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Abstract

We prove that the Heston volatility is Malliavin differentiable under the classical Novikov

condition and give an explicit expression for the derivative. This result guarantees the

applicability of Malliavin calculus in the framework of the Heston stochastic volatility model.

Furthermore we derive conditions on the parameters which assure the existence of the second

Malliavin derivative of the Heston volatility. This allows us to apply recent results of the

first author [3] in order to derive approximate option pricing formulas in the context of the

Heston model. Numerical results are given.
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1. Introduction

In recent years, Malliavin calculus has appeared as a major tool in both theo-

retical and computational mathematical finance. This fact is documented by the

large number of published articles in this area. The assumptions on the possibly
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multidimensional diffusion process (Xt) which determines the factors of the model,

in general require as a minimal condition that the coefficient functions β and σ in

dXt = β(Xt, t)dt + σ(Xt, t)dWt

are continuously differentiable and satisfy a global Lipschitz condition. These

assumptions work fine with the standard Black-Scholes model or more general

models based on linear stochastic differential equations. Problems occur however

when one uses more advanced models, like the Heston stochastic volatility model.

In this model the stock price is given by the equation

dSt = St(bdt +
√

vtdBt) (1)

where (Bt) denotes a Brownian motion, but in contrast to the standard Black-

Scholes model the volatility vt is itself a diffusion process, satisfying the stochastic

differential equation

dvt = κ (θ − vt) dt + ν
√

vtdWt (2)

where Wt denotes a possibly correlated second Brownian motion. Obviously the

coefficient functions of this model do not satisfy the standard assumptions. The

square root function is neither differentiable in zero nor globally Lipschitz. In this

article we present a direct proof of the Malliavin differentiability of the Heston

volatility and its square root and give explicit expressions for their derivatives.

Furthermore we discuss the existence of the second Malliavin derivative and derive

conditions on the parameters κ,θ and ν which guarantee its existence. Recently in

[3], Malliavin calculus techniques have been applied in order to obtain an extension

of the classical Hull and White formula for the case of correlated stock and volatility.

In order to apply the results to the Heston model, Malliavin differentiability as well

as certain integrability conditions of the Malliavin derivative of the Heston volatility



Malliavin differentiability of the Heston volatility and Applications 3

have to be verified. Our application includes an adaptation of the results from [3] to

the case of the Heston volatility and a new approximative option pricing formula for

the Heston model as well as a precise analysis of the goodness of this approximation.

The structure of the article is as follows. In Section 2 we give an explicit

approximating sequence for the Heston volatility, while in Section 3 we provide

some preliminaries on Malliavin calculus. We study the Malliavin differentiability

of the Heston volatility in Section 4 and present our two main theoretical results.

In Section 5 we include our application and the main practical results, while the

main conclusions are summarized in Section 6.

2. The Heston volatility model and an approximating sequence

As mentioned in the introduction, the Heston stochastic volatility model consists of

a money market account which we do not specify at the moment, a stock (St) and

the volatility process (vt) with dynamics specified in (1) and (2), where it is assumed

that κ, θ and ν are positive constants, see [8]. In the following we consider one fixed

probability space (Ω,G, P) on which there is defined a Brownian motion (Wt) and

which is filtered by the augmented and completed Brownian filtration which we

denote with (Gt). We also fix an interval [0, T ]. A standard assumption, when using

the Heston model is 2κθ ≥ ν2. This is often called the Novikov condition. Given

that v0 > 0 this condition guarantees that the volatility process is always positive,

i.e. P ({vt > 0 ∀ t > 0}) = 1. We assume that v0 > 0 and that the Novikov

condition holds. It is then possible to consider the square root process σt :=
√

vt.

It follows from the Itô formula that this process satisfies

dσt =

[(

κθ

2
− ν2

8

)

1

σt

− κ

2
σt

]

dt +
ν

2
dWt. (3)
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We note that the Novikov condition implies in particular that the factor
(

κθ
2
− ν2

8

)

appearing in the drift term of σt is positive. This will play a significant role later.

