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1 Introduction

King Solomon’s problem, when generalized to multiple units of an item,
is described as follows: k identical, indivisible objects are to be allocated
among n agents, where k < n. The objective of the “planner” (“auctioneer”)
is to give the objects at no cost to the k agents with the highest valuations.1

I make the following informational assumptions: First, the agents and the
planner know that there is a gap greater than δ > 0 between the kth and
the (k +1)st valuations (inequality (1)). Second, each agent knows not only
her own valuation of the object but also whether she is among the top k
valuation agents.

For k = 1, I propose the following variant of the second-price (sealed-
bid) auction to solve the problem. First, the agents need not participate in
the auction if they do not want to. Second, they may have to pay a small
participation fee—a situation that arises if the number of actual participants
exceeds one (or the number k of objects to be allocated, more generally). In
other words, I modify the second-price auction (Vickrey auction) by intro-
ducing the option not to participate in it and an arbitrarily small entry fee
(any positive amount not greater than the gap δ). This simple, intuitively
appealing mechanism (modified auction) solves the problem. Most likely,
this mechanism, with entry fees, is close to what ordinary people would
think of when they learn the notion “second-price auction,” hence the title.

The (k+1)st-price auction (instead of the second-price auction) for k ob-
jects, similarly modified, solves the generalized problem (Proposition 1). In
other words, this two-stage mechanism implements the desired outcome in
iteratively undominated strategies (obtained by one round of elimination of
all weakly dominated strategies, followed by two rounds of elimination of all
strictly dominated ones). In fact, only those top k valuation agents choose
to participate in an auction, which rules out the need to hold an auction.

The reasoning behind this conclusion is straightforward. In this auction,
it is a weakly dominant strategy for each agent to bid her (true) valuation.
The planner can set an entry fee equal to δ > 0 so that the top k valuation
agents can profitably obtain the object by paying the (k + 1)st price and
the entry fee. Then the other agents will not enter the auction, since they
can only expect to pay the entry fee without getting the object. While the
logic is simple, a careful argument specifying what information is available
to which agent is called for. I state as explicitly as possible the informational
assumptions on which each step of the argument is based.

Earlier contributions to King Solomon’s problem, such as Glazer and
Ma (1989) and Moore (1992), consider the case of k = 1 object and as-
sume that each agent knows the other agents’ valuations, too. Under this

1There are many situations of this sort, including those mentioned in Glazer and Ma
(1989, footnote 1).
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complete information assumption, they construct multi-stage mechanisms
that implement the outcome in subgame-perfect equilibrium. Though those
mechanisms consist of more than two stages, they have an appealing feature
that only one agent moves at each stage.

More recently, assuming that each agent only knows her own valuation
as well as whether she is one of the top k valuation agents, several authors
have constructed ingenious mechanisms that implement the outcome in it-
eratively undominated strategies. Perry and Reny (1999) and Olszewski
(2003) construct mechanisms for k = 1. Bag and Sabourian (2005) extend
Olszewski’s mechanism to any k (they have also investigated the complete
information setting). Qin and Yang (2009) propose an alternative mecha-
nism for any k.2 Like mine, these mechanisms consist of two stages and lack
the feature of only one agent moving at each stage.

As pointed out in most of these papers (Glazer and Ma, 1989; Moore,
1992; Perry and Reny, 1999), an auction itself does not solve the problem,
since it involves a transfer of money. It is interesting to note that, given
this fact, all the authors who deal with the incomplete information settings
propose a mechanism, of which a stage game is a modified version of the
second-price auction.3 However, their modifications are fairly sophisticated,
not appearing as straightforward as mine. Perry and Reny (1999) use a
second-price all-pay auction with the winner having an ex post option to
quit. Olszewski (2003) uses the second-price auction modified by adding
an extra, non-constant (positive) payment from the planner. Qin and Yang
(2009) use a second-price auction with entry fees, where (for n = 2, k = 1,
and i 6= j) i’s entry fee is determined as a function of j’s bid bj and of
i’s guess of bj . Their mechanism loses the advantage of the second-price
auction that each agent need not guess others’ bids or valuations.4

