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1. Introduction

We focus on problems of variable selection where we have a potentially large amount of
covariates in a linear regression context, and the relevant theory does not offer enough
guidance on how to select the “appropriate” subset, based on a sample of small or mod-
erate size n. This problem naturally occurs in various applications in economics, such as
cross-country growth regression (Brock et al., 2003) or estimating the returns to schooling
(Tobias and Li, 2004). Examples of both of these areas of application will be given. As
they are quite different in terms of the ratio of observations to potential regressors, n/k,
many other econometric scenarios will be covered as intermediate cases.

The use of Bayesian Model Averaging (BMA) provides a natural solution to model un-
certainty, based on formal probabilistic reasoning, and it has been shown to lead to better
predictions than simply selecting and using one model. See Raftery et al. (1997), Hoeting
et al. (1999) and Fernández et al. (2001a) for discussions of BMA in linear regression.

We can view the problem of variable selection in regression models as one of inducing
sparsity or parsimony and there are two main approaches in the Bayesian literature. One is
through the use of shrinkage priors, which goes back to Strawderman (1971) in the context
of estimating a multivariate normal mean. These are absolutely continuous priors on all
regression coefficients, but are such that some of the regression coefficients will be “close” to
zero in the posterior, inducing sparsity (although strictly speaking zero has prior Lebesgue
measure zero). The second approach is the one adopted here, where we assign prior point
mass at zero for each of the regression coefficients, thus allowing for formal exclusion of
covariates and we have to deal with many models that need comparing, which we will
typically average over. This was coined the “spike-and-slab” approach in Mitchell and
Beauchamp (1988). Even though we use the second approach, some ideas of “shrinkage”
will be borrowed from the first literature, appropriately adapted to suit our needs.

In previous studies of variable selection in linear regression using g-priors, it has been
noted that the choice of g is crucial for the behaviour of BMA procedures. In addition,
the prior on the model space is an important element of the model, particularly in the
way it penalizes larger models. If a priori each covariate is included independently with
probability θ in the model, the interaction between θ and g was explored in some detail
in Ley and Steel (2009). They recommend the use of a hierarchical prior on θ as a way to
make the analysis more robust with respect to prior assumptions on the model space.

In this paper we go one step further and the hierarchical Bayesian model explored here
has a hyperprior on θ (which leads to an integral to compute prior model probabilities,
which can fortunately be solved analytically) and a hyperprior on g, which leads to an
integral for the marginal likelihood that is solved by adding g into the MCMC procedure
by an extra Metropolis-within-Gibbs step.

There have been a number of recent proposals for prior distributions to use on g; the
paper reviews these approaches and compares them in a common framework of priors that

We are grateful for constructive comments from two referees, Martin Feldkircher and participants of the
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4–5, 2010).
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induce a Beta distribution on the shrinkage factor (corresponding to g or to g/n). The
one prior that does not fit in this setting is the prior proposed by Zellner and Siow (1980).
Based on earlier recommendations for fixed values of g, we propose a benchmark Beta class
of priors, and investigate its properties. An added advantage of using random g is that the
information paradox of Liang et al. (2008) can be avoided. In addition, we want the priors
to lead to consistency in the sense of Fernández et al. (2001a). We also discuss and propose
an estimation method for the marginal information that the sample provides on g. This
leads quite naturally to estimating the Bayes factors between models with different priors
on g or different fixed values of g. The effect of the proposed hyperpriors on both θ and g
on posterior model probabilities is examined in some detail through the implied penalties
for model complexity and lack of fit. We investigate the behaviour of the various priors
in BMA with simulated data and various different sets of real data relating to economic
applications; two sets of macroeconomic growth data and one data set regarding returns to
eduction. We focus mostly on posterior probability on the model that generated the data
and the rate of consistency for the simulated data, while we assess prediction performance
and compute Bayes factors between priors for the real data. On the basis of both theoretical
properties and empirical performance we provide recommendations for the applied user.

Section 2 introduces the Bayesian model, whereas Section 3 discusses the hyperpriors
on g. The information in the sample regarding g and Bayes factors between model with
different priors on g are examined in Section 4. Section 5 examines the induced penal-
ties for complexity and lack of fit, while Section 6 briefly mentions computational issues.
Applications to simulated and real data follow in Sections 7 and 8, respectively. Finally,
conclusions and recommendations are given in Section 9.

2. The Bayesian Model

We adopt a Normal linear regression model for n observations, grouped in a vector y, using
an intercept, α, and explanatory variables from a set of k possible regressors in Z. We allow
for any subset of the (standardized) variables in Z to appear in the model. This results
in a model space of 2k possible models, which will thus be characterized by the selection
of regressors. We call model Mj the model with the 0 ≤ kj ≤ k regressors grouped in Zj ,
leading to

y |α, βj , σ, Mj ∼ N(αιn + Zjβj , σ
2I), (1)

where ιn is a vector of n ones, βj ∈ ℜkj groups the relevant regression coefficients and
σ ∈ ℜ+ is a scale parameter.

For the parameters in a given model Mj , we follow Fernández et al. (2001a) and adopt
a combination of a “non-informative” improper prior on the common intercept and scale
and a so-called g-prior (Zellner, 1986)1 on the regression coefficients with prior density

p(α, βj , σ |Mj) ∝ σ−1f
kj

N (βj | 0, σ2g(Z ′

jZj)
−1), (2)

1 There is one difference with respect to the notation in Fernández et al. (2001a); in line with most of the
literature, in this paper g denotes a variance factor rather than a precision factor.
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where fq
N (w |m, V ) denotes the density function of a q-dimensional Normal distribution

on w with mean m and covariance matrix V . The regression coefficients not appearing in
Mj are exactly zero, represented by a prior point mass at zero (this is the “spike-and-slab”
idea). Of course, we need a proper prior on βj in (2), as an improper prior would not lead
to meaningful Bayes factors. The so-called “benchmark” prior structure in (2), sometimes
with small variations, is shared by most of the recent literature on covariate selection in
linear models—see, e.g., Clyde and George (2004) for a survey. As mentioned in Berger
and Pericchi (1996), there is a potential danger in assigning the same improper prior on
common parameters, but the prior structure used here can be motivated through invariance
arguments (see Berger, Pericchi and Varshavsky, 1998) and is generally accepted to be a
reasonable choice.

One advantage of this prior is that we only need to choose a single scalar parameter g.
A large fraction of the literature in this area has dealt with this choice of g, and it is clear
that posterior and predictive inference critically depends on g; see Ley and Steel (2009)
and Eicher et al. (2011) for examples of this in the context of growth regressions. Popular
values for g in the literature are to take g = n, which corresponds to assigning the same
amount of information to the conditional prior of β as is contained in one observation—the
so-called “unit information prior” of Kass and Wasserman (1995), also favoured in Eicher
et al. (2011)—or to take g = k2 as suggested by the Risk Inflation Citerion (RIC) of
Foster and George (1994). Fernández et al. (2001a) recommend the “benchmark” choice
of g = max{n, k2}. As a natural Bayesian response to the uncertainty regarding the choice
of g, we will put a hyperprior on g, allowing for the data to influence the inference on the
now random g. This makes the analysis more robust with respect to the assumptions on
g and has also been used, among others, in Liang et al. (2008), Bottolo and Richardson
(2008), Cui and George (2008), and Feldkircher and Zeugner (2009).

Thus, denoting by p(g |Mj) the prior for g > 0 (which could depend on Mj), we have the
following prior for all parameters in Mj

p(α, βj , σ, g |Mj) ∝ σ−1f
kj

N (βj | 0, σ2g(Z ′

jZj)
−1)p(g |Mj). (3)

In other words, we can interpret the prior on g as a way of extending the normal prior in
(2) to a scale mixture of normals, which has substantially more flexible tails—see Andrews
and Mallows (1974) and Fernández and Steel (2000).

Now we can write the marginal likelihood as the following (with a proportionality constant
that is the same for all models, including the null model):

ly(Mj) ∝

∫

∞

0

(1 + g)
n−1−kj

2 [1 + g(1 − R2
j )]

−
n−1

2 p(g |Mj)dg, (4)

where R2
j is the usual coefficient of determination for model Mj ; R2

j = 1 − y′QXj
y/(y −

ȳιn)′(y − ȳιn), where QA = [I − A(A′A)−1A′], and Xj = (ιn Zj) is the design matrix of
model Mj , which we assume to be of full column rank. This marginalised likelihood (4)
is simply the sampling density integrated out with the prior, and is of critical importance
as the ratio of marginal likelihoods of any two models is the Bayes factor between these
models.
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Note that the prior on g needs to be proper, as the null model does not involve g and an
improper prior on g would thus lead to arbitrary Bayes factors versus the null model. An
important quantity in evaluating the properties of priors on g will be the shrinkage factor,
which is δ = g/(1 + g). The posterior mean of βj for each given model will be the OLS
solution times this shrinkage factor.