It is not a priori clear that the SDE (3) admits a unique strong solution, but the

Yamada-Watanabe Lemma ( [10], Chapter 5, Proposition 2.18 ) obviously implies

uniqueness of the solution of SDE (2). For any solution σt of SDE (3) we find by

applying the Itô formula, that σ2
t is a solution of SDE (2). As the latter one is

unique, we conclude uniqueness of the solution for SDE (3) up to a sign. However

if σt solves (3) it is obvious that −σt does not and therefore we find uniqueness

of the solution of SDE (3). In order to show in section 4, that σt is Malliavin

differentiable we will now define an approximating sequence. Let ε > 0 and Φε (x) be

a continuously differentiable function satisfying Φε (x) = 1 if x ≥ 2ε and Φε (x) = 0

if x < ε, while Φε (x) ≤ 1 for all x ∈ R. We note that in this case Φ′
ε (x) = 0

if x < ε or x ≥ 2ε. Furthermore we define the function Λε(x) = Φε(x) 1
x

with

Λε(0) = 0. The function Λε(x) is bounded and continuously differentiable satisfying

Λ′
ε (x) = Φ′

ε (x) 1
x
−Φε (x) 1

x2 . In particular Λ′
ε (x) = − 1

x2 if x ≥ 2ε and Λ′
ε (x) = 0 if

x < ε. Let us now define our approximations σε
t as the solutions of the stochastic

differential equations

dσε
t =

[(

κθ

2
− ν2

8

)

Λε (σε
t ) −

κ

2
σε

t

]

dt +
ν

2
dWt, (4)

with σε
0 = σ0 for all ε > 0.

Proposition 2.1. For each t ∈ [0, T ] the sequence σε
t converges to σt in L2(Ω).

Proof. We use the dominated convergence theorem in order to obtain this result.

Let us first prove that σε
t converges to σt point wise. This follows from a standard

localization argument. For each ε > 0 define a stopping time τε via τε(ω) :=

inf{t|σt(ω) ≤ ε}. Letting ε go to zero, the sequence of (τε) defines an increasing

sequence of stopping times, and it follows from the strict positivity of σt that
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limε→0 τε = ∞ a.s. Denoting with στε the process obtained from σ by stopping at

τε, then it follows from the choice of the function Λε(x) and equations (3) and (4),

that στ2ε

t = σε
t ∀ t ≤ τ ε. Now, for fixed t ∈ [0, T ] letting ε go to zero one obtains

that limε→0 σε
t = limε→0 στ2ε

t = σt a.s. Let us now prove that for each t ∈ [0, T ] σε
t

converges to σt in L2 (Ω). For this let us consider the Ornstein-Uhlenbeck process

ut satisfying u0 = σ0 and

dut = −κ

2
utdt +

ν

2
dWt.

We show that ut ≤ σε
t ≤ σt for all t a.s. The first inequality follows directly from the

Yamada-Watanabe comparison lemma. To prove the second inequality this lemma

can not directly be applied as the drift term in the SDE for σt is not continuous.

Since we know however, that under our assumptions on the coefficients σt > 0 a.s.,

the second inequality would indeed follow from (σε
t )

2 ≤ σ2
t . In fact, applying Itô’s

formula to vε
t = (σε

t )
2 gives

dvε
t =

[(

κθ − ν2

4

)

√

vε
t Λǫ

(

√

vε
t

)

− κvε
t +

ν2

4

]

dt + ν
√

vε
t dWt.

while vt = σ2
t satisfies (2). For both vε

t and vt the condition on the diffusion

coefficient in [10] Chapter 5, Proposition 2.18. can easily be verified by choosing

the function h(x) = ν
√

x. Obviously the drift term in (2) is globally Lipschitz. In

addition, it is not hard to verify that the drift term corresponding to vε
t is globally

Lipschitz. We can therefore conclude the second inequality from

(

κθ − ν2

4

)√
xΛǫ (

√
x) − κx + ν2

4
≤ κ(θ − x)

⇔ κθ (
√

xΛǫ (
√

x) − 1) ≤ ν2

4
(
√

xΛǫ (
√

x) − 1)

⇔ κθ ≥ ν2

4

the latter being true due to the Novikov condition. For the last equivalence we

used the inequality 0 ≤ √
x · Λǫ (

√
x) ≤ 1. Now it follows from ut ≤ σε

t ≤ σt
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that |σε
t | ≤ |ut| + |σt|. Since obviously ut and σt belong to L2(Ω) the dominated

convergence theorem implies the desired convergence.

3. A short review on Malliavin calculus

Let us review some of the basic features of Malliavin calculus. A standard reference

for this is [11]. Let us consider the set S of cylindrical functionals F : Ω → R, given

by F = f (Wt1 , ...,Wtl) where f ∈ C∞
b

(

R
l
)

is a smooth function with bounded

derivatives of all orders and (Wt) denotes a Brownian motion on Ω. We define the

Malliavin derivative operator on S via

DsF :=
l
∑

i=1

∂f

∂xi

(Wt1(ω), ...,Wtl(ω)) · 1[0,ti](s).