In Section 4, I compare my mechanism with Olszewski’s, which is one of
the simplest in the literature. Olszewski’s mechanism requires the planner
to subsidize the agents out of the equilibrium path.5 As a result, it is

2Their solution concept is also one round of elimination of weakly dominated strategies,
followed by two rounds of elimination of strictly dominated ones. I would like to thank
Takuma Wakayama for pointing out an earlier version of their paper. Most results in
the present paper were obtained independently and made public on the website of Social
Science Research Network in August 2006.

3Those dealing with the complete information settings (Glazer and Ma, 1989; Moore,
1992) also propose auction-like mechanisms, though the bidding protocols are different
from the second-price auction.

4 The endogeneity of the fees is needed in their paper because they allow the case where
the higher valuation and the lower valuation can be arbitrarily close: in (1) of Section 2,
they assume δ ≥ 0 instead of δ > 0. See footnote 14. Qin and Yang assume that each
agent is an expected utility maximizer, who forms a subjective distribution of the other’s
valuation conditional on her own. This assumption, which I do not make, is needed to
obtain an optimal guess in their paper.

5In contrast, if my mechanism fails at the first stage, what comes after the entry fees
are collected is just an ordinary second-price auction. So the mechanism is particularly
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vulnerable to collusion between agents that bribe each other to coordinate
their strategies. In fact, they can profitably deviate from the equilibrium
without even manipulating their bids (Proposition 2). Unlike Olszewski’s
(and unlike the second-price auction), my mechanism is not vulnerable to
such collusion (Proposition 3).

2 Framework

We consider the problem Pk
n, a multi-unit generalization of King Solomon’s

problem: k identical, indivisible objects are to be allocated among n agents,
where 0 < k < n. The objective of the planner is to give the objects to the
top k valuation agents at zero monetary costs to the planner and the agents.

The framework is as follows: Let N = {1, . . . , n} be the set of agents.
Fix a certain number δ > 0, which is known to everyone (i.e., all agents
and the planner). Fix a set Q ⊂ R

n of possible profiles of valuations of the
object such that every profile (v1, . . . , vn) in Q contains at least k positive
components. (The valuation by the planner is understood to be zero.) At
Stage 0, God (Nature) announces a pair (v,H), where v = (v1, . . . , vn) ∈ Q
is a profile of valuations and H ⊂ N is a set consisting of k agents such
that i ∈ H implies vi ≥ vj for all j ∈ L := N \ H. While no one needs to
know the set Q itself, everyone (including the planner) knows the following
condition imposed on Q: if i ∈ H and j ∈ L, then vi > 0 and6

vi − vj > δ. (1)

This condition implies that given v ∈ Q, we have H = Hv, where Hv is
the (uniquely determined) set of k agents with the highest valuations at v.
Inequality (1), indicating that the difference between the top k valuations
and the others exceeds δ, will serve as a “word of wisdom” that facilitates
the construction of a successful mechanism.

Each agent i observes her own type θi = (vi,H(i)), where H(i) = 1
or 0, depending on i ∈ H or not.7 Let Θi be the set of possible types
of i, Θ−i := (Θj)j 6=i, and θ−i := (θj)j 6=i. Given θi ∈ Θi , agent i has the
set Θ−i[θi] of possible types of the other agents.8 Each agent i’s payoff is

attractive as a compromise solution in situations where solution based on price is not too
problematic but has not been used (because of some sort of stigma), such as assignment
of parking spaces at some university campus.