For constructing the prior over model space, we assume that each potential regressor
is independently included in the model with probability θ. As in Brown et al. (1998),
Nott and Kohn (2005) and Ley and Steel (2009), we also consider putting a hyperprior
on θ, which is then assigned a Beta distribution. Ley and Steel (2009) illustrate that
such a random θ approach renders the analysis much more robust with respect to prior
assumptions. They advocate the parameterization

θ ∼ Be(1, (k − m)/m), (5)

where m is then the prior mean model size. The resulting hierarchical prior over model
space is less restrictive than the one with fixed θ and the choice of m is shown in Ley and
Steel (2009) not to matter too much in practice. The prior on model size induced by (5)
is a Binomial-Beta distribution—see, e.g., Bernardo and Smith (1994, p. 117).

3. Hyperpriors for g

3.1. Zellner-Siow Prior

Inspired by Jeffreys’ (1961) arguments for using Cauchy priors in model comparison prob-
lems related to a univariate normal mean, Zellner and Siow (1980) proposed the use of
multivariate Cauchy priors in regression problems. As is well known, and mentioned in
Liang et al. (2008), Student-t form priors (like the Cauchy) can easily be expressed as scale
mixtures of normals and thus, the Zellner-Siow prior corresponds to a particular choice
of p(g) in (3). In particular, Zellner and Siow implicitly propose an inverted Gamma
distribution with parameters 1

2 and n
2 , leading to

p(g) =

√

n
2

Γ( 1
2 )

g−3/2 exp

(

−
n

2g

)

.

This implies the following distribution for the shrinkage factor δ = g/(1 + g):

p(δ) =

√

n
2

Γ( 1
2 )

δ−3/2(1 − δ)−1/2 exp

(

−
n(1 − δ)

2δ

)

. (6)
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3.2. Beta Shrinkage Priors

A relatively large number of priors in the literature, in fact, imply a Beta prior distribution
for the shrinkage factor δ. A Beta(b, c) prior on the shrinkage factor induces the following
prior on g:

p(g) =
Γ(b + c)

Γ(b)Γ(c)
gb−1(1 + g)−(b+c), (7)

which is called an inverted Beta distribution in Zellner (1971, p. 375) and is also known
as a Gamma-Gamma distribution (Bernardo and Smith, 1994, p. 120) in the statistics
literature. This has the following properties:

{

E [g] = b
c−1 provided c > 1

Var [g] = b(b+c−1)
(c−1)2(c−2) provided c > 2

and has a mode equal to (b − 1)/(c + 1) provided b > 1. This inverted Beta prior on g
leads to the following prior on the regression coefficients, marginalised over g:

p(βj |Mj , σ) =
Γ(b + c)Γ

(

c +
kj

2

)

|Z ′

jZj |
1/2

Γ(b)Γ(c)(2π)kj/2σkj
· Ψ

(

c +
kj

2
,

kj

2
− b + 1;

β′

jZ
′

jZjβj

2σ2

)

,

where Ψ denotes the confluent hypergeometric function (Gradshteyn and Ryzhik, 1994,
p. 1085). Note that these Beta shrinkage priors have a density in the right tail that behaves
like g−(1+c), thus leading to very fat tails for small values of c.

The so-called hyper-g prior, proposed by Liang et al. (2008), corresponds to b = 1 and
c = a

2 − 1; with a > 2 to ensure a proper prior. This class includes priors used by
Strawderman (1971) for the normal means problem. Cui and George (2008) propose to
use a = 4 in the context of model selection with known σ. Bottolo and Richardson (2008)
adopt a hyper-g prior with a = 2, but make it proper by truncating the right tail at
max{n, k2}, which is the benchmark value for g proposed by Fernández et al. (2001a).
Feldkircher and Zeugner (2009) propose a hyper-g prior with a value of a that leads to the
same mean shrinkage factor as the unit information prior or the RIC prior. These hyper-g
priors have a finite nonzero limit as g → 0.

Another prior corresponding to a Beta shrinkage prior is the horseshoe prior of Carvalho
et al. (2010), where both b and c are taken to be 1

2 . The shrinkage factor thus has a U-
shaped prior where the spike around zero corresponds to very strong shrinkage and induces
zero coefficients in their shrinkage prior framework, and the spike around one describes the
signal.

Whereas the horseshoe prior was explicitly developed for a different setting (shrinkage
priors rather than our spike-and-slab framework), and the hyper-g has roots in the shrink-
age literature, the latter prior has been proposed explicitly for problems where we do have
prior point masses to deal with formal exclusion of regressors—in Liang et al. (2008), Cui
and George (2008), and Bottolo and Richardson (2008). However, in our spike-and-slab
case, we do not need to rely on shrinkage to exclude regressors: this is formally allowed for
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by the prior on the model space. Thus, we would expect that we don’t really need such a
large prior mass around small values of the shrinkage factor δ. Nevertheless, the horseshoe
prior has an accumulation of mass towards zero for both δ and g. In terms of g, both
the horseshoe prior and the hyper-g prior always decrease in g, and the horseshoe prior
even has an asymptote at zero. A graphical illustration of the various priors is provided
in Figure 2, discussed later.

One way to adapt these priors (partly) motivated by the shrinkage literature to our
current setting, is to realize that typically the shrinkage priors are not used in a g-prior
(where the conditional covariance of the regression coefficients is proportional to the inverse
information matrix) but in a ridge-type prior structure (where this conditional covariance
is proportional to the identity matrix). In the g-prior framework used here, we need to
account for the fact that information accrues with sample size and the inverse information
matrix is of order 1/n. Thus, a fair comparison with a shrinkage ridge-type prior setup
would perhaps be to apply the shrinkage prior to g/n rather than g. Equivalently, we then
use a Beta(b, c) prior on g/(n + g). Starting from the hyper-g prior, this leads directly to
the hyper-g/n prior of Liang et al. (2008). Similarly, we shall denote the prior thus derived
from the horseshoe prior by horseshoe/n prior. Of course, this does not change the fact
that these priors are always decreasing in g, but it does move some mass towards larger
values of g, and makes the right tail of the horseshoe/n prior on δ much thicker than the
left (see Figure 2). In addition, it solves an inconsistency problem. As shown in Liang
et al. (2008), the Zellner-Siow prior and the hyper-g/n prior are consistent in the sense
described in Subsection 3.4. This is also the case for the horseshoe/n prior, but not for
any prior on g that does not depend on n. Subsection 3.4 presents more results in this
respect.

Maruyama and George (2010) propose to choose b + c = (n − kj − 1)/2 and c < 1/2 in
(6). This choice is motivated by the fact that the integral in (4) then has a simple analytic
solution and thus Bayes factors can be computed as easily as in the case with fixed g. In
particular, we obtain (up to a common proportionality constant)

ly(Mj) ∝ Γ

(

n − kj − 1

2
− c

)

Γ

(

c +
kj

2

)

(1 − R2
j )

c−
n−kj−1

2 ,

whenever c < (n − kj − 1)/2. As a default value, Maruyama and George (2010) propose
to take c = 1/4. However, note that this choice implies that the prior on g depends on the
model we are considering (through the model size). Formally, this is allowed, but it may
make it slightly harder to interpret the role of g. Maruyama and George (2010) show that
consistency holds with this prior.

Extending the prior for robust estimation of Berger (1985), Forte et al. (2010) effectively
propose the use of a truncated version of (7) with b = 1 and c = 1/2, while truncating g
to be greater than (n + 1)/(kj + 3) − 1. They prove consistency of the resulting model
choice procedure and provide a closed-form expression for the Bayes factor. Through the
truncation point, the prior on g, again, becomes model-specific.

From fixed g analyses with growth data (Eicher et al., 2011; Ley and Steel, 2009) it seems
that rather large values of g could be preferable. In particular, values like g = n or even
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g = k2 are the most used in this literature. With the hyper-g we can only assign large
prior mass to regions with high g by taking a very close to 2, which gives us a fat tail for
g, but does not really change the shape of the prior. In order to propose an alternative
class of priors in the next subsection, we initially focus on the shrinkage factor, δ.

3.3. A Benchmark Beta Prior

If we start from a Beta(b, c) prior on the shrinkage factor δ = g/(1 + g), we can base
our proposal on ensuring that prior moments are reasonable (they always exist, as we are
dealing with a finite support). In particular, let us set the mean shrinkage factor equal to
the one that corresponds to the Fernández et al. (2001a) recommendation g = max{n, k2}.
This fixes one parameter as a function of the other, as then b/c = max{n, k2}. The second
parameter can then be chosen by considering the spread around this mean:

Var [δ] =
d(1 − d)

1 + c(1 + max{n, k2})
,

where

d =
max{n, k2}

1 + max{n, k2}

is the chosen prior mean of the shrinkage factor, and thus larger c corresponds to a tighter
prior around this mean.

