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Abstract

Bidders in procurement auctions often face avoidable fixed costs. This can make bidding

decisions complex and risky, and market outcomes volatile. If bidders deviate from risk neutral

best responses, either due to faulty optimization or risk attitudes, then equilibrium predictions

can perform poorly. In this paper, we confront laboratory bidders with three auction formats

that make bidding difficult and risky in different ways. We find that measures of ‘difficulty’ pro-

vide a consistent explanation of deviations from best response bidding across the three formats.

In contrast, risk and loss preferences cannot explain behavior across all three formats.

Keywords: Auctions, Experimental, Procurement, Synergies, Asymmetric Bidders, Learning,

Optimization errors

1 Introduction

Procurement auctions are often used in settings where suppliers have avoidable fixed costs (El-

maghraby (2007)). Prior experimental studies have showed that bidding and auction outcomes in

such settings can be quite volatile, and that convergence to equilibrium predictions may be poor.

In this paper, we use experiments to study the reasons that suppliers deviate from risk neutral

best response bidding when avoidable fixed costs are present. In particular, we ask whether these

deviations are better explained by preferences (e.g., suppliers who are not risk neutral) or by opti-

mization errors. To address this question, we study bidding in three auction formats across which

the level of payoff risk and the difficulty of optimization vary. Our main finding is that measures of

optimization difficulty help to explain behavior across auction formats. In contrast, our preference-

based explanations do not generalize well across auction formats – while they may be helpful in
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understanding bidding under one set of rules, they do not offer reliable guidance about what to

expect when the rules change.

Avoidable fixed costs are fixed production costs that a supplier does not incur unless it sells

a strictly positive quantity. This makes costs non-convex: the marginal cost of the first unit sold

may be higher than that of additional units. One result of this is that small, marginal changes can

have large, non-marginal consequences. For example, in an efficient allocation, a small cost rise

for one supplier may cause it to be dropped from the allocation completely (rather than having

its quantity decline gradually). Furthermore, prior research shows (e.g. Van Boening and Wilcox

(1996) and Van Boening and Wilcox (2005)) that even when supplier costs are stable, market

prices and allocations can remain volatile rather than settling down toward equilibrium. To some

extent, the first point may be directly to blame for the second. Any auction format that aspires to

be efficient must be willing to make large changes to the winning allocation in response to small

changes in bids. However, this may confront bidders with risks they prefer to avoid or with strategic

challenges that confound learning.

We select three auction formats for which we expect the difficulty of optimization and the level

of payoff risk to differ. In all three formats, suppliers have (private) average costs that are either

increasing, constant, or decreasing, and a supplier can produce either zero, one, or two units. We

intepret the decreasing average cost case to represent a supplier with an avoidable fixed cost. For

such a supplier, selling at certain prices will be profitable only if she sells her full capacity. In the

first auction format (1U)1, each supplier submits a single bid specifying the lowest per-unit price

it is willing to accept. Bids are ranked in increasing order, and the auction clears at the lowest

uniform price that procures the total desired quantity. The second auction format (2U) retains a

uniform price, but allows suppliers to fully express their costs with quantity-dependent bids. In

the third format (2D), both bids and prices are quantity dependent. Each format presents some

idiosyncratic features. For example, in 1U equilibrium bidding is inherently unstable (in the sense

that some bidders must use mixed strategies) and requires some suppliers to bid well below cost and

hope for a favorable price and quantity. In 2U, optimal bids are simple but not particularly intuitive

– they may elude a subject who is not prepared to experiment with different bids. In 2D, while

the winner determination process is complex, equilibrium (for our parameters) tends to segment

competition into sub-markets at different quantities. A subject who treats these sub-markets as

independent errs only slightly, and this substantially simplifies the strategic problem she faces.

First we test how well equilibrium outcomes (such as efficiency and total procurement cost)

predict actual outcomes across these environments. The equilibrium predictions are fairly successful

for 2D, but less so for 1U and 2U, suggesting that there are persistent deviations from risk neutral

best response bidding. To assess those deviations, we compute empirical best response profits

for each subject; these are the profits that a subject would have earned in each auction by best

responding to the empirical distribution of bids that he had faced in the past. Since a subject

does not face equilibrium bids from opponents, these empirical best response profits provide a

1Formal descriptions appear in Section 3.3.
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more reasonable benchmark than equilibrium payoffs do for the amount that a risk neutral best

responder could have earned. In treatment 2D, the actual profits earned by subjects were close to

these benchmark profits. However, in the other two environments, actual payoffs are below these

benchmarks on average, and do not track them closely from auction to auction.

This leads us to try to develop a unified model of bidding that can explain why bids are close to

risk neutral best responses in 2D but deviate from them in the other two treatments. We construct

and estimate a learning model in the spirit of Erev and Roth (1998) and Camerer and Ho (1999).

In the model, a subject’s propensity to pick a particular bid evolves in response to her market

experience. Propensities map into probabilities of choosing different bids according to a standard

logit formulation. The propensity includes a term for the expected profit that the bid would have

earned against past opponents; a subject choosing on this basis alone would play a risk neutral

best response. We also allow this propensity to depend on factors that are intended to capture

alternative preferences or the difficulty of optimization. We test the robustness, or generality, of

these preference and optimization-based explanations by fitting models to two of the three auction

formats and then predicting bids in the third format.

We focus on three potential sources of optimization difficulty: volatile feedback, difficulty of

the payoff landscape, and non-separability of the bidding problem. Volatile feedback, or ‘noisy

optimization,’ captures the idea that a supplier may have trouble discerning the expected payoff of

a bid when the bid’s realized payoff varies a lot. By ‘landscape difficulty’ we mean the idea that a

payoff function shaped like Mt. Everest may be easier to maximize than one shaped like San Fran-

cisco (many local maxima) or like Kansas (long flat stretches). As one might imagine, formalizing

this notion poses its own challenges, and we defer discussing our results for this explanation until

later. By ‘separable,’ we mean a bidding problem that can be tackled effectively by decomposition

into smaller pieces. We also study a factor that could aid optimization - namely the fact that some

strategies are weakly dominated and others are not. For preference-based explanations of bidding,

we concentrate on simple formulations of risk and loss aversion.

In some cases we can compare the preference and optimization-based explanations head to head.

Both the noisy optimization story and risk averse preferences imply that a bid’s payoff variability

(defined as the variance of its payoff against a subject’s past opponents) should affect how often it

is chosen. However because the predicted effects are different, we can compare these explanations

in the data. We find that risk aversion cannot provide a consistent explanation of bidding across all

three auction formats. In contrast, a single model of noisy optimization explains patterns within

and across auction formats rather well.

Next we set weak dominance and loss aversion head to head. All bids below cost, which we

call loss exposed, have the potential to lose money. Some of these loss exposed bids are also

weakly dominated, while others can be profitable, or even optimal, on average.2 We test whether

(i) subjects avoid all loss exposed bids or (ii) subjects specifically avoid weakly dominated bids.

Both (i) and (ii) help to explain bidding, but the predictions of (ii) are more robust across auction

2This is true for 1U and 2U. For 2D, the loss exposed and weakly dominated sets are the same.
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formats. We infer that loss attitudes, if present, are unstable. From (ii) we learn that among bids

with low expected payoffs, subjects are better at avoiding the “sure losers” than bids with some

chance of an upside.

For both the risk and loss-based models, poor robustness is related to major behavior differences

between formats 1U and 2U. In the latter, subjects avoid modestly risky or loss exposed bids, even

when the potential payoff gains are large. In the former, subjects favor quite risky bids, even though

the payoff gains they offer are small or even negative. Thus, while risk and loss attitudes may be

helpful in understanding bidding under one set of rules, they do not offer reliable guidance about

what to expect when the rules change.

With regard to separability, in our setup most allocations will involve one two unit supplier

and one one unit supplier. It could be tempting for subjects to try to simplify the bidding problem

by treating these as separate and independent market niches. To test this, we decompose a bid’s

expected payoff into portions earned by winning one or two units respectively. Then we enter these

two terms separately in the propensity to bid equation. We find that subjects consistently focus on

either one unit profits or on two unit profits, ignoring the possibility of gains or losses from winning

the other quantity. We argue that this “two separate submarkets” shortcut is closer to the truth

in format 2D than in the other auction formats, and this contributes to better profit maximization

by subjects in 2D.

Concentrating on expected profits from one submarket is an example of a heuristic that subjects

use to simplify bidding. However, even this may be difficult: it requires subjects to understand

winner determination well enough to estimate counterfactual market outcomes. Motivated by

models of reinforcement learning, we also test for simpler a simpler heuristic: does a subject simply

reinforce bids that have won her a particular quantity in the past? We incorporate ‘quantity

reinforcement’ terms into the propensity to bid equation (allowing for spillover reinforcement to

nearby bids). These terms let us test for three types of goal-oriented behavior: local inertia (a

tendency to stay near any bids used previously), win targeting (favoring any bids that have won

positive quantities), and competitive quantity targeting (favoring bids that win the quantity the

subject can produce at least average cost). We find that inertia is quite strong in all three auction

formats. This serves subjects well in format 2D – their instincts about where to start bidding (cost

plus a markup for each quantity) are basically correct and require only local fine-tuning. However,

in the other two formats, their initial intuition about how to bid is less accurate, and inertia leads

them to overlook opportunities to improve. We also find evidence of quantity targeting, suggesting

that subjects use it as a low tech proxy for identifying profitable bids.

In Section 2 we position our contribution relative to related work on markets with non-convex

preferences and learning to optimize in complex environments. Section 3 describes our model,

auction formats, and experimental procedure. Section 4 presents session-level comparisons of ex-

perimental outcomes with theoretical predictions. Section 5 introduces our models of the individual

bidding decision, and Section 6 presents results for these models. In Section 7, we test the quantity

reinforcement heuristics. We conclude with some suggested directions for future work.3

3Proofs and derivations are in the appendix. Additional information about computational methods is available in
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2 Context and Related Work

Avoidable fixed costs are relatively common in procurement; for example, when goods or services

are produced to order, there is often a start up cost related to setting up a production line or training

employees to handle customized aspects of the order. Wholesale electricity procurement provides

a nice illustration of the complications this can cause, and also of competing views about how they

should be handled. With certain types of power plants, a start-up cost is incurred whenever an

idle plant is called into service. In the original design of the California Power Exchange (one of the

earliest deregulated electricity markets in the U.S.), bids allowed suppliers to express variable cost

but not to separately express start-up costs. Market clearing involved a simple ranking of bids,

with all winning bidders receiving the same uniform price. Because a marginal supplier could be

rationed, a supplier faced the risk of not winning a large enough quantity to recoup its start-up

cost. In this market, the task of trying to bid competitively enough to win while avoiding this

exposure risk was shouldered by the bidders.

In contrast to California, the Pennsylvania-New Jersey-Maryland (PJM) market (the largest

competitive wholesale electricity market in the world) allows suppliers to submit multi-part bids,

so that it is possible to express both start-up and variable costs. These bids are fed into a com-

plex optimization procedure which determines the winning allocation and sets what amount to

bidder-specific prices.4 This format makes a bidder’s decision problem simpler in some respects

(it is easy ensure that one’s costs are covered) but harder in others: bidding optimally requires

an understanding of how one’s bid will affect market outcomes (prices and allocations), and the

optimization procedure can make this rather opaque. Studying how bidders handle a more opaque

allocation procedure without exposure risk, relative to a more transparent allocation where expo-

sure risk is severe, is one object of our comparison between formats 1U and 2U and 2D.

Avoidable fixed costs may be thought of as a type of cost synergy, since a supplier’s per unit cost

may be lower at larger quantities. There is also a closely related experimental literature on standard

(i.e. forward) auctions in which bidders have demand synergies. Katok and Roth (2004) study the

decisions of a single large bidder with a demand synergy for two units, who competes against several

small (one unit) bidders who follow simple dominant strategies. In an ascending price format where

the large bidder faces exposure risk, they find that this bidder bids too cautiously (relative to his

risk neutral best response), depressing the seller’s revenues (relative to equilibrium). They also

study a descending price auction that gives the large bidder more control over its quantity, thus

eliminating exposure risk. They find that in this format, the large bidder suffers fewer losses and

allocative efficiency is higher. Our experiment also features small and large bidders, with large

bidders subject to exposure risk, but there are a number of major differences. Most importantly,

we allow for competition among more than one large bidder; this makes it substantially more

difficult for bidders to anticipate both how their opponents will bid, and how their own bidding

will affect the winning allocation. We also test whether subjects’ responses to exposure risk are

an online appendix at http://people.virginia.edu/ nl2a/Papers/Submitted/lumpy-code.html .
4There is a uniform per-unit price, supplemented by bidder-specific “transfer payments.”
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consistent across different settings (1U and 2U). Another difference is that our auction formats are

static rather than dynamic. Like Katok and Roth, we find more efficient allocations when bidders

can make quantity dependent bids (2D and 2U versus 1U), but in our case, fear of exposure does

not explain departures from best response bidding very consistently.

Our work is close in spirit to a sequence of three papers by Van Boening and Wilcox (1996 and

2005, henceforth VBW) and Durham et al. (1996). These papers share an experimental design in

which multiple buyers (3 or 4) and suppliers (3 or 4) trade in a double auction format. All suppliers

have zero variable cost and positive avoidable fixed costs; “larger” suppliers have larger fixed costs

and larger capacities. The mix of supplier types is the same in each auction. In VBW (1996),

suppliers were restricted to making a single, per unit bid and were paid a uniform price if selected

for production. Prior studies have shown this mechanism to be highly efficient when supplier costs

are convex. However, with avoidable fixed costs, VBW find a “roller coaster” between efficient and

inefficient outcomes that does not settle down as subjects become more experienced. The volatility

of outcomes occurs even in parameter configurations for which a competitive equilibrium (at a

uniform price) exists. Interesting, they observe a tendency for bids to converge to a single uniform

price, even in settings where the only possible competitive equilibrium would require nonlinear

prices.

Durham et al. (1996) study whether a richer strategy space for bidders can encourage con-

vergence to efficient outcomes and equilibrium prices in the double auction. They allow suppliers

to bid a two-part tariff (a fixed amount if selected to produce, plus a per unit price) and to set

an upper bound on the number of units supplied. Despite the expanded bid space, the authors

find that the volatility of market outcomes persists and that those outcomes are rarely to never

consistent with equilibrium.

VBW (2005) expanded the bidding space further to allow suppliers to offer (a limited number

of) price-quantity contracts. (This is their “BUDA” auction format.) One aim was to determine

whether suppliers were able to converge to an efficient equilibrium supported by quantity-dependent

prices. They found a modest improvement in efficiency (relative to a standard double auction), but

persistence of linear (not quantity-dependent) prices. Thus, the evidence about whether the BUDA

rules nudge the market toward an equilibrium outcome is mixed. In a variation (RBUDA), one unit

contracts were forbidden to see whether the market’s tendency toward a (non-equilibrium) uniform

price could be broken. (One rationale would be that, by facilitating arbitrage between contracts of

different quantities, one unit contracts tend to linearize prices.) VBW found that this restriction

does promote convergence to quantity-dependent pricing, but does not improve efficiency (relative

to BUDA). Since the equilibrium outcome is efficient, it is unclear whether the RBUDA rules

pushed the market closer to equilibrium outcomes.

Like these three papers, we study markets with avoidable fixed costs on the supply side, but we

study static auctions with a single buyer, not double auctions. We also differ in that our suppliers

have a range of convex and non-convex cost structures, and compared to the two VBW papers,

bidders are observed over more auction rounds.5 Like these earlier papers, we also find volatility

5Our sessions lasted for 30 rounds, compared with 9 to 16 rounds in the two VBW papers. This does not necessarily
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in our market outcomes. However, we diverge from this earlier work by attempting to explain

the divergence between actual and equilibrium market outcomes using models of the individual’s

bidding decision.

