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Abstract

This study examines the relationship between farm size and productivity
in U.S. agriculture during 1982-92. A nonparametric regression method
is applied to detect ex-post geographical patterns in changes in farm size
and productivity. The estimations show that (i) in 1982 productivity per
acre was high in the East, West, and South, modest in the middle part
of the U.S., and low in the North, and this pattern remained the same
during 1987-92, while the level of productivity continously increased over
time; (ii) during 1982-92 farm size remained unchanged, large farms in the
middle belt stretching from North to South and small ones in the East,
West and South; and finally (iii) during 1982-92 an inverse relationship
grew stronger between farm size and productivity. Furthermore, with the
application of Markov chains approach, we projected the above patterns into
the future. The findings suggest: (i) farms are likely to experience lower
productivity; (ii) small and large farms are likely to coexist as medium-sized
farms to vanish; and (iii) the inverse relationship is likely to show a strong
geographical pattern.
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1. Introduction1

How large are the largest farms relative to the smallest? How might farm size look
like in the future? Are small farms more productive than large ones? If so, are
large farms becoming smaller? These questions have been the subject of much the-
oretical and empirical work over the last two decades.2 In recent years, however,
size and productivity issues have received renewed interest in the context of U.S.
agriculture because of several alarming structural changes that occurred during
1959-1992.3 First, farm size showed a tremendous increase. Average acreage per
farm increased by 62 percent due to 48 percent decline in the number of farms,
and in nominal terms average farm sales per farm increased tenfold. Second, the
distribution of farms changed following price changes, technological advances, and
changes in labor/capital mix. More recently, during 1978-1992, the total number
of farms decreased by 15 percent, and farms with sales under $100,000 accounted
for the entire decrease, while the number of farms and the share of farms with
sales of $100,000 or more increased. Third, noncommercial farms made up the
bulk of farms (almost 75 percent), but commercial farms produced most (91 per-
cent) of the Nation’s agricultural output. On average, commercial farms had sales
28 times as high as noncommercial farms and acreage 5 times as great.
These changes entail several implications for people not only employed in agri-

culture but also in related sectors. The first relates to low incomes in rural areas
and a desire to insure some minimum level of living for farmers and their families.
Falling agricultural incomes, together with emerging biotechnologies, have rekin-
dled concern over farm structure and the viability of the family farms. During
the period of 1982-1997, for example, average farm size in the U.S. has grown
considerably, with 22 percent increase in per farm crop land due mostly to the de-
crease in the number of family farms (USDA, 1992). The second reason relates to
efficiency and business management issues, such as finding the least-cost bundle of

1The authors would like to thank Kim Nielsen and Judith Sommer of USDA/ERS for pro-
viding us farm price data and some publications on the U.S. farm structure, respectively.

2A voluminous literature exists on the size -productivity relationship. Among others, see
Harris and Nehring (1976), Gardner and Robe (1978), Stanton (1978), Cornia (1985), Bin-
swanger and Rosenzweig (1986), Fawson and Shumway (1988), Chavas and Cox (1988), Cox
and Chavas (1990), de Janvry, Fafchaamps, and Sadoulet (1991), Barrett (1993), Evenson and
Huffman (1997), and Peterson (1997).

3For a detailed discussion of changing characteristics of U.S. farms, the reader is referred
to Hoppe, Green, Banker, Kalbacher, and Bentley (1993), Sommer, Hoppe, Green, and Korb
(1995), and Dismukes, Harwood, and Bentley (1997).
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resources, finding combinations of resources which are productive and discovering
ways to combine them successfully on individual farms. The third reason concerns
distribution of land and agricultural resources amongst farmers and others.
The present study evolves in two steps. In the first step, we analyze changes

likely to occur in farm size and farm productivity in U.S. agriculture. More
specifically, we are interested in whether or not farm size and productivity shows
convergence in the sense that geographical divisions and regions all experience the
same farm size and same productivity.4 In the second stage, we examine the past
and possible future relationship between size and productivity. The literature is
rich, providing evidence that small farms are more productive than large ones;5

however, it is poor in projecting the long run inverse relationship (IR) between
size and productivity, although the IR is closely related to problems of agricultural
stagnation, poverty, natural resource degradation, and migration. In the context
of U.S. agriculture, the IR constitutes a core argument for efficient management of
natural resources and for policy design to remedy imperfections in agriculture and
agriculture-related markets. Labor-extensive farming on big holdings generates a
class of marginalized landless laborers unable to obtain land or employment in
the fertile agricultural areas. This excessive labor is driven to cultivate ill-suited
tracts in forests, uplands, steep hill-slopes and arid lands (Repetto and Holmes,
1983), causing devastating ecological consequences, such as deforestation, loss of
wildlife habitual, soil erosion and so forth. On the other hand, in the context
of agrarian economies, the IR constitutes a core argument for redistributive land
reform as it implies that land reforms which lead to a more equal size distribution
of holdings, by improving both efficiency and equity, will promote rural growth
and poverty alleviation (Eckstein, et al., 1978; Lipton, 1993).
In the literature, the often observed IR is usually examined at the aggregate

4Convergence in size and productivity is an intrinsic element of the profit-maximizing agents
paradigm. Consider, for example, farm production function, Y = AF (L,N), where Y , L, and
N denote agricultural production, land, and the number of farms in a county, respectively. The
term A reflects the state of technology. Rewriting it in terms of labor yields y = Af(l, 1) ≡
Af(l), where y and l stands for output and land per farm. As a result, convergence of y is
immediate from the convergence of l. Convergence is conditional upon the application of a
constant returns to scale technology, the presence of competitive agricultural markets, and the
absence of production externalities. What should also be noted in the above formulation of
agricultural production is that convergence would further imply that l and y are cointegrated,
and hence suggesting that there is a long run relationship between l and y.

5For example, Feder (1985), Biswanger and Rosenzweig (1986), Eswaran and Kotwal (1986),
de Janvry (1987), and Taslim (1989) point out supervision costs as a potential source of the IR
between size and productivty.
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level that gives minimal consideration to location-specific factors, and therefore
ignoring geographical peculiarity of the size-productivity relationship. To the best
of our knowledge, what remains uncovered in the literature is whether or not con-
vergence and/or the IR reveals spatial patterns. With a geographical orientation,
this study implicitly assumes that location-specific changes in policy or economic
environment are contagious. The present study aims at examining farm size, pro-
ductivity, and the IR between size and productivity in U.S. agriculture over the
period 1982-1992. The examination is carried out at the divisional, regional, and
national levels. A nonparametric regression method is applied to detect geograph-
ical patterns in changes in size and productivity, and Markov chains method to
project the ex post patterns into the future. This is the major contribution to the
literature.
The nonparametric regression method, adopted fromHardle (1990) and Keyzer

and Sonneveld (1997), allows to test for several hypotheses which are less depen-
dent on parametric specification. This regression further reduces the influence of
outliers in the sample by assigning small likelihood of occurrence to them. With
its measurement error structure in independent variables, the regression is more
realistic as the data used in this study are survey data which are highly likely to
contain measurement errors. Of course, this regression has several shortcomings
to be mentioned.6 Among most commonly known is the curse of dimensionality
expressed as the inverse relation of the speed of convergence with the number of
independent variables. A second commonly cited is the selection of a smoothing
parameter, especially when there are numerous explanatory variables. A third
shortcoming is that nonparametric estimations require larger data sets than do
parametric estimations in order to achieve the same rate of convergence, and
therefore parametric methods would be desirable when the data set at hand is
small.
Markov chains, adopted from Quah (1993, 1996), are applied to characterize

the long run tendencies in size and productivity.7 This method projects the current
distribution forward and derives the time-invariant distribution of the variable of
interest, enabling the detection of regularities that intra-distribution dynamics
contain. Specifically, it allows analysis of how the top, say, 5 percent of the
distribution behaves relative to the bottom 5 percent, and of long run projections

6The reader is referred to Yatchew (1998) for a recent survey of nonparametric regression
techniques.

7For applications of Markov chains to analyze farm size distribution, see Garcia, Offutt, and
Sonka (1987) and Edwards, Smith, and Patterson (1985).
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of cross-movements of observations in the top and bottom parts of the distribution
as the forecast horizon grows. Having knowledge of the shape and stability of
the long run distribution should provide insights into the characteristics of an
average farm. Although Markov chains provide useful representation of dynamic
processes, they also have several pitfalls. Perhaps the most important one is
that they cannot answer the question of why changes take place over time. The
second is that stratification of the observations becomes demanding when there
is more than one stratification variable. The third is that Markov chains assume
no measurement error, while in many economic variables errors of some kind are
unavoidable. Nevertheless, we apply the nonparametric regression and the Markov
chain techniques since they provide insights into size and productivity issues that
our study addresses.
This study should provide policy makers and academicians with information

and decision aids as to farm productivity and (dis)economies of size. Anticipation
of future changes in farming is vital as the potential social and economic gains and
losses are high from anticipating and recognizing major structural changes when
they occur. Hence, some kind of limits to farm size has always been a core issue in
policy design that aims at promoting farms large enough to compete successfully
in a commercial environment. Furthermore, size and productivity issues have for
decades remained on the agenda of academicians as characteristics of production
technologies are of a vital importance in economy wide modeling.
The rest of the study is organized as follows. Section 2 describes the nonpara-

metric regression andMarkov chains techniques. Data, variables, and geographical
groupings of counties are all explained in Section 3. Section 4 explores features
of a transition probability matrix, and the key concepts are discussed with exam-
ples. Section 5 presents the estimation results. Section 6 discusses several policy
implications for the U.S. agriculture, and then concludes the paper by suggesting
possible directions for further research. Appendix gives a detailed explanation of
the χ2 hypothesis testing procedure applied in the study.

2. Methods

2.1. A nonparametric regression

Consider a nonparametric regression model

y = m(x) + ε (2.1)
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where x is a d dimensional vector of independent variables, ε is an error term.
The conditional mean curve of (2.1) is E[y|x] = m(x), where it is assumed that

E[ε|x] = 0. By definition, m(x) =
∫
yf(y|x)dy =

∫
y f(y,x)
f(x)

dy =
∫
yf(y,x)dy∫
f(y,x)dy

, where

f(x) is the unknown probability density function (pdf) of x, and f(y, x) is the
unknown joint pdf of x and y. The Nadaraya-Watson density estimation method
is used to approximate these pdf’s,8 and next m(x) is estimated by

yθ(x) =

n∑

i=1

yipiθ(x) (2.2)

where

piθ(x) =
K(Xi−x

θ
)

Σni=1K(
Xi−x
θ
)
if Σni=1K(

Xi − x

θ
) > 0

= 0 otherwise.

