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Abstract

We present a novel algorithm to determine the payoff-space of certain
normal-form C

1 parametric games, and - more generally - of continuous
families of normal-form C

1 games. The algorithm has been implemented
by using MATLAB, and it has been applied to several examples. The
implementation of the algorithm gives the parametric expressions of the
critical zone of any game in the family under consideration both in the
bistrategy space and in the payoff space and the graphical representations
of the disjoint union (with respect to the parameter set of the paramet-
ric game) of the family of all payoff spaces. We have so the parametric
representation of the union of all the critical zones. One of the main moti-
vations of our paper is that, in the applications, many normal-form games
appear naturally in a parametric fashion; moreover, some efficient models
of coopetition are parametric games of the considered type. Specifically,
we have realized an algorithm that provides the parametric and graphical
representation of the payoff space and of the critical zone of a parametric
game in normal-form, supported by a finite family of compact intervals of
the real line. Our final goal is to provide a valuable tool to study simply
(but completely) normal-form C

1-parametric games in two dimensions.

1 Introduction and motivations

Our study is based on a method able to determine the payoff space of normal-
form C1-games in n dimensions, that is for n-players normal-form games whose
payoff functions are defined on compact intervals of the real line and of class at
least C1. In the particular case of two dimensions, the payoff space of normal-
form C1-games is determined. In this paper we delineate the procedure for the
representation of the payoff space in normal-form C1 parametric games.
The complete study of a C1 parametric games is strongly motivated not only
by theoretical and pure mathematical reasons but especially by the applications
to Economics, Finance and Social Sciences. Indeed, many real interactions
- between competitive or cooperative subjects - are modeled by games with
time dependence on strategy sets and payoff functions. Moreover, recently, one
operative and particularly efficient model of coopetition has been proposed and
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applied by D. Carf̀ı and others. The model is given by a particular kind of
parametric game, in which the parameter set is the cooperative strategy set of
the game (see [8, 9, 10, 11, 12, 13]). That is the basic object which allows to
pass from the standard normal-form definition of game([1, 2, 3, 14]) to their
coopetitive extension. Our algorithm permits a general vision of the payoff
space of a parametric game and of the Nash paths, knowledge of fundamental
importance in the applications.

2 Preliminaries on normal-form C1 games

We shall consider n-person games in normal-form. We give the definitions used
in this work in order to ease the reader. The form of following definitions is
particularly useful for our purpose.

Definition 1 (of game in normal-form). Let E = (Ei)
n
i=1 be an ordered

family of non-empty sets. We call n-person game in normal-form upon

the support E each function

f : ×E → R
n,

where ×E denotes the Cartesian product ×n
i=1Ei of the family E. The set Ei

is called the strategy set of player i, for every index i of the family E, and
the product ×E is called the strategy profile space, or the n-strategy space,
of the game.

Terminology. Together with the previous definition of game in normal
form, we have to introduce some terminologies:

• the set {i}
n
i=1 of the first n positive integers is said the set of the players

of the game;

• each element of the Cartesian product ×E is said a strategy profile of the
game;

• the image of the function f , i.e., the set f(×E) of all real n-vectors of type
f(x), with x in the strategy profile space ×E, is called the n-payoff space,
or simply the payoff space, of the game f .

We recall, further, for completeness and, to ease the reader, the definition
of Pareto boundary we shall use in the paper.

Definition 2 (of Pareto boundary). The Pareto maximal boundary

of a game f is the subset of the n-strategy space of those n-strategies x such
that the corresponding payoff f(x) is maximal in the n-payoff space, with respect
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to the usual order of the euclidean n-space R
n. If S denote the strategy space

×E, we shall denote the maximal boundary of the n-payoff space by ∂f(S) and
the maximal boundary of the game by ∂f (S) or by ∂(f). In other terms, the
maximal boundary ∂f (S) of the game is the reciprocal image (by the function
f) of the maximal boundary of the payoff space f(S). We shall use analogous
terminologies and notations for the minimal Pareto boundary.