While models of bounded rationality and imperfect optimization are common in the economics

literature, less attention has been paid to the features of a strategic decision problem that make it

hard. Our metrics of difficulty in this paper are partially motivated by a broad literature on this

question outside of economics. In the context of a decision task under adverse selection, Bereby-

Meyer and Grosskopf (2008) cite extensive evidence that subjects do not learn to avoid bad decisions

when payoff variability is high. In a manipulation where payoff variability is reduced, they show

that learning improves substantially.

If one treats a payoff function as a ‘landscape’ traversed by subjects in search of the highest

peak, many candidate notions of what constitutes a hard landscape have been proposed, none

entirely satisfactory. Jones and Forrest (1995) discuss the challenges of finding a metric that can

classify both ‘rugged’ problems (e.g. San Francisco) and ‘needle in a haystack’ problems (e.g. a

landscape with one ice cube atop an ice rink) as hard. We propose a simple metric based on

counting local maxima that can capture both of these notions of difficulty in our setting.

Finally, there is a multi-disciplinary literature on separability (often referred to as decomposi-

tion or modularity) of objective functions spanning evolutionary biology, genetic algorithms, and

management. This work can be hard to translate into economics, but Page (1996) suggests a mea-

sure of difficulty based on decomposing an objective function into as many independent subproblems

as possible and reporting the size of the largest subproblem. (For a non-modular objective, this

largest subproblem might simply be the original problem itself.) We will argue that under an in-

formal interpretation of this criterion, the bidding problem is approximately separable in 2D but

not in the other two treatments.

As we suggested in the introduction, subjects may attempt to decompose the bidding problem

into simpler pieces even when this is not a suitable tactic. In a different context, Ashby et al.

(1999) confront subjects with a two-dimensional categorization task. They find that subjects tend

to rely on simple, one-dimensional classification rules, regardless of whether this is optimal. This is

similar to our finding that even though optimal bidding can require tradeoffs across two outcome

dimensions (payoffs from winning one unit versus winning two units), our subjects appear to simplify

the problem by simply ignoring one of these dimensions.

imply that subjects had a better chance to reach equilibrium in our setting; the dynamics within a double auction

could promote faster learning, and some of the VBW subjects were experienced. The Durham et al. sessions – 45 to

75 rounds – were longer yet.
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3 The Experimental Environment

3.1 Demand and Supplier Costs

There is a single buyer who demands D = 3 discrete units of a good. If necessary, it can produce

the good in-house at constant marginal cost R = 100; D and R are commonly known constants.

The buyer faces three suppliers whose roles are played by subjects in the experiment. Each supplier

can produce either 0, 1, or 2 units of the good. A supplier’s average cost of supplying q units is

given by cq, where

c0 = 0 c1 = 100 − θ c2 =
100 + θ

2
.

A supplier’s cost parameter θ, which indexes the convexity of its costs, is private to the supplier.

A large value of θ indicates increasing average (and marginal) cost, while a supplier with θ small

can supply two units at a lower per unit cost than one unit. If θ = 331
3 , the supplier has constant

marginal cost. In the background, one may think of the case c2 < c1 as a consequence of a

large avoidable fixed cost, but this interpretation is not essential to the analysis. In solving for

equilibrium, we treat θ as drawn uniformly from [0, 50], but in the experiments we discretize this

range to seven evenly spaced types, denoted by c1 ∈ {50, 58, 67, 75, 83, 92, 100}.

This setting is designed to capture, as simply as possible, certain features that make the supply

allocation problem interesting. First, there is a mix of efficient production scales – small (large)

suppliers minimize per unit cost when producing one (two) units – and none of the cost types is

strictly dominated by any other type. Second, an allocation will generally require participation

from at least two suppliers at different quantity levels – in this case, two units from one supplier

and one from another. Furthermore, an efficient allocation typically requires one large supplier

and one small one to win.6 Partly as a consequence of this, efficiency cannot be determined by at

the margin – a cost-minimizing allocation must consider both marginal and inframarginal costs.

Using the one-dimensional index θ permits us to incorporate these features in a parsimonious and

relatively tractable way.

3.2 Experimental Procedure

The experiments were conducted with undergraduate students in the Netcentricity Behavior Lab at

the University of Maryland (UMD) and the vEconlab at the University of Virginia (UVA). There

were three treatments, 1U, 2U, and 2D, corresponding to the three auction formats described in

the next section. For each treatment, there were five independent sessions (Sessions 1 to 5) with six

participants in each session.7 Details are summarized in Table 1. Each subject earned a show-up

fee of $10, which also served as an initial balance to which any profits or losses during the session

were added.8 Earnings during the session were measured in an experimental currency (‘francs’) and

6Production of one unit by all three suppliers is also a possibility, but given the avoidable fixed costs, it is rarely

efficient.
7Session 5 had more participants – see Table 1 for details.
8Subjects were instructed that their final payoff, including this initial balance, would never be negative. While

some subjects did make overall losses during the auction rounds, none came close to exhausting his balance. The
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Session 1 2 3 4 5

Participants 1U 6 6 6 6 15

2U 6 6 6 6 12

2D 6 6 6 6 15

Location UMD UVA UVA UMD UMD

Matched? Yes Yes Yes Yes No

Table 1: Summary of Experimental Sessions

were later converted to dollars at the rate of 50 francs to $1 USD. Upon arrival, subjects were given

written instructions which were read aloud by the experimenter. Then subjects participated in three

practice (non-paying) rounds of auctions to familiarize them with the experimental software.9 At

this point, there was a pause to answer any questions; then the live (paying) rounds began.

The experimental phase of each session consisted of 30 rounds. In each round subjects were

randomly matched in groups of three to compete in an auction. At the start of Rounds 1, 7, 13, 19,

and 25, each subject drew a private cost type independently and uniformly from the seven types

shown in Table 2. 10 We refer to cost types c1 ∈ {50, 58, 92, 100} as specialized types and cost types

c1 ∈ {67, 75, 83} as flexible types. Informally, we will refer to a supplier as small or large depending

on whether c1 ≤ c2 or c1 > c2, but in certain parts of the data analysis we restrict small to be

{50, 58} and large to be {92, 100} (with the remainder of types as flexible). A subject kept the

same cost type for a block of six rounds, called a sub-session, before drawing a new type. Both the

random matching and the random sequence of cost draws were matched, session by session, across

treatments. (That is, for Session i, a full sequence of cost types was drawn and matched into groups

of three over thirty rounds. This sequence was then used for Session i of all three treatments.)11

At the end of each round, subjects were shown: (i) their costs, (ii) their bid(s), (iii) how many

units they won in that round, (iv) the winning price(s), (v) their profit in that round, and (vi)

their cumulative profit including the $10 show-up fee. Each session ran for about 90 minutes, start

to finish, and subjects were paid immediately upon completion of the session.

smallest final payoff for any subject was approximately $7.
9The experiment was programmed and conducted with the software z-Tree (Fischbacher 2007).

10The types are only approximately spaced between θ = 0 and θ = 50 because costs are rounded to integers. Note

also that there are no “round” numbers in the cost table (multiples of 5 or 10) by design. Our pilots indicated that

round costs tended to produce bids that were also anchored to multiples of 5 or 10, an artifact that we wanted to

avoid.
11Session 5 is an exception in two respects. First, types and groupings were not matched across treatments. Second,

cost types were chosen randomly but not independently in order to ensure balanced representation of different types.

In practice, this means that a subject’s chance of facing an opponent with the same type was lower than if types

had been fully independent. This should be taken under consideration (along with other approximations that will

be made) when the equilibrium predictions are presented. Non-independence has less bearing on the best response

analysis, since this is based on the actual distribution of opponent bids.
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Type 1 2 3 4 5 6 7

c1 50 58 67 75 83 92 100

c2 75 71 67 63 58 54 50

Table 2: Supplier Cost Types

3.3 Auction Formats

In this section we introduce our three auction formats, the nature of the bidding challenge in each

auction and characterize (approximate) equilibrium behavior in these markets. In our characteriza-

tion of the equilibrium, we take it as given that subjects are rational, risk-neutral profit maximizers.

Embodied in rationality are the ideas that subjects perfectly understand the strategic environment,

develop correct beliefs about the bidding of opponents, and do not consistently miss opportuni-

ties to improve their payoffs. This allows us to make a “best-case” evaluation of how successfully

each auction provides incentives that align individual profit-seeking with efficient allocation and

competitive bidding.

3.4 1U : One-part bids, uniform pricing (1U)

Under 1U, each bidder simultaneously submits a one-dimensional bid b. This bid is a pledge to

make its entire capacity, or any part of it, available at any price per unit greater than or equal to

b. The buyer procures the entire capacity of the lowest bidder (in this case 2 units from the lowest

bidder) and the remaining one unit from the next lowest bidder. All bidders are paid a uniform

price per unit equal to the bid of the marginal winning bidder (that is, the second lowest bidder).

For example, if three suppliers submitted bids of 70, 80, and 85, the allocation would be two units

for the first supplier and one unit for the second, and both winners would be paid 80 per unit.

Variations on this simple uniform price auction format are common in practice, and when

supplier costs are convex, its (theoretical) efficiency can be high, since the uniform price tends

toward equating the costs of the marginal unit procured from each bidder. However, with avoidable

fixed costs, a supplier’s willingness to supply at a particular price may depend on the quantity it

will be asked to produce, but there is no way to express this through the bidding. Hence, bidders

in 1U confront both quantity risk and price risk. Quantity risk reflects the fact that any given

bid could turn into an obligation to produce either zero, one, or two units, regardless of the intent

of the bidder. A large bidder who bids intending to win two units may only win one and fail to

cover its costs ( illustrating the exposure problem), or a small bidder who intends to be marginal

may wind up inframarginal, obligating it to produce an unprofitably large quantity. Bidding lower

monotonically improves one’s chances of winning two units, and has a non-monotonic effect (first

rising, then falling) on the chance of winning one, so there are several different tradeoffs for a bidder

to consider as it tries to maximize its expected profit.

A large bidder who succeeds in winning two units always faces some variability in its profits
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arising from the fact that its price is set the next lowest rival bid. What is less obvious is that

in order to be competitive for two units (and avoid winning one), a large bidder may need to bid

below its two-unit average cost. Thus, it can end up losing money with its optimal bid, even if it

wins its desired quantity, when the price-setting bid is low enough.

This rich set of tradeoffs has two important implications for bidder behavior. First, these

incentives interact in such a way to preclude the existence of any pure strategy equilibrium – any

equilibrium involves mixing by some cost types (discussed below).12 Second, it allows us to test

the implications of risk aversion in a much more nuanced way than is typically possible.

An analytical characterization of the mixed strategy equilibrium is intractible, but we can

compute equilibrium strategies numerically for both the continuous and discrete type cases. Figure 1

shows these strategies (presented as cumulative distribution functions over bids) for the discrete

case.13 The smallest suppliers (c1 ∈ {50, 58}) concentrate at b = 69. The largest supplier types

(c1 ∈ {92, 100}) mix over a compact range of bids. However, each flexible type mixes over two

separate intervals, one with low bids and one with high bids.

If one of these flexible types were to always bid in the higher of these two intervals, then

market prices would tend to be higher, and any individual supplier of this type would be tempted

to try to win two units at a high price by deviating to a low bid. Conversely, if one of these

flexible types were to always bid in the lower of the two intervals in its support, then prices would

tend to be lower, reducing inframarginal profits. In this case, an individual of this type could do

better by abandoning hope of winning two units and deviating to a high bid that might set the

price. Thus equilibrium requires these types to mix between bids that are more competitive for the

inframarginal and marginal units, respectively.

3.5 2U : Two-part bids, uniform pricing (2U)

Under 2U, the bidding space is expanded to reflect the supplier’s cost structure, but all units

continue to be paid the same uniform price. Each bidder submits a two-part bid (b1, b2) indicating

the minimum price per unit it is willing to be paid if it supplies one unit (b1) or two units (b2). The

market-clearing price is defined to be the lowest price at which it is possible to procure exactly three

units by fulfilling some subset of the submitted bids, taking at most one bid from each supplier.

If there is only one subset of bids that achieves this, then it becomes the winning allocation. If

more than one subset of bids could provide exactly three units at the market-clearing price, then

a tiebreaker is needed. We break ties in favor of the allocation whose cost would be lowest if

12This is true both with the continuous type space, and with the discretization to seven types.
13All of the equilibrium and best response computations in the paper were performed in Matlab; the programs

are available on request. In this case, the equilibrium was computed by picking an arbitrary set of starting bid

distributions and then computing iterated best responses until the distributions converged. While we cannot prove

that this equilibrium is unique, we did try a number of different initial distributions, and all of them converged to

these strategies.
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the suppliers were paid as bid.14, 15 By introducing quantity-dependent bidding without quantity-

dependent pricing, 2U is in some sense creating two markets but leaving one of them unpriced.

This makes bidding less risky, since a supplier can guarantee that its costs will be covered, but it

also makes the auction price a less effective signal to suppliers about how to bid successfully.

Below we present equilibrium bidding strategies under 2U for the version of our model with

continuous costs. Simulations suggest that this equilibrium is both unique and a qualitatively

accurate approximation of equilibrium with discrete cost types.16 The symmetric equilibrium bids,

as a function of one-unit cost c1 are

b1 (c1) =

{

3c1 + 100 ln (1 − c1/100) + 100 ln 3 − 100 if c1 ≤ 200
3 ≈ 66.7

100 if c1 > 200
3

b2 (c1) = 0

The proof that these strategies constitute an equilibrium is in Appendix A; below we provide

intuition behind the equilibrium.

Note that one unit bids are above 90 for all types and all types between c1 = 67 and c1 = 100

pool at 100. Meanwhile, two unit bids are pooled at zero. To better understand this ‘highball-

lowball’ bidding strategy result, observe that if these strategies are followed, the price will always

be set by a (very high) one unit bid, and the lowest two unit bidder will supply two units at this

price. Given these strategies, the price will be high enough that it is attractive to all cost types

– even c1 = 50 – to try to submit the lowest b2 and sell two units. Since submitting a lowball b2

bid is essentially costless – in equilibrium it never turns out to set the price – this undercutting

incentive sends b2 down to the lowest permissible bid, which is zero.

14To illustrate, suppose that the three suppliers submit bids of (70, 77), (75, 71), and (100, 55). At prices below

70, it is only possible to procure a total of two units, both from the third supplier. At a price of 70, it is possible

to procure one unit from the first supplier and two units from the third, so this is the winning allocation, and the

market-clearing price is 70. Now change the second supplier’s bid to (75, 60), holding the other bids fixed. At prices

in [60, 70) it is possible to procure either two units (from either the second or third supplier) or four units (two from

both), but not exactly three. At a price of 70, there are two ways to procure three units: one unit from the first

supplier and two units from either the second or the third. The market-clearing price is again 70, and the tie is broken

in favor of the allocation including the third supplier (70 + 2 (55) < 70 + 2 (60)). This outcome involves passing up

a bid below the market-clearing price (the second supplier’s two unit bid) in order to procure exactly the quantity

demanded by the buyer. Notice that the second supplier could enter the winning allocation here by undercutting the

third supplier’s two unit bid, and that this would have no effect on the market-clearing price.
15This allocation rule – consistent with the instructions provided to subjects – precludes the possibility that the

buyer accepts a two unit bid but asks its bidder to deliver only one unit. We thank a referee for pointing out that

if the buyer did have this option, then it might sometimes be advantageous to procure three units by accepting two

different two unit bids, paying for all four units, but only taking delivery of three. While the equilibrium strategies

would certainly change in this case, the chance of being paid for an unproduced and undelivered second unit would

still tend to induce bidding below cost.
16Specifically, we wrote Matlab code to simulate a version of best response learning with discrete cost types.

The dynamics consistently converged close to the equilibrium presented here. Since the equilibrium is not one that

subjects would be likely to adopt by introspection alone, the fact that it appears to be globally stable under learning

is reassuring.
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This equilibrium does not make format 2U look very attractive: equilibrium efficiency should

be low because of the pooling and procurement cost should be quite high. However, our goal is

not to identify optimal auctions but to examine how successfully suppliers can master a difficult

bidding problem. Format 2U delivers such a problem: to do well, a subject must break free from

the intuition that a good bid should be in the neighborhood of a markup above her costs.