For purposes of implementation, we opt for a normal kernel,9 where K(x−Xi
θ
)

= 1√
2π

1
θσx

exp

[
−1
2

(
Xi−x
θσx

)2]
. Here the term K(x−Xi

θ
) denotes the likelihood of

x being the value actually associated with yi, and the term Σni=1K(
x−Xi
θ
) the

likelihood of x being associated with any of the observation yi.
10 The band width

parameter θ controls each observation’s influence on the prediction of y. For
example, Eq. (2.2) would emphasize points nearby x if piθ(x) uses a small θ, and
emphasize distant points if it uses a large θ. The optimal band width used in

the calculations is determined by θ = ( 4
n(d+2)

)(
1

4+d
). The term σx is the standard

deviation of x. Finally, the weight piθ(x) represents the probability of x associated
with the ith observation.

8See Silverman (1986) and Hardle (1990) for properties of the Nadaraya-Watson density
estimation.

9Results are independent of the choice of the kernel density function K(x−Xi

θ
), since the

predicted values will approach the true values as the number of observations increases and the
band width gets smaller.
10Assumption 1. Let ε ≡ Xi−x

θ
. (i) The distribution function K : < → < is Borel mea-

surable, (ii)
∫
K(ε)dε = 1 (i.e., integrates to one), (iii)

∫
|K(ε)| dε <∞ (i.e., boundedness), and

(iv) lim‖ε‖→∞ ‖ ε ‖ K(ε) = 0 where ‖ ε ‖ is the Eucledian norm and supε |K(ε)| < ∞ (i.e., K
vanishes outside a compact set).
Assumption 2. The band width θ is set optimally according to a function θ = θ(n) such

that limn→∞ θ(n) = 0 and limn→∞ nθ(n) =∞.
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Nonparametric estimations are based on the idea that observations close to x
contain more information on E[y|x] than those observations far away from x. The
postulated form of the density function determines the shape of the regression
function, yθ(x). The choice of θ affects the magnitude of the weights assigned to
observations in the neighborhood of x. For example, if θ is large, the observations
far from x will have a large impact on yθ(x) (Silverman, 1986; Hardle, 1990).

2.2. Markov chains

Consider a stochastic process {Xt, t = 0, 1, 2, ...} that takes on a finite or countable
number of values. Unless otherwise stated, this set of values of the process will be
denoted by the set of nonnegative integers {0, 1, 2, ...}. If Xt = i, then the process
is said to be in state i at time t.
Assumption 1 (Time-stationary transition probabilities). Whenever the process

is in state i, there is a fixed probability pij that it will next be in state j : that is,

p{Xt+1 = j | Xt = i, Xt−1 = it−1, ... , X1 = i1, X0 = i0} = pij (2.3)

for all states i0, i1, ... , it−1, i, j and t ≥ 0. Such a stochastic process is known
as a Markov chain. Eq. (2.3) may be interpreted as stating that, for a Markov
chain, the conditional distribution of any future state Xt+1 given the past states
X0, X1, ..., Xt−1 and the present state Xt, is independent of the past states and
depends only on the present state. The value pij stands for the probability that
the process will, when in state i, next make a transition into state j. Since the
probabilities are nonnegative and since the process must make a transition into
some state, we have Σ∞j=0pij = 1 for i = 0, 1, ... and pij ≥ 0 for i, j ≥ 0.
Assumption 2 (A first-order Markov chain). The stochastic process follows a

first-order chain written as

Xt+1 = PXt where P = (pij). (2.4)

That is, the probability of a county being in a particular state at time (t + 1)
is solely a function of its state at time t. A second-order chain can similarly be
defined as one in which the probability of a county being in a particular state at
time (t+ 1) only depends on that county’s states at times (t− 1) and t.
If Assumptions 1 and 2 are satisfied,11 then the time-stationary transition

11Testing procedures are provided in Appendix.
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probabilities will be pij =
(
nij
ni

)
which solves the following maximization problem,

Max Π
i,j
p
nij
ij subject to Σmj=1pij = 1 for i = 0, 1, 2, ...,m and pij ≥ 0.

ntij denotes the number of counties moving from state i at time (t − 1) to state
j at time t; nij = Σ

T
t=1n

t
ij is the total number of counties moving from state i to

state j over t = 1, 2, ..., T ; and ni = Σ
m
j=1nij is the total number of counties that

were in state i over t = 0, 1, ..., T and i = j = 1, ...,m.
Existence and uniqueness of the time-invariant distribution, π. The s−step−

ahead distribution should evolve as

Xt+s = [P ]
sXt (2.5)

where [P ]s → π as s→∞. (s denotes the number of iterations.) The presence of π
guarantees that the process is independent of initial classification of observations,
and that the elements of P no longer change from one period to the next, although
counties may continue to alter their states over time.12 Provided below are several
definitions and a theorem, adopted from Hoel, Port, and Stone (1987), which are
used to prove the existence and uniqueness of π.

Definition 2.1. Class i is said to have period d if pnij = 0 whenever n is not
divisible by d, and d is the largest integer with this property. For instance, starting
in i, it may be possible for the process to enter class i only at times 2, 4, 6, 8, ...,
in which case class i has period 2.

Definition 2.2. A class with period 1 is said to be aperiodic.

Definition 2.3. Class j is said to be accessible from class i if pnij > 0 for some
n ≥ 0.

Definition 2.4. Two classes i and j that are accessible to each other are said to
communicate.

Definition 2.5. For any class i we let fi denote the probability that, starting
in class i, the process will ever reenter class i. Class i is said to be recurrent if
fi = 1, and transient if fi < 1. Class i is recurrent if

∑∞
n=1 p

n
ii =∞ and transient

if
∑∞

n=1 p
n
ii <∞.

12Debreu and Herstein (1953) show properties of a transition (or stochastic) probability matrix
at length.
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Definition 2.6. A Markov chain is said to be irreducible if there is only one
grouping of classes; that is, if all classes communicate with each other.

Definition 2.7. If a class i is recurrent, then it is said to be positive recurrent
if, starting in i, the expected time until the process returns to class i is finite.
Positive recurrent, aperiodic classes are called ergodic.

Theorem 2.8. For an irreducible ergodic Markov chain, limn→∞ p
n
ij exists and

is independent of i. Furthermore, letting πj = limn→∞ p
n
ij, j ≥ 0, then πj is the

unique non-negative solution of πj =
∑∞

i=0 πipij, j ≥ 0 and
∑∞

j=0 πj = 1.

3. Description of data and variables

The data used in this study were obtained from the Census of Agriculture (USDA,
1992). The following variables were retrieved for each county over the three census
periods 1982, 1987, and 1992: total sales of agricultural produce, harvested land
in acres, and the number of farms. Sales were deflated by the annual consumer
price index to obtain sales at constant prices. County i’s farm size is defined as the
ratio of harvested acres to the number of farms in that county. The productivity
measures, sales per farm and sales per acre, are defined as the ratio of sales to the
number of farms and the ratio of sales to the harvested acres, respectively. Each
county is associated with five figures: average farm size, productivity per farm,
productivity per acre, longitude, and latitude.
Since we are interested in the distributions (Figures 1, 3, 5) and less in the

level of the variables, the following modifications were done in the original data to
stratify (or classify) counties on the basis of minimum variance criterion (Cochran,
1966). We first remove the right-skewness prevalent in the original data on the
size and productivity measures (Figures 1, 3, 5), next express the variables in
natural logarithm, and then divide them by their respective means. The resulting
distributions are plotted in Figures 2, 4, 6 making comparisons relatively easy
as to how far a farm is away from the average farm represented by the value
1.0 on the horizontal axis. A farm with a value greater than 1.0 represents a
larger-than-average farm or a more-productive-than-average farm.
The strata (or classes) required by the Markov chain model divide equally the

range of the horizontal axis in Figure 2, 4, 6. Presented in Table 1 is an example
of how the 6 cut-off points determined for the 7 strata of productivity per acre
and are the associated values in constant 1990 US dollar for each census year. In
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this table, the value 0.850 represents the cut-off point for stratum 1 and the value
1.225 for the sixth stratum. The associated values of the original data are 161 in
1982 and 1521 in 1992, respectively.
Spatial variability is estimated using the grouping of U.S. states that is sug-

gested by the USDA; and according to this, the 51 states are grouped in 9 divisions
which in turn comprise four regions. The states of Alaska, Hawaii and Puerto Rico
are excluded, due to their low level of agricultural activities and their geographical
position. Table 2 gives in the first column this grouping and the number of valid
observations in each stratum or class. Figure 7 gives the state map with the region
and division classifications. Table 3 gives the average size and productivity at the
national level, demonstrating that the two productivity measures increased by 100
percent as size increased only by 10 percent during the period of 1982-1992.