6This assumption is naturally satisfied if, for example, n = 3, k = 2 and either (i) Q =
U1 × U2 × U3 for some pairwise disjoint finite sets U1, U2, and U3 in R+ or (ii) for some
disjoint closed intervals U , V in R+ such that u ∈ U and u′ ∈ V imply u > u′, we have
Q = (U × U × V ) ∪ (U × V × U) ∪ (V × U × U).

7 The implementability result of Bag and Sabourian (2005) is valid under this assump-
tion, though they make a stronger assumption that each i observes (vi, H).

8θ−i ∈ Θ−i[θi] iff θ−i ∈ Θ−i and (θi, θ−i) = ((v1, Hv(1)), . . . , (vn, Hv(n)) for some
v ∈ Q. Since i need not have an exact knowledge of Q, she need not know the set Θ−i[θi]
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ui((xi, yi), θi) = vixi + yi, where xi ∈ {0, 1} is the number of units of the
object and yi ∈ R the payment that i receives.

The planner does not observe God’s announcement. It is common knowl-
edge that the agents and the planner have the knowledge described here.

In the terminology of implementation theory, the problem Pk
n is that

of implementing the (single-valued) choice function f defined as follows: f
assigns an allocation f(v) = (xi, yi)i∈N ∈ ({0, 1}×R)n to each profile v ∈ Q
of valuations, which allocation is defined by (xi, yi) = (1, 0) if i ∈ Hv and
(xi, yi) = (0, 0) if i /∈ Hv.

3 The Solution

The mechanism Mk
n consists of two stages, Stage 1 followed by Stage 2.

(We can regard it as a single-stage mechanism by considering its strategic
form representation. However, our solution concept—iteratively undomi-
nated strategies—seems more appealing if the mechanism is presented in an
extensive form.) I describe Stage 2 first.

Stage 2 is the (k + 1)st-price sealed-bid auction for k objects, except
that the planner collects the participation fee δ > 0 from each participating
agent. There are at least k + 1 agents participating in the auction and each
participating agent i bids bi ∈ R. Thus, any bid bi ∈ R (including those
not corresponding to any profile in Q) is allowed at this stage. Rearrange
the named bids (bi, i) according to the lexicographic order—first in terms of
the value bi (highest bid first), second in terms of the agent name i (lowest
number first). Let bk+1 be the (k + 1)st bid (i.e., the first component of
the (k + 1)st named bid according to the above order) by the participating
agents. The following is what agent i receives, as well as her payoff ui:
(a) if bi is among the k highest bids (i.e., (bi, i) is among the first k named
bids according to the lexicographic order), then i gets the object but pays
the (k + 1)st bid and the participation fee, implying ui = vi − bk+1 − δ;
(b) otherwise, i pays the participation fee, implying ui = −δ.

Stage 1 is a simultaneous-move game in which the agents say either “auc-
tion” (which means that she is willing to move on to Stage 2 and participate
in an auction) or “no (auction).” More formally, agent i chooses a first-stage
move mi ∈ {1, 0}, with 1 denoting “auction” and 0 “no.” If at least k + 1
agents say “auction,” then (only) those agents move on to Stage 2; the oth-
ers get nothing. If less than k + 1 agents say “auction,” then they get the
object; the others get nothing. (If no agent says “auction,” then no agent
gets anything.)

After playing Stage 1, each agent who said “auction” observes whether
there were at least k + 1 such agents. This means that she knows whether

exactly, but our informational assumption about her knowledge of Q is sufficient to obtain
the results.
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an auction is to be held, though she does not know who are participating.
More formally, (given the realization of a v ∈ Q) each agent i has just one
information set belonging to the second-stage, which set consists of all tuples
(m1, . . . , mn) of first-stage moves that contain 1’s in the ith component and
in at least k others. For example, if n = 3 and k = 1, then agent 1’s second-
stage information set is {(1, 1, 1), (1, 1, 0), (1, 0, 1)}. Without making any
inferences, she can only tell whether the result (m1, . . . , mn) of the first-stage
belongs to her information set. Under this assumption, agent i’s (global)
strategy can be defined as a function that maps each type θi = (vi,H(i)) ∈
Θi to a message si = (mi, bi) ∈ Si := {(1 (“auction”), 0 (“no”)} × R, where
mi is a first-stage move and bi is a bid that she will make if she participates in
an auction.9 A message si ∈ Si is also referred to as a strategy (available in
the mechanism). Let g(s) be the outcome (xi, yi)i∈N of the mechanism Mk

n

when the messages are s.