3.6 2D: Two-part bids, discriminatory pricing (2D)

Under 2D, a bidder submits a two-part bid (b1, b2), as under 2U. However, under 2D, each supplier

is paid the amount of its own accepted bid per unit supplied. A supplier’s bids are still mutually

exclusive: a supplier will either have b1 accepted, supply one unit, and be paid b1, or it will have b2

accepted, supply two units, and be paid a total of 2b2, or it will have no bid accepted and produce

zero. The winning allocation is determined by accepting the combination of bids that procures

exactly three units at the least total cost to the buyer, subject to the constraint that at most one

bid is accepted from each supplier.17

An approximation of symmetric equilibrium bidding strategies, as a function of one-unit cost

c1 are,

b1 (c1) =
100

3
+

2

3
c1

b2 (c1) =
11

12
100 −

1

3
c1 = 25 +

2

3
c2

The bidding strategies above are an exact equilibrium for the model with continuous cost

types, under the assumption that only two bidder allocations are permitted. The strategies are

only approximately optimal if three bidder allocations are permitted, but because three bidder

allocations only occur in around one in thirty auctions, the approximation is quite close.

These bidding strategies leverage the fact that under our cost structure, a supplier’s one and

two unit bids are unlikely to compete with each other. That is, conditional on being close to the

margin of winning one unit with its b1 bid, a supplier is almost surely not close to the margin of

winning with its b2 bid, and vice versa. Consequently, a supplier can get away with approaching

its two bids as separate and unrelated profit maximization problems. It is almost as if there were

two separate markets – one to procure a block of two units and the other to procure one unit.18

17For the earlier example with bids of (70, 77), (75, 71), and (100, 55), the allocation remains the same, but now

the first supplier is paid 70 per unit, while the third supplier is paid 55 for each of two units. At the conclusion of

the auction, all of the bidders see the price vector (55,55,70).
18In our model, this is true in part because the ranking of suppliers from lowest to highest one unit cost is always

the reverse of the ranking from lowest to highest two unit cost. Thus in the event that a supplier is competitive for

one unit, she is generally not simultaneously competitive for two units. In a pilot experiment, we studied format

2D with two bidders rather than three (but no other changes). In this case, a bidder always wins some quantity, so

b1 and b2 can cannibalize each other. We find some modest evidence that subjects underestimate the chance that

reducing b2 will cannibalize one unit profits.
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4 Preliminary Results

4.1 Actual vs. Predicted Outcomes

Our first evidence is on aggregate auction outcomes. For each auction in the data, we record the

actual outcome on key variables (efficiency, supplier profits, and total production and procurement

costs). Then we compute predicted outcomes that would have occurred (for this cost triple), if

the subjects had played the strategies derived in Section 3.19 Then we average these actual and

predicted outcome variables across all auctions within a session to form a session mean. If our

subjects play mutual best responses to each other, then these actual and predicted session means

should be close. We test this by comparing (for each treatment) the five matched pairs of session

means, using both a non-parametric Wilcoxon signed rank test and a paired t-test.20

The values are in francs per auction; to convert to dollars per session, multiply by 0.6 (30

auctions/session · $0.02/franc). Note that the statistical tests are conservative – by taking session

means as the data points, we do not make any assumptions about the independence of outcomes

within a session – but as a result they have relatively low power. In particular, for the Wilcoxon

test with n = 5, the strongest possible rejection of no difference between actual and predicted

outcomes is a p-value of 0.0625; we will refer to this as a significant difference, and to the next

smallest p-value (0.125) as marginally significant.

In all three auction formats, subjects earn significantly lower profits than would be predicted

by equilibrium; the difference, in dollars per subject per session is $2.92 for 1U, $13.54 for 2U, and

$1.43 for 2D. In percentage terms, subjects earn 34% of their equilibrium profits in 2U and 73%

in 2D. In 1U, subjects earn -33% of their equilibrium profits since they actually lose money on

average. Profits per auction are the residual between the total production cost of the three units

sold (SC, for supplier cost) and the total revenue from selling those units (BC, for buyer cost).

The shortfall of actual profits can be attributed partly to stronger than expected competition –

BC is significantly lower than predicted in all three formats (marginally so for 2D). The other

factor to blame for low profits in 1U and 2D is inefficient production – SC is higher for both

treatments (significantly for 2D, marginally significant for 1U) than in equilibrium. The last row

normalizes suppliers’ production cost into an index ranging from 0 (costs were no better than a

random allocation) up to 1 (the allocation was efficient).21 The comparison of actual to equilibrium

values of this index is similar to those for SC. Note that in the case of 2U, the fact that subjects

19For 1U, where the equilibrium strategies for some types are mixed, we compute the expectation of the outcome

variable, for each auction.
20Note that session means could be close even if individual auctions do not conform closely to the predictions. In

this sense, a rejection of equality in our tests is a strong refutation of the predictions. However, we will interpret the

results cautiously because the predictions are based on strategies that are approximate joint best responses for the

discrete cost type case.
21More precisely, the index is Efficiency Index = SCrand−gSC

SCrand−SCeff
, where gSC is either the actual supplier cost, or

the equilibrium prediction of supplier cost. The expected supplier cost under a random allocation is generated by

averaging over the seven possible allocations – six combinations involving two units from one supplier and one from

another, and one allocation with one unit from each. We thank a referee for suggesting this measure of efficiency.
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do not play the pooling equilibrium strategies means that allocations are more sorted by cost (and

so, more efficient) than predicted.

Treatment

1U 2U 2D

Π Actual -1.22 11.83 6.53

Eqm 3.65 34.4 8.91

p-value Wilcoxon 0.0625 0.0625 0.0625

(t-test) 0.0067 < 0.001 0.016

SC Actual 190.06 176.47 172.69

Eqm 183.04 185.22 170.68

p-value Wilcoxon 0.125 0.0625 0.0625

(t-test) 0.037 0.0072 0.0055

BC Actual 186.41 211.96 192.27

Eqm 193.99 288.41 197.42

p-value Wilcoxon 0.0625 0.0625 0.125

(t-test) 0.0029 < 0.001 0.047

Efficiency Index Actual 0.36 0.8 0.91

Eqm 0.56 0.52 0.98

p-value Wilcoxon 0.125 0.0625 0.0625

(t-test) 0.042 0.01 0.027

Table 3: Actual Behavior versus Equilibrium Predictions (francs per auction) Π is the (avg.) Profit

per supplier, SC the (avg.) total cost of the suppliers selected to produce, BC the (avg.) total

cost of the buyer, and Efficiency = 1 if the efficient suppliers were selected.

Table 3 suggests that for auction format 2D, equilibrium predicts actual session level outcomes

reasonably well. Although there are statistically significant gaps between actual and predicted

outcomes, those gaps are small in magnitude. In the other two treatments, the gaps between

equilibrium predictions and actual outcomes are substantially wider. It is conceivable that these

gaps could narrow in later rounds as subjects gain experience with the auction format. To check

for this, we computed the profit shortfall (predicted minus actual profits) for rounds 1-15 and

16-30 of each session, normalized to dollars per 15 rounds. For auction format 2D, the average

(across sessions) shortfall does decline over time, from $0.85 to $0.58. (The sum of these is the

$1.43 reported earlier.) However, in the other two auction formats there is little change: in 1U the

shortfall declines from $1.49 to $1.43, while in 2U it rises from $6.69 to $6.82.22 Thus the condition

22Each of the three average shortfalls reported for rounds 16-30 is different from zero with at least marginal
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that subjects play mutual best responses appears to fail persistently in some of our settings.

Figure 2 breaks down the actual and equilibrium predicted subject payoffs by cost type.23

Remember that in our setting, an efficient allocation usually requires the smallest and largest

realized suppliers to produce one and two units respectively. The median realized type is what

VBW (1996) call a “marginal efficient seller” at both scales of production: he is second-best at

producing both quantities that are needed and should sit out. VBW argue that in their setting,

these marginal sellers compete too vigorously, lose money on average (due to exposure problems),

and contribute to volatile market outcomes. In our setting, it is the flexible cost types who are

most likely to be the marginal seller. In 1U (where exposure problems are most severe) these types

indeed lose money on average, suggesting that they may contribute to volatile outcomes by bidding

too aggressively. However, large bidders also lose money in 1U, and the profit shortfall (of actual

profits relative to equilibrium predictions) is shared across all cost types in 1U and 2U. In contrast,

in 2D, suppliers with declining average costs (the large and flexible types) earn average payoffs

quite close to the predicted ones.

However, Figure 2 cannot tell us whether, for example, large suppliers in 1U appear to do

poorly because of their own errors, or because their profit opportunities are limited by other bidders’

mistakes. (For example, if small suppliers bid too aggressively, then prices fall and the inframarginal

profits that large suppliers rely on dry up.) In the remainder of the paper, we try to separate these

issues by focusing on whether subjects play best responses to the empirical opponent bidding that

they actually faced.

4.2 Actual vs. Best Response Bidding

In this section, we construct the payoffs that a subject could have earned by best responding to

the distribution of her opponents’ past play; then we ask how subjects’ actual payoffs compare to

these computed best response payoffs. This can provide a clearer test of how effectively subjects

optimize than the benchmark profits in Table 3 do, since the latter may have been simply impossible

to achieve given opponents’ actual bidding.

The rationale for computing best responses with respect to past play is that it would be both

feasible and reasonable for a subject to base her expectations about her current opponents’ bidding

on her own past market experience. There are two caveats to this approach. One is our im-

plicit assumption that subjects can draw reasonably accurate inferences about past opponent bids

from market feedback. Thus success in best responding may partly reflect the richness of market

feedback, and subjects’ success in interpreting it. The second caveat is that in a volatile market

significance (p-value 0.125) in a Wilcoxon test over the five session means. We also tested the difference

Shortfall1−15 − Shortfall16−30 for the five sessions of each treatment to determine whether there is a significant

improvement in the gap between actual and predicted profits. There is no significant improvement (for any treatment).
23In the figure, actual profit of small bidders in 1U, is calculated by pooling all individual auction payoffs of bidders

of type 50 or 58 in all five sessions, and taking the average. Predicted profit is computed, similarly to Table 3, by

computing expected payoffs under equilibrium strategies for those same auctions (all realized triples including a small

supplier) and averaging. (Other types and treatments are handled similarly.) Statistical comparisons across cost

types are deferred until Section 5.1.
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environment, a best response to past play might not be a particularly good strategy in the current

round. Later in this section, we will show that subjects would have systematically improved their

payoffs if they had always chosen best responses to past play. Thus, using these best responses as

a benchmark for subjects’ behavior seems reasonable.

When an arbitrary bid b is referred to in what follows, it should be interpreted as either a scalar

or a pair, depending on the treatment. Define πit (b) to be the payoff that i would have earned

by playing b under her round t costs, against her opponents’ round t bids. Let bit be the bid she

actually used, and πit = πit (bit) the payoff she actually earned.

Next we construct the predicted payoff given past play, Hit (b), defined as the expected payoff

that i would earn by playing b in round t, under her round t costs, against the distribution of

opponent bids that she faced in rounds 1 to t − 1. To do this, first define πt
iτ (b) to be the payoff

that i would have earned by playing b against her round τ opponents, under her round t costs.

Then Hit (b) is defined as:

Hit (b) =
1

t − 1

t−1
∑

τ=1

πt
iτ (b) .

We say that a subject best responds to past play if she chooses a bid in round t that max-

imizes Hit (b). We define H̄it to be the payoff that she would actually earn in round t by best

responding:24,25, 26

H̄it ≡ πit (b∗) where b∗ = arg max
b∈B

Hit (b)

We start by asking how actual profits compare to what subjects could have earned by best

responding to past play. We determine how much more money a subject could have earned over 30

rounds by best responding to past play, relative to subjects’ actual earnings. The average value of

H̄it − πit for each treatment, converted to dollars per 30 rounds, is $1.64 for 1U, $3.03 for 2U, and

$0.52 for 2D.27 Thus, subjects leave less money on the table than the comparison to equilibrium

payoffs in Table 3 would suggest. For 2D, these foregone profits are a relatively small fraction (14%)

of the average 30 round profit of $3.84. However, the foregone profits represent 42% of average

actual profits in 2U ($7.25), while in 1U the foregone profits would have saved subjects from losing

money on average (-$0.52).28 Furthermore, these foregone profits persist; over the last 15 rounds

they average $1.65 (1U), $2.85 (2U), and $0.42 (2D) respectively (still measured in $/30 rounds).

24If Hit (b) has more than one maximizer – say b∗1, b∗2, ... – then we average over πit (b∗1), πit (b∗2), ... to get H̄it.
25As a secondary benchmark, we also computed a ‘full information’ best response. FIit (b) is the expected payoff

that b would earn (under round t costs) against the distribution of opponent bids that i faces in all 30 rounds.

Similarly, FIit is the round t payoff that i would have actually earned by choosing a maximizer of FIit (b). When

past and future opponent bidding differ substantially, profits FIit and H̄it will tend to differ; to achieve profit FIit,

a subject would need to be good at forecasting opponents’ future bids. In our data, FIit tends to be higher than H̄it,

while actual payoffs generally fall short of H̄it. Given this, our analysis focuses on the less demanding benchmark.
26Of course, there is no guarantee that H̄it will be the largest possible profit for choice it, since it is determined on

the basis of opponents’ past, not current play.
27In each case, we average H̄it − πit over all choice situations it, then multiply by 3

5
= (30 rounds) / (50 francs/$).

28For four out of five sessions in treatments 1U and 2U, the mean value of H̄it − πit is positive (and larger than
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However, the average foregone profit over an entire treatment does not provide a full picture of

how closely actual profits match up with H̄it on a round by round basis. To assess this, we next

calculate the mean of the squared deviation
(

H̄it − πit

)2
. This value (in francs per choice situation)

is 322 for 1U, 540 for 2U, and 61 for 2D.29Thus, auction by auction, actual profits πit track H̄it

reasonably well in 2D, but less well in 1U and 2U.

Altogether, this preliminary analysis suggests that best responding to opponents’ past play

is a plausible model of actual behavior in treatment 2D, but does not describe actual behavior

in 1U and 2U as well. In the remainder of the paper, we explore these deviations from best

response behavior, argue that they can be attributed to imperfections in profit maximization, and

assess explanations that could explain these imperfections. We favor explanations that can fit

into a general model of bidding across all three treatments, rather than explanations that would

require fundamentally different behavior in different treatments. Loosely, one might categorize

these explanations according to whether they relax the “profit” or the “maximization” side of the

standard model of behavior. That is, one class of explanations (alternative preferences) would be

that subjects are successful maximizers, but that their utility functions include objectives other than

profits (reducing risk or losses, for example). Another class of explanation (hard maximization)

is that subjects do care about profits, but their profit maximization problem is challenging, and

its “degree of difficulty” varies across auction formats. We find only mixed support for the first

class of explanation and considerable support for the second. We will argue that the ways in which

subjects stumble when confronted with challenging maximization problems are both systematic

and instructive, and hence should be considered when evaluating the tenableness of equilibrium

predictions.

5 Bidding Based on Modified Best Responses: Model

In this section, we construct and estimate a model of bidding in the spirit of Erev and Roth’s

(1998) reinforcement learning and Camerer and Ho’s (1999) experience weighted attraction (EWA)

learning. Our first objective is to study whether an explanation based on preferences, or one based

on noisy optimization, better explains deviations from best response behavior. One criterion of

a successful model will be its generality: that is, how well it can explain bidding under all three

auction formats.