4. Dynamics of transition

In what follows we describe the main features of a transition probability matrix
P calculated using productivity per acre at the national level and discuss the
conditions under which this matrix represents an irreducible ergodic Markov chain.
The same interpretations also apply to other transition matrices.
An element pij of P represents the probability that a farm will, when in state

i at time t, next make a transition into state j at time (t+1). The elements in the
first row are denoted by p1j, j = 1, ..., 7, where p11 = 0.72, p12 = 0.27, and p13 =
0.01. Of the entire sample of 5,878 farms over the period 1982-1992, a total of
426 farms fell in State 1. Of those farms, 72 percent (p11) remained in that same
state; 27 percent (p12) moved into State 2; one percent (p13) moved into State 3;
and transition to States 4-7 did not occur in the following period. Similarly, of
5,878 farms, a total of 1,201 farms fell in State 2. Of 1,201 farms, 76 percent (p22)
remained in that same state, 16 percent (p23) moved into State 3, one percent into
State 4, and no transition occurred into States 5-7 in the following period.
The matrix P has seven states (or intervals). State 2 (corresponding to the in-

terval [0.85, 0.93]) is accessible from State 1 (corresponding to the interval [0, 0.85])
since p12 6= 0. States 1 and 2 are accessible to each other, hence they are said to
communicate, and it is denoted by 1 ←→ 2. In fact, all of the seven states are
communicating, implying that all of the states are in the same class. The Markov
chain is then irreducible since there is only one class. It is easy to verify that P is
irreducible. For example, it is possible to go from State 1 to State 7 through the
path 1←→ 2←→ 3←→ 4←→ 5 ←→ 6 ←→ 7. That is, one way of getting from

10



State 1 to State 7 is to go from State 1 to State 2 (with probability p12 = 0.27),
then go from State 2 to State 3 (with probability p23 = 0.16),..., finally go from
State 6 to State 7 (with probability p67 = 0.17).
Persistence is measured by the probabilities in the diagonal elements of P :

large values for high, small values for low persistence. Over this one-period hori-
zon, the predominant feature of P is high persistence among those farms in States
2 and 7, and low persistence in States 5 and 6, implied by the diagonal entries
0.76, 0.82, 0.55, and 0.59, respectively. This is interpreted as productivity tend-
ing to move away from the national average, roughly represented by States 4 and
5. A close look at the off-diagonal elements of P also reveals two patterns of
movements. In the first pattern, farms tend to move toward States 2, 3, and 4.
Consider, for example, 426 farms in State 1. Of these, 27 percent tend to move
into State 2 and only 1 percent to State 3 in the following period; likewise, of
1,201 farms in State 2, 16 percent tend to move into State 3, while only one per-
cent into State 4, and seven percent back into State 1. A similar pattern is also
prevalent in States 3, 4, and 5. In the second pattern, farms in States 1 through
5 appear to move 2 states up, one state down. These two patterns are reflected in
the time-invariant distribution. Persistence can also be measured using a measure
of mobility µ : µ(P ) = (m− Trace(P ))/(m− 1) = (7− 4.837)/6 = 0.36 where m
is the dimension of P, which is equal to 7. The lower the mobility µ is, the more
persistence there is in P (Quah, 1993, 1996). The value 0.36 indicates that P is
not significantly persistent.
The time-invariant distribution π characterizes the limiting behavior of farms

as the number of iterations (s) of P goes to ∞. Nothing enforces existence or
uniqueness of this distribution. That precisely one such distribution was found
is a consequence of P at hand. Note that the invariant distribution can be read
as projections of what will happen in the future, provided that policies remain
unchanged for a sufficiently long period of time and that no unforeseen events
occur. The invariant distribution obtained is (π1 = 0.06, π2 = 0.27, π3 = 0.27,
π4 = 0.19, π5 = 0.08, π6 = 0.06, π7 = 0.06). Everything else constant, this
distribution states that in the final period, States 2, 3, and 4 should include 74
percent (= π2 +π3+π4) of 5,878 farms in the U.S. This establishes a right-skewed
distribution in which there is a peak at States 2 and 3, suggesting that at the limit
the majority of farms would move away from the national average productivity
and that productivity would converge to a less-than-average level. Since there is
only one peak to emerge, polarization should not be expected. If, however, there
had been two peaks, one on the lower tail and the other on the upper tail of the
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invariant distribution, then coexistence of high and low-productivity farms would
have been the conclusion. Finally, a comparison of the time-invariant distribution
with the actual terminal period distribution,13 which are almost identical, suggests
the presence of a common tendency among U.S. farms with respect to the variable
of interest.
The speed of convergence, measured by the second largest eigenvalue λ of P ,

is the rate at which the stochastic process converges to the time-invariant distri-
bution.14 (This concept is different from the one used in the convergence studies
applying parametric regression method. Passing time in our context corresponds
to the speed of convergence in the parametric regression.) In our example, the
speed of convergence is equal to 0.938, which implies that time-invariant distrib-
ution is reached after few iterations of P . For example, if P is a diagonal matrix,
then the number of iteration s will be zero since P is already in equilibrium. In
other words, the further the matrix P is away from the equilibrium, the lower the
speed of convergence will be, and hence the bigger the number of iterations will
be.
Assumption 2, time stationarity of P , is tested by χ2 statistic, which is ex-

plained in Appendix A in detail. If the calculated χ2 is greater than the table value
of χ2m(m−1)(T−1) where T = 2, then P is said to be stationary over time. In the
case of a nonstationary P , one should examine time-specific transition matrices
individually.

13The actual terminal period distribution is calculated as (π1 =
426

5,878
= 0.07, π2 =

1,201

5,878
=

0.20, π3 =
1,730

5,878
= 0.29, π4 =

1,268

5,878
= 0.22, π5 =

565

5,878
= 0.10, π6 =

345

5,878
= 0.06, π7 =

343

5,878
=

0.06).
14Since the time-invariant distribution is the lefteigenvector corresponding to the (isolated)

unit eigenvalue, the second eigenvalue would be the speed of convergence.
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Transition probability matrix at the national level
States 1 2 3 4 5 6 7 N

1 0.72 0.27 0.01 426

2 0.07 0.76 0.16 0.01 1,201

3 0.17 0.70 0.12 0.01 1,730

4 0.19 0.69 0.11 0.01 1,268

5 0.28 0.55 0.15 0.02 565

6 0.02 0.22 0.59 0.17 345

7 0.02 0.16 0.82 343

Invariant dist. 0.06 0.27 0.28 0.19 0.08 0.06 0.06 5,878

Iterations (s) 11

χ2 C-χ2 = 68.96 > T-χ2m(m−1)(T−1) = 55.76

Eigenvalues 1.000 0.938 0.828 0.693 0.583 0.479 0.316

where States 1 through 7 in the above transition matrix correspond to the
intervals [0, 0.85), [0.85, 0.93), [0.93, 1.0), [1.0, 1.08), [1.08, 1.15), [1.15, 1.23),
[1.23 and above], respectively.

5. Empirical results

5.1. Spatial patterns during 1982-92

For each time period separately, a cross-section nonparametric regression model
is applied to investigate geographical patterns. For example, to examine patterns
in productivity per acre in the period 1982 we estimate a cross-section regression
model with productivity per acre as the dependent variable and longitude and
latitude as the independent variables. We further repeat the same regression
model for the periods 1987 and 1992 and obtain a total of three estimations
for productivity per acre. To this end, a total of nine regression models are
estimated as there are three independent variables (productivity per acre, farm
size, and productivity per farm) and three time periods (1982, 1987, and 1992).
The estimation results are then presented in colored graphs.
Productivity per acre. The period of 1982-1992 can be characterized by a three-

layer productivity pattern at the national level. The first layer, which shows the
highest productivity, starts from California, Arizona, Oregon, and Florida in 1982
(Figure 8), includes New Mexico, Washington, north of Georgia, Connecticut, and
Maine in 1987 (Figure 9), and finally expands in 1992 to the west and east coasts
and south of the U.S. (Figure 10). The second layer reflects the middle range
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productivity, stretching from west to east; and the third layer, which reveals
the lowest productivity, dominates over the states in up north close to Canada
(Figures 8, 9, 10). At the regional level, the West has always been the leading
region in productivity, followed by the South and the Northeast. The Midwest,
on the contrary, continuously remained at the bottom of the productivity scale.
At the divisional level, according to the 1992 estimations illustrated in Figure 10,
the Pacific division in West occupies the best position in productivity, East South
Central and South Atlantic in South the second, New England andMiddle Atlantic
in Northeast the third, West South Central in South the fourth, Mountain in West
the fifth, West South Central in Midwest the sixth, and West North Central in
Midwest the seventh.
Farm size. Figures 11, 12, and 13 show that size distribution to large extent

remained unchanged in the period 1982-1992. This distribution is characterized
by large farms in the middle belt and small farms in the East, West and South
regions. With a size ranging from 300 to 1,000 acres, large farms appear especially
in the states of North Dakota, South Dakota, Nebraska, Kansas, Minnesota, and
Iowa in the Midwest; Montana, Wyoming, Washington, Nebraska, Idaho, and
Colorado in the West; and Texas, Oklahoma, and Arizona in the South, while
small farms in the range of 0-200 acres are especially clustered in the Northeast
and in East South Central and South Atlantic divisions of the South, and in the
Pacific division of the West.
Productivity per farm. As can be seen from Figures 14, 15, and 16, produc-

tivity per farm has continuously increased during the period 1982-1992. In 1982,
high productivity was realized only in few states in the West and Midwest regions
(Figure 14), but in 1992 the large majority of states experienced high productivity
ranging from 150 to 450 thousand $ (Figure 16). This suggests that the number
of farms dropped rapidly in the period 1982-92. Productivity has steadily risen
across all the regions, especially in a circle of states, including California, Ari-
zona, New Mexico, Colorado, Kansas, Nebraska, Wyoming, Idaho, and Nevada.
Revealed by this is the fact that a large number of farms in the dry area of the U.S.
have suspended farming activities, and this increased productivity per farm. Sim-
ilar observation is also prevalent in North Carolina, Florida, Texas, Washington,
Montana, and Maine.
Inverse relation. A pairwise comparison of Figures 8 and 11, Figures 9 and

12, and Figures 10 and 13 indicates a persistent inverse relation between size and
productivity per acre. This relation appears to get stronger towards 1992. (When
productivity is measured in per farm unit, the inverse relation is not so apparent.)
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The inverse relation was investigated parametrically as well. Reported in Table
4 are correlation coefficients which are all negative, supporting in general the
assertion that at all levels large farms were relatively less productive than small
ones.