For example, for the cross-country growth data used in Fernández et al. (2001b) with
k = 41 and n = 72, the value c = 1 would correspond to a prior standard deviation of the
shrinkage factor of 0.0006 (approximately equal to 1− d) and the corresponding b = 1681.
For c = 1/1000 we obtain a prior standard deviation of 0.015 (approximately 25 times
1 − d) and this corresponds to b = 1.681. For likely choices of c (say, c = 1, 0.1, 0.01) and
max{n, k2} > 100 (as for typical datasets in econometrics) we have no prior moments for
g, but we do have an interior mode equal to

Mode [g] =
max{n, k2} − 1/c

1 + 1/c
,

which is approximately max{n, k2}/2 for c = 1 and is a lot smaller for the smaller values
of c.

Figure 1 shows three prior densities (expressed in logs to make matters easier to visualize)
of g and δ from this class of benchmark priors. The figure illustrates the effect of c: For
c = 1 the density is most concentrated while for the smallest c the prior assigns a lot of the
mass to the far right tail of g (for example, P (g > 5, 000) = 0.95 for c = 0.01). Notably,
all priors for g have an interior mode. As c → ∞ the benchmark Beta prior tends in the
limit to the case with fixed g = max{n, k2}.

As a special case of the benchmark Beta class, we can get a single hyper-g prior by
choosing c = 1/ max{n, k2}. This would lead to a hyper-g prior with

a = 2 ×
max{n, k2} + 1

max{n, k2}
.
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Benchmark priors for c = 1 (solid), c = 0.1 (dashed), and c = 0.01 (dotted)
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Fig. 1. Beta Benchmark Priors for g and δ (n = 72, k = 41)

Vertical lines correspond to g = max{n, k2}

In fact, this would effectively correspond to taking the prior setting with the smallest a
of the two proposals in Feldkircher and Zeugner (2009). Note that even though the mean
shrinkage factor is the same, this is a very different prior, where we achieve the mean
shrinkage by a very small c (with fixed b = 1) rather than the benchmark choice of a very
large b (with fixed c, chosen to give a reasonable prior spread of δ).

Figure 2 helps us understand the differences between the various priors. It displays the log
densities of g and δ for all the priors discussed here (using n = 72 and k = 41 as in the first
growth dataset in Section 7). Interior modes for g occur for the Zellner-Siow, Maruyama-
George, Forte et al.2 and benchmark priors. All other priors tend to a positive constant or
infinity3 as g → 0. In order to get the same mean shrinkage factor as the benchmark Beta
prior, the Feldkircher-Zeugner priors thus need to decrease very rapidly with g in order to
compensate for the mass close to g = 0 and then have a very fat far right tail (almost of the
order 1/g). As a consequence, the prior probability assigned by the Feldkircher-Zeugner
priors to δ > d (with d defined as in the beginning of this subsection) is large: over 0.9
when a = 2 + 2/n and 0.9986 for a = 2 + 2/k2. For the benchmark prior this probability
decreases from 0.96 to 0.63 as c ranges from 0.01 to 1. Particularly small prior probabilities
for large values of δ are associated with the Bottolo-Richardson prior (P (δ > d) = 0 due
to the truncation) and the hyper-g (a = 3, 4) and horseshoe priors, which have relatively
thin right tails for g. The Zellner-Siow prior for g has the same right tail behaviour as
the hyper-g with a = 3 and the horseshoe prior and also leads to relatively small mass on
δ > d (0.16). The Maruyama-George and Forte et al. priors are intermediate cases in this
respect. Remember also that the latter two priors depend on the model Mj through its
model size, kj . Thus, denoting model size by W , we compute the marginal prior for g as

2 Note also that the Forte et al. prior for g is truncated away from zero, in that g > ((n + 1)/(k + 3))− 1.
In addition, this prior, computed as in (8), is multimodal, with the truncation leading to a saw-tooth effect
for small and moderate values of g (the last discontinuity is at g = (n − 2)/3).

3 For the horseshoe and horseshoe/n priors.
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follows:

p(g) =
k
∑

w=0

p(g |w)P (W = w), (8)

where P (W = w) is the probability mass function of the Binomial(k, θ) (for fixed θ) or
Binomial-Beta distribution (for random θ, and as given in Ley and Steel, 2009). Figure
2 presents the marginal Maruyama-George and Forte et al. priors for the random θ case
with m = 7.

With the exception of the hyper-g with a = 4 and the horseshoe priors, all priors concen-
trate their mass on very small amounts of shrinkage. This is appropriate in our setting,
since we do need to shrink regression coefficients to zero in order to indicate that certain
regressors are not important. Instead, we use point masses at zero to formally exclude
regressors.

Table 1 summarizes the definition and some of the main properties of the different prior
distributions. The names of the priors are as in the text, except for “F-Z,” which denotes
the Feldkircher-Zeugner prior. The numbers refer to prior numbers as used later in the
empirical sections. The column “truncated” indicates any truncation of the support for g
and the column “model spec.” indicates whether the prior is specific to any given model.
In the column “mean” we report whether the prior mean exists (and if so, under which
conditions). The availability of analytical expressions for the Bayes factors is indicated
in “BF”, while the last column “cons.” refers to consistency as discussed in the next
subsection. Finally, note that if the prior mean of g does not exist, neither will the
posterior mean. The reason for that is simply that the posterior equals the prior for the
null model (since that model does not involve g). Thus, even if the null model has only a
very small posterior probability, the latter is not zero and the overall posterior mean of g
will be infinite.

3.4. Consistency and Information Paradox

As stressed in Liang et al. (2008), the limiting behaviour of the Bayes factors can be an
interesting guideline for the choice of priors on g. They mention the “information paradox,”
which occurs if a model Mj gets overwhelming data support (so that R2

j → 1) and if then
the Bayes factor of Mj with respect to the null model does not go to infinity. It is clear
from (4) that this Bayes factor would tend to

∫

(1+g)(n−1−kj)/2p(g)dg. Liang et al. (2008)
show that the Zellner-Siow prior and the hyper-g prior with a ≤ n − kj + 1 avoid the
paradox, whereas no fixed g would do so. If we adopt the general Beta shrinkage prior,
we obtain the result that the paradox is removed if and only if c < (n − 1 − kj)/2, which
exactly corresponds to the findings of Liang et al. (2008). Typical values of c chosen in
the benchmark Beta prior would certainly comply with this condition.

Consistency implies that all posterior mass tends to be allocated to the true model (i.e.,
the model that generated the data) if the latter is in the model space as the number of
observations goes to infinity. This was introduced in Fernández et al. (2001a) and is called
“model selection consistency” in Liang et al. (2008). The latter paper remarks that the
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Bottolo-Richardson (solid), Benchmark: c = 0.1 (dashed), Hyper-g: a = 3 (dotted)
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Maruyama-George: m = 7 (solid), Feldkircher-Zeigner: a = 2 + 2/n (dashed), Zellner-Siow (dotted)
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Forte et al.: m = 7 (solid), Hyper-g/n: a = 3 (dashed), Feldkircher-Zeigner: a = 2 + 2/k2 (dotted)
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Hyper-g: a = 4 (solid), Horseshoe (dashed), Horseshoe/n (dotted)
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Fig. 2. Priors for g and δ (n = 72, k = 41)
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Table 1. Summary of prior distributions on g

Beta shrinkage priors, δ ∼ Be(b, c)

nr. name b c truncated model spec. mean BF cons.

1–3 Benchmark c max{n, k2} c no no c > 1 no yes

4 Maruyama-George
n−kj−1

2
− c < 1/2 no yes no yes yes

5 Bottolo-Richardson 1 0 g < max{n, k2} no yes no yes

6–7 Hyper-g 1 (a/2) − 1 no no a > 4 no no

8 F-Z, a = 2 + 2/n 1 1/n no no no no yes

9 F-Z, a = 2 + 2/k2 1 1/k2 no no no no no

10 Horseshoe 1/2 1/2 no no no no no

11 Forte et al. 1 1/2 g > n+1

kj+3
− 1 yes no yes yes

Beta shrinkage/n priors, g

n+g
∼ Be(b, c)

b c truncated model spec. mean BF cons.

12 Hyper-g/n 1 (a/2) − 1 no no a > 4 no yes

13 Horseshoe/n 1/2 1/2 no no no no yes

Inverted Gamma prior, g ∼ IG(b, c)

b c truncated model spec. mean BF cons.

14 Zellner-Siow 1/2 n/2 no no no no yes

Zellner-Siow and hyper-g/n priors are consistent, but the hyper-g prior is not consistent
when the null model is the true model. In contrast, the benchmark Beta prior does lead
to consistency in this case:

Proposition 1. If data are generated by the null model and we adopt the prior for g in
(7), the Bayes factor for any other model Mj versus the null model tends to

Γ(b + c)

Γ(b + c + (kj/2))

Γ(c + (kj/2))

Γ(c)

as the number of observations n tends to infinity. Thus, if we take the benchmark Beta
prior settings in Subsection 3.3 (where b → ∞ with n and c is fixed), we achieve consistency
under the null model.