Suppose that subject i’s probability of choosing bid b in round t depends on a propensity Pit (b)

according to a standard logistic formulation:

Pr (bit = b) =
ePit(b)

∑

b̃∈B
ePit(b̃)

, t ∈ {2, 3, ..., 30} (1)

for the corresponding session of 2D). For both 1U and 2U, Session 1 is the anomaly: H̄it − πit is negative (subjects

do better than the best response profit, and by a larger margin than for 2D). We will offer a partial explanation for

this anomaly later.
29In a Wilcoxon test across matched session averages, this mean squared deviation is significantly larger for both

1U and 2U than for 2D (p = 0.0625). The difference between 1U and 2U is not significant.
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where B is the strategy space. (Subjects’ initial bids in round t = 0 are left unmodeled.) The

propensity is assumed to depend on a linear combination of influences including Hit (b) and possibly

other factors:

Pit (b) = βHit (b) + [other terms] . (2)

As a baseline, we start with what we will call the Pure Profit (PP) model.

Model PP: Pit (b) = βHit (b) (3)

The previous section presented indirect evidence about whether subjects choose a maximizer of

Hit (b). Model PP broadens the question to ask how emphatically subjects favor bids with higher

profits over bids with lower profits.30 We begin by testing the hypothesis that a single coefficient

β can explain how subjects respond to profits across all three treatments. To do this, we estimate

model PP by maximum likelihood separately for each session of each treatment.31 This generates

fifteen (independent) estimates of β. Table 4 presents the five estimates of β for each treatment, and

their mean.32 These five estimates are compared for each pair of treatments with both Wilcoxon

signed rank tests and t-tests. While subjects respond more strongly to profits in 2U than in 1U,

the difference is not significant. However, subjects do respond to profits much more vigorously in

2D than in the other two treatments, and these differences are highly significant.

Price feedback may partially explain this gap. In treatment 2D, prices reveal all of the winning

bids, and this may make it easier for a subject to determine how competitively she must bid in

order to win. In the other treatments, the winning inframarginal bid is not revealed by the price;

this may contribute to the difficulty that subjects have in identifying profit opportunities.

Next we ask whether the difference between 2D and the other two treatments depends on the

supplier’s cost type or how experienced she is. We estimate model PP on the pooled data (all

15 sessions) interacting Hit (b) with treatment dummies for 1U and 2U (with 2D omitted). We

also include interactions with treatment and cost type (flexible or large, with small omitted), or

with treatment and round t. The coefficients are presented in Table 5. Small suppliers are equally

30Note that this model, via the definition of Hit(b), puts equal weight on a subject’s experience in all past rounds

1 through t − 1. One might expect that because costs change every six rounds subjects would put greater weight

on their most recent experience. (Many learning models, such as Camerer and Ho’s EWA learning model, build in a

‘decay’ factor that can capture this type of effect.) However, when we tested models with a decay factor, we found

that the equal-weighting model actually performs better in our data.
31For each of these fifteen estimations, each decision opportunity for a subject in rounds 2 through 30 is treated as

a single observation. To sidestep computational difficulties related to the size of the strategy space for 2U and 2D, we

followed McFadden’s procedure (McFadden 1978, Train et al. 1987) of generating consistent estimates by sampling

the strategy space. (Further details are in the appendix.)
32The standard errors on the coefficient estimates in Table 4 are suppressed. Because we are cautious about treating

decisions within a single session as independent, throughout the paper, all standard errors on regression coefficients

are robust and clustered at the session level. Sometimes this is impossible (such as here, where each regression

includes a single session). In these cases, we try to err on the side of caution by taking session-level outcomes (here,

the fifteen estimates of β) as our units of observation for statistical comparisons.
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Session p-value on test of equality against:

Mean 1 2 3 4 5 1U 2U 2D

1U 0.110 0.175 0.084 0.051 0.132 0.106 signrank - 0.625 0.0625

t-test - 0.392 0.006

2U 0.160 0.389 0.213 0.067 0.058 0.075 signrank - 0.004

t-test - 0.0625

2D 0.391 0.496 0.557 0.261 0.316 0.325

Table 4: Session by session coefficients on Hit (b) for model PP

H H*1U H*2U H*Flex H*1U*Flex H*2U*Flex H*Lg H*1U*Lg H*2U*Lg

0.291 -0.183 0.009 0.025 -0.019 -0.245 0.123 -0.175 -0.348

(0.083) (0.085) (0.104) (0.075) (0.075) (0.101) (0.107) (0.110) (0.123)

LL -15016

Table 5: Model PP estimated on pooled data, with treatment and cost type interactions (Baseline

is treatment 2D). Standard errors are clustered by the 15 sessions.

responsive to profits in 2D and 2U. (In 1U they do worse.) As avoidable fixed costs get larger (the

flexible and large interactions), the treatments diverge: profit responsiveness improves in 2D and

deteriorates in the other two treatments.

One might wonder whether this performance gap is transient – perhaps subjects just need a

few more rounds to sort out best responding in 1U and 2U than they need in 2D. The regression

with round interactions refutes this fairly emphatically (Table 6). Responsiveness to profits not

only starts at a higher level in 2D, but it also rises far faster with experience in 2D. While the

coefficient on Hit (b) does rise over time in the other two treatments (at a rate given by the sum of

the H ∗ t and H ∗ t ∗ 1U or H ∗ t ∗ 2U coefficients), but the improvement is anemic.

While the results above document clear patterns in how effectively subjects best respond, they

do not explain them. In the analysis that follows, we search for parsimonious explanations that can

explain behavior in all three treatments well. We focus on two classes of explanation, one based

on subject preferences and the other based on identifying auction features that make optimization

difficult. Most of the models based on optimization difficulty (payoff volatility, difficult payoff

landscapes, salience of dominated strategies) and preferences (risk and loss aversion) are described

in Sections 5.1-5.3 and estimated in 6.1-6.3. For methodological reasons, we separate out (in

Section 6.5) our study of whether subjects try decompose the profit maximization problem into

smaller pieces. Then, in section 7 we investigate the idea that if best responding to past play is

difficult, subjects may also rely on simpler heuristics.
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H H*1U H*2U H*t H*t*1U H*t*2U

0.163 -0.091 -0.112 0.016 -0.015 -0.014

(0.031) (0.036) (0.033) (0.003) (0.003) (0.003)

LL -15026

Table 6: Model PP estimated on treatment and round interactions (Baseline is treatment 2D).

Standard errors are clustered by the 15 sessions.

5.1 Payoff Volatility

Earlier, we suggested that avoidable fixed costs and auction rules can interact to produce a volatile

environment for bidders; now we introduce measures of that volatility, Vit (b), which is a natural

counterpart to Hit (b). While Hit (b) measures the average of a sequence of hypothetical payoffs
{

πt
i1, π

t
i2, ..., π

t
i,t−1

}

that b would have earned against past opponents, Vit (b) measures the variance

of that sequence. Formally, define:33

Vit (b) =
1

t − 1

t−1
∑

τ=1

(

πt
iτ (b) − Hit (b)

)2
(4)

Table 7 presents mean values of Vit (b) across the three treatments. Each mean is taken over all

possible bids b ({0, ..., 100} or {0, ..., 100}2) for every choice situation it. The substantially higher

values of Vit (b) in treatments 1U and 2U (relative to 2D) indicate that in the two uniform price

treatments, a typical bid’s hypothetical performance in past rounds tends to vary a lot depending

on which past round is considered. By averaging Vit (b) over all possible bids, the summary statistics

in Table 7 include weight on the payoff variability of some truly abysmal bids that subjects are

unlikely to seriously consider. In the next line of Table 7, we take the average of Vit (b), but this

time include only those bids in the top decile of Hit (b), for each choice situation it. When we

consider the variability of only these ‘high payoff’ bids, 2U looks more volatile than 1U, but both

are still more volatile than 2D.34

Based on these summary statistics, it seems plausible that payoff volatility as measured by

Vit (b) could help to explain deviations from best response behavior in 1U and 2U. We propose two

main channels through which Vit (b) might affect bidding. The first is based on preferences. Suppose

that subjects are risk averse and able to estimate both Hit (b) and Vit (b) reasonably well. When

choosing bids, they will tend to penalize riskier ones (high Vit (b)); then in riskier environments like

1U and 2U, actual bids may diverge relatively more from risk neutral best responses.

Associated with this preference-based argument for deviations from best response behavior,

33Of course, the statistically correct sample estimate of payoff variance would normalize by 1

t−2
, not 1

t−1
. This

would require us to give up the first two rounds of data in the estimation (instead of just the first round). Rather

than do this, we use the formula as stated, and accept the implicit restriction that Vi2 (b) = 0 for all b. This has no

material effect on the results.
34Session by session comparisons of Vit in 1U vs. 2D or 2U vs. 2D both reject equality (Wilcoxon p-value 0.0625),

regardless of which set of bids Vit is averaged over. Differences between 1U and 2U are not significant.
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1U 2U 2D

H̄it − πit 2.73 5.05 0.86

Vit (over all bids b) 438.19 330.18 50.27

Vit (over high payoff bids) 158.30 283.02 58.41

Table 7: Summary Statistics for Vit (b)

we propose the The Risky Payoff (RP) model. Under the RP model, we conjecture that subjects

dislike risk and bid with the aim of maximizing the simple mean-variance objective function Hit (b)−

rVit (b), where r ≥ 0. 35

Model RP: Pit (b) = β (Hit (b) − rVit (b)) (5)

The second channel through which Vit (b) might affect bidding is based on noisy optimization.

Define the empirical standard deviation of a bid σit (b) =
√

Vit (b). Suppose that subjects are risk

neutral, but their attempts to estimate expected payoffs Hit (b) are confounded by the fact that

these payoffs are volatile. We suggest two versions of this noisy optimization story; they have similar

empirical implications and we will not try to distinguish them in the data. One version is that

when a bid’s returns have been volatile (σit (b) large), a subject makes larger errors in estimating

Hit (b). The other is that a subject is able to estimate Hit (b) accurately, but like a statistician,

places less confidence on this estimate if σit (b) is large. In the first case, a subject may respond

strongly to the profit that she perceives, but because this perception is inaccurate, we will measure

this as a weaker response to Hit (b). In the second case, it is the subject herself who dials down

her response because she suspects that the magnitude of Hit (b) (either positive or negative) may

be large simply by chance.

Associated with this imperfect/noisy optimization-based argument for deviations from best

response behavior, we propose the Noisy Payoff (NP) model. Under the NP model, we assume

that subjects are less sensitive to expected payoffs for bids that are noisy:

Model NP: Pit (b) = (β − γσit (b))Hit (b) (6)

Note that while both models RP and NP rely on payoff variability, they do so in (testably)

different ways: in RP, Vit (b) enters directly, whereas in NP, it enters only through the interaction

Hit (b) σit (b).36 Furthermore, RP predicts that high payoff variability always makes a bid less

attractive, while NP predicts that noise disguises how bad some bids (those with Hit (b) < 0) are,

making them more likely to be chosen.

35In earlier versions of the paper that did not include a learning model, we computed best responses under CARA

and CRRA utility and found qualitatively similar patterns across treatments to those that we will report for model

RP. Here, with the mean-variance formulation, we err on the side of simplicity.
36We use σit (b) in model NP rather than Vit (b) partly because of the analogy to confidence interval analysis, and

partly because it fits the data better. However, comparisons between models RP and NP do not change if we use

Vit (b) in both models.
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5.2 Bids below cost: loss aversion and weak dominance

As subjects consider the bidding landscape, bids below cost play an interesting role. In two of our

auction formats, 1U and 2U, profit maximization may sometimes require placing a bid below cost,

which in principle could lose money for some realizations of the opponents’ bids (This is not true

in 2D, where optimal bids are always above cost.). However, not all bids below cost are potentially

profitable. There are also some bids below cost that are dominated and could never be optimal.

There is considerable evidence that people do not treat gains and losses symmetrically (Kah-

neman et al. (1991)), as manifested in a number of types of behavior which collectively have been

termed “loss aversion.” If subjects have preferences that penalize loss exposed bids, this could help

to explain why profit maximization is apparently weaker in 1U and 2U. It is also possible that

some subjects will avoid dominated bids – perhaps because it is particularly salient that they are

unprofitable – without avoiding other loss exposed bids.37 In this case, the behavior suggests not

loss averse preferences but rather that dominance helps subjects to optimize more accurately.

Define a bid as loss exposed, with indicator variable Lit (b), if there is some set of opponent

bids for which it could conceivably return a negative payoff. The values of Lit (b) are summarized

in Table 8. Table 8 also presents a summary of the bids that subjects actually chose: Note that

choosing a loss exposed bid is very common in 1U and rarer in 2U. These summary statistics hint

that it may be difficult for loss aversion to simultaneously explain bidding in both 1U and 2U.

Associated with this preference-based argument for deviations from best response behavior, we

propose the The Loss Exposed (L) model which includes an indicator for loss exposed bids. Under

the L model, we conjecture that subjects would avoid submitting bids that are loss exposed if they

have loss averse preferences.

Model L: Pit (b) = βHit (b) + γLLit (b) (7)

We define another indicator variable Domit (b) equal to 1 if bid b is weakly dominated. The

values of Domit (b) are summarized in Table 8 in each case, the weakly dominated bids are a subset

of the loss exposed ones. Note that choosing a dominated bid is rare in all three treatments, while,

as noted above, choosing a loss exposed bid is very common in 1U and rarer in 2U. These combined

summary statistics hint that the avoidance of bids below cost may be better explained as a result

of (possibly imperfect) profit maximization calculation.

Associated with this imperfect optimization-based argument for deviations from best response

behavior, we propose the The Dominated Bids (Dom) model which includes an indicator for weakly

dominated bids. Under the Dom model, we conjecture that subjects would avoid submitting bids

that are weakly dominated (but would not avoid bids below cost that are undominated).

Model Dom: Pit (b) = βHit (b) + γDomDomit (b) (8)

37A reader’s first impression may be that the weakly dominated sets for 1U and 2U are obscure rather than self-

evident. The underlying logic is less obscure than it may appear. In 1U, a subject should not bid below the marginal

cost of her more competitive quantity. (The marginal cost of producing a second unit is 2c2−c1.) In 2U, the principle

is more subtle than “setting both bid components below cost is unwise,” but this is a fairly close approximation.

23



1U 2U 2D

Lit(b) = 1 iff. b <max(c1, c2) b1 < c1 or b2 < c2 b1 < c1 or b2 < c2

Domit(b) = 1 iff.

for c1 ≤ c2 b < c1 max(b1, b2) ≤ c2 “

for c1 > c2 b < 2c2 − c1 max(b1, b2) ≤ c1 “
#(chosen bid was loss exposed)

#( choice situations) 0.721 0.149 0.015
#(chosen bid was dominated)

#( choice situations) 0.105 0.079 0.015

Table 8: Dominated and loss exposed strategies

5.3 Payoff landscape

Another factor that could make optimization difficult for subjects is the shape of the profit land-

scape. (In this case, there is no alternative based on preferences to compare to directly.) To fix

ideas, if Hit (b) is strictly quasiconcave in b, we will consider this an easy optimization problem.

Concisely characterizing the features of a landscape that make optimization difficult is itself a no-

toriously difficult problem.38 We focus on a definition that, while somewhat ad hoc, is intuitive

and simple. For a choice situation it and a bid b, we say that b is a local maximum if its expected

payoff Hit (b) is weakly greater than that of every neighboring bid. (For the one dimensional bids

in 1U, neighboring bids are b − 1 and b + 1. In the other two treatments, we take the four nearest

neighbors to b = (b1, b2); that is, (b1 ± 1, b2) and (b1, b2 ± 1).) For choice situation it, define LMit

to be the fraction of bids (over the strategy space B) that are local maxima.

We conjecture that subjects will appear less sensitive to expected profits in choice situations

in which LMit is large. This could occur if subjects search locally for payoff-improving strategies;

in this case, they will tend to get stuck at local maxima. Alternatively, subjects may try to take

a global view of Hit but find it hard to discern patterns in the landscape. Mean values of LMit

(see Table 9) indicate that subjects in 1U and 2U tend to face payoff landscapes with many local

maxima, suggesting that LMit may help to explain the disparity in best response behavior across

treatments.