This operator and the iterated operators Dn are closable and unbounded from Lp (Ω)

into Lp (Ω × [0, T ]n), for all n ≥ 1. Their respective domains are denoted by D
n,p

and obtained as the closure of S with respect to the norms defined by ‖F‖p
n,p =

‖F‖p
Lp(Ω)+

∑n
k=1

∥

∥DkF
∥

∥

p

Lp(Ω×[0,T ]k). The adjoint of the Malliavin derivative operator

D : D
1,2 → L2(Ω × [0, T ]) is called the Skorohod integral and denoted with δ. This

operator has the property that its domain contains the class L2
a(Ω× [0, T ]) of square

integrable adapted stochastic processes and its restriction to this class coincides with

the Itô-integral. We will make use of the notation δ(u) =
∫ T

0
utdWt and recall that

L
n,2 := L2([0, T ], Dn,2) is included in the domain of δ for all n ≥ 1. For more details

we refer to [11]. We will later use the following anticipative Itô formula, see [5].

Proposition 3.1. Let us consider the processes Xt = X0 +
∫ t

0
usdWs +

∫ t

0
vsds,

where X0 is F0−measurable and u, v ∈ L2
a ([0, T ] × Ω). Furthermore consider a

process Zt =
∫ T

t
θsds for some θ ∈ L

1,2. Let F : R
3 → R be a twice continuously

differentiable function for which there exists a positive constant C such that, for all

t ∈ [0, T ], F and its derivatives evaluated in (t,Xt, Zt) are bounded by C. Then it
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follows that

F (t,Xt, Zt) = F (0, X0, Z0) +

∫ t

0

∂F

∂s
(s,Xs, Zs) ds +

∫ t

0

∂F

∂x
(s,Xs, Zs) dXs

+

∫ t

0

∂F

∂z
(s,Xs, Zs) dZs +

∫ t

0

∂2F

∂x∂z
(s,Xs, Zs)

(
∫ T

s

Dsθrdr

)

usds

+
1

2

∫ t

0

∂2F

∂x2
(s,Xs, Zs) u2

sds

4. Malliavin differentiability of the Heston volatility

In this section we will show that both the Heston volatility vt as well as its square

root σt belong to D
1,2. We will also derive conditions under which the second

Malliavin derivative of the Heston volatility exists.

Lemma 4.1. We have σε
t ∈ D

1,2 and for r < t

Drσ
ε
t =

ν

2
exp

{
∫ t

r

[

−κ

2
+

(

κθ

2
− ν2

8

)

Λ′
ε (σε

s)

]

ds

}

Proof. This follows directly from [6], Theorem 2.1.

We are now ready to proof the following result.

Proposition 4.1. Assuming 2κθ ≥ ν2 we have σ ∈ D
1,2 and for r < t

Drσt =
ν

2
exp

{
∫ t

r

[

−κ

2
−
(

κθ

2
− ν2

8

)

1

σ2
t

]

ds

}

.

Proof. We know from Proposition 2.1 that for each t ∈ [0, T ] the sequence σε
t

converges to σt in L2(Ω). Since this convergence is also point wise, we conclude by

using the properties of the function Λε(x) that

Drσ
ε
t =

ν

2
exp

{
∫ t

r

[

−κ

2
−
(

κθ

2
− ν2

8

)

Λ′
ε (σε

t )

]

ds

}

converges point wise to G := ν
2
exp

{

∫ t

r

[

−κ
2
−
(

κθ
2
− ν2

8

)

1
σ2

t

]

ds
}

. It follows from

the Novikov condition, that the exponent in Drσ
ε
t is negative for all choices of ε
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and therefore that |Drσ
ε
t | ≤ ν

2
for all ε. From the bounded convergence theorem we

conclude that Drσ
ε
t converges to G in L2(Ω). Finally, Lemma 1.2.3 in [11] implies

that σt ∈ D
1,2 and Drσt = G.

Corollary 4.1. |Drσt| ≤ ν
2
exp

(

−κ
2
(t − r)

)

and σt ∈ L
1,2.

Proof. Follows directly from Proposition 4.1.

Corollary 4.2. vt ∈ L
1,2 and for r < t Drvt = ν exp

{

∫ t

r

[

−κ
2
−
(

κθ
2
− ν2

8

)

1
vt

]

ds
}√

vt.