Actually, Proposition 1 can also be used to show that the hyper-g proposal by Feldkircher
and Zeugner (2009) where a = 2 + w(n) where w(n) tends to zero with n is consistent, as
also mentioned in their paper. With this prior, the Bayes factor for any model versus the
null model is w(n)/(w(n) + kj) and will thus tend to zero.

The Bottolo-Richardson prior has a hyper-g form but depends on n through the trun-
cation and this can be shown to lead to consistency. However, the Bayes factor for any
model Mj versus the true null model is or the order 1/ ln(n) and the rate of convergence
is thus quite slow.
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4. Sample information on g and Bayes factors

When we move from choosing a fixed value for g towards the treatment of g as a random
quantity with a host of different possible priors, it makes sense to consider what exactly
we can expect to learn from the sample about g. Clearly, if g is close to unidentified, we
are not going to move away substantially from the prior and the choice of prior is going
to be critical. Of course, that does not preclude inference with a proper prior on g but it
does mean we should choose the prior carefully.

The information that the sample provides marginally on g can, in principle, be derived
from the likelihood integrated with respect to the prior on model parameters in (2):

ly(g,Mj) ∝ (1 + g)
n−1−kj

2 [1 + g(1 − R2
j )]

−
n−1

2 , (9)

from which we can write the likelihood marginalized with everything except for g as

ly(g) ∝

2k

∑

j=1

(1 + g)
n−1−kj

2 [1 + g(1 − R2
j )]

−
n−1

2 P (Mj |g). (10)

A plot of ly(g) as a function of g describes the marginal information that is present in
the sample about g. With the exception of the priors in Maruyama and George (2010)
and Forte et al. (2010), the priors on model space do not depend on g and easy analytical
expressions for P (Mj) exist, in the case of fixed and random prior covariate inclusion
probabilities (Ley and Steel, 2009). The problem in evaluating (10), however, is the huge
amount of terms in the sum, which makes this seemingly simple calculation infeasible for
k > 20 or so.4

A feasible way of calculating ly(g) is to simply start from Bayes rule to realise that

ly(g) = ci
pi(g|y)

pi(g)
, (11)

where we have indicated dependence on the prior used for g by a subscript i. Note that ly(g)
does not depend on the prior chosen for g. For the evaluation of the sample information,
the proportionality constant in (11) does not matter, as we are really only interested in
the profile of the (unnormalized) integrated likelihood ly(g) as a function of g.

The posterior density needs to be computed numerically on the basis of an MCMC
chain (as described in the next subsection), but the simple equation in (11) completely
characterizes the information about g contained in the sample. In principle, it should give
the same result (up to an additive constant) for any prior on g, but as it is bound to be
less precise when both densities tend to zero, an average of (11) will be computed over the

4 Note that the sum in (10) is weighted with the prior distribution on model space, so we can not simply
approximate it by a sum over the (small subset of) models visited in the MCMC chain used for posterior
model inference (see Section 5), but we would typically need complete enumeration.
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different priors used on g, where we discard the influence of a prior for values of g where
this prior has very small density values. To neutralise the effect of the different values of
ci in this average, we normalise the profiles by choosing ci = pi(g0)/pi(g0|y) for a central
value of g0 for which all priors and posteriors have nonnegligible mass. The more peaked
this information measure, the more information the sample contains about g and the less
important prior choice on g becomes.

The expression in (11) is also reminiscent of the so-called Savage-Dickey density ratio
(Verdinelli and Wasserman, 1995). Indeed, if we make explicit that the proportionality
constant ci = ly(prior i) =

∫

ly(g)pi(g)dg, then it becomes clear that the ratio pi(g|y)/pi(g)
evaluated at a value g0 is the Bayes factor of the model with fixed g0 versus the model
with prior pi(g).

Another thing that can be easily done is to compare the data support for different fixed
values of g given a choice of prior pi(g). In particular, if we consider two values, say g1

and g2, the Bayes factor is given by

ly(g1)

ly(g2)
=

pi(g1|y)

pi(g2|y)

pi(g2)

pi(g1)
.

Values of g for which the posterior density value is higher relative to the prior density are
more strongly supported by the data, in line with intuition. Perhaps even more interesting
is the direct comparison of different priors on g, which can be done immediately through
the Bayes factors. From (11) the Bayes factor for the model with prior q versus the one
with prior m can be computed as

ly(prior q)

ly(priorm)
=

pm(g0|y)

pq(g0|y)

pq(g0)

pm(g0)
, (12)

where we choose a value g0 such that none of the density values on the right hand side are
very small.5 Note that the data will tend to support models with priors that take relatively
high density values at g0 compared to the posterior. As the marginal likelihood is the
likelihood ly(g) integrated out with the prior pi(g), it is not surprising that Bayes factors
between models that differ in the prior on g will favour those models that concentrate the
prior weight on g around values with very high likelihood support.

5. Induced Complexity and Lack of Fit Penalties

In order to make the analysis more robust with respect to the prior assumptions, we have
introduced hyperpriors on the inclusion probability of regressors, θ in (5), and on g. Let us
now examine how this affects the posterior model probabilities through the penalties for
model complexity and lack of fit. Posterior odds between models are the product of prior
odds (from the prior over model space) and Bayes factors (from the marginal likelihood

5 The use of the basic identity as in (11) evaluated at fixed parameter values to estimate marginal likelihoods
also underlies the proposal of Chib (1995).
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for each model). Since the prior on model space is such that regressors are included
independently with probability θ and using the expression in (9), we have, for any two
models and given θ and g

P (Mi | y, θ, g)

P (Mj | y, θ, g)
=

(

θ

1 − θ

)ki−kj

(1 + g)
kj−ki

2

(

1 + g(1 − R2
i )

1 + g(1 − R2
j )

)

−
n−1

2

. (13)

In what follows, we shall consider each of the three factors in (13) separately, and focus
on the case where ki = kj + 1 and R2

i = R2
j to isolate complexity (model size) penalties

and the case where ki = kj and R2
i < R2

j to study the penalty for lack of fit. We define

penalties as minus the logarithm of the corresponding odds factor,6 so that if the factor
contributing to the odds between two models of different complexities or levels of fit is
one, the induced penalty is zero. The complexity penalty induced by the prior odds can
be positive (in favour of the smaller Mj) or negative (favouring the larger model Mi),
whereas the penalties induced by the Bayes factor are always positive. Values for the three
penalties can immediately be compared as the penalties are simply added together to form
the negative log posterior odds.

Starting with the prior odds, the first factor in (13), this induces a complexity penalty,
say cpM ∈ ℜ, for adding an extra regressor equal to

cpM = − log

(

θ

1 − θ

)

.

For example, if we fix θ to be 0.5, this is always zero and there is no penalty for model
complexity in the prior over the model space. The use of a value of θ < 0.5 reflects a
prior penalty for model complexity. If we now use the random θ in (5), this induces a
distribution on cpM which corresponds to an inverted Beta on exp(−cpM ), and is given by

p(cpM ) =
k − m

m
exp(−cpM ) [1 + exp(−cpM )]

−k/m
,

where m denotes the prior mean model size. Figure 3 plots the distribution of this prior
complexity penalty factor for k = 41 and two different choices of m: m = 7 (often used in
the growth regression context and reflecting a preference for models of size around 7) and
m = 20.5 (the same prior mean model size as implied by the choice of a fixed θ = 0.5 and
reflecting a uniform prior distribution for model size, as explained in Ley and Steel, 2009).
Vertical lines in the figure correspond to the fixed complexity penalties implied by fixing θ
leading to the same values of m (given by cpM = log[(k−m)/m]). Note that the densities
corresponding to the rather different cases shown in Figure 3 have considerable overlap.

6 The use of the negative log odds ratio as a penalty function seems natural, as interchanging the two
models is reflected by a sign change of the penalty and it ties in well with the terminology of classical
information criteria, which, in some cases, correspond to the limits of log posterior odds, as shown in
Fernández et al. (2001a).
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Even though they are centered around the value corresponding to fixed θ with the same
m they allow for quite a bit of variation. In summary, choosing a random θ prior makes
this prior complexity penalty itself random, and thus allows for the data to influence this
penalty.7 This renders the analysis more robust with respect to the specification of mean
model size m (see Ley and Steel, 2009 for more details and results with some growth data
sets).
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Fig. 3. Prior of complexity penalty cpM

k = 41, m = 7 (solid) and m = 20.5 (dashed)

A separate complexity penalty derives from the second factor in (13), which is part of
the Bayes factor. This penalty, say cpBF , takes values in ℜ+ (always favouring the smaller
model) and is given by

cpBF =
1

2
log(1 + g).