To make precise the statement that the mechanism above implements
the desired outcome in iteratively undominated strategies, I introduce a few
terms.

Let Si = {1, 0} × R be the set of strategies (messages) for each i. Gen-
eralizing the solution concept in Moulin (1979) and Perry and Reny (1999,
page 282) to the incomplete information setting, I say that s = (s1, . . . , sn) ∈
S1 × · · · × Sn is a profile of iteratively (weakly) undominated strategies (I
sometimes say that s is an equilibrium) at v ∈ Q if s ∈ ST

1 [θv
1 ]×· · ·×ST

n [θv
n]

for θv = (vi,Hv(i))i∈N and for some integer T (terminal round), where the
sequence

〈(St
i [θi], {s

t
−i|θi}) : θi ∈ Θi, i ∈ N, t ∈ {0, . . . , T + 1}〉

(St
i [θi] is the set of i’s own strategies remaining after the tth round and

{st
−i|θi} is the set of the others’ strategies that are [from the viewpoint of i]

possibly remaining after the tth round) is obtained by the following pro-
cedure: for each i and θi, S0

i [θi] = Si, {s
0
−i|θi} = S−i, ST

i [θi] = ST+1
i [θi],

and for each round t ∈ {1, . . . , T + 1}, St
i [θi] is the set of weakly undom-

inated strategies in St−1
i [θi] at θi against the strategies in {st−1

−i |θi},
10 and

9One can make alternative assumptions about the information sets without affecting
the result. The argument will be similar, though the notation may become slightly more
complex. For example, one can assume that each agent observes the set of agents who said
“auction” (this means that each agent observes the tuple of first-stage moves). For n = 3
and k = 1, this implies that, say, agent 1 has the following three second-stage information
sets: {(1, 1, 1)}, {(1, 1, 0)}, and {(1, 0, 1)}. Since her bid in Stage 2 can depend on which
of these three has occurred, her global strategy in this case is a function that maps each
θ1 to (m1, b

{(1,1,1)}
1 , b

{(1,1,0)}
1 , b

{(1,0,1)}
1 ), where bI

1 ∈ R is her bid at an information set I.
10That is, si ∈ St

i [θi] if si ∈ St−1
i [θi] and there is no s′i ∈ St−1

i [θi] such that
ui(gi(s

′
i, s−i), θi) ≥ ui(gi(si, s−i), θi) for all s−i ∈ {st−1

−i |θi}, with strict inequality for
some s−i ∈ {st−1

−i |θi}.
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{st
−i|θi} :=

∪
θ̃−i∈Θ−i[θi]

∏
j 6=i S

t
j [θ̃j ].

11 In each round t, 〈(St
i [θi], {s

t
−i|θi}) :

θi ∈ Θi, i ∈ N〉 is obtained from 〈(St−1
i [θi], {s

t−1
−i |θi}) : θi ∈ Θi, i ∈ N〉

that has been obtained. Note that in each round t, all weakly dominated
strategies in St−1

i [θi] against the strategies in {st−1
−i |θi} are eliminated.

I say that the mechanism Mk
n implements the choice function f in it-

eratively undominated strategies if for each v ∈ Q, the outcome g(s) corre-
sponding to any remaining strategy profile s (i.e., s is a profile of iteratively
undominated strategies at v) is f(v). There may be many remaining s, but
they must all yield the same outcome f(v) = (xi, yi)i∈N (allocation) defined
in Section 2.

