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Abstract

This paper gives two examples to break through the revelation principle. Furthermore, the

revenue equivalence theorem does not hold.
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1 Introduction

Recently, several papers on quantum mechanism have generalized the traditional

framework of mechanism design theory, not only in the quantum world, but also

in the real world [1,2]. Moreover, Ref. [3] claims that the well-known revelation

principle may not hold by using an algorithmic Bayesian mechanism.

In the rest of this paper, I will consider two formats of auctions (i.e, first-price

sealed-bid procurement auction and first-price sealed-bid auction) respectively, and

give two examples to break through the revelation principle. Furthermore, I will

show that the revenue equivalence theorem does not hold.

2 First-price sealed-bid procurement auction

According to Example 2.30 and Example 2.37 in Ref. [4], consider a first-price

sealed-bid procurement auction of a single indivisible resource with one buyer (call

the agent 0) and two sellers (call them agent 1 and 2). Both sellers’ privately ob-

served valuations θi (i = 1, 2) are drawn independently from the uniform distri-

bution on [0, 1]. This fact is common knowledge among the agents. Each seller

submits a sealed bid, bi ≥ 0 (i = 1, 2). The sealed bids are examined and the seller
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with the lower bid is declared the winner. If there is a tie, seller 1 is declared the

winner. The winning seller receives an amount equal to his bid from the buyer. The

losing seller does not receive anything.

Consider the social choice function SCF-PROC3 (page 58, [4]) which is described

as follows: f (θ) = (y0(θ), y1(θ), y2(θ), t0(θ), t1(θ), t2(θ)),

y1(θ) = 1, if θ1 ≤ θ2; = 0 else;

y2(θ) = 1, if θ1 > θ2; = 0 else;

y0(θ) = 0, for all θ;

t1(θ) =
1 + θ1

2
y1(θ);

t2(θ) =
1 + θ2

2
y2(θ);

t0(θ) = −(t1(θ) + t2(θ)).

According to Example 2.37 (page 66, [4]), the strategies bi(θi) = (1 + θi)/2 (for

i = 1, 2) constitute a Bayesian Nash equilibrium of this auction that indirectly yields

the outcomes specified by f (θ). Thus, according to Proposition 9 and 10 [5], f is

incentive compatible and Bayesian monotonic. Since the two sellers are symmetric,

according to the definition of multi-Bayesian monotonicity [3], f is multi-Bayesian

monotonic.

In order to obtain more profits, it is beneficial for two sellers to both increase their

bids. A possible deception is αi(θi) =
√
θi (i = 1, 2). If both sellers choose this

deception, α(θ) ≡ (α1(θ1), α2(θ2)) = (
√
θ1,
√
θ2). Let h(θ) ≡ [ f ◦ α](θ), then h(θ) =

f (α(θ)) = (z0(θ), z1(θ), z2(θ), r0(θ), r1(θ), r2(θ)):

z1(θ) = 1, if θ1 ≤ θ2; = 0 else;

z2(θ) = 1, if θ1 > θ2; = 0 else;

z0(θ) = 0, for all θ;

r1(θ) =
1 +
√
θ1

2
z1(θ);

r2(θ) =
1 +
√
θ2

2
z2(θ);

r0(θ) = −(r1(θ) + r2(θ)).

For each seller i (i = 1, 2), he faces two strategies (denoted as C and D): strategy C

means seller i uses the deception αi(θi) =
√
θi, and strategy D means seller i does

not deceive. Consider the expected payoff of seller 2, we denote by $CC the expected

payoff when each agent i choose the deception αi, and denote by $CD the expected

payoff when agent 1 chooses the deception α1 and agent 2 does not deceive. $DD
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and $DC are defined similarly.

$DD = E[
1 + θ2

2
− θ2]y2(θ1, θ2) = (1 − θ2)2/2,

$CC = E[
1 +
√
θ2

2
− θ2]y2(

√

θ1,
√

θ2) = [
1 +
√
θ2

2
− θ2](1 − θ2),

$DC = E[
1 +
√
θ2

2
− θ2]y2(θ1,

√

θ2) = [
1 +
√
θ2

2
− θ2](1 −

√

θ2).

Since θ1, θ2 ∈ [0, 1], then $CC > $DD, $CC > $DC. Thus, condition λBπ/2 is satis-

fied for seller 2. Similarly, condition λBπ/2 is also satisfied for seller 1. By using

the algorithmic Bayesian mechanism [3], h can be implemented in Bayesian Nash

equilibrium. Note that h is not incentive compatible (since f is incentive compati-

ble), so the revelation principle does not hold for this auction.