For fixed g, this illustrates the link between, e.g., g = n and the BIC. Note also that
the penalty increases with g and tends to zero as g tends to zero. If pg is the density
function corresponding to the hyperprior on g, this induces the following distribution on
this complexity penalty:

p(cpBF ) = 2 exp(2cpBF )pg [exp(2cpBF ) − 1] .

Figure 4 presents the density function of this complexity penalty for the cases of the
benchmark prior with c = 0.01, the hyper-g/n with a = 3 and the Zellner-Siow prior,
using n = 72 and k = 41. Vertical lines indicate the fixed penalty values corresponding
to g = n (solid) and g = k2 (dashed). Whereas the hyper-g/n and Zellner-Siow priors
favour penalties around the one corresponding to g = n and BIC, it is clear that the
benchmark prior implies a much more uniform prior on this complexity penalty and also

7 The posterior distribution of this prior complexity penalty is, of course, easily obtained from the posterior
of θ via a simple variable transformation.
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Fig. 4. Prior of complexity penalty cpBF (n = 72, k = 41)

Benchmark c = 0.01 (solid), hyper-g/n, a = 3 (dashed), and the Zellner-Siow prior (dotted)

Vertical lines correspond to g = n (solid) and g = k2 (dashed)

has considerable mass in areas with appreciably larger penalty values. This is, of course,
a direct consequence of the very fat right tail for this hyperprior.

The third factor in (13) corresponds to a penalty for lack of fit, which can be denoted as

fpBF =
n − 1

2
log

(

1 + g(1 − R2
i )

1 + g(1 − R2
j )

)

,

always taking positive values (remember we consider R2
i < R2

j ) and thus favouring the
better fitting model. Like cpBF this penalty increases with g (with an upper limit equal to
[(n − 1)/2] log[(1 − R2

i )/(1 − R2
j )]) and tends to zero as g tends to zero. Figure 5 presents

the induced distributions of this lack of fit penalty in the same format as Figure 4, using
n = 72, k = 41, R2

i = 0.75 and R2
j = 0.8. The effect of g decreases rapidly as the value

of g increases, and the penalty fpBF quickly approaches its upper bound. This is clearly
illustrated by the fact that all three priors lead to a distribution that is concentrated
towards the upper limit, which is also close to the penalties obtained with the two popular
fixed values for g. Thus, the effect of the prior on g is minimal in terms of this lack-of-fit
penalty.

In conclusion, the hyperpriors on θ and g have a pronounced effect on the induced penal-
ties for model complexity, and virtually none on the penalty for lack of fit. These hy-
perpriors allow for the data to affect the model complexity penalties associated with the
prior over model space (through θ) and the marginal likelihood for each model (through
g), and thus make the analysis less dependent on (usually arbitrary) prior assumptions. In
particular, the benchmark hyperprior on g induces a very vague prior on the complexity
penalty implicit in the Bayes factor.
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Fig. 5. Prior of lack-of-fit penalty fpBF , (n = 72, k = 41, R2
i

= 0.75 and R2
j

= 0.8)

Benchmark c = 0.01 (solid), hyper-g/n, a = 3 (dashed), and the Zellner-Siow prior (dotted)

Vertical lines correspond to g = n (solid) and g = k2 (dashed)

6. Computational Issues

In typical applications in economics, the number of potential covariates k is so large that
the model space is impossible to evaluate exhaustively.8 So even if Bayes factors between
different models can be computed analytically, we still need some sort of numerical method
to conduct inference over models. A convenient way to do this is through Markov chain
Monte Carlo, in particular the MC3 algorithm of Madigan and York (1995) has been
used in this context with success (Fernández et al., 2001a; and Ley and Steel, 2009).
Eicher et al. (2011) experiment with various algorithms and find that MC3 works quite
well in this context. Recently, other alternative methods were proposed, such as Bayesian
Adaptive Sampling by Clyde et al. (2011) and Evolutionary Stochastic Search by Bottolo
and Richardson (2010), which is designed to work for situations where k is orders of
magnitude larger than n. We retain the simple MC3 algorithm, which works well for the
types of problems we focus on here (see also Garćıa-Donato and Mart́ınez-Beneito, 2011).
Except for the prior of Maruyama and George (2010) and Forte et al. (2010), we need
to deal with the fact that the integral in (4) does not have a straightforward closed-form
solution. Liang et al. (2008) approximate this integral in g with a Laplace approximation,
but we will opt for a Gibbs sampler approach over model space and g. In the latter, the
Bayes factor between any two models given g is

ly(Mi | g)

ly(Mj | g)
= (1 + g)

kj−ki

2

(

1 + g(1 − R2
i )

1 + g(1 − R2
j )

)

−
n−1

2

, (14)

8 For example, the applications to growth data discussed in Section 7 involve model spaces with, respec-
tively, 241 = 2.2 × 1012 and 267 = 1.5 × 1020 different models.
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The conditional posterior of g given Mj is simply9

p(g | y, Mj) ∝ (1 + g)
n−kj−1

2 [1 + g(1 − R2
j )]

−
n−1

2 p(g |Mj). (15)

The advantage of using the Gibbs sampler on (g,Mj) is that it does not rely on approx-
imations that are hard to control and makes prediction quite straightforward: for every g
drawn in the sampler we predict as with a fixed g (Fernández et al., 2001a), and predic-
tions are simply mixed over values of g in the sampler. With Laplace approximations this
seems much less straightforward and the quality of these approximations is not that easy
to assess. Also, truncation, as in the Bottolo-Richardson and Forte et al. priors, can be
dealt with easily in a Gibbs sampling framework.

We use a simple random walk Metropolis-Hastings step for g with a log-Normal proposal
centred over the previous value. Finally, we control the acceptance probability for g by
making the Metropolis-Hastings step adaptive.

Throughout, we use MCMC chains of length 1,000,000 after a burn-in of 500,000, which
was found to be more than sufficient for convergence. The Fortran code used for this paper
is available from the authors upon request.10

7. Simulations

First, we examine simulated datasets to mimic the kinds of situations typical for many
applications in econometrics (and in other areas as well). We generate datasets from three
different model structures, which closely correspond to those in Fernández et al. (2001a).
For Models 1 and 2 we generate an n × k matrix R for k = 15 regressors where the first
ten columns (r(1), . . . , r(10)) are drawn from independent standard normal distributions,
and the next five columns are constructed as

(r(11), . . . , r(15)) = (r(1), . . . , r(5)) · (0.3, 0.5, 0.7, 0.9, 1.1)′ · ι′5 + E ,

where E denotes an n× 5 matrix drawn from independent normal random variables. This
induces correlations between the first five and the last five regressors ranging from 0.153
to 0.74. The demeaned version of R is then the matrix of regressors Z = (z(1), . . . , z(15))
used to generate the data according to:

Model 1: y = 4ιn + 2z(1) − z(5) + 1.5z(7) + z(11) + 0.5z(13) + σε,

Model 2: y = ιn + σε,

9 Indeed, if we take the null model for Mj we get kj = 0 and R2
j

= 0 and we get exactly the prior on g

back, as we should (since the null model does not involve g).

10 Fortran code for the fixed g case as described in Ley and Steel (2009) is available online in the Journal of
Applied Econometrics archive corresponding to the latter paper. Code in R (which accommodates hyper-g
priors) is available from http://bms.zeugner.eu/.
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where ε is a vector of iid standard normal random variables and we take σ = 2.5. In Model
1 we use n = 50, 100 and for Model 2 we use n = 50, 100, 1000, 10, 000 in order to illustrate
consistency.

The remaining model structure used in the simulations uses regressors with pairwise corre-
lations of 0.5, generated as r(i) = r⋆

(i)+e where each r⋆
(i) and e are vectors of n independent

standard normal elements. After demeaning to obtain Z we generate n observations as

Model 3: y = ιn +
∑7

h=1 z(h) + σε,

where now we use σ = 2. Values of k used are 20, 40 and 80, while we adopt n = 50 and
100.11

We analyse 100 simulated data sets for each model and value of k and n mentioned above.
The prior on model space is constructed with a random θ as in (5) with a prior mean model
size m = k/2. The different priors for g discussed above have been used, as well as two
fixed values for g (g = n and g = k2). For the hyper-g/n prior we take a = 3.