5.2. Convergence: projection into the future

Comparison of national and regional productivity per acre. The dark and thick
lines in Figures 17, 18, 19 represent time-invariant distributions for productivity
per acre, productivity per farm, and farm size at the national level, and the
light and dashed lines represent the same variables at the regional level. As is
shown in Figure 17, time-invariant distribution for productivity per acre is right-
skewed at both national and regional levels, with a stronger tendency at the
national level. From a regional perspective, convergence to a level lower than the
respective regional average is especially pronounced in the Northeast and Midwest
and less pronounced in the South and West. As can be seen from Figure 19, when
productivity is measured at the farm level, convergence to the averages arises at
the national and regional levels. But this should not be regarded as evidence
that productivity per farm is likely to equalize across regions. This can only be
interpreted as evidence that the-then-regional-averages act as the long run center
of gravity since the regions are very likely to differ in the future with respect to
their productivity level per farm.
Comparison of national and regional farm size. Figure 18 illustrates a mixed

picture with respect to farm size. At the national level, small and large farms are
likely to coexist (i.e., one peak in the lower tail, the other on the upper tail of the
distribution), while at the regional level small farms in the South and large farms
in the other three regions are likely to emerge. Surprisingly, medium-sized farms
tend to disappear in the long run. These regional differences reflect in some way
distinct farming activities, such as Northeast dominated by high value products,
South by grains, crops, and fruits, Midwest by dairy products, and West by fruits
and vegetables.
Comparison of regional and divisional distributions. The dark and thick lines

in Figures 20 through 31 represent time-invariant distributions for productivity per
acre, productivity per farm, and farm size at the regional level, and the light and
dashed lines represent the same variables at the divisional level. Predictions for
the Northeast region and its divisions are illustrated in Figures 20-22. According
to Figure 20, in the Northeast, productivity per acre converges to a level smaller
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than the regional average, and this relation also holds at the divisional level.
Figure 22 suggests that convergence to the regional and divisional averages of
productivity per farm is likely to occur at the regional and divisional levels, and
finally Figure 21 illustrates that with respect to farm size distribution the Middle
Atlantic division determines the size and productivity distributions at the regional
level.
Projections for the Midwest and its divisions are illustrated in Figures 23-

25. At the regional (divisional) level, productivity per acre moves towards the
smaller-than-regional (divisional) average, whereas with a bell-shaped curve at
the regional (divisional) level productivity per farm reveals converges to the re-
gional (divisional) average. Finally, farm size is likely to increase to the higher-
than-regional average (Figure 24). Distribution for the regional productivity per
acre is determined by the East North Central division, whereas the regional size
distribution determined by the West North Central.
Projections for the South and its divisions are illustrated in Figures 26-28.

Productivity per acre and farm size converge to the smaller-than-regional aver-
age as productivity per farm converges to the regional average. With respect to
productivity per acre, the regional and divisional distributions look alike, except
for the East South Central division. A similar exception also arises with respect
to farm size in the East South Central division, where size is expected to evolve
around a level slightly smaller than the regional average. For the other two divi-
sions, size is expected to be around a level much smaller than the regional average.
For productivity per farm, the divisional distributions are almost identical to the
regional one. It appears that the West South Central is the leading division in
determining the regional farm size.
Predictions for the West and its divisions are illustrated in Figures 29-31.

Productivity per acre and productivity per farm both converge to the regional
average, while size shows polarization around two peaks. One emerges around
the smaller-than, the other around the larger—than-regional average size. With
respect to productivity per acre, both divisions are anticipated to be around the
regional average, but the Mountain division has slightly more pronounced effect
on the whole region.

5.3. Inverse relation: projection into the future

In the context of Markov chains, a long run negative (positive) relationship be-
tween size and productivity per acre is said to exist if their time-invariant distri-
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butions are skewed in the opposite (same) directions.15

National analysis. An unclear relation between size and productivity arises at
the national level when their invariant distributions are compared. Productivity
has a right-skewed time-invariant distribution, represented by the dark and thick
line in Figure 17 as farm size has a distribution with two peaks shown in Figure
18. This suggests that the long run productivity is most likely to stabilize at a
level lower than the average, whereas regarding farm size large and small farms
are expected to coexist.
Regional analysis. Three observations are immediate when the regional time-

invariant distributions for size and productivity are compared. First, a positive
relation emerges in the South, an inverse relation in the Northeast and Midwest,
and an unclear relation in the West. With the right-skewed distributions, illus-
trated in Figures 26 and 27, the South manifests a typical positive relation at the
regional as well as divisional levels. In this region, farms incline to get smaller
as they become less productive than the average farm. In the Northeast, farm
size and productivity are negatively related, illustrated in Figures 20 and 21. The
Middle Atlantic division plays a dominant role in this relation, reflected by the
fact that its invariant distribution mimics the regional distribution. The Midwest,
illustrated in Figures 23 and 24, is the region where a typical inverse relation is
observed not only at the regional but also divisional level. One peak emerges
in both size and productivity, appearing on the opposite sides of the invariant
distributions. In the West, productivity converges to the average at the regional
and divisional levels (Figure 29), but size wiggles in the region and the Mountain
division as it converges to the average in the Pacific division (Figure 30).

6. Comments and conclusions

This study examined the patterns of farm size and productivity in U.S. agriculture
over the period 1982-1992, and projected these ex post patterns into the future.
The examination was carried out at the divisional, regional, and national levels.
First, a nonparametric kernel regression method was applied to detect ex post
geographical patterns in changes of size and productivity. Estimations show that
(i) in 1982 productivity per acre was high in the East, West, and South, modest
in the middle part of the U.S., and low in the North, and this pattern remained
the same in the period 1987-1992, while the level of productivity continuously

15Note that in the following paragraphs the inverse relationship is investigated only by com-
paring farm size with productivity per acre.
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increased over time; (ii) during 1982-1992 farm size remained unchanged, large
farms being in the middle belt stretching from north to down south and small ones
in the East, West and South; and finally (iii) over the period 1982-1992 an inverse
relationship grew stronger between size and productivity per acre. Furthermore,
Markov chain method was employed to project the ex post patterns into the future.
Predictions suggest that at the national and regional levels (i) farms are likely to
experience lower productivity per acre; (ii) small and large farms are likely to
coexist as medium-sized farms tend to vanish; and lastly (iii) the relationship
between size and productivity is predicted to be negative in the Northeast and
Midwest regions, positive in the South, and unclear in the West and nation wide.
These results shed light on several issues hotly discussed among academicians

and among policy makers. First, long lasting academic curiosity that small farms
are more productive than large farms seems to be a locational phenomenon, not
necessarily a stylized fact nor a spurious result caused by bias due to the omission
of land quality.16 During the period 1982-1992 the IR has been observed all over
the U.S., but in the future it is expected that such relationship would hold only in
the Northeast and Midwest regions. In the context of off-farm work participation,
Tavernier, Temel, and Li (1997) has also estimated the IR in the Northeast dur-
ing the same period. The fact that the Northeast is highly populated, relatively
poorly endowed with farm land, and highly urbanized leads to increasing land
prices. Naturally, farms opt for specialization in high-value agricultural produce,
like greenhouse farming, resulting in higher productivity per acre in small farms
than productivity in large farms. Agricultural and environmental regulations that
prohibit the conversion of farm land into urban use further become restrictive for
large farms, in view of a severe need in the Northeast for out-of-state labor during
the harvest time. On the contrary, an expected positive relationship in the South
can partly be attributed to upcoming changes in farming structure, not necessar-
ily to better farm management nor better supervision of large farms. Possibly,
these changes have already been implanted in the farming sector through past
macro policies and developments, including changes in interest rates, continu-
ously increasing returns in financial markets, the introduction and adoption of
new technologies, changes in regulations with respect to tax exemption and direct
government subsidies, and developments in labor markets. All in all, an assess-
ment of the relationship between size and productivity should consider multiple

16In an ongoing research, we investigate the IR from an ecological perspective, estimating the
relationship between size and productivity over three agro-ecological zones in the U.S. By doing
so, soil, land, and climate conditions of an agro-ecological zone are taken into account.
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factors, and give special emphasis to management of location-specific resources
and the effects on the utilization of these resources of changes in domestic terms
of trade between agriculture and nonagriculture.
A second issue, which relates to the future distribution of farm size, has re-

mained on the agenda of policy makers for a long time. Policy makers have
clearly been favoring the dominance of family farms, usually small scale, over
large scale corporate enterprises, and this preference has even been formulated as
a policy of the U.S., approved by the Congress. The Food and Agriculture Act
of 1977 includes the following declaration: ”Congress hereby specifically reaffirms
the historical policy of the US to foster and encourage the family farm system
of agriculture in this country. Congress firmly believes that the maintenance of
the family farm system is essential to the social well-being of the Nation and the
competitive production of adequate supplies of food and fiber. Congress further
believes that any significant expansion of non-family owned, large scale corporate
enterprises will be detrimental to the national welfare.” Although small family
farms have been favored, at least emotionally and politically, for almost a quarter
of a century, their full dominance in agricultural markets is still questionable. Our
finding from Markov chain method indicates that in the future small and large
farms are likely to coexist and medium-seized farms to vanish at the national level,
whereas at the regional level small farms are likely to be dominant in the South,
large farms in the other three regions.
With respect to growth in farm size, often neglected in the literature is to

uncover factors that are associated with farmers’ risk taking behavior and with
their performance under uncertainty. In this connection, a special emphasis needs
to be given to the effects on farm size of such variables as the timing of operations,
labor management and supervision, the exercise of control in a biological context
(i.e., control over diseases, pests, and other natural hazards) on one hand and
financial on the other. An additional factor, whose significance was empirically
shown by Kislev and Peterson (1982) in the context of the long run growth in the
U.S. agricultural firm size, is changes in relative factor prices. In their study, they
showed that virtually all of the growth in firm size is explained by this factor,
without reference to technological change or economies of scale.
A third issue concerns the expected geographical patterns in productivity per

acre. Our results suggest that at the national and regional levels, productivity
has a tendency to decline in the long run. In other words, productivity is not
expected to show a regional pattern, one which is high in one region and low in
the other, although these expectations grew out of a strong regional orientation.
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High productivity first appeared among the farms in California and Arizona in
the West, in Florida in the South, and Connecticut in the Northeast, and in
subsequent years it grew stronger around these regional hubs.
A fourth remark relates to the future of U.S. farm organization. The shrinking

number of young people raised on farms during the period 1982-97 may lead
in the future to more nontraditional farm entrants, such as diversified nonfarm
business entities, farm corporations, or vertically integrated food processing or
marketing firms (Gale, 1993). This may presage a shift in the social and economic
organization of U.S. farming away from the traditional arrangements where one
person or family owns, operates, and provides most of the labor for a single farm
toward increased specialization and concentration of ownership.
Finally, exit from farming has gained momentum in the 1980s, following a

general increase during the 1970s. Also estimated for the 1990s is the shrinking in
the pool of potential entrants. As reported by Gale (1993), during the period 1982-
1987 entry of farmers less than 25 years old and 25-34 years old fell by 30 and 50
percent, respectively. Varying in the range 36-59 percent for less than 25 years age
and in the range 8-41 percent for between 25-34 years age, this decline has mostly
seen in the states of the Midwest and Texas in the South. The number of 20-24
year-old males raised on farms will shrink 25 percent in the period 1982-1987, 38
percent in the 1987-1992, and 19 percent in the 1992-1997. The decrease in the
number of 25-34 year-old will be 9 percent in the 1982-1987, 18 percent in the
1987-1992, and 31 percent in the 1992-1997. These declines might be considered
signs of increasing financial barriers and better nonfarm opportunities.
This study, of course, cannot be viewed, nor is it presented, as conclusive.