The fundamental properties of Pareto boundaries have been presented in [6].

3 The method for C1 games

The method we use to study a normal-form C1 game is given and applied in
[4, 5, 7].

The context. We deal with a type of normal-form game f defined on the
product of n compact non-degenerate intervals of the real line, and such that f
is the restriction to the n-strategy space of a C1 function defined on an open
set of Rn containing the n-strategy space S (which, in this case, is a compact
non-degenerate n-interval of the n-space R

n).

Before to give the main result of the method, we recall some basic notions.

3.1 Topological boundary

We recall that the topological boundary of a subset S of a topological space
(X, τ) is the set defined by the following three equivalent propositions:

• it is the closure of S minus the interior of S:

∂S = cl(S)\int(S);

• it is the intersection of the closure of S with the closure of its complement

∂S = cl(S) ∩ cl(X\S);

• it is the set of those points x of X such that every neighborhood of x
contains at least one point of S and at least one point in the complement
of S.
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The key theorem of our method is the following one.

Theorem 1. Let f be a C1 function defined upon an open set O of the
euclidean space R

n and with values in R
n. Then, for every part S of the open

O, the topological boundary of the image of S by the function f is contained in
the union

f(∂S) ∪ f(C),

where C is the critical set of f in S, that is the set of the points x of S such
that the Jacobian matrix Jf (x) is not invertible. If, more, the function f is not
continuous over a part H of O and C1 elsewhere in O, the topological boundary
of the image of S by the function f is contained in the union

f(∂S) ∪ f(C) ∪ f(H),

where C is (again) the critical set of f in S.

4 Two players parametric games

In this article we shall use the following definitions of parametric game.

Definition 3. Let E = (Et)t∈T and F = (Ft)t∈T be two families of non
empty sets and let

f = (ft)t∈T

be a family of functions
ft : Et × Ft → R

2.

We define parametric game over the strategy pair (E,F ) and with family of
payoff functions f the pair

G = (f,>),

where > is the usual strict upper order of the Euclidean plane R
2. We define

payoff space of the parametric game G the union of all the payoff spaces of the
game family

g = ((ft, >))t∈T ,

that is the union of the payoff family

P = (ft(Et × Ft))t∈T .

We note that the family P can be identified with the multi-valued path

p : T → R
2 : t 7→ ft(Et × Ft),

and that the graph of this path p is a subset of the Cartesian product T × R
2.

In particular we are concentrated on the following particular kind of para-
metric game:
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• parametric games in which the families E and F consist of only one set,
respectively.

In the latter case we can identify a parametric game with a pair (f,>), where
f is a function from a Cartesian product T × E × F into the plane R

2, where
T , E and F are three non-empty sets.

Definition 4. When the triple (T,E, F ) is a triple of subsets of normed
spaces, we define the parametric game (f,>) of class C1 if the function f is
of class C1.

5 Numerical Results

Consider a (loss) parametric game (h,<), with strategy sets E = F = [0, 1],
parameter set T = [0, 1]2 and biloss (disutility) function

h : ×(T,E, F ) → R
2

whose section
h(a,b) : ×(E,F ) → R

2

is defined by
h(a,b) (x, y) = (x− (1− a)xy, y − (1− b)xy) ,

for all (x, y) ∈ E × F and (a, b) ∈ [0, 1]2.

The above game is the von Neuman convexification of the finite game rep-
resented by the following array

(a, b) (1, 0)
(0, 1) (0, 0)

.

Assume, now, that the parameter points (a, b) belong also to the 1-sphere
S1
p, with respect to the p-norm, in the Euclidean plane R

2, for some positive
real p; that is, let us assume

ap + bp = 1,

for some positive real p. Consider, then, the restriction

g : S × E × F → R
2

of the function h to the parameter set

S = S1
p ∩ T.