Rather than provide exhaustive results from these simulations, we merely highlight the
most important findings here. The different priors do lead to rather different posterior
distributions for g. Broadly speaking, the hyper-g priors lead to the smallest median
posterior median12 for g, while the benchmark prior with c = 1 often leads to the largest.
From Section 5, we know that larger g induces a higher model size penalty (cpBF ) and
this is immediately reflected in the results. Consider, in particular, the average number of
regressors in the visited models. Tables 2 and 3 record the median over the 100 samples
of the average model size. As expected, average model sizes are smaller for the priors
leading to higher values of g, in particular the benchmark prior with c = 1 and the case
with fixed g = k2. On the other hand, the hyper-g priors and the Bottolo-Richardson and
horseshoe priors favour larger models. This is a serious drawback in the case of Model
2, where data are generated from the null model. Here the hyper-g and horseshoe priors
(and to a slightly lesser extent the Bottolo-Richardson prior) are choosing models that are
far too large: marginal inclusion probabilities of all 15 regressors (none of which are used
in the true model) are typically over 0.4 with these priors. In contrast, the probability
of erroneously including the regressors tends to be under 1% for the benchmark priors
with c = 1 and c = 0.1 and the case with g = k2. The priors of Maruyama-George,
Forte et al. and Zellner-Siow and the case with g = n typically lead to marginal inclusion
probabilities under 2.5%.

Tables 2 and 3 also present the median posterior probability of the true model. These
tend to be smallest for the hyper-g priors throughout and for the Bottolo-Richardson prior
in the case of Model 3. The highest probabilities on the true model are typically found

11 The situation with n = 50 and k = 80 means that we need to exclude models with kj ≥ n − 1, as the
posterior for such a model would no longer be well-defined. This is simply done by imposing a prior on
model space that limits the model size to n − 2. The sampler then rejects any proposed model for which
kj > n−2. In the analysis of these simulated data, the sampler never even gets close to models that large.

12 Here and in the subsequent discussion we often focus on the median over the 100 samples we generated.
We do not consider the median of the posterior means of g, since the posterior mean of g does not exist
for all but the Bottolo-Richardson prior (see the discussion in Subsection 3.3).
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for the benchmark prior with c = 1 and c = 0.1, the Maruyama-George prior and the case
with fixed g = k2. For Models 1 and 3 differences in the posterior probability of the true
model are not huge (covered by a factor of about 5), but for Model 2 these differences are
very substantial indeed, ranging from 0.08 to 0.90 for n = 50 and from 0.08 to 0.99 for
n = 10, 000. Table 2 also illustrates the results on consistency, as dealt with in Proposition
1 and summarized in Table 1. The priors not leading to consistency (hyper-g, F-Z with
a = a+2/k2 and horseshoe priors and the case with g = k2) lead to posterior probabilities
on the true model that are virtually unaffected by sample size n. The consistent priors
(benchmark, Maruyama-George, Bottolo-Richardson, F-Z with a = 2 + 2/n, Forte et al.,
hyper-g/n, horseshoe/n, Zellner-Siow and the case with g = n) see this probability increase
to unity with n, although this convergence seems relatively slow for the horseshoe/n and
very slow for the Bottolo-Richardson prior and the F-Z prior with a = 2 + 2/n.13

Another consequence of different model size penalties is the number of models that are
actually visited by the chain. From Section 5 we know that the implied model size penalty
stems from both θ and g. Thus, we would expect the number of models visited by the chain
to be affected by the choice of prior on g. Indeed, that is the case, with the hyper-g and
horseshoe priors typically leading to large number of models visited and the benchmark
prior with c = 1 and the case with g = k2 often resulting in much less model visits.
The differences can be quite substantial—e.g., in Model 1 with n = 50 the hyper-g and
horseshoe priors lead to a median of over 10,000 model visits whereas the chains for the
benchmark prior with c = 1 visit a median of 4128 different models, and if we fix g = k2

this is only 2132 models. For Model 2 we observe even larger differences, with the number
of models visited ranging from around 200 for the benchmark prior with c = 1, Maruyama-
George, Forte et al. and g = n to about 33,000 for the hyper-g and the horseshoe priors
if we take n = 1000. As expected, for Model 3 with k = 80 we observe most visits in
the chains, ranging from a median visit count of 3280 for the case with g = k2 to around
60,000 for the hyper-g priors.

An interesting aspect that is suggested by Table 3 is the effect of different values of
k and n. One would expect that the challenge of finding the model that generated the
data is harder as the model space (and thus k) grows. Indeed, if we have only n = 50
observations, the posterior probability assigned to the true model decreases by around
an order of magnitude each time we double the value of k. However, if we have 100
observations to conduct inference with, we see that the posterior probability of the true
model is much less affected by the changes in k. There is a slight downward tendency
with k, but the median is never even halved by going from k = 20 to k = 80. This seems
to suggest that for large enough n we are not too much led astray by the introduction of
further unrelated regressors. Interestingly, the marginal posterior inclusion probabilities
of the irrelevant regressors is not much smaller for the case with n = 100, but clearly
the entire posterior distribution on model space is quite different. As is obvious from the
expressions in Section 5, the sample size n only affect the lack-of-fit penalty and not the

13 In the case of the latter prior, Proposition 1 tells us that the Bayes factor in favour of the (true) null
model against any other model Mj is 1 + nkj/2, which seems to be sizeable for n = 10, 000, but we need
to keep in mind that there are many alternative models.
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complexity penalties. In particular, larger n means a larger penalty for lack of fit and this
will tend to favour larger models (since they fit at least as well as the models nested in
them). Indeed, we notice in Table 3 that the median model size is larger throughout for
n = 100. Furthermore, including irrelevant regressors will not change the fit much, so it is
understandable that the inclusion probabilities of irrelevant regressors are about the same
for both sample sizes. However, the real difference lies in the fact that with the larger
sample size we move less frequently to models that lack one of the “true” regressors as this
normally implies a substantial lack-of-fit penalty.

Table 2. Simulated Data, Models 1 and 2 (null model)—results for model size and

inclusion probability of the true model. Number of regressors k = 15.

Model 1 Model 2

True model size 5 5 0 0 0 0

Prior mean model size 7.5 7.5 7.5 7.5 7.5 7.5

n 50 100 50 100 1000 10,000

median average posterior model size: η

median posterior prob. true model (in %): γ

Prior on g η γ η γ η γ η γ η γ η γ

1 Benchmark c = 1 4.2 0.4 5.2 3.1 0.1 88 0.1 87 0.1 94 0.0 98

2 Benchmark c = 0.1 5.3 0.5 5.9 2.5 0.1 90 0.1 89 0.0 95 0.0 99

3 Benchmark c = 0.01 6.2 0.5 6.1 2.3 1.1 56 0.8 45 0.2 89 0.0 97

4 Maruyama-George 5.5 0.5 5.7 2.5 0.3 81 0.1 89 0.0 97 0.0 99

5 Bottolo-Richardson 6.4 0.5 6.2 2.2 4.8 18 4.2 20 3.9 28 3.2 31

6 Hyper-g, a = 3 7.4 0.3 6.9 1.7 6.6 9 6.4 9 6.4 9 6.3 9

7 Hyper-g, a = 4 7.7 0.3 7.2 1.5 6.8 8 6.6 8 6.7 8 6.6 8

8 F-Z, a = 2 + 2/k2 6.3 0.4 6.1 2.2 2.2 41 2.0 40 2.0 40 2.2 44

9 F-Z, a = 2 + 2/n 6.3 0.4 6.2 2.3 2.5 40 2.1 37 2.0 42 2.1 43

10 Horseshoe 6.8 0.4 6.5 2.1 6.5 10 6.2 11 6.3 11 6.3 11

11 Forte et al. 6.0 0.5 6.0 2.4 0.3 78 0.2 86 0.0 96 0.0 99

12 Hyper-g/n 5.8 0.5 5.8 2.4 1.2 44 0.7 53 0.1 91 0.0 98

13 Horseshoe/n 6.1 0.4 6.0 2.4 3.9 29 3.1 35 1.7 54 0.6 66

14 Zellner-Siow 5.6 0.5 5.9 2.4 0.4 73 0.2 82 0.1 94 0.0 98

15 g = n 4.8 0.6 5.1 3.1 0.4 71 0.2 80 0.1 94 0.0 98

16 g = k2 3.6 0.3 4.6 3.6 0.2 87 0.2 86 0.2 86 0.1 87

Combining the results on consistency with those of the posterior probability assigned to
the true model, we conclude from this section that the best performing priors seem to be
the benchmark, Maruyama-George, Forte et al. and the Zellner-Siow priors.

8. Applications to Real Data

In the context of real applications, we will further examine all the different priors, and will
also investigate the predictive performance as well as Bayes factors. For each application,
we will randomly partition the sample in an estimation sample and a prediction sample, of
a fixed size. We do this 50 times and this allows us to assess predictive performance based
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Table 3. Simulated Data, Model 3—results for model size

and inclusion probability of the true model.