Additional research is needed to specify more precisely the relationship between
size and productivity across ecological zones. This should provide insights into
the role that soil, land, and climate conditions play in agricultural production. A
second field that deserves further research relates to methodological development.
A challenging task for future research in this respect is to extend the Markov
chain method in such a way that more specific management and human capital
variables can also be included in the analysis to explain the transition in farm
size and productivity. It is clear that estimating the specific effects of such factors
requires a dynamic analysis.
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A. Assumptions of Markov chains

Here we present hypothesis testing procedures, adopted from Anderson and Good-
man (1957) and Goodman (1962), to investigate whether or not the transition
probability matrices at hand are time-stationary and follow a first-order process.
For illustrative purposes, the following contingency table will be referred to through-
out this Appendix:

A(t) =

States 1t 2t Total
1t−1 nt11 nt12 nt1.
2t−1 nt21 nt22 nt2.
Total nt.1 nt.2 nt

and Zi =

t/j j = 1 j = 2
t = 1 p̂1i1 p̂1i2
t = 2 p̂2i1 p̂2i2
t = 3 p̂3i1 p̂3i2

.

If T = 3, then we will have 3 contingency tables, A(t) for t = 1, 2, 3, given two
states i = j = 1, 2. In this example, nij = Σ

3
t=1n

t
ij and ni = Σ

2
j=1nij = Σ

3
t=1n

t
i.

Assumption 1. The transition probabilities are time-stationary. Here the null
hypothesis is H0 : p

t
ij = p̂ij for all t, and an alternative to this assumption is

that the transition probability depends on t, H1 : p
t
ij = p̂tij where p̂

t
ij =

(
ntij

nt−1i

)

is the estimate of the transition probability for time t. Under these hypotheses,

the likelihood ratio is of the form, λ = ΠtΠi,j

[
p̂ij
p̂tij

]ntij
, where ΠTt=1Πi,j p̂

ntij
ij hold

under H0 and Π
T
t=1Πi,j(p̂

t
ij)
ntij holds under H1. And −2 log λ is distributed as

χ2(T−1)[m(m−1)] when H0 is true. It should be noted that the likelihood ratio resem-
bles likelihood ratios obtained for standard tests of homogeneity in contingency
table A(t). The null hypothesis states that the random variables represented by
the T rows in Zi have the same distribution. In order to test it, we calculate
χ2i = Σi,jn

t−1
i (p̂tij − p̂ij)

2/p̂ij . If H0 is true, χ
2
i has the limiting distribution with

(m− 1)(T − 1) degrees of freedom, and the set of χ2i ’s is asymptotically indepen-
dent, and the sum, χ2 = Σ2i=1χ

2
i = ΣiΣt,jn

t−1
i (p̂tij− p̂ij)

2/p̂ij, has the usual limiting
distribution with (T − 1)[m(m− 1)] degrees of freedom.

Another way of testing the same hypothesis is to calculate λi = Πt,j

[
p̂ij
p̂tij

]ntij

for i = 1, 2 by using Zi. The asymptotic distribution of −2 log λi is χ
2
i with

(m − 1)(T − 1) degrees of freedom. The test criterion based on λ can then be
written as Σmi=1 − 2 log λi = −2 log λ .
Assumption 2. The Markov chain is of a given order. Intuitively speaking,

this assumption states that the location of a county at time (t+1) is independent
of its location at time t. A Markov chain is second-order if a county is in class
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i at time (t − 2), in j at time (t − 1), and in k at time t. Let ptijk denote the
probability that a county follows a second-order chain. Time stationarity then
implies ptijk = pijk for all t = 2, . . . , T . A first-order stationary chain is a special
case of second-order chain, one for which ptijk does not depend on i.
Now let ntijk be the number of counties in class i at (t − 2), in class j at

(t − 1), and in class k at t. Let nt−1ij = Σkn
t
ijk and nijk = ΣTt=2n

t
ijk . The max-

imum likelihood estimate of pijk for stationary chains is p̂ijk = (nijk/Σ
m
l=1nijl) =(

ΣTt=2n
t
ijk/Σ

T
t=2n

t−1
ij

)
. The null hypothesis in this case is H0 : p1jk = p2jk =

... = pmjk = pjk for j, k = 1, . . . ,m. The likelihood ratio test criterion is

λ = Πmi,j,k=1

[
p̂jk
p̂ijk

]nijk
where p̂jk = (Σmi=1nijk/Σ

m
i=1Σ

m
l=1nijl) =

(
ΣTt=2n

t
jk/Σ

T−1
t=1 n

t
j

)

is the maximum likelihood estimate of pjk. Under the null hypothesis, −2 log λ
has an asymptotic- χ2

m(m−1)2 distribution where χ
2
j = Σi,kn

∗
ij(p̂ijk − p̂jk)

2/p̂jk and

n∗ij = Σknijk = ΣkΣ
T
t=2n

t
ijk = Σ

T
t=2n

t−1
ij = ΣT−1t=1 n

t
ij with (m − 1)

2 degrees of free-

dom. The corresponding test using the likelihood ratio is λj = Πmi,k=1

[
p̂jk
p̂ijk

]nijk
.

The asymptotic distribution of −2 log λj is chi-square with (m − 1)
2 degrees of

freedom.
To test the joint hypothesis H0 : pijk = pjk for all i, j, k = 1, 2, . . . ,m, we cal-

culate χ2 = Σmj=1χ
2
j = Σj,i,kn

∗
ij(p̂ijk− p̂jk)

2/p̂jk which has the limiting distribution
with m(m− 1)2. Similarly, the joint test criterion is Σmj=1 − 2 log λj = −2 log λ =
2Σj,i,knijk[log p̂ijk − log p̂jk] .

26



0

5

10

15

20

25

0.2 1.0 1.6

P
e
rc

e
n
ta

g
e
 o

f 
c
o
u
n
ti
e
s 1982

1987

1992

0

10

20

30

0 250 500

P
e
rc

e
n
ta

g
e
 o

f 
c
o
u
n
ti
e
s

1982

1987

1992

0

5

10

15

20

0.3 1.0 1.5

P
e
rc

e
n
ta

g
e
 o

f 
co

u
n
tie

s

0

10

20

30

0 400 800

P
e
rc

e
n
ta

g
e
 o

f 
co

u
n
tie

s

0

10

20

30

40

0.7 1.0 1.5

P
e
rc

e
n
ta

g
e
 o

f 
c
o
u
n
ti
e
s

0

20

40

60

0 1500 3000

P
e
rc

e
n
ta

g
e
 o

f 
c
o
u
n
ti
e
s

Figure 1. Productivity per farm ('000 $) Figure 2. Productivity per farm (transformed)

Figure 3. Size per farm (acres) Figure 4. Size per farm (transformed)

Figure 5. Productivity per acre ($) Figure 6. Productivity per acre (transformed)



Figure 7. USA: regions and divisions
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Figure 8. Productivity per acre in 1982 ($) Figure 9. Productivity per acre in 1987 ($) Figure 10. Productivity per acre in 1992 ($)

Figure 11. Size per farm in 1982 (acres) Figure 12. Size per farm in 1987 (acres) Figure 13. Size per farm in 1992 (acres)

Figure 14. Productivity per farm in 1982 ('000 $) Figure 15. Productivity per farm in 1987 ('000 $) Figure 16. Productivity per farm in 1992 ('000 $)
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Table 1. Class definitions of productivity per acre and associate values of the original data.

Cut-off point 1 2 3 4 5 6

Year 0.850 0.925 1.000 1.075 1.150 1.225

1982 161 253 396 620 971 1521
1987 221 356 574 924 1487 2395
1992 289 476 784 1293 2131 3513

Table 2. Administrative regions and divisions

Region/Division Obs. Obs.

Northeast 201 West 363

New England 63 East North Central 430

Middle Atlantic 138 West North Central 615

South 1331 Midwest 1045

South Atlantic 529 Mountain 241

East South Central 362 Pacific 122

West South Central 440 National 2940

Table 3. Average productivity and size at national level

Productivity per farm in

constant 1990 US $

Size per farm in constant

1990 US $
Productivity per acre

1982 67,714 180 377

1987 94,932 171 554

1992 147,406 199 742

Table 4. Pearson correlation coefficient Productivity per Farm / Productivity per acre.

Region/Division 1982 1987 1992

National  -0.220 -0.106 -0.186

Northeast  -0.373 -0.273 -0.317
 New England  -0.384 -0.377 -0.426

 Middle Atlantic  -0.414 -0.310 -0.372

Midwest  -0.286 -0.216 -0.164
 East North Central  -0.223 -0.227 -0.199

 West North Central  -0.304 -0.223 -0.177

South  -0.192 -0.177 -0.137
 South Atlantic  -0.208 -0.197 -0.209

 East South Central  -0.286 -0.186 -0.188

 West South Central  -0.212 -0.216 -0.146

West  -0.381 -0.119 -0.366
 Mountain  -0.343 -0.327 -0.332

 Pacific  -0.358 -0.121 -0.354
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Size per Farm by Administrative Regions and Divisions: Transition Matrices

National
Classes < .7 .7 − .8 .8 − .9 .9 − 1.0 1.0 − 1.1 1.1 − 1.2 1.2 − 1.3 1.3 > N