1U 2U 2D

H̄it − πit 2.73 5.05 0.86

LMit 0.29 0.41 0.03

Table 9: Values of LMit across treatments

Associated with this imperfect optimization-based argument for deviations from best response

behavior, we propose the The Local Maximum (LM) model. As n model NP, we introduce LMit as

38This question comes up in many fields besides economics (artificial intelligence, genetic algorithms, and numerical

analysis, to name a few), but there appears to be no consensus on a simple and robust definition of “difficulty.”
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an interaction with Hit (b):

Model LM: Pit (b) = β (1 − δLMit)Hit (b) . (9)

In the next section, we report on the success of each of our refined learning models.

6 Bidding Based on Modified Best Responses: Results

One criterion of a successful model will be its generality: that is, how well it can explain bidding

under all three auction formats. For each of our paired (altered preferences vs. imperfect opti-

mization) learning models ((RP vs. NP) and (L vs. Dom)) we will compare their performance by

two metrics. The first is overall fit to the data, as measured by the log likelihood of the model

estimated on the pooled data from all three treatments. This is reported as LLpooled in Table 10.

The second metric assesses robustness, or generality, by fitting the model to one treatment and then

measuring how well this fitted model predicts choices in the other two treatments. Let LLTonT ′ be

the log likelihood of the treatment T data using the coefficients generated by estimating the model

on treatment T ′. There are two of these predicted log likelihoods for each treatment T ; let LLT
oos

be their average. (For example, LL1U
oos = 1

2 (LL1Uon2U + LL1Uon2D).) This measures how well be-

havior in treatment T is predicted by estimating the model on the other two treatments. To create

an overall measure of robust fit, define LLoos to be the sum of these out of sample predictions:

LLoos = LL1U
oos + LL2U

oos + LL2D
oos. If the model can explain all three treatments well with a single

set of coefficients, then LLoos should be close to LLpooled. On the other hand, if LLoos is low, we

will argue that the model does not provide a good unifying explanation of bidding behavior.

Here, and with the other models we compare later, our analysis follows a general template. First

we compare the models’ performance on the aggregate measures LLpooled and LLoos. Then, if one of

the models appears less robust, we look at session or treatment level evidence to try to understand

why. For this we consult two pieces of disaggregated evidence. One piece of evidence disaggregates

LL1U
oos, LL2U

oos, and LL2D
oos session by session. Let LLs,T

oos be the contribution of session s to LLT
oos,

and let lls,Toos = LL
s,T
oos

#(choices it in session s of treatment T ) .
39 This is just the average log likelihood per choice

generated for session s of treatment T when the model has been fitted to the other two treatments.

The values of lls,Toos let us see whether behavior in one treatment is predicted particularly poorly

by the other two treatments; these values are reported in Figure 4. The second step in evaluating

poor robustness is to look at the coefficient estimates when the model is estimated separately for

each of the three treatments. This can help to identify the specific cross-treatment difference in

behavior that prevents the model from unifying the data well.40

39The reason for the normalization is to be able to compare session 5 (which has more subjects and thus more

choice situations) to the other sessions.
40To save space, we do not report complete regression tables for these treatment by treatment estimates; the

coefficients of interest are reported in the text. The complete tables are available from the authors on request.
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PP RP NP L Dom LM All Pref All Opt All

LLpooled -15644 -15601 -15351 -14554 -14597 -15288 -14550 -14158 -13897

LLoos -16969 -20377 -16394 -17867 -15999 -17196 -20610 -15742 -22515

Table 10: Log likelihood performance (pooled and out of sample) for the learning models

6.1 Risky Payoffs (RP) vs. Noisy Payoffs (NP)

We start with a comparison of models in which payoff variability affects bidding through either

altered preferences RP or imperfect optimization NP (please see Table 10). On both aggregate

measures, model NP is more successful than RP. Relative to the Pure Profit (PP) model, NP

improves the overall log likelihood by 293 (versus 43 for RP).41 Furthermore, model NP provides a

more robust fit than PP, improving LLoos by 575 log points. The RP model fares much more poorly:

adding the preference over Vit (b) to the Pure Profit model makes the out of sample likelihood more

than 3000 points worse. To investigate the poor robustness of RP, we first consult the disaggregated

predicted likelihoods in Figure 4; these suggest that treatments 2U and 2D do not predict risk

attitudes in 1U well. (The five circles for LLs1U
oos tend to be below the other predictions.) To

investigate further, we turn to the treatment by treatment regressions; in these, the raw coefficients

on Vit (b) are −rβ = 0.00068 for 1U, −0.0059 for 2U, and −0.021 for 2D. In other words, subjects

appear to avoid payoff volatility most vigorously in 2D where its level is lowest, and avoid it less

vigorously in 2U where volatility is moderate. In 1U, where payoff volatility is high, subjects are

actually attracted to riskier bids. Thus RP cannot provide a consistent model of behavior across

auction formats; as a result, it performs worse than NP both in overall fit and in robustness.

While the mean-variance risk preferences assumed by model RP are very crude, it is not clear

that more sophisticated risk preferences would fit the data better. To explain the tendency to avoid

risk more when average payoffs are higher, one would seem to need either increasing absolute risk

aversion or context-dependent risk aversion, neither of which is very palatable.

To defend our interpretation of model NP, we take a closer look at bids with negative expected

payoffs. Model NP implies that if Hit (b) is negative, then b will be chosen relatively more often if

it is noisy than if it were not noisy. We test this implication by estimating a version of NP that

permits the interaction of σ with payoffs to depend on whether the payoff is positive or negative. The

propensity is Pit (b) = βHit (b)+ γ̃ σit (b) ·Hit (b), where γ̃ = γ+ ·1 (Hit (b) ≥ 0)+γ− ·1 (Hit (b) < 0).

The estimated coefficients on γ+ and γ− are −0.0090 (s.e. 0.0003) and −0.0036 (s.e. 0.00017)

respectively. Thus, as predicted by model NP, a bad bid (Hit (b) < 0) really is more likely to be

chosen if its payoff is more volatile.

41Since model PP is nested in each of the other models in this section, we can compare it to each alternative with

a likelihood ratio test. In each case, the improvement in fit under the unrestricted model is highly significant; these

results are not reported.
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6.2 Loss Exposed Bids (L) vs. Dominated Bids (Dom)

We next compare the models in which subjects assign special significance to some bids below cost

either due to loss averse preferences (L) or because these bids are saliently unprofitable (Dom) –

see Table 10. In overall fit, both models L and Dom improve fit substantially relative to PP, but

L does slightly better (an improvement of 1090 log likelihood points, relative to 1047 for Dom).

However, model Dom is substantially more robust; its out of sample likelihood is better than that

of model PP, while L does worse than PP.

Figure 4 explains why: model L’s predictions explain 2U and 2D well, but 2U and 2D do a

poor job of explaining loss attitudes in 1U. Estimating model L separately treatment by treatment

confirms this explanation: the coefficients on Lit (b) are 0.84 for 1U, −4.21 for 2U, and −5.35 for

2D, so subjects in 2U and 2D appear to avoid loss exposed bids, but subjects in 1U tend to seek

them out.42 In contrast, the coefficients on Domit (b) in the separate regressions are all negative,

indicating that weakly dominated bids are consistently avoided.

The fact that subjects vigorously avoided loss exposed bids in treatments 2U and 2D, but

showed much less aversion to them in 1U makes loss exposure unattractive as a robust explanation

of behavior; however, the pattern is puzzling and deserves further attention. One possibility is that

an indicator for whether a bid is loss exposed does adequately capture loss attitudes. In particular,

Lit (b) does not reflect whether b is likely or unlikely to lose money. To study this, we estimated

the following amended version of model L on the pooled data:

Pit (b) = βHit (b) + γLLit (b) + γL̃L̃it (b) (10)

The indicator L̃it (b) is equal to 1 if Lit (b) = 1 and Hit (b) < 0, and equal to zero otherwise. If

subjects avoid a loss exposed bid more vigorously when history suggests it is likely to lose money

(Hit (b) negative), then the coefficient on L̃it (b) should be negative. In fact, the coefficient is

positive and significant (γL = −2.66, s.e. 0.83, γL̃ = 1.05, s.e. 0.29). Another possibility is that

the pattern has more to do with information processing than loss aversion: confronted with a very

large strategy space in 2U and 2D, subjects make the snap judgement that bids below cost can be

safely ignored. This serves them well in 2D but is a mistake in 2U. Of course, this explanation is

entirely speculative since we have no way to test it in our data.

6.3 Local Maximum (LM)

We finally consider whether the shape of the payoff landscape can help to explain imperfect op-

timization (Table 10); as noted earlier, there is no alternative based on preferences to compare

directly. The LM model improves overall fit a bit more than NP does for the pure profit model

42This finding for 1U complements certain results in VBW 1996. That paper frames bad market outcomes not as

losses, but as small positive payoffs relative to a larger foregone profit from staying out of the market. Thus standard

notions of loss aversion have no explanatory power in their setting. Like us, they find that the chance of earning less

in the market than could have been earned by sitting out does not discourage subjects from bidding aggressively.

The similarity of these two results, despite the fact that we frame bad outcomes as losses and VBW 1996 do not,

supports our contention that loss aversion is not a compelling explanation of our subjects’ behavior.
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(by 356 relative to PP), but its out of sample fit is worse. The improvement in overall fit is not a

major surprise. The summary statistics for LMit show that it has some resemblance to an indicator

variable for treatments 1U and 2U. We know that the data demand less sensitivity to Hit (b) in

treatments 1U and 2U, and the interaction term LMit ·Hit (b) can deliver this. Figure 4 implicates

poor predictions from 1U and 2D onto 2U for the weak robustness. Treatment by treatment regres-

sions suggest that treatment 2D is to blame: in 1U and 2U, the interaction term LMit ·Hit (b) gets

a negative and marginally significant coefficients (as expected), but in 2D the coefficient is positive

and insignificant. The variable LMit has almost no variation in 2D, so it is no surprise that its

effect is imprecisely estimated, but this noise degrades the out of sample predictions based on 2D.

6.4 Comparing Preference-Based and Optimization Based Models

In addition to the models presented above, we also compare a model that combines both preference-

based models (Vit (b) and Lit (b)) with one that includes all of the ‘difficult optimization’ predictors,

(σit (b) ·Hit (b), Domit (b), and LMit ·Hit (b)); we label these models All Pref and All Ops respec-

tively. Lastly, we estimate a model, labeled All using all six predictors: Hit (b), both preference-

based predictors, and the three optimization-based predictors (Table 10).43

While the All Opt model does have one additional free parameter, it substantially outperforms

the preference-based specification in overall fit (a log likelihood improvement of 1486 relative to

PP, versus 1094). The All Opt model is also much more robust across treatments: it improves our

measure of robust fit by 1227 relative to PP, while the All Pref model does more than 3000 points

worse than PP. As Figure 4 indicates, the preference-based model has trouble reconciling 1U with

the other two treatments; the way that subjects respond to its predictors in treatments 2U and

2D tends to predict behavior in 1U quite poorly. If one accepts the interpretation that variables

Vit (b) and Lit (b) capture risk and loss attitudes, then these attitudes appear to be highly unstable

across auction formats. Unsurprisingly, the model All provides the best overall fit to the data, but

it inherits the robustness problems of the preference-based models.

6.5 Separability of the Profit Maximization Function

Following the decision-making literature discussed in Section 2, we conjecture that our subjects will

be more successful at solving a multi-dimensional profit maximization problem if it can be easily

split into smaller pieces. Furthermore, following the results of Ashby et al. (1999), we conjecture

that subjects may try to tackle such a problem by reducing it to a simpler one-dimensional problem

(even if this is ill-advised).44

On the first conjecture, our evidence is very informal. As discussed earlier, in format 2D, a

subject does not err much if she treats the auction as composed of independent one-unit and two-

unit submarkets. She receives separate price feedback from each of these submarkets, and she can

43Coefficients on relevant parameters for each model are presented in the appendix.
44Because this analysis takes a more disaggregated approach (separating cost types and decomposing Hit(b)) than

the models compared in Table 10, we treat it separately.
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tailor one component of her bid to each submarket.45 In 1U and 2U, this is not possible. In 1U, a

supplier is forced to trade off one-unit and two-unit outcomes, since a single bid must deal with both.

In 2U, a supplier’s one and two unit bids compete with each other more directly due to the uniform

price, so the two bid components must be considered as an ensemble. On this basis, we suggest

that 2D presents subjects with a more separable optimization problem than the other treatments,

and that this helps to explain why subjects appear more responsive to Hit(b) in 2D. Obviously

this argument is only suggestive; for a rigorous test one would want a more formal definition of

separability and an experimental design in which the separability of the bidder’s problem varies

across treatments independently of other features of the auction.

On the second conjecture, we can be more quantitative. We propose the following two nested

hypotheses:

Hyp 1 Suppliers will treat the auction as if it were composed of a one-unit submarket and a

two-unit submarket, and focus on profits in one of these submarkets.

Hyp 2 More specifically, a supplier will focus on profits for the quantity at which it is a more

competitive producer.

To test these hypotheses, we decompose expected profits into two parts; Hit(b) = H1
it(b)+H2

it(b),

where

Hq
it(b) =

1

t − 1

t−1
∑

τ=1

πt
iτ (b)1(b would win q units against i’s round τ opponents).

Hq
it represents the portion of the expected profit (or loss) for bid b generated by winning q units.

We then estimate Pit(b) = β1H
1
it(b) + β2H

2
it(b) + γDomDomit(b) separately by cost type category

(small, flexible, or large) and by treatment.46 Hyp 1 predicts that in each of these nine regressions,

one of the Hq
it(b) coefficients will be positive and significant, while the other will be close to zero.

Hyp 2 adds the prediction that the coefficient on H1
it(b) (H2

it(b)) will be positive for small (large)

suppliers. We do not attempt to predict whether flexible suppliers will focus on one or two unit

profits. While every flexible supplier has an absolute cost advantage at two units (that is, c2 ≤ c1),

her comparative advantage relative to other bidders could go either way. Results are presented in

Table 11.

Hyp 1 receives strong support: in eight of the nine regressions, subjects appear to focus ex-

clusively on a bid’s potential profits from one of the two quantities, ignoring that bid’s potential

profits or losses from winning the other quantity. In 1U and 2D, the data also support Hyp 2.

Furthermore, in these two treatments, flexible suppliers seem to identify as ‘large,’ focusing on

two-unit profits. However, Hyp 2 is not supported in 2U: all cost types are most responsive to

one-unit profits and only weakly responsive to two-unit profits (except, oddly, for small suppliers).

The results for 2U are somewhat puzzling – in particular, the apparent focus of large suppliers

45We reiterate that this depends on special properties of the cost structure and the number of units demanded that

ensure that different components of a supplier’s bid are unlikely to be in competition with each other.
46Including Domit helps to absorb out strategies that were never serious contenders for a subject’s attention,

regardless of which quantity she hopes to win. The results are similar (but a bit noisier, with Domit omitted.
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1U 2U 2D

small flexible large small flexible large small flexible large

H1 0.291 0.025 0.001 0.329 0.326 0.215 0.244 0.023 0.001

(0.038) ( 0.031) ( 0.013) (0.084) ( 0.068) ( 0.027) (0.115) (0.010) ( 0.013)

H2 0.009 0.150 0.270 0.189 0.007 0.010 0.057 0.508 0.270

(0.015) ( 0.089) ( 0.045) (0.032 ) ( 0.024) ( 0.009) (0.017) ( 0.145) ( 0.045)

Dom -0.683 -0.710 -6.885 -0.973 -1.849 -4.110 -4.086 -4.443 -6.885

(0.686) (0.282) (0.686) (0.492) (0.626) (0.371) (0.532) (0.796) (0.686)

Table 11: Effect of quantity-specific expected profit on propensity to bid. (Coefficients from nine

treatment/cost type regressions, standard errors in parentheses.

on one-unit profits – but we can suggest a potential explanation related to feedback. In 2U, the

winning one-unit bid usually becomes public because it sets the market price. On the other hand, a

winning two-unit bid tends to be inframarginal, and thus not publicly announced. (This is always

true in equilibrium and about 70% of the time in our data.) If superior feedback about winning one-

unit bids means that subjects are able to estimate H1
it(b) more accurately than H2

it(b), this could

partially account for the puzzle. A second and more mundane factor is that large bidders (c1 = 92

and c1 = 100) have little or no scope to make positive one-unit profits, so for them, maximizing

H1
it(b) is almost entirely a matter of avoiding one-unit losses. But this is easily achieved by simply

bidding above cost (b1 ≥ c1).