Model 3

k = 20 k = 40 k = 80

True model size 7 7 7 7 7 7

Prior mean model size 10 10 20 20 40 40

n 50 100 50 100 50 100

median average posterior model size: η

median posterior prob. true model (in %): γ

Prior on g η γ η γ η γ η γ η γ η γ

1 Benchmark c = 1 6.7 1.1 8.1 23 5.3 0.1 7.6 29 4.1 0.00 7.1 30

2 Benchmark c = 0.1 7.0 1.0 8.2 21 6.3 0.1 8.1 20 5.3 0.01 7.9 19

3 Benchmark c = 0.01 7.1 1.0 8.2 20 6.6 0.1 8.2 18 6.1 0.01 8.3 15

4 Maruyama-George 7.1 1.0 8.2 20 6.7 0.1 8.3 18 6.2 0.01 8.4 14

5 Bottolo-Richardson 7.9 0.5 9.1 10 7.3 0.1 9.0 9 6.7 0.00 9.2 6

6 Hyper-g, a = 3 7.5 0.8 8.5 16 7.0 0.1 8.5 15 6.5 0.00 8.6 11

7 Hyper-g, a = 4 7.6 0.8 8.6 15 7.1 0.1 8.6 14 6.6 0.01 8.7 10

8 F-Z, a = 2 + 2/k2 7.1 1.0 8.2 20 6.7 0.1 8.3 18 6.2 0.01 8.4 13

9 F-Z, a = 2 + 2/n 7.1 1.0 8.2 20 6.7 0.1 8.3 18 6.2 0.01 8.3 14

10 Horseshoe 7.3 1.0 8.3 18 6.8 0.1 8.3 17 6.4 0.01 8.5 12

11 Forte et al. 7.3 0.9 8.3 18 6.8 0.1 8.4 17 6.4 0.01 8.5 12

12 Hyper-g/n 7.1 1.1 8.2 20 6.7 0.1 8.3 18 6.1 0.01 8.4 13

13 Horseshoe/n 7.2 1.0 8.2 19 6.7 0.1 8.3 18 6.3 0.01 8.4 13

14 Zellner-Siow 7.2 1.0 8.3 19 6.8 0.1 8.3 18 6.3 0.01 8.4 13

15 g = n 7.5 0.8 8.7 14 7.1 0.1 8.6 13 6.6 0.01 8.8 8

16 g = k2 6.2 0.9 7.8 31 4.9 0.0 7.2 36 3.8 0.00 6.6 28

on the log predictive score, abbreviated to LPS (Fernández et al., 2001a,b).14 In addition,
analyzing the 50 estimation subsamples allows us to get a certain amount of robustness
with respect to possible unusual data points, partly addressing some of the concerns voiced
in Ciccone and Jarociński (2010)15 with respect to data sensitivity. Bayes factors between
models with different priors will be computed on the basis of the full sample. We consider
four different priors on the model space: fixed θ and random θ as in (5), both with prior
mean model sizes of m = 7 and m = k/2.

8.1. Cross-country growth regressions

The context of cross-country growth regressions is one of the first areas within economics
where the use of BMA has become popular. This area of macroeconomics is characterized
by a particularly large number of potential drivers for growth and a scarcity of observations,

14 Alternative proper scoring rules are discussed in Gneiting and Raftery (2007).

15 However, also see the comment in Feldkircher and Zeugner (2010).
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so this is an ideal candidate for BMA. We consider below two datasets which have been
used in many studies on this topic.

The FLS data

The first dataset we use contains k = 41 potential regressors for modelling average per
capita growth over the period 1960-1992 for a sample of n = 72 countries. It was used in
Fernández et al. (2001b) (FLS), which presents more details.

First, we consider the analysis of the 50 subsamples which each consist of 62 observations.
In line with the higher model size penalty implicit in the benchmark Beta prior with c = 1
and the case with fixed g = k2, we note that marginal posterior inclusion probabilities of
the regressors tend to be (sometimes much) smaller for these cases. In keeping with the
higher g values induced by these priors, the posterior mean of βj for model Mj will be
larger in absolute value (less shrinkage to the prior mean of zero), but this will typically be
counteracted by more mass on smaller models. The resulting marginal posterior means of
the regression coefficients can be smaller or larger than those for the other priors on g. For
the other priors posterior inclusion probabilities and posterior inference on the regression
coefficients are quite similar, even though the posterior inference on g can be somewhat
different. Figure 6 presents boxplots over the 50 subsamples for the posterior medians of
g (on a log scale), the number of visited models and the posterior mean model size. As
with the simulated data, posterior medians of g are smallest for the hyper-g priors and
largest for the benchmark prior with c = 1 and the case with fixed g = k2. This leads
to most models visited in the chain for the hyper-g priors and least models in the chain
for the benchmark with c = 1 and g = k2 cases. Posterior model sizes are lower for the
latter two cases, but not that different between the other priors. Note also that the prior
assumptions on model space have almost no effect on posterior inference on g, but prior
mean model size m does substantially affect the number of visited models and the posterior
mean model size when we use a fixed θ approach. In line with the results in Ley and Steel
(2009), however, this dependence on m virtually disappears when we use the random θ
prior in (5). Thus, for the rest of the section we will only present results for random θ
with m = 7.

Prediction based on LPS (for 10 observations in each prediction subsample) is summarized
in the top panel of Figure 7, where we present boxplots of the LPS values for BMA over the
50 prediction subsamples. As lower values of LPS are associated with better predictions,
this suggests that the benchmark prior with c = 1 and the fixed g = k2 case tend to predict
somewhat worse than the rest. The other priors are quite close in predictive performance.
This is consistent with these priors leading to quite similar posterior inclusion probabilities
for the regression variables, and rather different from those obtained with the priors that
result in worse predictions. BMA predicts best (compared with the highest posterior
probability model, the null model and the full model) in most of the subsamples (in between
52% and 62%, depending on which prior we choose for g) and is never beaten by the null
model, except for a few cases (up to 6%) with the benchmark priors with c = 1 and c = 0.1
and the fixed g specifications.

The information contained in the data regarding g is summarized by the marginal likeli-
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Fig. 6. FLS data: log posterior medians of g, number of models visited and posterior mean model size

The different priors on g are ordered as in Tables 2 and 3. The top two rows correspond to fixed θ
(with different m), while the bottom two rows are for random θ priors on model space
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Fig. 7. Log Predictive Score: FLS, SDM and Tobias-Li data (random θ, m = 7)

hood ly(g) in (10). Figure 8 plots an estimate computed as in Section 4. Clearly, the data
do possess some information on g, and particularly favour values in the region 15 to 50.
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Fig. 8. Marginal likelihood ly(g): FLS (solid), SDM (dashed) and Tobias-Li (dotted) data

(random θ, m = 7)

Bayes factors of the models with different priors over g can be computed as described
in (12) in Section 4. The particular value g0 at which we evaluate this expression is not
very critical to the outcome. Here we use the mode of ly(g) as a reasonable value for g0.
Table 4 lists the Bayes factors for the models with different priors for g versus the one with
the benchmark Beta prior with c = 0.01 (Prior 3), computed over the full sample. The
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benchmark prior with c = 1 (Prior 1) leads to very small prior and posterior density values
at g0, so that the ratio can really not be computed with any accuracy. However, given that
this is indicative of a very small prior density in the region of the mode of ly(g), it is safe to
assume the associated Bayes factor would be quite small. The same problem affects other
models with the other two datasets (indicated with – in Table 4). As commented in Section
4, the priors that put a lot of weight on regions of g with high ly(g) do particularly well
in this respect. Thus, the Forte et al., Zellner-Siow, Bottolo-Richardson, hyper-g/n and
horseshoe/n priors lead to the highest Bayes factors while the F-Z, hyper-g and benchmark
priors do worse. This is in line with the prior density functions in Figures 1 and 2 and the
marginal likelihood in Figure 8. In Table 4 we also include the models where we choose a
fixed value of g, in which case we can compute the Bayes factor as the ratio p3(g | y)/p3(g)
evaluated at the fixed value of g (as explained in Section 4). Some entries in the table are
missing, as they correspond to p3(g|y) = 0 for the fixed value of g; again, this can be taken
as a sign that this value is associated with a very small Bayes factor. So, whereas the data
do support choosing g = n, the case g = k2 does not receive much support in terms of
Bayes factors.

Table 4. Bayes Factors of Different Priors vs Benchmark with c = 0.01 (Prior 3)

(Random θ, m = 7)

i Prior on g FLS SDM Tobias-Li

2 Benchmark c = 0.1 0.3 – 0.4

4 Maruyama-George 16.3 10.1 –

5 Bottolo-Richardson 23.6 57.2 24.4

6 Hyper-g, a = 3 2.3 8.7 3.0

7 Hyper-g, a = 4 0.7 3.0 1.0

8 F-Z, a = 2 + 2/k2 0.1 0.1 0.3

9 F-Z, a = 2 + 2/n 2.4 5.6 0.1

10 Horseshoe 11.2 34.6 11.9

11 Forte et al. 53.2 123.2 n.a.

12 Hyper-g/n 21.8 50.8 1.7

13 Horseshoe/n 25.9 68.5 7.6

14 Zellner-Siow 29.8 60.1 –

g0 25.5 19.5 19.5

15 g = n 19.7 37.1 –

16 g = k2 – 0.1 –

The SDM data

Another popular growth dataset was introduced by Sala-i-Martin et al. (2004) (SDM), who
model annual GDP growth per capita between 1960 and 1996 for n = 88 countries using
k = 67 potential regressors.