< .7 0.835 0.165 434

.7 − .8 0.072 0.792 0.136 682

.8 − .9 0.004 0.144 0.771 0.080 0.001 796

.9 − 1.0 0.005 0.137 0.773 0.084 934

1.0 − 1.1 0.002 0.107 0.777 0.112 0.001 970

1.1 − 1.2 0.082 0.801 0.117 1057

1.2 − 1.3 0.005 0.078 0.849 0.068 618

1.3 > 0.002 0.121 0.876 421

Time-invariant 0.095 0.208 0.187 0.105 0.083 0.102 0.142 0.078 5912

Iterations 12

χ² 70.835

Eigenvalues 1.000 0.985 0.907 0.847 0.784 0.716 0.644 0.576

North East Region
Classes < .8 .8 − .9 .9 − 1.0 1.0 − 1.1 1.1 > N

<. 8 0.890 0.110 27

.8 − .9 0.088 0.737 0.175 46

.9 − 1.0 0.152 0.685 0.164 92

1.0 − 1.1 0.006 0.083 0.815 0.096 157

1.1 > 0.093 0.907 86

Time-invariant 0.116 0.145 0.156 0.287 0.295 408

Iterations 10

χ² 6.851

Eigenvalues 1.000 0.95 0.846 0.729 0.509

New England
Classes < .9 .9 − 1.0 1.0 − 1.1 1.1 > N

< .9 0.919 0.081 25

.9 − 1.0 0.091 0.836 0.073 40

1.0 − 1.1 0.075 0.825 0.100 40

1.1 > 0.129 0.871 23

Time-invariant 0.291 0.259 0.253 0.197 128

Iterations 10

χ² 5.061

Eigenvalues 1.000 0.949 0.804 0.698

Middle Atlantic
Classes < .8 .8 − .9 .9 − 1.0 1.0 − 1.1 1.1 > N

<. 8 0.778 0.222 18

.8 − .9 0.153 0.676 0.170 19

.9 − 1.0 0.015 0.074 0.728 0.183 66

1.0 − 1.1 0.058 0.861 0.081 134

1.1 > 0.060 0.940 43

Time-invariant 0.046 0.056 0.107 0.337 0.455 280

Iterations 10

χ² 9.170

Eigenvalues 1.000 0.946 0.855 0.681 0.500
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Mid West Region
Classes < .7 .7 − .8 .8 − .9 .9 − 1.0 1.0 − 1.1 1.1 − 1.2 1.2 > N

    < .7 0.833 0.167 20

.7 − .8 0.051 0.863 0.086 138

.8 − .9 0.053 0.872 0.075 281

.9 − 1.0 0.058 0.858 0.083 530

1.0 − 1.1 0.041 0.900 0.059 705

1.1 − 1.2 0.107 0.870 0.024 298

1.2 > 0.125 0.875 120

Time-invariant 0.026 0.084 0.136 0.174 0.350 0.193 0.036 2092

Iterations 11

χ² 44.299

Eigenvalues 1.000 0.974 0.913 0.875 0.81 0.768 0.731

East North Central
Classes < .8 .8 − .9 .9 − 1.0 1.0 − 1.1 1.1 > N

< .8 0.862 0.138 48

.8 − .9 0.039 0.882 0.079 103

.9 − 1.0 0.055 0.864 0.081 235

1.0 − 1.1 0.085 0.846 0.068 304

1.1 > 0.068 0.932 172

Time-invariant 0.052 0.185 0.263 0.249 0.251 862

Iterations 10

χ² 20.406

Eigenvalues 1.000 0.959 0.888 0.801 0.738

West North Central
Classes < .7 .7 − .8 .8 − .9 .9 − 1.0 1.0 − 1.1 1.1 − 1.2 1.2 > N

< .7 0.579 0.421 19

.7 − .8 0.050 0.891 0.059 72

.8 − .9 0.025 0.909 0.066 122

.9 − 1.0 0.052 0.853 0.095 346

1.0 − 1.1 0.060 0.903 0.036 413

1.1 − 1.2 0.109 0.862 0.029 238

1.2 > 0.396 0.604 20

Time-invariant 0.009 0.077 0.183 0.233 0.367 0.123 0.009 1230

Iterations 10

χ² 27.828

Eigenvalues
1.000 0.967 0.914 0.863 0.773 0.564 0.521
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South Region
Classes < .7 .7 − .8 .8 − .9 .9 − 1.0 1.0 − 1.1 1.1 − 1.2 1.2 − 1.3 1.3 > N

< .7 0.782 0.209 0.009 193

.7 − .8 0.060 0.695 0.242 0.003 317

.8 − .9 0.006 0.079 0.786 0.125 0.002 0.002 498

.9 − 1.0 0.005 0.010 0.225 0.688 0.072 424

1.0 − 1.1 0.003 0.232 0.668 0.094 0.003 361

1.1 − 1.2 0.009 0.195 0.670 0.122 0.003 315

1.2 − 1.3 0.004 0.131 0.742 0.123 252

1.3 > 0.009 0.050 0.941 318

Time-invariant 0.055 0.146 0.389 0.210 0.069 0.036 0.030 0.065 2678

Iterations 11

χ² 78.639

Eigenvalues 1.000 0.978 0.87 0.814 0.719 0.615 0.531 0.445

South Atlantic
Classes < .7 .7 − .8 .8 − .9 .9 − 1.0 1.0 − 1.1 1.1 − 1.2 1.2 − 1.3 1.3 > N

< .7 0.794 0.206 67

.7 − .8 0.052 0.666 0.283 119

.8 − .9 0.012 0.108 0.657 0.223 173

.9 − 1.0 0.005 0.015 0.180 0.711 0.089 209

1.0 − 1.1 0.020 0.273 0.567 0.140 150

1.1 − 1.2 0.006 0.230 0.575 0.189 148

1.2 − 1.3 0.121 0.626 0.253 115

1.3 > 0.146 0.854 89

Time-invariant 0.051 0.121 0.242 0.262 0.079 0.047 0.073 0.126 1070

Iterations 11

χ² 37.945

Eigenvalues 1.000 0.977 0.846 0.754 0.645 0.515 0.409 0.304

East South Central
Classes < .7 .7 − .8 .8 − .9 .9 − 1.0 1.0 − 1.1 1.1 − 1.2 1.2 − 1.3 1.3 > N

< .7 0.790 0.210 70

.7 − .8 0.088 0.653 0.259 69

.8 − .9 0.784 0.216 122

.9 − 1.0 0.008 0.131 0.812 0.048 144

1.0 − 1.1 0.010 0.218 0.728 0.044 92

1.1 − 1.2 0.014 0.223 0.675 0.088 79

1.2 − 1.3 0.011 0.223 0.664 0.102 77

1.3 > 0.013 0.079 0.908 75

Time-invariant 0.006 0.015 0.331 0.507 0.106 0.019 0.007 0.008 728

Iterations 10

χ² 47.303

Eigenvalues 0.999 0.949 0.87 0.826 0.708 0.583 +

0.022 I

0.583 -

0.022 I

0.495

West South Central
Classes < .7 .7 − .8 .8 − .9 .9 − 1.0 1.0 − 1.1 1.1 − 1.2 1.2 − 1.3 1.3 > N

< .7 0.625 0.375 48

.7 − .8 0.007 0.840 0.154 141

.8 − .9 0.007 0.120 0.798 0.069 0.007 135

.9 − 1.0 0.246 0.696 0.058 122

1.0 − 1.1 0.164 0.759 0.068 0.009 116

1.1 − 1.2 0.107 0.760 0.133 128

1.2 − 1.3 0.009 0.087 0.755 0.149 114

1.3 > 0.146 0.854 76

Time-invariant 0.012 0.306 0.370 0.113 0.055 0.035 0.053 0.055 880

Iterations 11

χ² 24.928

Eigenvalues 1.001 0.983 0.869 0.781 0.69 0.61 0.599 0.555
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West Region
Classes < .7 .7 − .8 .8 − .9 .9 − 1.0 1.0 − 1.1 1.1 − 1.2 1.2 − 1.3 1.3 > N

< .7 0.842 0.158 69

.7 − .8 0.121 0.753 0.126 84

.8 − .9 0.052 0.855 0.093 87

.9 − 1.0 0.117 0.776 0.095 0.012 85

1.0 − 1.1 0.066 0.838 0.089 0.006 167

1.1 − 1.2 0.130 0.791 0.079 115

1.2 − 1.3 0.011 0.090 0.809 0.091 99

1.3 > 0.023 0.166 0.811 42

Time-invariant 0.055 0.071 0.172 0.136 0.218 0.162 0.126 0.061 748

Iterations 11

χ² 24.423

Eigenvalues 1.000 0.974 0.923 0.876 0.748 0.688 0.646 0.62

Mountain
Classes < .7 .7 − .8 .8 − .9 .9 − 1.0 1.0 − 1.1 1.1 − 1.2 1.2 > N

< .7 0.818 0.182 28

.7 − .8 0.194 0.722 0.083 36

.8 − .9 0.090 0.789 0.121 67

.9 − 1.0 0.076 0.800 0.123 89

1.0 − 1.1 0.131 0.767 0.103 120

1.1 − 1.2 0.057 0.818 0.125 88

1.2 > 0.182 0.818 60

Time-invariant 0.106 0.099 0.092 0.146 0.138 0.249 0.171 488

Iterations 11

χ² 8.564

Eigenvalues 1.000 0.981 0.924 0.788 0.681 0.609 0.55

Pacific
Classes < .7 .7 − .8 .8 − .9 .9 − 1.0 1.0 − 1.1 1.1 − 1.2 1.2 − 1.3 1.3 > N

< .7 0.818 0.182 18

.7 − .8 0.071 0.690 0.238 42

.8 − .9 0.174 0.739 0.087 46

.9 − 1.0 0.026 0.888 0.086 34

1.0 − 1.1 0.157 0.801 0.042 25

1.1 − 1.2 0.074 0.781 0.145 41

1.2 − 1.3 0.282 0.618 0.100 21

1.3 > 0.061 0.939 33

Time-invariant 0.030 0.077 0.105 0.346 0.189 0.107 0.055 0.091 260

Iterations 11

χ² 19.902

Eigenvalues 1.000 0.977 0.947 0.887 0.796 0.713 0.485 0.469
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Productivity per Acre by Administrative Regions and Divisions: Transition Matrices