Proposition 1 The mechanism Mk
n solves the problem Pk

n; that is, it im-
plements the choice function f in iteratively undominated strategies. Fur-
thermore, the profiles of iteratively undominated strategies can be obtained
by one round of elimination of all weakly dominated strategies, followed by
(at most) two rounds of elimination of all strictly dominated ones.

Proof. Choose a v ∈ Q. We apply the elimination procedure three times
and show that any remaining strategy profile yields the outcome f(v). Let
H = Hv, L = N \ H and b∗i = b∗i (vi,H(i)) = vi for all i ∈ N .

In the first round, each i ∈ N eliminates all the strategies (1, bi) =
(“auction”, bi) such that bi 6= vi. Indeed, it is weakly dominated by (1, b∗i ).
To see this, fix any (mj , bj)j 6=i. Then, depending on m = (m1, . . . , mk),
we have two cases. If m contains at most k 1’s (i.e., if there are at most
k agents saying “auction”), then an auction is not held. In this case, i is
indifferent between the two strategies (1, bi) and (1, b∗i ) (in either case, i
gets the object). If m contains more than k 1’s, then an auction is held
among the agents saying “auction.” Since the fees δ are independent of
the agents’ moves, the well-known result for the (k + 1)st-price auction (for
fixed bidders) implies that b∗i = vi is the unique weakly dominant strategy
for each i.12 This implies that (1, b∗i ) is at least as good as (1, bi) for i and
sometimes better.

The only remaining strategies in this round are (1, b∗i ) and (0, bi), where
bi ∈ R is arbitrary. We show that these cannot be eliminated in this round.
For (1, b∗i ) to be eliminated, it has to be weakly dominated by (0, bi), which
gives a zero payoff to i. But this is impossible (even for i ∈ L such that
vi < −δ) since, for some (mj , bj)j 6=i, (1, b∗i ) gives a greater payoff than (0, bi)
to i. (For example, let mj = 1 and bj = vi − 2δ for all j 6= i. Then (1, b∗i )
gives ui = δ > 0.) For (0, bi) to be eliminated, it has to be weakly dominated

11 That is, s−i ∈ {st
−i|θi} if for some θ̃−i ∈ Θ−i[θi], we have sj ∈ St

j [θ̃j ] for all j 6= i.
Obviously, {st

−i|θi} ⊆ {st−1
−i |θi} for all t.

12The conclusion, say for i, can be derived by fixing the bids of the other participating
agents and then comparing i’s payoffs for bidding her valuation (b∗i = vi) and for bidding
something else, for each case: (a) bidding b∗i is among the k highest bids, and (b) otherwise.
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by (1, b∗i ). But this is impossible since, for some (mj , bj)j 6=i, (0, bi) gives a
greater payoff than (1, b∗i ) to i. (For example, let mj = 1 and bj = vi + δ for
all j 6= i. Then (1, b∗i ) gives ui = −δ.)

In the second round, each i ∈ H eliminates all the strategies (0, bi) =
(“no”, bi). In fact, it is strictly dominated by (1, b∗i ) against the others’
possibly remaining strategies. To see this, fix any (mj , bj)j 6=i such that
mj = 1 implies bj = ṽj , where ṽj is a possible value of vj from i’s viewpoint.
Then, depending on m−i = (mj)j 6=i, we have two cases. If m−i contains
less than k 1’s (i.e., if less than k other agents say “auction”), then an
auction is not held in any case. So (1, b∗i ) is better than (0, bi) for i since
the former gives her the object with a payoff of vi > 0 (since i ∈ H), while
the latter gives her a zero payoff. If m−i contains at least k 1’s, then we can
show as follows that (1, b∗i ) is better than (0, bi) for i. By choosing (1, b∗i ),
i can participate in an auction, which is held. In this case, i knows that
she will be among the k highest bidders. Her payoff from the auction is
ui = vi − bk+1 − δ, which depends on bk+1 yet to be known. But she can
deduce that if ṽj = bj = bk+1, then H̃(j) = 0 (i.e., j ∈ L̃) (if H̃(j) = 1, then
ṽj is among the top k bids). Then, by (1), i ∈ H and j ∈ L̃ implies that
ui = vi − ṽj − δ > 0. Note that at the end of the second round, i ∈ H has
only one remaining strategy.