The 50 randomly selected estimation subsamples each have 75 observations, and lead to
the boxplots in Figure 9. The results are mostly in line with those for the FLS data, but
with larger differences between the priors in terms of posterior model size.
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Fig. 9. SDM data: log posterior medians of g, number of models visited and posterior mean model size.

Predictions for these data seem to be quite similar for all priors, as judged by the LPS
boxplots in Figure 7. Here we have used prediction subsets of 13 observations each. In-
terestingly, these comparable prediction accuracies are obtained with regression models
that are rather different, since the posterior inclusion probabilities corresponding to the
benchmark priors with c = 1 and c = 0.1 and to the choice of g = k2 (i.e., the models
leading to the highest values for g) are quite different from those using the other priors.
BMA predicts best in 76% to 92% of the subsamples, with the exception of the benchmark
priors with c = 1 and c = 0.1 and the case with g = k2, where BMA outperforms the
highest posterior probability model, the null model and the full model in roughly half the
subsamples. BMA is only beaten by the null model in up to 8% of the cases,16 except for
the benchmark priors with c = 1 and c = 0.1 and the fixed-g specifications, where the null
model outperforms BMA in 10% or 12% of the cases.

The marginal information in the data on g, as presented in Figure 8, is quite similar
to that for the LPS data, with a slight shift to smaller values and a heavier tail. As a
consequence, the pattern of Bayes factors between the models with different priors on g is
rather similar to what they were for the FLS data (see Table 4).

8.2. Returns to Schooling

Here we investigate the area of returns to education, where again many potential model
specifications have been proposed, and BMA was introduced in this context by Tobias and
Li (2004). As these are microeconomic data, the number of potential observations is much
larger. We will focus on the log of hourly wages of n = 1190 white males in the U.S. in
1990, which we model as a function of k = 26 possible regressors. In order to simplify the
computations, Tobias and Li (2004) always include seven of these regressors in each model
and restrict themselves to a smaller model space characterized by 18 possibly included
regressors, but we allow for inclusion or exclusion of all regressors. In addition, we have
added the local unemployment rate (which only appears in Tobias and Li, 2004, through an
interaction term with education) as a potential regressor, giving us a total of 26 candidate
regressors. More details on the application can be found in Tobias and Li (2004).

16 For the hyper-g prior with a = 4, BMA is actually never beaten by the null model.
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On the basis of 50 subsamples of 1012 observations, we get the results for g, numbers of
models visited and model size presented in Figure 10. Results are now a bit different from
those in the growth applications, as a result of the much larger value of n. In particular,
the Maruyama-George, Forte et al. and Zellner-Siow priors as well as the case with fixed
g = n lead to much higher posterior medians of g, a smaller number of models visited in
the chain and smaller mean model size than in the previous applications. Of course, all of
these priors depend on n, but it is interesting that the F-Z prior with a = 2 + 2/n and the
hyper-g/n and horseshoe/n priors are less affected. Of course, the benchmark priors and
the Bottolo-Richardson prior depend on n through max{n, k2}, which is here of the same
order of magnitude as for the FLS data.
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Fig. 10. Tobias-Li data: log posterior medians of g, number of models visited

and posterior mean model size.

Prediction based on prediction subsamples of 178 observations each is summarized in the
lower panel of Figure 7. Even though there is some variability in the posterior inclusion
probabilities of the regressors over the different priors, we observe virtually identical predic-
tive performance. This is related to the fact that the full model here predicts very similarly
to using BMA. This is not surprising as the number of observations n is much larger than
the number of potential regressors, so we can hardly overfit and for prediction not much is
lost by including all k regressors. In the full model, the only effect that the prior for g has
on prediction is the different shrinkage of the coefficients, but as the shrinkage coefficient
is very close to one anyway, that will make very little difference. Of course, BMA still
has an important role in identifying the important determinants of wages, but is not that
critical for prediction. In line with this, the null model does very badly here and never
beats BMA or the full model. BMA predicts best in 20% to 46% of the subsamples, with
the lowest percentages occurring for the benchmark Beta priors with c = 1 and the fixed-g
cases. BMA is beaten by the full model in 42% to 48% of the cases with random g. For
the two specifications with fixed g, the full model beats BMA in 52% of the subsamples,
while the best model also beats BMA there in over a third of the cases.

Figure 8 tells us that the likelihood marginalized with the prior of everything but g is
rather similar to that of the growth datasets. This is perhaps surprising, given that the
number of observations n is quite a lot larger in this case. This leads to somewhat similar
behaviour of the Bayes factors as for the two growth datasets, with the exception of the
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Maruyama-George and Zellner-Siow priors (leading to a zero posterior density at g0), the
F-Z with a = 2 + 2/n, the hyper-g/n and horseshoe-n priors and the case with g = n, as
a consequence of the very different value of n for this application. In this application, the
truncation induced by the Forte et al. prior means that the prior support does not include
the chosen value of g0 (and is truncated quite a bit above that), which certainly makes
this prior less appropriate for large values of n/k. Thus, prior and posterior density values
are both zero at g0 and the Bayes factor can not be computed for this case.17

Let us summarize the information provided by these applications to real economic datasets.
Predictive performance seems quite similar across priors, although possibly a bit worse for
the benchmark prior with c = 1 and the case with g = k2. There is more variation in
the Bayes factors, with most consistent data support provided for the Bottolo-Richardson,
horseshoe, hyper-g/n and horseshoe/n priors, whereas the Maruyama-George, Forte et

al. and Zellner-Siow priors (as well as the case with fixed g = n) do quite well in two of
the three applications, but rather badly in the one with large n.

9. Concluding Remarks and Recommendations

Combining the properties listed in Table 1 with the evidence from both simulated and
real data, we can now come up with a recommendation for practitioners. We assume
that users will want their priors to be consistent, to avoid the information paradox and
to perform well in a wide variety of situations. The Bottolo-Richardson and horseshoe-n
priors are consistent (albeit at a slow rate) and do well on real data, but underperform on
the simulated data. The truncation of the Forte et al.. prior makes it hard to recommend
for situations where n is appreciably larger than k. The benchmark Beta prior with
c = 1 does not fare well in prediction for one application, and the benchmark priors
with c = 1 and c = 0.1 do not do well in terms of Bayes factors. The Zellner-Siow and
Maruyama-George priors perform quite well, except for the last application (with large n),
where they get very little support from the data. Nevertheless, we feel they do deserve
a place in the econometrician’s toolbox, especially if n is relatively small (comparable to
k, say). In addition, if one wants to avoid numerical methods to compute Bayes factors
between models with different sets of regressors, the Maruyama-George prior should be
recommended, although this comes at the (small) cost of making the prior model-specific,
which may make it slightly harder to interpret the prior on g.

In our view, the two priors that stand out by not having displayed any truly bad behaviour
in our experiments are the benchmark Beta prior with c = 0.01 and the hyper-g/n prior
(with a = 3).18 Thus, these priors provide an interesting compromise and would be our
general recommendations to practitioners.

17 Using a much larger value of g0 (g0 > 40) it would be possible, in principle, to compute a Bayes factor,
but we can safely assume the Tobias-Li data do not support this prior at all, as it puts no mass whatsoever
on areas with large values for the marginal likelihood ly(g).

18 For the hyper-g prior we find (as do Feldkircher and Zeugner, 2009) that the choice between a = 3 and
a = 4 makes little difference. As a consequence, we would also expect the hyper-g/n prior with a = 4 to
perform very similarly.
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The hierarchical Bayesian model explored in this paper has a hyperprior on the covariate
inclusion probability θ and a hyperprior on g, which leads to an integral for the marginal
likelihood that is solved by running the MCMC sampler over models and g jointly. The
advantage of these hyperpriors is to make the analysis more robust with respect to often
arbitrary prior assumptions. We now allow the data to inform us on variable inclusion
probabilities and the appropriate region for g. This will affect the model size penalty
(and, to a much lesser extent, the lack-of-fit penalty) for each given model. Putting a
prior on both θ and g makes the analysis naturally adaptive and avoids the information
paradox (Liang et al., 2008), which affects analyses with fixed g. It is important to stress
that we are not claiming that using hyperpriors on θ and g performs better (according
to some criterion) than a model with fixed values of θ and g that are chosen to optimize
this same criterion. The point is rather that we don’t know what the “optimal” values are
and getting them wrong can lead to very poor performance. We feel the model used here
with the recommended priors on g can be considered a safe “automatic” choice for use in
Bayesian Model Averaging in the types of linear regression problems that typically arise
in a variety of econometric settings.
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