National
Classes

< 0.850

0.850  − 

0.925

0.925  − 

1.000

1.000  − 

1.075

1.075  − 

1.150

1.150  − 

1.225

1.225 > N

< 0.850 0.726 0.262 0.012 423

0.850  − 0.925
0.066 0.768 0.158 0.008 1197

0.925  − 1.000 0.166 0.707 0.123 0.005 1726

1.000  − 1.075 0.190 0.689 0.113 0.006 0.002 1268

1.075  − 1.150
0.002 0.008 0.272 0.554 0.148 0.015 566

1.150  − 1.225 0.017 0.222 0.593 0.168 347

1.225 > 0.003 0.003 0.017 0.157 0.820 337

Time-invariant 0.065 0.268 0.273 0.191 0.083 0.058 0.062 5864

Iterations 9

χ² 65.767

Eigenvalues 1.000 0.938 0.828 0.693 0.583 0.479 0.316

North East Region
Classes

< 0.925

0.925  − 

1.000

1.000  − 

1.075

1.075  − 

1.150

1.150  > N

< 0.925 0.746 0.240 0.014 71

0.925  − 1.000
0.070 0.827 0.092 0.011 173

1.000  − 1.075 0.159 0.728 0.113 88

1.075  − 1.150 0.062 0.333 0.517 0.088 33

1.150  > 0.151 0.849 33

Time-invariant 0.125 0.457 0.273 0.091 0.053 398

Iterations 8

χ² 10.552

Eigenvalues 1.000 0.888 0.776 0.626 0.377

New England
Classes

< 0.925

0.925  − 

1.000

1.000  − 

1.075

1.075  − 

1.150

1.150  > N

< 0.925 0.746 0.215 0.038 23

0.925  − 1.000 0.145 0.750 0.105 48

1.000  − 1.075 0.029 0.202 0.609 0.130 0.029 31

1.075  − 1.150
0.118 0.701 0.181 17

1.150  > 0.583 0.417 7

Time-invariant 0.198 0.310 0.174 0.236 0.082 126

Iterations 9

χ² 5.191

Eigenvalues 1.000 0.918 0.625 0.481 0.199

Middle Atlantic
Classes

< 0.925

0.925  − 

1.000

1.000  − 

1.075

> 1.075
N

< 0.925
0.881 0.119 25

0.925  − 1.000 0.037 0.896 0.060 0.007 134

1.000  − 1.075
0.154 0.768 0.078 78

1.075  > 0.113 0.887 35

Time-invariant 0.147 0.473 0.207 0.173 272

Iterations 9

χ² 5.490

Eigenvalues 0.999 0.917 0.835 0.681
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Mid-West Region
Classes

< 0.850

0.850  − 

0.925

0.925  − 

1.000

1.000  − 

1.075

1.075  − 

1.150

1.150  − 

1.225

1.225 > N

< 0.850 0.721 0.279 115

0.850  − 0.925 0.029 0.702 0.264 0.005 206

0.925  − 1.000 0.048 0.859 0.088 0.003 0.001 712

1.000  − 1.075
0.192 0.745 0.063 727

1.075  − 1.150 0.004 0.004 0.177 0.748 0.067 265

1.150  − 1.225 0.159 0.745 0.096 44

1.225 >
0.045 0.091 0.864 21

Time-invariant 0.010 0.092 0.503 0.240 0.093 0.036 0.026 2090

Iterations 9

χ² 16.444

Eigenvalues 0.999 0.936 0.828 0.771 0.686 0.606 0.559

East North Central
Classes

< 0.925

0.925  − 

1.000

1.000  − 

1.075

1.075  − 

1.150

1.150  > N

< 0.925 0.780 0.220 60

0.925  − 1.000 0.032 0.895 0.071 0.002 431

1.000  − 1.075 0.128 0.785 0.080 0.007 298

1.075  − 1.150
0.021 0.111 0.827 0.042 55

1.150  > 0.100 0.900 16

Time-invariant 0.079 0.442 0.228 0.159 0.092 860

Iterations 9

χ² 30.418

Eigenvalues 1.000 0.933 0.831 0.76 0.664

West North Central
Classes

< 0.850

0.850  − 

0.925

0.925  − 

1.000

1.000  − 

1.075

1.075  − 

1.150

1.150  − 

1.225

1.225 >
N

< 0.850
0.683 0.317 93

0.850  − 0.925 0.026 0.759 0.215 159

0.925  − 1.000
0.050 0.834 0.108 0.009 344

1.000  − 1.075 0.102 0.833 0.062 0.002 401

1.075  − 1.150 0.283 0.630 0.081 0.005 171

1.150  − 1.225
0.024 0.268 0.561 0.148 41

1.225 > 0.236 0.764 21

Time-invariant 0.007 0.082 0.353 0.402 0.100 0.033 0.023 1230

Iterations 9

χ² 10.849

Eigenvalues 1.105 0.874 0.727 +

0.193 I

0.727 -

0.193 I

0.712 0.6 0.319
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South Region
Classes

< 0.850

0.850  − 

0.925

0.925  − 

1.000

1.000  − 

1.075

1.075  − 

1.150

1.150  − 

1.225

1.225 > N

< 0.850 0.565 0.421 0.014 189

0.850  − 0.925 0.113 0.696 0.172 0.019 577

0.925  − 1.000 0.002 0.137 0.671 0.180 0.007 0.001 0.001 752

1.000  − 1.075
0.008 0.307 0.548 0.127 0.011 532

1.075  − 1.150 0.021 0.239 0.560 0.166 0.014 279

1.150  − 1.225 0.017 0.007 0.267 0.599 0.110 173

1.225 >
0.026 0.171 0.803 152

Time-invariant 0.060 0.226 0.306 0.187 0.103 0.069 0.048 2654

Iterations 9

χ² 75.688

Eigenvalues 1.000 0.916 0.794 0.668 0.447 0.367 0.250

South Atlantic
Classes

< 0.850

0.850  − 

0.925

0.925  − 

1.000

1.000  − 

1.075

1.075  − 

1.150

1.150  − 

1.225

1.225 > N

< 0.850 0.740 0.260 77

0.850  − 0.925 0.111 0.663 0.209 0.014 0.005 216

0.925  − 1.000 0.007 0.138 0.694 0.155 0.003 0.003 308

1.000  − 1.075
0.010 0.270 0.543 0.167 0.010 196

1.075  − 1.150 0.015 0.221 0.594 0.163 0.007 137

1.150  − 1.225 0.014 0.329 0.454 0.204 55

1.225 >
0.213 0.787 61

Time-invariant 0.087 0.187 0.281 0.166 0.132 0.073 0.074 1050

Iterations 9

χ² 38.152

Eigenvalues 1.000 0.929 0.815 0.687 0.496 0.354 0.193

East South Central
Classes

< 0.925

0.925  − 

1.000

1.000  − 

1.075

1.075  − 

1.150

1.150  − 

1.225

1.225 > N

< 0.925 0.731 0.258 0.012 174

0.925  − 1.000 0.102 0.711 0.187 211

1.000  − 1.075 0.004 0.225 0.670 0.095 0.005 213

1.075  − 1.150
0.019 0.429 0.413 0.130 0.010 75

1.150  − 1.225 0.150 0.650 0.200 25

1.225 > 0.033 0.045 0.033 0.888 26

Time-invariant 0.148 0.377 0.309 0.064 0.035 0.067 724

Iterations 9

χ² 55.249

Eigenvalues 1.000 0.922 0.752 0.652 0.492 0.246
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West South Central
Classes

< 0.850

0.850  − 

0.925

0.925  − 

1.000

1.000  − 

1.075

1.075  − 

1.150

1.150  − 

1.225

1.225 > N

< 0.850 0.420 0.552 0.028 74

0.850  − 0.925 0.123 0.691 0.173 0.014 220

0.925  − 1.000 0.156 0.699 0.141 0.004 207

1.000  − 1.075
0.233 0.650 0.111 0.006 172

1.075  − 1.150 0.274 0.545 0.157 0.024 83

1.150  − 1.225 0.014 0.187 0.720 0.080 56

1.225 >
0.012 0.306 0.682 68

Time-invariant 0.052 0.245 0.302 0.197 0.085 0.087 0.032 880

Iterations 9

χ² 20.739

Eigenvalues 1.000 0.922 0.78 0.614 0.511 0.337 0.243
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West Region
Classes

< 0.850

0.850  − 

0.925

0.925  − 

1.000

1.000  − 

1.075

1.075  − 

1.150

1.150  − 

1.225

1.225 > N

< 0.850 0.803 0.197 121

0.850  − 0.925 0.093 0.682 0.203 0.022 137

0.925  − 1.000 0.120 0.721 0.147 0.012 150

1.000  − 1.075
0.011 0.153 0.749 0.078 0.009 101

1.075  − 1.150 0.021 0.172 0.710 0.087 0.010 101

1.150  − 1.225 0.014 0.235 0.626 0.125 65

1.225 >
0.175 0.825 61

Time-invariant 0.074 0.156 0.269 0.260 0.130 0.060 0.051 736

Iterations 9

χ² 43.698

Eigenvalues 1.000 0.931 0.861 0.746 0.626 0.488 0.463

Mountains
Classes

< 0.850

0.850  − 

0.925

0.925  − 

1.000

1.000  − 

1.075

1.075  − 

1.150

1.150  − 

1.225

1.225 > N

< 0.850 0.790 0.210 55

0.850  − 0.925 0.073 0.625 0.271 0.031 96

0.925  − 1.000 0.008 0.176 0.649 0.159 0.009 119

1.000  − 1.075
0.194 0.637 0.170 86

1.075  − 1.150 0.258 0.625 0.098 0.019 50

1.150  − 1.225 0.045 0.315 0.530 0.110 45

1.225 >
0.256 0.744 31

Time-invariant 0.066 0.160 0.264 0.254 0.167 0.054 0.036 482

Iterations 9

χ² 13.594

Eigenvalues 1.001 0.903 0.809 0.707 0.512 0.378 0.291

Pacific
Classes

< 0.850

0.850  − 

0.925

0.925  − 

1.000

1.000  − 

1.075

1.075  − 

1.150

1.150  − 

1.225

1.225 > N

< 0.850 0.807 0.193 41

0.850  − 0.925 0.067 0.787 0.146 39

0.925  − 1.000 0.104 0.722 0.174 42

1.000  − 1.075
0.095 0.810 0.078 0.017 62

1.075  − 1.150 0.028 0.230 0.586 0.157 29

1.150  − 1.225 0.283 0.587 0.129 24

1.225 >
0.340 0.660 17

Time-invariant 0.058 0.167 0.201 0.331 0.122 0.088 0.033 254

Iterations 9

χ² 25.135

Eigenvalues 1.000 0.927 0.851 0.731 0.617 0.536 0.298



16

Productivity per Farm by Administrative Regions and Divisions: Transition Matrices