6.6 Summary of Learning Model Results

At the beginning of the paper, we argued that it can be useful to categorize departures from

risk neutral profit maximization depending on whether they appear to be the result of subjects’

preferences or the result of difficulties in learning to optimize. In our experiments, if we want to

attribute these departures to risk and loss attitudes, then we must be prepared to believe that those

attitudes are very sensitive to context. Consequently, models that infer risk and loss attitudes from

bidder behavior in one context may not provide much guidance about how they will behave in a

different environment. On the other hand, factors that tend to make optimization easier (like being

able to rule out dominated bids) or harder (like payoff volatility and challenging payoff landscapes)

do help to explain bidder behavior, and their effects seem to be fairly robust across contexts.

This demonstrates that understanding the difficulty of a bidder’s strategic problem is critical to

predicting her behavior. More significantly, it shows that it is possible to construct measures of

that difficulty that are helpful in predicting behavior across a variety of environments. The models

presented so far share a presumption that subjects attempt to think about the expected payoffs to

different strategies, including strategies that they have not used before. In the following section,

we examine whether simpler heuristics based on reinforcement of bids that were actually used can

help to explain behavior.
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7 Quantity Reinforcement Heuristics

Models of reinforcement learning usually propose that a subject’s propensity to play a particular

strategy rises if it has given her good outcomes in the past. Because reinforcement learning only

requires a subject to mentally tally her own past outcomes, compared with the counterfactual exer-

cise of estimating how alternative bids would have performed, it could be a particularly appealing

heuristic for subjects when markets are complex.

In this section, we study reinforcement of quantities – that is, does a subject tend to return to

bids that have won her a particular quantity in the past? The main reason to focus on reinforcement

of quantities rather than reinforcement of profits is that a subject’s costs change over time. Thus,

the profit that b actually earned for her at some point in the past is not necessarily relevant for

her today, but the quantity that b earned is still relevant. Second, we have seen that payoffs are

particularly volatile in 1U and 2U. This volatility stems from variation in both the price and the

quantity that a bid b receives. Focusing on the quantities that b earned is a crude but simple way

to eliminate the price variation, giving the subject a more stable measure of the bid’s performance.

We also assume that some of the reinforcement of a bid that a subject actually used spills over

to nearby bids that she may not have used. This presumes that subjects expect bids near b to

perform similarly to the way that b did. The three quantity reinforcement terms described below

will be treated as factors that influence the propensity Pit (b); they represent progressively more

targeted types of behavior.

7.1 Inertia

The least targeted type of behavior that we model presumes that all bids that a subject has used

in the past are reinforced, regardless of the quantities that they won. This is referred to as inertia,

since it implies that a subject will tend to remain in the neighborhood of bids she has used before.

Define:

Iit (b) =
1

t − 1

t−1
∑

τ=1

(

K

K + d (b, biτ )

)

, t ∈ {2, ..., 30} (11)

The term in the summation controls how reinforcement decays for bids at a greater distance d (b, biτ )

from the bid that a subject actually used. The bid that a subject actually used in round τ gets

reinforcement one (d (biτ , biτ ) = 0), while the spillover reinforcement for bids further from biτ falls

to zero as d (b, biτ ) grows large.47 The measure of distance between two bids is the natural one for

1U and the sum of componentwise distances for 2U and 2D:

d
(

b, b̃
)

=







∣

∣

∣
b − b̃

∣

∣

∣
for treatment 1U

∣

∣

∣
b1 − b̃1

∣

∣

∣
+
∣

∣

∣
b2 − b̃2

∣

∣

∣
for treatments 2U and 2D

(12)

47Several other specifications for this spillover were investigated, including linear and exponential decay, but this

specification provided the best fit to the data.
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A tendency toward inertia is fairly common in experimental studies (e.g., Haruvy and Popkowski

Leszczy (2009) 48), and we are agnostic about how it should be interpreted. One possibility is that

subjects start the experiment with strong priors about which bids will perform well, and so they

update these priors relatively slowly as market outcomes accumulate. A slightly different possibility

is that subjects expect ‘local learning’ to pay off. By this, we mean that subjects expect that (i)

strategies that are close to each other will have similar payoffs, and (ii) making small adjustments in

the direction of higher profits will eventually lead to an optimal strategy. With stable, quasiconcave

payoffs this assumption would be justified, but in our setting with avoidable fixed costs, subjects

who rely on local learning may never discover profit opportunities that require a more radical

change in bidding.

7.2 Win Targeting

Next suppose that subjects respond to market feedback, in a more targeted way, by reinforcing

only those bids that win a strictly positive quantity. Of course, win targeting can be at odds with

profit maximization, but it has been suggested elsewhere (e.g. Cassidy (1967)) that some subjects

may have a ‘joy of winning’ preference that inclines them toward bids that are more competitive

than a pure profit maximizer would choose. Define:

Wit (b) =
1

t − 1

t−1
∑

τ=1

1 (qiτ > 0)

(

K

K + d (b, biτ )

)

, t ∈ {2, ..., 30} (13)

This term is almost identical to the inertia term; the only difference is that biτ and nearby bids are

only reinforced if biτ earned a quantity qiτ > 0.

7.3 Competitive Quantity Targeting

Alternatively, suppose that a subject expects to be most profitable when she wins the quantity that

she can (currently) produce at a lower average cost. Define:

Rq
it (b) =

1

t − 1

t−1
∑

τ=1

1 (qiτ = q)

(

K

K + d (b, biτ )

)

, q ∈ {0, 1, 2} , t ∈ {2, ..., 30} (14)

QTit (b) =











R1
it (b) if subject i’s round t costs satisfy c1 < c2

0 ” c1 = c2

R2
it (b) ” c2 < c1

(15)

One could think of the subject as keeping separate mental registers for bids that tend to win

one unit and bids that tend to win two units and targeting only those bids that tend to win her

48The authors examine an environment where subjects must choose one of two auctions in which to submit a bid.

They find that subjects exhibit a tendency to continue to bid in a particular auction even when switching and bidding

in the competing auction would be more profitable.
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current low cost quantity.49 Of the three reinforcement terms, QTit (b) is the only one that captures

some element of profit maximization, via the emphasis on keeping production costs low.

7.4 Results on Quantity Reinforcement

As a baseline, we use the specification All Opt from the previous section, which includes Hit (b) and

all of the optimization related variables discussed earlier. We add each of the three reinforcement

variables one at a time and estimate overall fit using the maximized log likelihood over the pooled

data, as earlier; the coefficients for these pooled regressions are reported in Table 12. Then, we

calculate a robust measure of fit LLoos as in the previous section.

Individually, each of the reinforcement variables improves fit dramatically relative to the All

Opt model as measured by both LLpooled and LLoos. Of the three, inertia provides the best

overall fit on both measures. We conclude that subjects have a strong tendency to keep bidding

in the neighborhood of any bid they have used before. One possible explanation for this is that

subjects quickly form strong and accurate beliefs about which bids are profitable, and then tend

to stick to those beliefs throughout the experiment. If this explanation were true, then we would

expect the strong coefficient on Iit (b) to come at the expense of weaker coefficients on Hit (b) and

Domit (b). This is not the case: the effects of profits and weak dominance are almost unchanged

when the reinforcement variables are introduced. A second problem with interpreting inertia in

terms of strong beliefs is that a subject’s costs are changing periodically, so many of the bids that

contribute to Iit (b) will have been placed when the subject had different costs than she does now.

It is difficult explain why a subject would consciously decide that those earlier bids are relevant

to her current decision. An alternative interpretation is that what we have called inertia is simply

identifying individual heterogeneity in the data. Of course, this is really more of a relabeling of the

behavior than an explanation. A third possibility, as suggested above, is that when confronted with

a large strategy space, subjects explore it locally, by anchoring to familiar bids and experimenting

with incremental changes.

Next we ask which type of targeted heuristic, Wit (b) or QTit (b) explains behavior better. We

estimate one more pair of models including the All Opt variables, inertia, and either win targeting or

quantity targeting. The results are mixed. When inertia is included, quantity targeting performs

better in overall fit, but its out of sample fit is worse than any combination of inertia and win

targeting. We conclude that there is some evidence for both types of behavior.

The coefficients in Table 12 suggest that subjects’ reinforcement behavior is more or less or-

thogonal to the way they respond to expected profits: none of the All Opt coefficients changes

much when the reinforcement terms are introduced. A final point worth noting is that there are

differences in reinforcement across treatments (Figure 4). In treatment by treatment regressions,

the 1U coefficients on inertia and win or quantity targeting are positive and significant, but about

half as large as the coefficients for 2U and 2D. (For example, in the model where Iit (b) is the only

49For type c1 = c2 = 67, QTit (b) should treat quantity 1 and 2 symmetrically, but setting QTit (b) = 0 is somewhat

arbitrary. We have looked at the alternative definition QTit (b) = R1

it (b) + R2

it (b) in which both quantities are

reinforced for this type. (Note this coincides with Wit (b).) The results are qualitatively similar.
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reinforcement term, the coefficient on inertia is 6.95 for 1U, 15.04 for 2U, and 17.84 for 2D.) One

(speculative) explanation for this is that the instability of outcomes in 1U disrupts the inclination

that subjects would otherwise have to play similar bids over and over.

All Opt I W QT I,W I,QT I,W,QT I,W,QT · Spec

H 0.235 0.247 0.189 0.241 0.219 0.221 0.190

(0.030) (0.030) (0.026) (0.029) (0.030) (0.029) (0.029)

σ · H -0.0038 -0.0036 -.0026 -0.0038 -0.0034 -0.0034 -0.0030

(0.001) (0.001) (0.000) (0.001) (0.001) (0.001) (0.001)

Dom -2.78 -3.05 -2.71 -2.86 -2.70 -2.72 -2.59

(0.563) (0.487) (0.401) (0.526) (0.522) (0.52) (0.480)

LM · H -0.231 -0.267 -0.222 -0.245 -0.231 -0.233 -0.209

(0.047) (0.051) (0.042) (0.048) (0.047) (0.047) (0.046)

I 12.10 8.38 9.43 8.95 11.95

(1.41) (1.47) (1.16) (1.38) (2.47)

W 15.92 5.60 0.947 1.662

(1.91) (0.889) (1.24) (1.97)

QT 21.98 8.74 8.29 0.025

(2.97) (1.70) (2.07) (1.31)

I · Spec -4.88

(2.21)

W · Spec -10.09

(3.75)

QT · Spec 23.40

(3.39)

n 3306

LLpooled -10675 -10910 -11639 -10610 -10494 -10493 -10249

LLoos -15742 -12610 -12720 -15516 -12408 -13093 -12841

Table 12: Quantity reinforcement models

7.5 Behavior across cost types: Does supplier size affect bidding strategies

In motivating quantity targeting, we argued that it is relatively straightforward for a subject to

keep track of which bids tend to win which quantities, and that trying to win her low cost quantity

may be a rough proxy for profit maximization. One would expect this targeting argument to be

more compelling if a subject is more specialized – that is, if the difference between c1 and c2 is

large.

To test this conjecture, define an indicator Specit equal to 1 if subject i is a small or large
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supplier in round t. We repeat the estimation of the model with all of the optimization variables

and all three reinforcement terms, but this time we also include the interactions Specit · Iit (b),

Specit · Wit (b), and Specit · QTit (b). We predict a positive coefficient for Specit · QTit (b) and a

negative one for Specit ·Wit (b); that is, a more specialized supplier will be particularly focused on

winning her low cost quantity and avoiding her high cost quantity. This is strongly confirmed in

Table 12. The direct effects on Wit (b) and QTit (b) become small and insignificant, indicating that

flexible cost types do not show evidence of any targeting behavior, and the interactions on Wit (b)

and QTit (b) are negative and positive, as expected. The interaction on Iit (b) (about which we had

no prior expectation) is also negative and significant, indicating that flexible types rely more on

inertia than specialized types do.

8 Conclusions

Dealing with synergies such as avoidable fixed costs in procurement is an important challenge for

auction design. Advances in information technology and computational power make it increasingly

feasible to use more expressive bids and more sophisticated allocation and payment rules. However,

as auction designs grow more complex, the assumption that bidders are perfect profit maximizers

becomes considerably less innocuous.

In this paper, we study an allocation problem that (because of avoidable fixed costs) has certain

‘hard’ features. Our focus is on how the hard features of the allocation problem resurface as strategic

challenges for bidders; our three auction formats package these challenges for bidders in different

ways. In our data analysis, we try to shed light on which types of challenge bidders handle well,

and which they do not. It should be emphasized that our objective is not to pick a winner from

these three auction formats. These formats were not chosen with an eye toward optimality (in the

standard mechanism design sense), and discovering the optimal auction for our specialized setting

would not be of much general interest in any case. Instead, these formats were chosen because

they showcase strategic challenges that we believe bidders will face in many other complex bidding

environments. Our hope is that with a better understanding the factors that affect bidder profit

maximization in complex environments, we will be able to provide better guidance about when

equilibrium predictions are likely to perform badly.

Even though our auction formats are quite different, we find that a few metrics of optimization

difficulty can help to explain deviations from best response bidding in all three settings. In contrast,

preference-based stories have difficulty explaining all three settings consistently.

Specifically, subjects appear to make more mistakes in assessing the expected returns of bids

that have higher payoff variability. Subjects are more successful at maximizing single-peaked payoff

functions than payoffs with many local maxima. And subjects seem to adopt a “triage” strategy of

focusing on one dimension of their bidding problem, even in auction formats where this is ill-advised.

Some of these effects appear to be quite robust across different auction formats. However, when we

ask whether subjects simply avoid risky bids per se, or bids that expose them to losses, the evidence

across auction formats is contradictory. If risk and loss attitudes matter to our bidders, then they
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must do so in a very context dependent way. Without a theory of that context dependence, we

would argue that making predictions about risk and loss aversion in a new and untested auction

format is a problematic exercise.

Finally, we also find evidence that, when confronted with a challenging bidding environment,

subjects rely in part on simple quantity reinforcement strategies that do not require estimating

expected payoffs. Inertia (an attraction to all past bids) is quite strong in all three treatments;

this works to subjects’ disadvantage in auction formats where their initial instincts about how to

bid are wrong. Subjects also show more targeted behavior: a subject with a cost advantage at a

particular quantity will favor bids that have won that quantity in the past.

Without convex costs, hard and fast conclusions are difficult to draw, and there are several nat-

ural generalizations and extensions that this paper leaves unexplored. For example, it is not clear

whether quantity-dependent price signals will be equally effective if the linkages between “submar-

kets” are stronger. Price signals have a second role to play in guiding market entry and capacity

investment decisions that are often discrete and lumpy. We do not compare how well different auc-

tions provide signals for lumpy investment, but it would be interesting to do so. In contrast with

our experiment, procurement often involves repeated competition by the same suppliers. While

collusion is of course a concern in such settings, when avoidable fixed costs are present, cooperation

among a set of suppliers may have a positive role to play in avoiding ruinous miscoordination. This

would be worth exploring in future work.
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Figure 2: Actual and predicted supplier profits, by cost type
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11 Appendix: Derivation of Equilibrium for 2D and 2U

2D

Consider a slight variation of the rules in which we impose the additional constraint that a

winning allocation cannot involve one unit of production from each of the three bidders (so the

allocation can only involve one bidder supplying two units and another supplying one unit). Call

this variation 2D’. We claim that when cost types are uniformly distributed on [0, 50], it is an

equilibrium of 2D’ for each bidder to use the followin g bidding strategies for one and two units

respectively:

b∗1 (c1) =
100

3
+

2

3
c1

b∗2 (c2) = 25 +
2

3
c2

Proof

Rewrite the bidding functions in the equivalent form b∗1 (θ) = 100− 2
3θ and b∗2 (θ) = 100

(

7
12

)

+ 1
3θ.