In the second round, i ∈ L cannot eliminate any (0, bi). For (0, bi) to be
eliminated, it has to be weakly dominated by (1, b∗i ). But this is impossible
since, for some (mj , bj)j 6=i such that mj = 1 implies bj = ṽj , (0, bi) gives a
greater payoff than (1, b∗i ) to i. (For example, let mj = 1 and bj = vj for all
j 6= i.)

On the other hand, i ∈ L may eliminate (1, b∗i ) in this round, depending
on her knowledge of Q. For example, if i ∈ L knows that vi ≤ 0 and
vi − ṽj ≤ δ for all ṽj for j 6= i such that (vi, ṽ−i) ∈ Q, then the strategy
(1, b∗i ) gives her a payoff of either vi ≤ 0 or vi − bk+1 − δ ≤ 0 or −δ < 0.13

In the third round, i ∈ L eliminates the strategy (1, b∗i ) = (“auction”, bi),
if she has not done so in the second round. In fact, it is strictly dominated
by (0, bi) against the others’ possibly remaining strategies. To see this, fix
any (mj , bj)j 6=i such that if mj = 1, then bj = ṽj and if H̃(j) = 1, then
mj = 1. Since i knows that the agents j ∈ H̃ will choose “auction” and bid
bj = ṽj , she knows that if she says “auction,” an auction is held and she
gets the payoff of ui = −δ < 0 (she cannot get the object because she will
not be among the k highest bidders).

At this point in the elimination process, the remaining strategies (mi, bi)
are such that (mi, bi) = (1, vi) if i ∈ H and mi = 0 if i ∈ L. It is easy to

13This possibility can be ignored if we assume that vi > 0 for all i ∈ N or that Q ⊂ R
n

is not bounded below in any dimension. Also, if (1, b∗i ) is only weakly (not strictly)
dominated, then one should eliminate it if he follows the procedure strictly. Instead,
one can go on to the next round and eliminate it, which is now strictly dominated, thus
obtaining the same result.
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see that any profile of such strategies yields the same outcome (hence there
are no more strategies to be eliminated in the fourth round). Indeed, since
only those agents in H say “auction” and there are exactly k such agents,
an auction will not be held. So each agent in H gets the object and each
agent in L gets nothing.

Remark 1 It appears that the conclusion of Proposition 1 is no longer
true if we consider (instead of the iteratively undominated strategies, where
all weakly dominated strategies are eliminated in each round) the strate-
gies that remain under different procedures for eliminating weakly dominated
strategies. For example, consider the classical two-agent case (n = 2, k = 1,
v1 > 0, v2 > 0). Suppose all weakly dominated strategies are eliminated only
for the higher valuation agent i ∈ H in the first round. Thus, the remaining
strategies for i ∈ H are (1, b∗i ) = (1, vi) and (0, bi), where bi ∈ R is arbitrary.
Then in the second round, the lower valuation agent j ∈ L cannot eliminate
(1, bj) = (1, vj + δ). To see this, note that if (1, bj) is weakly dominated by
some strategy, it has to be weakly dominated by (1, b∗j ) = (1, vj). But it is
easy to see that (since ṽi − vj > δ implies bj = vj + δ < ṽi = b∗i ) (1, bj)
and (1, b∗j ) give the same payoffs for any strategy for i. Since (1, bj) was not
eliminated in the second round, we cannot conclude that i ∈ H eliminates
all the strategies (0, bi) in the third round. This is because she might obtain
a negative payoff by participating in the auction. The argument of the proof
fails for this procedure.