By projecting on the first factor of the product S × E × F , we can consider,
instead of the parametric game g, with parameter set S1

p ∩ T , the equivalent
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parametric game (f,<), with parameter set [0, 1] and a-payoff function fa de-
fined by

fa (x, y) =
(

x− (1− a)xy, y − (1− (1− ap)1/p)xy
)

,

for all (x, y) ∈ E × F and a ∈ [0, 1]. Here, by equivalent parametric game, we
mean the existence of the bijection

j : S → [0, 1] : (a, b) 7→ a

whose inverse is the bijection

j−1 : [0, 1] → S : a 7→ (a, (1− ap)1/p).

In the following sections we shall consider the following sub-cases:

1. p = 1:
fa (x, y) = (x− (1− a)xy, y − axy) ,

for all x, y and a in [0, 1].

2. p = 0.1:

fa (x, y) =
(

x− (1− a)xy, y − (1− (1− a0.1)10)xy
)

,

for all x, y and a in [0, 1].

3. p = 0.5:

fa (x, y) =
(

x− (1− a)xy, y − (1− (1− a0.5)2)xy
)

,

for all x, y and a in [0, 1].

4. p = 2:
fa (x, y) =

(

x− (1− a)xy, y − (1− (1− a2)0.5)xy
)

,

for all x, y and a in [0, 1].

5. p = 10:

fa (x, y) =
(

x− (1− xy), y − (1− (1− a10)0.1)xy
)

,

for all x, y and a in [0, 1].

Moreover, we shall present the following games:

6.
fa (x, y) =

(

x+ y + a, x− y + a2
)

,

for all x, y ∈ [0, 2] and a ∈ [0, 1].

7.
fa (x, y) = (x+ y + a, x− y + |a|),

for all x, y ∈ [0, 2] and a ∈ [−1, 1].
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6 First game p = 1

Let E = F = [0, 1] be the strategy sets and let a be a real number fixed in the
interval [0, 1]. Consider the a-biloss (disutility) function of the parametric game
(f,<), defined by

fa(x, y) = (x− (1− a)xy, y − axy),

for all (x, y) in [0, 1].
The critical zone of the function fa (represented in Figure 1 for every a in

[0, 1]) is the set

C(fa) =
{

(x, y) ∈ [0, 1]2 : 1− ax− (1− a)y = 0
}

.

Figure 1: Disjoint union of the critical zones.

The disjoint union of the family

(fa(∂(E × F )))a∈T ,

that is the disjoint union of the transformations of the topological boundaries
of the bistrategy space, with respect to the parameter set, is shown in Figure 2.

Recalling that the action of a family of functions (with common domain)
on a subset of the common domain of the member-functions is the family of
the images (transformations) of the subset, we can consider the above disjoint
union as a faithful representation of the action of the entire family (fa)a∈T , on
the boundary ∂(E × F ).
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Figure 2: First Game: Disjoint union of transformations of the topological
boundaries of the bistrategy space.

The disjoint union of transformations of the critical zones is shown in Figure
3.

Figure 3: First Game: Disjoint union of transformations of the critical zones.

So, from the transformations of the topological boundaries and of the critical
zones, we obtain the representation of the Payoff Space of the parametric game
as disjoint union of the family
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(fa(E × F ))a∈T ,

that is the disjoint union of the transformations of the payoff spaces, with
respect to the parameter set, as shown in Figure 4. By the way, we observe that
this last disjoint union is the graph of the multivalued curve

c : T → R
2 : a 7→ fa(E × F ),

but an irrelevant permutation

J : T × R
2 → R

2 × T : (a,X, Y ) 7→ (X,Y, a).

Figure 4: First Game: Disjoint union of payoff spaces.

7 Second game: p = 0.1

Let E = F = [0, 1] be the strategy sets and let fa be the a-biloss (disutility)
function

fa (x, y) =
(

x− (1− a)xy, y − (1− (1− a0.1)10)xy
)

,

for all x, y a in [0, 1]. The critical zone of the a-biloss function is

C(fa) =
{

(x, y) ∈ [0, 1]2 : 1− (1− (1− a0.1)10)x− (1− a)y = 0
}

.