3 First-price sealed-bid auction

According to Example 23.B.5 in Ref. [6], consider an auction setting with one seller

(i.e., agent 0) and two buyers (i.e., agent 1 and 2). Both buyers’ privately observed

valuations θi are drawn independently from the uniform distribution on [0, 1] and

this fact is common knowledge among the agents. Each buyer submits a sealed bid,

bi ≥ 0 (i = 1, 2). The sealed bids are examined and the buyer with the higher bid

is declared the winner. If there is a tie, buyer 1 is declared the winner. The winning

seller pays an amount equal to his bid to the seller. The losing buyer does not pay

anything.

Consider the social choice function f ′(θ) = (y′0(θ), y′1(θ), y′2(θ), t′0(θ), t′1(θ), t′2(θ)), in

which

y′1(θ) = 1, if θ1 ≥ θ2; = 0 else;

y′2(θ) = 1, if θ1 < θ2; = 0 else;

y′0(θ) = 0, for all θ;

t′1(θ) = −
1

2
θ1y′1(θ);

t′2(θ) = −
1

2
θ2y′2(θ);

t′0(θ) = −(t′1(θ) + t′2(θ)).

As specified in Example 23.B.5, the strategies bi(θi) = θi/2 (for i = 1, 2) consti-

tute a Bayesian Nash equilibrium of this auction that indirectly yields the outcomes

specified by f ′(θ). Thus, according to Proposition 9 and 10 [5], f ′ is incentive

compatible and Bayesian monotonic. Since the two buyer are symmetric, then ac-

cording to the definition of multi-Bayesian monotonicity [3], f ′ is multi-Bayesian

monotonic.
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In order to obtain more profits, it is beneficial for two buyers to both decrease

their bids. A possible deception is αi(θi) = θ
2
i

(i = 1, 2). If both buyers choose

this deception, α′(θ) ≡ (α′1(θ1), α′2(θ2)) = (θ21, θ
2
2). Let h′(θ) ≡ [ f ′ ◦ α′](θ), then

h′(θ) = f ′(α′(θ)) = (z′0(θ), z′1(θ), z′2(θ), r′0(θ), r′1(θ), r′2(θ)):

z′1(θ) = 1, if θ1 ≥ θ2; = 0 else;

z′2(θ) = 1, if θ1 < θ2; = 0 else;

z′0(θ) = 0, for all θ;

r′1(θ) = −
1

2
θ21z′1(θ);

r′2(θ) = −
1

2
θ22z′2(θ);

r′0(θ) = −(r′1(θ) + r′2(θ)).

For each buyer i (i = 1, 2), he faces two strategies (denoted as C and D): strategy

C means buyer i uses the deception α′
i
(θi) = θ

2
i
, and strategy D means buyer i does

not deceive. Consider the expected payoff of buyer 2,

$DD = E[θ2 −
θ2

2
]y′2(θ1, θ2) = [θ2 −

θ2

2
]θ2,

$CC = E[θ2 −
θ22

2
]y′2(θ21, θ

2
2) = [θ2 −

θ22

2
]θ2,

$DC = E[θ2 −
θ22

2
]y′2(θ1, θ

2
2) = [θ2 −

θ22

2
]θ22.

Obviously, $CC > $DD, $CC > $DC. Thus, condition λBπ/2 is satisfied for buyer 2.

Similarly, condition λBπ/2 is also satisfied for buyer 1. By using the algorithmic

Bayesian mechanism [3], h′ can be implemented in Bayesian Nash equilibrium.

Note that h′ is not incentive compatible (since f ′ is incentive compatible), so the

revelation principle does not hold for this auction.

4 Breaking through the revenue equivalence theorem

Here I cite Proposition 23.D.3 from Ref. [6].

Proposition 23.D.3: (The Revenue Equivalence Theorem) Consider an auction set-

ting with I risk-neutral buyers, in which buyer i’s valuation is drawn from an in-

terval [θ
i
, θi] with θ

i
, θi and a strictly positive density φi(·) > 0, and in which

buyers’ types are statistically independent. Suppose that a given pair of Bayesian

Nash equilibria of two different auction procedures are such that for every buyer i:

(i) For each possible realization of (θ1, · · · , θI), buyer i has an identical probability

of getting the good in the two auctions; and (ii) Buyer i has the same expected utility

level in the two auctions when his valuation for the object is at its lowest possible
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level. Then these equilibria of the two auctions generate the same expected revenue

for the seller.

Obviously, for i = 0, 1, 2, z′
i
(θ) = y′

i
(θ) for all θ ∈ [0, 1] × [0, 1], and r′1(0, 0) =

t′1(0, 0) = 0, r′2(0, 0) = t′2(0, 0) = 0. Since r′
i
(θ) > t′

i
(θ) for any θ ∈ (0, 1) × (0, 1)

(i = 1, 2), the deception α′ does decrease the expected revenue for the seller. So the

revenue equivalence theorem does not hold.
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