4 Discussion

It would be of some interest to compare the mechanism Mk
n with those in

the literature (Perry and Reny, 1999; Olszewski, 2003; Bag and Sabourian,
2005; Qin and Yang, 2009) dealing with the incomplete information environ-
ments. Of those mechanisms, I focus on Olszewski’s since it is simpler than
Perry and Reny’s. Also, Bag and Sabourian’s mechanism for the incom-
plete information setting is an extension of Olszewski’s, not an alternative
to it. Qin and Yang’s mechanism performs just like mine, if we ignore the
complexity of making guesses (see footnote 4).

I focus on the classical case of Solomon’s problem in this section: n = 2,
k = 1, v1 > 0, v2 > 0, and for i ∈ H (the higher-valuation agent) and j ∈ L
(the lower-valuation agent), vi − vj > δ > 0.14 Note that the planner can

14Olszewski constructs another mechanism that solves the problem for δ = 0 (the case
where the higher valuation and the lower valuation can be arbitrarily close). My mech-
anism fails to solve such a problem: if δ = 0, the lower valuation agent’s strategy “no”
is weakly dominated in the second round of elimination if she has a positive valuation.
Hence the usual second-price auction (no participation fees) will be held.
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use arbitrarily small δ (because if δ > 0 satisfies the inequality, then so does
any positive δ′ ≤ δ).

Olszewski’s mechanism works as follows: In Stage 1, the two agents say
“hers” (corresponding to “auction” in this paper) or “mine” (“no (auction)”)
simultaneously. If both say “hers,” then they move on to Stage 2. If only
one says “hers,” then the agent who says “mine” gets the object. If both say
“mine,” then both get nothing. Stage 2 is a modified second-price auction
(modified such that each agent pays the entrance fee δ but receives the
other’s bid): if bi > bj , then ui = vi − δ and uj = bi − δ.

Table 1 compares the payoffs for the two mechanisms, assuming bi > bj

and i is the row player.

“hers” “mine” “auction” “no”
“hers” vi − δ, bi − δ 0, vj “auction” vi − bj − δ,−δ vi, 0
“mine” vi, 0 0, 0 “no” 0, vj 0, 0

Table 1: Payoffs for Olszewski’s mechanism (left) and mine (right).

It is a weakly dominant strategy for each i to play bi = vi in Stage 2.
The other strategies are eliminated in the first round of elimination of weakly
dominated strategies. Olszewski’s mechanism requires another round: “hers”
is a weakly (but not strictly) dominated strategy for the higher-valuation
agent and “mine” is one for the lower-valuation agent (if i ∈ H and j ∈ L,
then vj < ui = uj = vi − δ < vi). My mechanism requires two more rounds.
But those strategies to be eliminated in the second and the third rounds are
strictly dominated.

Olszewski’s mechanism relies on the availability of transfer from the plan-
ner out of the equilibrium path.15 The reliance on subsidies from outside
means that the agents are less likely to find an outsider (planner) who is
willing to adopt this mechanism. In contrast, the total amount received by
the agents in Stage 2 of my mechanism is negative ((−bj−δ)−δ = −bj−2δ =
−vj − 2δ < 0).

I next consider the possibility of monetary transfers (not described by
the mechanisms) between the agents. I assume that the agents can bribe
each other to coordinate their strategies. Let ui(s) be i’s payoff from a
mechanism, where s = (si, sj , s−ij) and s−ij = (sk)k/∈{i,j}. We say that
a strategy profile s = (si) is stable against pairwise (coalitional) devia-
tions with transferable utility if the following condition is violated: there
are two agents i, j, their strategies s′i, s′j , and a bribe t ∈ R such that
u′

i := ui(s
′
i, s

′
j , s−ij) + t > ui(s) and u′

j := uj(s
′
i, s

′
j , s−ij) − t > uj(s).