The disjoint union of critical zones is shown in Figure 5.
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Figure 5: Second Game: Disjoint union of critical zones.

Figure 6: Second Game: Disjoint union of transformation of the topological
boundary of the bistrategy space.

The disjoint union of transformations of the topological boundary of the
bistrategy space is presented in Figure 6.

The disjoint union of transformation of critical zones is illustrated in Figure
7.
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Figure 7: Second Game: Disjoint union of transformations of the critical zones.

The Payoff Space (represented in Figure 8 for every a in T ), is obtained by
the union of transformations of the critical zone and of the topological boundary
of the bistrategy space.

Figure 8: Second Game: Payoff space of the parametric game as disjoint union
of partial payoff spaces.
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8 Third Game: p = 0.5

Let the strategy sets of the parametric game G = (f,<) be E = F = [0, 1] and
let the a-biloss (disutility) function of G be defined by

fa(x, y) =
(

x− (1− a)xy, y − (1− (1− a0.5)2)xy
)

,

for all x, y and a in [0, 1].
The critical zones, in Figure 9, are the sets

C(fa) =
{

(x, y) ∈ [0, 1]
2
: 1− (1− (1− a0.5)2)x− (1− a)y = 0

}

,

with a varying in T .

Figure 9: Second Game: Critical zones.

The transformations of the topological boundary of the bistrategy space are
shown in Figure 10.

The transformations of critical zones are presented in Figure 11.

We obtain the payoff space as before, shown in Figure 12 in form of disjoint
union.
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Figure 10: Third Game: Transformations of the topological boundary of the
bistrategy space.

Figure 11: Third Game: Transformations of critical zones.

9 Forth Game: p = 2

Let the strategy sets of the parametric game G = (f,<) be E = F = [0, 1] and
let the a-biloss (disutility) function of G be defined by

fa (x, y) =
(

x− (1− a)xy, y − (1− (1− a2)0.5)xy
)

,

for all x, y and a in [0, 1].
The a-critical zone is
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Figure 12: Third Game: Payoff space in form of disjoin union.

C(fa) =
{

(x, y) ∈ [0, 1]
2
: 1− (1− (1− a2)0.5)x− (1− a)y = 0

}

.

So the Payoff Space overlap the transformation of the topological boundary,
as shown in Figure 13 for every a.

Figure 13: Forth Game: Transformations of the topological boundary.
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10 Fifth game: p=10

Let strategy sets be E = F = [0, 1] and biloss (disutility) function be

fa (x, y) =
(

x− (1− a)xy, y − (1− (1− a10)0.1)xy
)

,

for all (x, y) and a in [0, 1].
The critical zones, in Figure 14, are

C(fa) =
{

(x, y) ∈ [0, 1]
2
: 1− (1− (1− a10)0.1)x− (1− a)y = 0

}

,

with a varying in T .

Figure 14: Fifth Game: Transformations of the topological boundary.

11 Sixth game

In this section we present a new game, where strategy sets are E = F = [0, 2],
the parameter set is T = [0, 1] and the a-biloss (disutility) function is defined
by

fa (x, y) =
(

x+ y + a, x− y + a2
)

,

for all x, y in [0, 2] and a in [0, 1].
The critical zone is void, so the payoff spaces overlap the transformations of

the topological boundary, in Figure 15.
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Figure 15: Sixth Game: Transformation of the topological boundary

12 Seventh game

In this section we present a new game, where strategy sets are E = F = [0, 2],
the parameter set is T = [−1, 1] and the a-biloss (disutility) function is

fa (x, y) = (x+ y + a, x− y + |a|),

for all x, y, a in [−1, 1].

Figure 16: Seventh Game: Transformations of the topological boundary
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The critical zone is empty, so the payoff spaces overlap the transformations
of the topological boundary, in Figure 15.
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