Suppose that Suppliers 2 and 3 are using these bidding functions. It suffices to show that it is a

best response for Supplier 1 to use these bidding functions as well. As shorthand, write βi = b∗1 (θi)

and Bi = b∗2 (θi) for the realizations of Supplier 1’s four opposing bids (for i = 2, 3). (So β2 and β3

are the one unit bids and B2 and B3 are the two unit bids.) Note that with b∗1 (θ) decreasing in

θ and b∗2 (θ) increasing in θ, we have (B3 − B2) (β3 − β2) < 0 with probability 1. That is, neither

Supplier 2 nor Supplier 3 has the both the lowest one unit bid and the lowest two unit bid, among

the two of them. Labeling the bids of the supplier drawing θH = max (θ2, θ3) with an H and the

bids of the supplier drawing θL = min (θ2, θ3) with an L, we have βH < βL and BL < BH . Write

β1 and B1 for Supplier 1’s bids. Under the two supplier constraint, the lowest total cost in an

allocation excluding Supplier 1 is

βH + 2BL

(one unit from Supplier 2 and two units from Supplier 3). The lowest total cost in an allocation in

which Supplier 1 provides one unit is

β1 + 2BL

while the lowest total cost in an allocation in which Supplier 1 provides two units is

βH + 2B1

Thus, given β1 and B1, Supplier 1 provides one unit in the event that

β1 + 2BL < βH + 2BL and β1 + 2BL < βH + 2B1

or equivalently,

βH > β1 and βH − 2BL > β1 − 2B1 (∗)
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Meanwhile, Supplier 1 provides two units in the event that

βH + 2B1 < βH + 2BL and βH + 2B1 < β1 + 2BL

or equivalently,

BL > B1 and βH − 2BL < β1 − 2B1 (∗∗)

We can write Supplier 1’s expected payoff when he bids (β1, B1) with type θ1 as

π1 (β1, B1; θ1) = P1 (β1, B1) (β1 − c1 (θ1)) + P2 (β1, B1) (2B1 − 2c2 (θ1))

= P1 (β1, B1) (β1 − 100 + θ1) + P2 (β1, B1) (2B1 − 100 − θ1)

where

P1 (β1, B1) = Pr (βH > β1 ∩ βH − 2BL > β1 − 2B1) , and

P2 (β1, B1) = Pr (BL > B1 ∩ βH − 2BL < β1 − 2B1)

The second inequality in each of the probability terms immediately above reflects the fact that

Supplier 1 could fail to win one unit because his own two unit bid is too competitive, or vice versa.

Consider the mathematical expression we would get if we simply left these second inequality terms

out:

π̃1 (β1, B1; θ1) ≡ Pr (βH > β1) (β1 − 100 + θ1) + Pr (BL > B1) (2B1 − 100 − θ1)

Note that π̃1 (β1, B1; θ1) ≥ π1 (β1, B1; θ1) by construction, since each of the probability terms is less

constrained (and hence weakly larger) than the one it replaces.

From here on out, our strategy is as follows. First we solve for the bids (β∗
1 , B∗

1) that maximize

π̃1 (β1, B1; θ1) and show that these bids correspond to the equilibrium bids b∗1 (θ1) and b∗2 (θ1). Then

we show that at (β∗
1 , B∗

1) the values of the true expected payoff π1 (β∗
1 , B∗

1 ; θ1) and our artificial

function π̃1 (β∗
1 , B∗

1 ; θ1) are equal. Thus, since π̃1 (β1, B1; θ1) ≥ π1 (β1, B1; θ1), (β∗
1 , B∗

1) a fortiori

also maximizes the true expected payoff function π1 (β1, B1; θ1).

Step 1: Maximize π̃1 (β1, B1; θ1)

Note that

Pr (βH > β1) = Pr

(

100 −
2

3
max (θ2, θ3) > β1

)

= Pr

(

max (θ2, θ3) <
3

2
(100 − β1)

)

=

(

3

100
(100 − β1)

)2

for β1 ∈

[

66
2

3
, 100

]

given θ2 and θ3 uniform and independent on [0, 50]. (For β1 above or below this range, βH > β1 is

satisfied either never or always.) Similarly, for the other probability term we have

Pr (BL > B1) =

(

3

50
(75 − B1)

)2

for B1 ∈

[

58
1

3
, 75

]
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Thus, we must solve

(β∗
1 , B∗

1) = arg max
(β1,B1)

(

(

3

100
(100 − β1)

)2

(β1 − 100 + θ1)

)

+

(

(

3

50
(75 − B1)

)2

(2B1 − 100 − θ1)

)

But notice that this maximization can be separated into two pieces: the first half depends only on

β1 and θ1, while the second have depends only on B1 and θ1. Therefore, we have

β∗
1 = arg max

β1

(

3

100
(100 − β1)

)2

(β1 − 100 + θ1) and

B∗
1 = arg max

B1

(

3

50
(75 − B1)

)2

(2B1 − 100 − θ1)

Solving these to show that β∗
1 = 100− 2

3θ1 = b∗1 (θ1) and B∗
1 = 581

3 + 1
3θ1 = b∗2 (θ1) is a standard

exercise.

Step 2: π̃1 (β∗
1 , B∗

1 ; θ1) = π1 (β∗
1 , B∗

1 ; θ1)

Note that if all three sets of bids are formulated according to the equilibrium bidding functions,

then the lowest one unit bid corresponds to the highest draw of θ and the highest two unit bid, and

conversely. With this in mind, reconsider P1 (β∗
1 , B∗

1) = Pr (βH > β∗
1 ∩ βH > β∗

1 − 2 (B∗
1 − BL)).

If βH > β∗
1 is satisfied, then θ1 = max (θ1, θ2, θ3), and therefore, B∗

1 > BH > BL. But of course

this means that β∗
1 > β∗

1 − 2 (B∗
1 − BL). We conclude that βH > β∗

1 ⇒ βH > β∗
1 − 2 (B∗

1 − BL), and

therefore, that P1 (β∗
1 , B∗

1) = Pr (βH > β∗
1).

Similarly, consider P2 (β∗
1 , B∗

1) = Pr (BL > B∗
1 ∩ 2BL > 2B∗

1 − (β∗
1 − βH)). In this case, if

BL > B∗
1 is satisfied, then θ1 = min (θ1, θ2, θ3) and therefore β∗

1 > βL > βH . But this would imply

that 2B∗
1 > 2B∗

1 − (β∗
1 − βH). In this case, we conclude that BL > B∗

1 ⇒ 2BL > 2B∗
1 − (β∗

1 − βH),

and therefore that P2 (β∗
1 , B∗

1) = Pr (BL > B∗
1).

Together, these suffice to show that π1 (β∗
1 , B∗

1 ; θ1) = π̃1 (β∗
1 , B∗

1 ; θ1). Since π1 (β1, B1; θ1) ≤

π̃1 (β1, B1; θ1) by construction, π1 (β∗
1 , B∗

1 ; θ1) = π̃1 (β∗
1 , B∗

1 ; θ1), and π̃1 (β1, B1; θ1) attains its max-

imum value at (β∗
1 , B∗

1), we conclude, a fortiori , that (β∗
1 , B∗

1) maximizes π1 (β1, B1; θ1). Thus, if

Suppliers 2 and 3 use the conjectured equilibrium strat egy, we have shown that it is a best response

for Supplier 1 to use the same bidding strategy, which is what we set out to prove.

Finally, we claim that we do not err too much by using equilibrium bids from 2D’ as a bench-

mark, even though they are not the correct equilibrium bids when three bidder allocations are

permitted. If bidders use the 2D’ equilibrium strategies in format 2D, then the rules will select a

three bidder allocation only if β1 + β2 + β3 = 300 − 2
3 (θ1 + θ2 + θ3) is smaller than the least cost

two bidder allocation. That least cost two bidder allocation involves buying one unit at b∗1 (θmax)

and two units at b∗2 (θmin) (where θmax = max (θ1, θ2, θ3) and θmin = min (θ1, θ2, θ3)), at a total cost

of

b∗1 (θmax) + 2b∗2 (θmin) = 100

(

2
1

6

)

+
2

3
(θmin − θmax)

So there is a three bidder allocation whenever

300 −
2

3
(θ1 + θ2 + θ3) < 100

(

2
1

6

)

+
2

3
(θmin − θmax)
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or equivalently,

2θmin + θmed > 125

where θmed is defined to be the median of θ1, θ2, and θ3. One can check that with the types

uniformly distributed on [0, 50],

Pr (2θmin + θmed > 125) < 0.007

so the frequency of a three bidder allocation is quite rare and has a very small impact on the bidders’

expected profits. With a bit more work, one could show that the 2D’ equilibrium strategies represent

an ε− equilibrium of 2D.

2U

We claim that the following bidding strategy represents a symmetric pure strategy equilibrium

when cost types θ are distributed uniformly and independently on [0, 50].

b∗1 (c1) =

{

3c1 + 100 ln
(

1 − c1
100

)

+ 100 ln 3 − 100 if c1 ≤ 200
3 ≈ 66.7

100 c1 > 200
3

b∗2(c1) = 0

Part 1: Optimality of b∗2 (·)

Suppose that Bidders 2 and 3 are playing the equilibrium strategies, and consider the best

response of Bidder 1. Suppose that Bidder 1 has provisionally chosen some function b11 for its one

unit bit and is considering his two unit bid b12. Regardless of how 1 bids, the rationing rules and

the bids of 2 and 3 imply that a two unit bid of zero from some bidder will always form part of the

market-clearing allocation. Thus, any bid b12 > 0 by 1 has no chance to be accepted. If Bidder 1

chooses b12 > 0, then

- it never wins two units,

- it wins one unit if b11 < min (b21, b31) – call this event (i)

- it wins zero units if b11 > min (b21, b31) – call this event (ii)

Consider a switch by Bidder 1 to bidding b12 = 0. This has no effect on the allocation in

event (i) because Bidder 1’s first unit bid is needed to achieve the market-clearing price of p∗ = b11

(achieved by accepting b11 and either b22 = 0 or b32 = 0). In event (ii), one of the other bidders,

say Bidder 2, has the minimal one unit bid, and the price will be p∗ = b21. A switch to b12 = 0

gives Bidder 1 a 50-50 chance (with Bidder 3) of supplying the inframarginal two units at a price

of b21 and earning an additional 2 (b21 − c12). But this expression is always strictly positive – the

function b∗1 is increasing and so b21 ≥ b1 ≡ b∗1 (50) ≈ 90.54 > 75 ≥ c12 – so switching to b12 = 0 at

least weakly benefits bidder 1, regardless of his one unit bidding strategy b11.

Part 2: Optimality of b∗1 (·)
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Now fix the equilibrium strategies for Bidders 2 and 3 and fix b12 = b∗2. We need to show that

b11 = b∗1 is a best response. The price and allocation will have the form p∗ = min {b11, b21, b31}, with

Bidder i supplying 1 unit, and earning bi1− ci1, if bi1 = p∗ and supplying 2 units with probability 1
2

if bi1 > p∗, earning 2 (p∗ − ci2). That is, the most competitive 1 unit bidder supplies the marginal

unit and sets the price, while the other two bidders, having tied at a two unit bid of zero, have

equal chances of supplying those two inframarginal units. Define the variable x = min {c21, c31}.

Then (because b∗1 is increasing) Bidder 1 earns b11 − c11 if b11 < b∗1 (x) and (in expectation) earns

b∗1 (x) − c12 if b11 > b∗1 (x). These inequalities are equivalent to b∗−1
1 (b11) ≶ x. Since x has a

cumulative distribution function given by G (x) = 1− (1 − F (x))2, where F (x) = x−50
50 is the c.d.f.

of c1˜U (50, 100), we can write the expected profit to Bidder 1 from a bid b11 = b as

π1(b) =
(

1 − G
(

b∗−1
1 (b)

))

(b − c11) +

∫ b∗−1

1
(b)

50
g (x) (b∗1 (x) − c12) dx

=
(

1 − F
(

b∗−1
1 (b)

))2
(b − c11) + 2

∫ b∗−1

1
(b)

50
f (x) (1 − F (x)) (b∗1 (x) − c12) dx

Taking first order conditions and simplifying, we have

d

db
(π1 (b)) =

(

1 − F
(

b∗−1
1 (b)

))2
+ 2

f
(

b∗−1
1 (b)

) (

1 − F
(

b∗−1
1 (b)

))

b∗
′

1 (b∗−1
1 (b))

(c11 − c12)

Recall that c12 = 100 − c11/2, so for c11 > 2
3100, we have c11 > c12, in which case both terms in

this expression are strictly positive. It follows that setting b11 = 100 (the highest permissible bid)

maximizes π1 (b) if c11 > 2
3100. For c11 < 2

3100, we solve the FOC d
db

(π1 (b)) = 0 to get the hazard

rate condition:50

1 − F
(

b∗−1
1 (b)

)

f
(

b∗−1
1 (b)

) = 2
c12 − c11

b∗
′

1

(

b∗−1
1 (b)

) =
200 − 3c11

b∗
′

1 (xb)

Substituting in for F and b∗
′

1 (c) = 200−3c
100−c

, the optimal b satisfies

100 − b∗−1
1 (b) =

200 − 3c11
200−3c11
100−c11

= 100 − c11 , or

b∗−1
1 (b) = c11 , and therefore,

b = b∗1 (c11)

In Parts 1 and 2, we optimize one component of Bidder 1’s strategy while holding another

component fixed. By itself, this does not suffice to show that (b∗1, b
∗
2) is a best response for Bidder

1. To show that (b∗1, b
∗
2) does weakly better for Bidder 1 than arbitrary alternative bidding functions

(

b̃1, b̃2

)

, consider switching from
(

b̃1, b̃2

)

to (b∗1, b
∗
2) in two steps:

(

b̃1, b̃2

)

→
(

b̃1, b
∗
2

)

(

b̃1, b
∗
2

)

→ (b∗1, b
∗
2)

50See below for the second order condition.
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Bidder 1’s expected payoff weakly improves at the first step by Part 1 and weakly improves at the

second step by Part 2, so (b∗1, b
∗
2) is a best response for Bidder 1 as claimed.

(Second order condition for optimality of b∗1)

We are concerned with the case in which c11−c12 < 0. Define x = b∗−1
1 (b) and ∆ = c12−c11 > 0

so that we have

d

db
(π1 (b)) = (1 − F (x))2 − 2

f (x) (1 − F (x))

b∗
′

1 (x)
∆

= f (x) (1 − F (x))

(

1 − F (x)

f (x)
−

2∆

b∗
′

1 (x)

)

The second derivative is then

d2

db2
(π1 (b)) =

dx

db
·

d

dx

(

f (x) (1 − F (x))

(

1 − F (x)

f (x)
−

2∆

b∗
′

1 (x)

))

=
dx

db
·

(((

1 − F (x)

f (x)
−

2∆

b∗
′

1 (x)

)

d

dx
(f (x) (1 − F (x)))

)

+

(

f (x) (1 − F (x))
d

dx

(

1 − F (x)

f (x)
−

2∆

b∗
′

1 (x

Notice that

(

1−F (x)
f(x) − 2∆

b∗
′

1
(x)

)

is just the FOC, so the first term above will drop out when

we evaluate this expression at the optimal bid. For the second term, note that f ′ (x) = 0, so
d
dx

(

1−F (x)
f(x)

)

= −1, and by direct computation, b∗
′′

1 (x) = − 100
(100−x)2

< 0. Furthermore, dx
db

> 0

because b∗1 is increasing. Finally, evaluated at the optimal bid, we have x = c11. In summary, we

have

d2

db2
(π1 (b)) |b=b∗

1
(c11) =

(

dx

db

)

((f (c11) (1 − F (c11))))

(

−1 +
2∆

(

b∗
′

1 (c11)
)2 b∗

′′

1 (c11)

)

< 0

since the first two terms are positive and the third is negative.