15 The total amount received by the agents in Stage 2 is −δ + (bi − δ) = bi − 2δ. If we
require this value to be non-positive, even if we assume bi = vi, we have vi ≤ 2δ < 2vi−2vj ,
implying the inequality vi > 2vj , not likely in many situations.
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Proposition 2 Suppose that the total amount received by the agents in
Stage 2 of Olszewski’s mechanism is positive, assuming i ∈ H bids bi = vi.
Then its equilibrium is not stable against pairwise deviations with transfer-
able utility even if the agents bid their valuations in Stage 2.

Proof. Consider the strategies such that both agents say “hers” and bid
their valuations. The total amount subsidized is bi − 2δ = vi − 2δ > 0
by assumption. Find an ǫ > 0 such that bi − 2δ − ǫ > 0. Consider a
bribe δ + ǫ from j ∈ L to i ∈ H. Since bi > bj , the resulting payoffs are:
u′

i = vi − δ + δ + ǫ = vi + ǫ > vi; u′
j = bi − δ − δ − ǫ = bi − 2δ − ǫ > 0.

Note that if the agents are not restricted to bidding their (true) valua-
tions, they can achieve arbitrarily large payoffs,16 though the availability of
subsidies then becomes questionable.

In contrast, my mechanism works better against bribes. I present the
result for a more general case of n agents and k objects; it includes the
classical case.

Proposition 3 Suppose that each individual has a positive valuation and is
prohibited from submitting a negative bid: vi > 0 and bi ≥ 0 for each i. Then
the equilibrium of the mechanism Mk

n is stable against pairwise deviations
with transferable utility.

Proof. Let s be an equilibrium and suppose it not stable. Then there are
agents i, j, strategies s′i, s′j , and a bribe t such that u′

i := ui(s
′
i, s

′
j , s−ij)+t >

ui(s) and u′
j := uj(s

′
i, s

′
j , s−ij) − t > uj(s). We have

u′
i + u′

j = ui(s
′
i, s

′
j , s−ij) + uj(s

′
i, s

′
j , s−ij) > ui(s) + uj(s). (2)

Suppose i, j ∈ H. Then ui(s) + uj(s) = vi + vj . Inequality (2) cannot
be satisfied since ui(s

′) ≤ vi and uj(s
′) ≤ vj for any s′.

Suppose i, j ∈ L. If both say “no,” they cannot meet inequality (2).
So, suppose that i says “auction,” in which case she is worse off (regardless
of whether she gets the object), unless she receives a sufficiently large bribe
t > 0. Then j, who pays the bribe, is worse off (whether she participates in
the auction), violating u′

j > uj(s).
It follows that i ∈ H and j ∈ L without loss of generality.
(i) Suppose i says “auction” and j says “no.” Then u′

i = vi + t > ui(s) =
vi implies u′

j = 0 − t < 0 = uj(s), a contradiction.
(ii) Suppose i says “no” and j says “auction.” Then u′

i = 0+ t > ui(s) =
vi implies u′

j = vj − t < vj − vi < −δ < 0 = uj(s), a contradiction.
(iii) Suppose i says “no” and j says “no.” Then u′

i + u′
j = 0 and ui(s) +

uj(s) = vi, violating (2).

16For any ūi > 0 and ūj > 0, fix a small bj , find a bribe t ∈ R such that u′
i = vi−δ+ t >

ūi, and find a bi such that u′
j = bi − δ − t > ūj .
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(iv) Suppose i says “auction” and j says “auction.” If j gets the object,
(2) implies that u′

i + u′
j = vj − bk+1 − 2δ > vi, where bk+1 is the (k + 1)st

highest bid. Then −bk+1 − 2δ > vi − vj > δ, implying −bk+1 > 3δ > 0,
contradicting the assumption that bids are nonnegative. The case where i
gets the object is easier.
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