLNLNLN

e
dQ

Qlnd
Qlnd

zd
zd
d

dQ
d z

LN

LNLN

LNLN

zz  

since 





 




LN
LN

LN

LNLN

e

Q z
z  

Proof of (6) 

The result follows after replacing    
LNzsvpscp  , and 

LNR
LN

LN
*
LN

LNLN z
Qln

z 



 , 

into (A4).  
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Proof of (7) 

The result follows after replacing the following relationships into (2): 

   Q
t eQDPr  

 







 Q

QQ

tt e
eQeQDDE  

 


 
 Q

QQ

tt e
eQeQDDE  

 

Proof of (11) 

As   LN,LNt N~Dln , then  Σ0, 










N
ˆ
ˆ

T d

LNLN

LNLN  where 
















LN

LNΣ . 

Since         * ˆ limpz
2
LNLN

*
LN Elnssvplnˆ limpˆ limpÊln limp ,2

LNR





 
, 

by applying the multivariate delta method (knight, 1999), 

 

      LΣL  ,NElnÊlnT d**
LN  

where 

   














 



LN

LNLN

LN

LNLN

ˆ
ˆ,ˆ

ˆ
ˆ,ˆ ff

L  

and 

      ssvplnˆˆˆ,ˆ ,2
LNR  ˆ z

2
LNLNLNLN 




 
f  

 

Evaluating the partial derivatives at LNLNˆ   and   LNLNˆ , we take 

 



 

LN

LNLN

ˆ
ˆ,ˆf

, 

   
  

































ssvp
svp

ˆ
ˆ,ˆ

R

R

z

z

LN

LNLNf
, 

and 

 
  






































ssvp
svp

R

R

z

z2σLΣL  
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