Weakly Dominated Bids

1U

Domit (b) = 1 iff

{

c1 ≤ c2 and b < c1, or

c1 > c2 and b < 2c2 − c1

Suppose b̃ < c1 ≤ c2. We will show that b̃ is weakly dominated by b̂ = c1. Classify opponent

bids according to the number of units the subject wins under b̃ (Cases 0, 1, and 2). In Case 0,

raising her bid to b̂ has no effect on her payoff. In Case 1, her payoff under b̃ is strictly negative;

shifting to b̂ wins her either 1 unit at a price of c1 or none, either of which is a strict improvement.

In Case 2, write p̃ for the market-clearing price when she bids b̃. If p̃ > c1, then she remains

inframarginal under b̂, and her payoff doesn’t change. If p̃ < c1, then
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by shifting to b̂ she trades a strictly negative inframarginal payoff of 2 (p̃ − c2) for selling one

unit at a price of c1, thus earning zero. (If p̃ = c1, then she trades a weakly negative inframarginal

payoff (strictly negative if c1 < c2) for a lottery between that same negative payoff and a marginal

payoff of b̂ − c1 = 0.)

Next suppose b̃ < m2 < c1, where m2 ≡ 2c2 − c1. We we show that b̃ is weakly dominated by

b̂ = m2. Classify opponent bids as above. A switch from b̃ to b̂ still has no effect in Case 0. In Case

1, the subject loses money under b̃ (earning m2− c1 < 0). The switch to b̂ either improves her price

on one unit or ejects her from the allocation, both strict improvements. In Case 2, raising her bid

to b̂ either (i) leaves her still inframarginal, with no effect on her payoff, (ii) shifts her to winning

one unit at price p̂ = b̂ = m2, or (iii) knocks her out of the allocation. In the event of (ii) or (iii),

there must be at least one opponent bid no greater than b̂, so the original price satisfies p̃ ≤ m2.

Since m2 < c2, her original payoff of 2 (p̃ − c2) must have been weakly negative, so outcome (iii) is

a weak improvement. In the event of (ii), the difference between her new and old payoffs is

(m2 − c1) − 2 (p̃ − c2) = 2m2 − 2p̃ ≥ 0

Thus switching from b̃ to b̂ always weakly improves her payoff, as claimed.

2U

Domit (b) = 1 iff max (b1, b2) ≤ max (c1, c2)

We start by showing that a bid satisfying max (b1, b2) < max (c1, c2) is weakly dominated. We

will proceed case by case for c1 < c2, c1 = c2, and c1 > c2.

c1 < c2 Suppose b̃ =
(

b̃1, b̃2

)

satisfies b̃1 ≤ c2 and b̃2 ≤ c2. We will show that b̃ is weakly

dominated by b̂ =
(

b̃1, c2 + 1
)

. Classify opponent bids based on whether the subject sells zero,

one, or two units under bid b̃ (Cases 0, 1, and 2). Label the market-clearing price under bids b̃ and

b̂ as p̃ and p̂ respectively. Raising a non-winning bid cannot affect the winning price and allocation,

so switching from b̃ to b̂ has no effect on the subject’s payoff in Cases 0 and 1. Consider Case 2.

Raising the two-unit bid from b̃2 to c2 must weakly increase the market-clearing price, so if our

subject continues to sell two units under bid b̂, her payoff must weakly rise. Thus we can focus on

the case in which raising her two-unit bid shifts her allocation to 0 or 1 unit. Suppose her allocation

shifts to 0. This implies that there must be an opponent one unit bid ≤ b̃1 (otherwise, b̃1 would be

accepted in the new allocation). But this opponent one unit bid, together with b̃2 ≤ c2, imply that

p̃ must have been ≤ c2, so shifting to quantity 0 must be a weak payoff improvement. Alternatively,

suppose that shifting from b̃ to b̂ shifts her allocation from 2 units to 1. The fact that her two-unit

bid has dropped out of the winning allocation implies that there is at least one opponent’s two unit

bid (or both of their one-unit bids) that is no greater than c2 + 1. Thus we have p̃ ≤ p̂ ≤ c2 + 1.

47



The payoffs under b̃ and b̂ satisfy

p̂ − c1 − 2 (p̃ − c2) = 2c2 − c1 + p̂ − 2p̃

≥ 2c2 − c1 − p̂

≥ c2 − c1 − 1 > 0

Thus, in this case the subject does strictly better under b̂. Thus, b̂ weakly dominates b̃.

c1 = c2 In this case, c1 = c2 = 67. Suppose that b̃1 ≤ 67 and b̃2 ≤ 67, and let b̂ = (100, 67). If

shifting to b̂ does not change the subject’s allocation, then her payoff must weakly improve. If her

quantity drops from 1 or 2 to 0, then there must be an opponent two unit bid ≤ 67; together with

b̃1 ≤ 67, this implies p̃ ≤ 67. Thus, a quantity drop from 1 or 2 to 0 is weakly payoff improving, as

the subject must have been weakly losing money under b̃. Her quantity cannot switch from 2 to 1.

(b̂1 = 100 could win only if both opponent one unit bids are 100 and some opponent two unit bid

is < 100. But in this case, b̃1 would win instead of b̃2.) If her quantity switches from 1 to 2, then

she strictly improves: since p̂ ≥ p̃ and p̂ ≥ 67, 2 (p̂ − 67) > p̃ − 67.

c1 > c2 Let b̃ satisfy max
(

b̃1, b̃2

)

≤ max (c1, c2) = c1. Write m2 = 2c2 − c1 < c2 < c1. We

consider two cases. If b̃ also satisfies max
(

b̃1, b̃2

)

< m2, we will show it is weakly dominated by

b̂ = (c1, m2). Otherwise, it is weakly dominated by b̂ =
(

c1 + 1, b̃2

)

. (For type c1 = 100, the same

arguments go through for max
(

b̃1, b̃2

)

< 100 using b̂ =
(

100, b̃2

)

.)

First suppose max
(

b̃1, b̃2

)

≥ m2. Label p̃, p̂, and Cases 0, 1, and 2 as earlier. Since the

shift from b̃ to b̂ involves increasing the one-unit bid only, it is payoff irrelevant in Cases 0 and

2, so suppose our subject sells one unit under b̃. As earlier, p̂ ≥ p̃, so if the subject continues to

sell 1 unit under b̂, her payoff weakly rises. Thus we focus on the possibility that shifting to b̂

shifts her allocation to 0 or 2 units. If her allocation shifts to 0, then there must be some opponent

bopp
2 ≤ b̃2 ≤ c1, that prevents b̃2 from winning. But this, together with b̃1 ≤ c1 implies p̃ ≤ c1, so she

must have been (weakly) losing money under b̃. Thus, dropping to quantity 0 is an improvement.

Alternatively, suppose the shift from b̃ to b̂ shifts her allocation from 1 to 2. Note that the new

price satisfies p̂ ≥ m2. (The old allocation implies p̃ ≥ b̃1, while the new allocation implies p̂ ≥ b̃2.

Then p̂ ≥ p̃ and max
(

b̃1, b̃2

)

≥ m2 imply p̂ ≥ m2.) The difference between the new and old payoffs

is

2 (p̂ − c2) − (p̃ − c1) = 2p̂ − p̃ − m2 ≥ p̂ − m2 ≥ 0

so in this case as well the shift to b̂ is a weak improvement over b̃.

Next suppose that max
(

b̃1, b̃2

)

< m2 and let b̂ = (c1, m2), so the shift to b̂ involves raising

both bid components. This is still payoff irrelevant in Case 0. In Case 1, the arguments are just

as in the last paragraph. (The only difference is that if her quantity shifts to 2, p̂ ≥ m2 is implied

directly by b̂2 = m2.) In Case 2, if she continues to win two units under b̂, then her payoff weakly

improves. Since her two-unit bid rises, now we must also consider the possibility of a shift to 0

or 1 unit in Case 2. If she shifts to 0 units under b̂, then there must be some opponent two-unit
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bid bopp
2 ≤ m2. But this implies that p̃ ≤ m2, since the combination of b̃1 and bopp

2 would have

formed a feasible allocation under b̃. Since m2 < c2, this implies that our subject must have been

losing money under b̃, so earning 0 under b̂ is a strict improvement. Finally, suppose toward a

contradiction that she shifts to 1 unit under b̂ in Case 2. The winning allocation under b̃ would

still be feasible now at a price of max (p̃, m2), so we must have p̂ ≤ max (p̃, m2). Since b̂1 = c1 is

chosen, we also have p̂ ≥ c1(> m2). These imply p̃ = p̂ ≥ c1. Together this means that the most

competitive one and two unit bids by the opponents must be identical, and equal to p̃. Thus, all of

our subject’s bids – both one and two-unit – must be inframarginal under both b̃ and b̂. But the

auction rules specify that when a single bidder has two prospective inframarginal bids, the two-unit

one is always chosen, so this situation could not arise.

Finally, we must show that no bid satisfying max (b1, b2) ≥ max (c1, c2) is weakly dominated.

We will be content to show this for the c1 < c2 case; the logic tranfers easily if c1 > c2 or c1 = c2.

Let c1 < c2, let b̃ =
(

b̃1, b̃2

)

satisfy max
(

b̃1, b̃2

)

≥ c2 = max (c1, c2), and let b̂ =
(

b̂1, b̂2

)

be

an alternative bid. We will show that there exist opponent bids
(

bopp1
1 , bopp1

2

)

and
(

bopp2
1 , bopp2

2

)

against which b̃ does strictly better than b̂. In the interest of brevity, we omit cases in which b̃ and

b̂ are not both interior (both bid components belonging to (0, 100)). Because there are many cases

to consider, the table below tabulates them, in each case indicating the particular opponent bids

against which b̃ strictly outperforms b̂.

If b̃2 > c2 and :

Opp b1 Opp b2 p q π

b̂2 < b̃2 0 100 Outcome under b̃ b̃2 2 2b̃2 − 2c2

100 100 Outcome under b̂ b̂2 2 2b̂2 − 2c2

b̂2 > b̃2 0 100 Outcome under b̃ b̃2 2 2b̃2 − 2c2

100 b̄2 = b̃2+b̂2
2 Outcome under b̂ b̄2 0 0

b̂2 = b̃2 b̂1 < b̃1, 100 0 Outcome under b̃ b̄1 0 0

b̂1 < c1 b̄1 = b̃1+b̂1
2 100 Outcome under b̂ b̂1 1 b̂1 − c1 < 0

b̂2 = b̃2 b̂1 < b̃1, 100 0 Outcome under b̃ b̃1 1 b̃1 − c1

b̂1 ≥ c1 100 100 Outcome under b̂ b̂1 1 b̂1 − c1

b̂2 = b̃2 b̂1 > b̃1, 100 c1+c2
2 Outcome under b̃ c1+c2

2 1 c2−c1
2

b̃1 ≤ c1 b̄1 100 Outcome under b̂ b̄1 0 0

b̂2 = b̃2 b̂1 > b̃1, 100 0 Outcome under b̃ b̃1 1 b̃1 − c1

b̃1 > c1 b̄1 100 Outcome under b̂ b̄1 0 0

If b̃1 > c2 > c1 and :
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Opp b1 Opp b2 p q π

b̂1 < b̃1 100 0 Outcome under b̃ b̃1 1 b̃1 − c1

100 100 Outcome under b̂ b̂1 1 b̂1 − c1

b̂1 > b̃1 100 0 Outcome under b̃ b̃1 1 b̃1 − c1

b̄1 100 Outcome under b̂ b̄1 0 0

b̂1 = b̃1 b̂2 < b̃2, 100 b̄2 Outcome under b̃ b̄2 0 0

b̂2 < c2 0 100 Outcome under b̂ b̂2 2 2b̂2 − 2c2

b̂1 = b̃1 b̂2 < b̃2, 100 100 Outcome under b̃ b̃2 2 2b̃2 − 2c2

b̂2 ≥ c2 0 100 Outcome under b̂ b̂2 2 2b̂2 − 2c2

b̂1 = b̃1 b̂2 > b̃2,
b̃1+c2

2 100 Outcome under b̃ b̃1+c2
2 2 b̃1 − c2

b̃2 ≤ c2 100 b̄2 Outcome under b̂ max
(

b̃1+c2
2 , b̄2

)

0 0

b̂1 = b̃1 b̂2 > b̃2, 100 b̄2 Outcome under b̃ b̃2 2 2b̃2 − 2c2

b̃2 > c2 0 100 Outcome under b̂ b̄2 0 0

12 Coefficients for Models

Coefficients for the pooled version of each model discussed above are presented in Table 12. These

coefficients are all in reduced form. (Thus, for example, a negative coefficient on V or L indicates

aversion to risk or loss, while the coefficient on σH identifies −γ.) Robust standard errors clustered

by session are reported, but they should be treated cautiously – they presume no dependence across

observations (choice situations it) within a session except for the dependence captured by the model,

an assumption that is probably optimistic. With that caveat, all coefficients (with the exception

of V in model RP) are significant at the 5% level (and usually at the 1% level as well), and their

signs (except for V in the combined preference model) are as expected.

To get a sense for these coefficients, consider optimization-based models NP, LM and Dom.

In model NP, suppose a subject weighs two bids, b̃ and b̂ with expected payoff difference ∆H =

Hit

(

b̃
)

− Hit

(

b̂
)

= 10.51 If both expected payoffs are noiseless (σit

(

b̃
)

= σit

(

b̂
)

= 0), the

model predicts that b̃ is e0.194∆H
≈ 7.0 times more likely to be chosen. Alternatively, suppose

both expected payoffs are equally noisy, with σit

(

b̃
)

= σit

(

b̂
)

= σ. Then the relative likelihood

of choosing b̃ over b̂ falls to e(0.194−0.0034σ)∆H . If we plug in the mean value of σ in 1U, 2U, or

2D, the relative likelihood of b̃ over b̂ falls to 4.1, 4.6, or 6.1 respectively, reflecting the fact that

1U and 2U are noisier on average than 2D. Suppose that we compare the same two bids, with

expected payoff difference ∆H = 10, under model LM. The model predicts that the better of the

51This is comparable to the average size |πit| of a subject’s per round profit or loss. The mean values of |πit| are

12.6, 13.3, and 6.9 francs in 1U, 2U, and 2D.
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PP RP NP L Dom LM All Pref All Opt All

H 0.126 0.125 0.194 0.094 0.066 0.231 0.094 0.237 0.226

(0.027) (0.026) (0.040) (0.020) (0.016) (0.037) (0.020) (0.032) (0.033)

V -0.0008 0.0002 -0.0001

(0.001) (0.000) (0.0003)

σ · H -0.0034 -0.0034 -0.0034

(0.001) (0.001) (0.001)

L -2.22 -2.27 -1.20

(0.794) (0.770) (0.758)

Dom -3.38 -3.07 -2.21

(0.524) (0.475) (0.385)

LM · H -0.282 -0.257 -0.228

(0.064) (0.049) (0.046)

n 3306

LLpooled -15644 -15601 -15351 -14554 -14597 -15288 -14550 -14158 -13897

LLoos -16969 -20377 -16394 -17867 -15999 -17196 -20610 -15742 -22515

Table 13: ‘Coefficients from the pooled regressions in Section 6. Clustered standard errors in

parentheses.

two bids is e(0.231−0.282LMit)∆H times more likely to be chosen. For a typical choice situation in 2D

(LMit = 0.03), this relative likelihood is 9.3. For a typical choice situation in 1U or 2U (plugging in

the average values LMit = 0.29 or 0.41), this relative likelihood falls to 4.4 or 3.2. Finally dominated

bids are unpopular: if two bids have equal expected payoffs but one is weakly dominated and the

other is not, the weakly dominated one is around 30 times less likely to be chosen. All of these

coefficients move in the directions that support an imperfect optimization argument for deviations

from best response behavior.

In the preference-based model L, the avoidance of loss exposed bids is similar to avoidance

of dominated bids, but somewhat weaker (reflecting the poor performance of Lit (b) in treatment

1U). The unstable sign on the direct effect of Vit (b) across RP, All Pref and All provides further

evidence that risk aversion does not seem to organize the data well.
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