National
Classes

< .675

0.675 −
0.750

0.750 −
0.875

0.875 −
1.000

1.000 −
1.125

1.125 −
1.250

1.250 −
1.375

1.375 > N

< 0.675 0.748 0.235 0.010 0.007 282

0.675 − 0.750 0.041 0.670 0.265 0.022 0.002 420

0.750 − 0.875 0.005 0.073 0.676 0.239 0.008 792

0.875 − 1.000 0.105 0.737 0.153 0.004 1365

1.000 − 1.125 0.004 0.128 0.780 0.087 0.002 1639

1.125 − 1.250 0.003 0.274 0.645 0.077 1006

1.250 − 1.375 0.003 0.302 0.641 0.054 314

1.375 > 0.004 0.017 0.183 0.795 230

Time-invariant 0.008 0.035 0.130 0.299 0.365 0.122 0.033 0.009 6048

Iterations 9

χ² 49.583

Eigenvalues 1.000 0.895 0.842 0.771 0.68 0.604 0.472 0.428

North East Region
Classes

< 0.750

0.750 −
0.875

0.875 −
1.000

1.000 −
1.125

> 1.125 N

< 0.750 0.619 0.310 0.071 13

0.750 − 0.875 0.054 0.637 0.287 0.022 51

0.875 − 1.000 0.060 0.847 0.093 138

1.000 − 1.125 0.014 0.156 0.757 0.073 148

1.125 > 0.206 0.794 58

Time-invariant 0.015 0.104 0.490 0.289 0.103 408

Iterations 8

χ² 8.498

Eigenvalues 1.000 0.851 0.714 0.616 0.473

New England
Classes

< 0.875

0.875 −
1.000

1.000 −
1.125

> 1.125 N

< 0.875 0.690 0.310 13

0.875 − 1.000 0.077 0.831 0.092 54

1.000 − 1.125 0.033 0.386 0.472 0.109 38

1.125 > 0.331 0.669 23

Time-invariant 0.175 0.639 0.140 0.046 128

Iterations 7

χ² 9.282

Eigenvalues 1.000 0.789 0.61 0.45

Middle Atlantic
Classes

< 0.750

0.750 −
0.875

0.875 −
1.000

1.000 −
1.125

1.125 > N

< 0.750 0.686 0.243 0.071 12

0.750 − 0.875 0.065 0.636 0.268 0.031 39

0.875 − 1.000 0.048 0.858 0.094 84

1.000 − 1.125 0.009 0.082 0.854 0.055 110

1.125 > 0.113 0.887 35

Time-invariant 0.013 0.064 0.344 0.389 0.189 280

Iterations 9

χ² 9.734

Eigenvalues 1.000 0.876 0.789 0.756 0.513
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Mid-West Region
Classes

< 0.750

0.750 −
0.875

0.875 −
1.000

1.000 −
1.125

1.125 −
1.250

> 1.250 N

< 0.750 0.798 0.193 0.009 128

0.750 − 0.875 0.035 0.771 0.191 0.004 231

0.875 − 1.000 0.051 0.833 0.115 624

1.000 − 1.125 0.088 0.861 0.049 0.001 774

1.125 − 1.250 0.331 0.624 0.044 270

1.250 > 0.202 0.798 73

Time-invariant 0.015 0.090 0.346 0.459 0.070 0.019 2100

Iterations 9

χ² 24.056

Eigenvalues 0.999 0.891 0.828 0.774 0.658 0.535

East North Central
Classes

< .675

0.675 −
0.750

0.750 −
0.875

0.875 −
1.000

1.000 −
1.125

> 1.125 N

< 0.675 0.582 0.418 29

0.675 − 0.750 0.066 0.670 0.247 0.017 61

0.750 − 0.875 0.008 0.034 0.771 0.178 0.008 118

0.875 − 1.000 0.030 0.859 0.110 298

1.000 − 1.125 0.088 0.874 0.038 302

1.125 > 0.487 0.513 58

Time-invariant 0.003 0.010 0.063 0.391 0.495 0.039 866

Iterations 9

χ² 17.878

Eigenvalues 1.000 0.913 0.805 0.684 0.646 0.336

West North Central
Classes

< 0.750

0.750 −
0.875

0.875 −
1.000

1.000 −
1.125

1.125 −
1.250

1.250 −
1.375

1.375 > N

< 0.750 0.759 0.241 38

0.750 − 0.875 0.026 0.770 0.204 113

0.875 − 1.000 0.070 0.810 0.120 326

1.000 − 1.125 0.088 0.853 0.057 0.002 472

1.125 − 1.250 0.288 0.656 0.056 212

1.250 − 1.375 0.317 0.567 0.115 43

1.375 > 0.033 0.167 0.800 30

Time-invariant 0.012 0.110 0.321 0.439 0.090 0.018 0.010 1234

Iterations 9

χ² 19.956

Eigenvalues 1.000 0.941 0.882 0.793 0.722 0.649 0.500
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South Region
Classes

< .675

0.675 −
0.750

0.750 −
0.875

0.875 −
1.000

1.000 −
1.125

1.125 −
1.250

1.250 −
1.375

1.375 > N

< 0.675 0.758 0.223 0.014 0.005 203

0.675 − 0.750 0.064 0.638 0.285 0.009 0.004 235

0.750 − 0.875 0.005 0.077 0.710 0.204 0.005 408

0.875 − 1.000 0.004 0.149 0.661 0.175 0.011 537

1.000 − 1.125 0.004 0.171 0.667 0.147 0.011 530

1.125 − 1.250 0.002 0.229 0.644 0.121 0.002 392

1.250 − 1.375 0.004 0.033 0.302 0.599 0.061 241

1.375 > 0.005 0.214 0.781 188

Time-invariant 0.017 0.050 0.175 0.237 0.254 0.173 0.071 0.022 2734

Iterations 9

χ² 37.401

Eigenvalues 1.000 0.913 0.83 0.769 0.649 0.526 0.428 0.344

South Atlantic
Classes

< .675

0.675 −
0.750

0.750 −
0.875

0.875 −
1.000

1.000 −
1.125

1.125 −
1.250

1.250 −
1.375

1.375 > N

< 0.675 0.813 0.158 0.020 0.009 100

0.675 − 0.750 0.034 0.671 0.273 0.011 0.011 88

0.750 − 0.875 0.015 0.055 0.617 0.306 0.007 130

0.875 − 1.000 0.011 0.166 0.649 0.169 0.005 188

1.000 − 1.125 0.005 0.155 0.655 0.175 0.010 206

1.125 − 1.250 0.206 0.661 0.132 189

1.250 − 1.375 0.043 0.264 0.633 0.061 115

1.375 > 0.200 0.800 60

Time-invariant 0.017 0.037 0.128 0.225 0.253 0.211 0.099 0.030 1076

Iterations 9

χ² 23.704

Eigenvalues 1.000 0.913 0.837 0.783 0.666 0.558 0.398 0.323

East South Central
Classes

< .675

0.675 −
0.750

0.750 −
0.875

0.875 −
1.000

1.000 −
1.125

1.125 −
1.250

1.250 −
1.375

1.375 > N

< 0.675 0.753 0.236 0.010 94

0.675 − 0.750 0.064 0.682 0.254 110

0.750 − 0.875 0.098 0.790 0.113 177

0.875 − 1.000 0.142 0.658 0.193 0.007 146

1.000 − 1.125 0.157 0.685 0.141 0.017 113

1.125 − 1.250 0.020 0.270 0.620 0.090 45

1.250 − 1.375 0.038 0.329 0.549 0.084 24

1.375 > 0.196 0.804 15

Time-invariant 0.025 0.097 0.256 0.203 0.232 0.126 0.042 0.018 724

Iterations 9

χ² 25.927

Eigenvalues 1.000 0.938 0.843 0.783 0.642 0.504 0.439 0.186

West   South Central
Classes

< 0.750

0.750 −
0.875

0.875 −
1.000

1.000 −
1.125

1.125 −
1.250

1.250 −
1.375

1.375 > N

< 0.750 0.652 0.329 0.019 46

0.750 − 0.875 0.069 0.691 0.230 0.010 101

0.875 − 1.000 0.138 0.675 0.167 0.020 203

1.000 − 1.125 0.005 0.194 0.670 0.122 0.009 211

1.125 − 1.250 0.243 0.635 0.117 0.006 158

1.250 − 1.375 0.029 0.335 0.579 0.057 102

1.375 > 0.009 0.222 0.769 113

Time-invariant 0.033 0.166 0.283 0.274 0.163 0.062 0.019 934

Iterations 9

χ² 40.842

Eigenvalues 0.999 0.89 0.781 0.699 0.596 0.501 0.358
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West Region
Classes

< 0.875

0.875 −
1.000

1.000 −
1.125

1.125 −
1.250

> 1.250 N

< 0.875 0.826 0.168 0.006 172

0.875 − 1.000 0.107 0.743 0.151 226

1.000 − 1.125 0.005 0.168 0.753 0.074 228

1.125 − 1.250 0.009 0.241 0.676 0.074 126

1.250 > 0.018 0.163 0.819 54

Time-invariant 0.222 0.350 0.305 0.088 0.036 806

Iterations 9

χ² 16.604

Eigenvalues 1.000 0.891 0.8 0.628 0.502

Mountain
Classes

< 0.750

0.750 −
0.875

0.875 −
1.000

1.000 −
1.125

1.125 −
1.250

> 1.250 N

< 0.750 0.722 0.239 0.038 36

0.750 − 0.875 0.026 0.756 0.208 0.010 82

0.875 − 1.000 0.129 0.736 0.135 163

1.000 − 1.125 0.006 0.199 0.701 0.094 160

1.125 − 1.250 0.016 0.284 0.602 0.099 73

1.250 > 0.192 0.808 30

Time-invariant 0.021 0.227 0.377 0.254 0.080 0.041 544

Iterations 9

χ² 24.551

Eigenvalues 1.000 0.893 0.786 0.688 0.565 0.417

Pacific
Classes

< 0.750

0.750 −
0.875

0.875 −
1.000

1.000 −
1.125

1.125 −
1.250

> 1.250 N

< 0.750 0.776 0.224 26

0.750 − 0.875 0.077 0.574 0.349 28

0.875 − 1.000 0.047 0.761 0.192 63

1.000 − 1.125 0.095 0.880 0.026 68

1.125 − 1.250 0.182 0.780 0.038 53

1.250 > 0.042 0.125 0.833 24

Time-invariant 0.013 0.038 0.284 0.570 0.076 0.018 262

Iterations 8

χ² 10.084

Eigenvalues 1.000 0.878 0.843 0.744 0.68 0.473