Proof. For fixed t ∈ [0, T ] we have vt ∈ L2(Ω) and

ν exp

{
∫ t

r

[

−κ

2
−
(

κθ

2
− ν2

8

)

1

vt

]

ds

}√
vt ∈ L2 (Ω)

follows again from the boundedness of the exponential. It then follows from Exercise

1.2.13 in [11] that vt ∈ D
1,2. As in Corollary 4.1 one concludes from the explicit

expression, that vt ∈ L
1,2.

Let us now discuss the existence of the second Malliavin derivative of the Heston

volatility. As indicated before, in order to guarantee the existence of the second

Malliavin derivative we have to strengthen the conditions on the coefficients slightly.

The following lemma will be used in the proofs of Proposition 4.2 and Proposition

5.2.

Lemma 4.2. Let n > 1 and δ := 4κθ
ν2 > n and denoting L (t) =

(

1 − e−kt
)

there

exists a positive constant C (n) such that, for all t ∈ [0, T ]

E

(

1

σn
t

)

≤ C (n)

L (t)

(

ekt

σ0

)

n
2
−1

.
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Proof. From the proof of Lemma A.1 in [2] we deduce that

E

(

1

σn
t

)

=
1

2
n
2 Γ
(

n
2

)

L (t)
n
2

∫ 1

0

u
n
2
−1 (1 − u)

2kθ

ν2
−n

2
−1 exp

(

−σ0e
−ktu

2L (t)

)

du

=
1

2
n
2 Γ
(

n
2

)

L (t)

∫ 1

0

u
n
2
−1 (1 − u)

2kθ

ν2
−n

2
−1

×
(

ekt

σ0u

)

n
2
−1(

σ0e
−ktu

L (t)

)

n
2
−1

exp

(

−σ0e
−ktu

2L (t)

)

du.

Then, using the fact that y
n
2
−1 exp (−y) ≤ C (n) for some positive constant C (n),

we can write

E

(

1

σn
t

)

≤ C (n)

2
n
2 Γ
(

n
2

)

L (t)

(

ekt

σ0

)

n
2
−1 ∫ 1

0

(1 − u)
2kθ

ν2
−n

2
−1 du

≤ C (n)

L (t)

(

ekt

σ0

)

n
2
−1

,

which completes the proof.

Proposition 4.2. Assume that 4κθ > 3ν2, then σt ∈ D
2,1 with

DτDrσt =
ν2

2

(

κθ

2
− ν2

8

)

exp

{
∫ t

τ∨r

[

−k

2
−
(

kθ

2
− ν2

8

)

1

σ2
s

]

ds

}

×
∫ t

τ∨r

exp

{
∫ s

τ∨r

[

−k

2
−
(

kθ

2
− ν2

8

)

1

σ2
u

]

du

}

1

σ3
s

ds

for τ < t and 0 else. Furthermore if 2κθ > 3ν2 we have σt ∈ L
2,2 and

E |DτDrσt|2 ≤ C (n, σ0, T ) ν2 (t − r) (ln t − ln r)

where C(n, σ0, T ) is a constant depending on n, σ0 and T but not on t, τ or ν.
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Proof. Without loss of generality we assume that τ > r and obtain formally

DτDrσt = Dτ
ν

2
exp

{
∫ t

r

[

−κ

2
−
(

κθ

2
− ν2

8

)

1

σ2
t

]

ds

}

=
ν

2
exp

{
∫ t

r

[

−κ

2
−
(

κθ

2
− ν2

8

)

1

σ2
t

]

ds

}
∫ t

τ

−
(

κθ

2
− ν2

8

)

· (−2)
1

σ3
s

Dτσsds

=
ν2

2

(

κθ

2
− ν2

8

)

exp

{
∫ t

r

[

−k

2
−
(

kθ

2
− ν2

8

)

1

σ2
s

]

ds

}

×
∫ t

τ

exp

{
∫ s

τ

[

−k

2
−
(

kθ

2
− ν2

8

)

1

σ2
u

]

du

}

1

σ3
s

ds.

Here we used that Dτσs = 0 for τ > r and s ∈ [r, τ). We will show that if 4κθ > 3ν2

this expression is contained in L1(Ω). This guarantees the existence of the second

Malliavin derivative and furthermore that the expression just derived is in fact the

second Malliavin derivative. In order to do this, note that for r < τ and s < t

exp

{
∫ t

r

[

−κ

2
−
(

κθ

2
− ν2

8

)

1

σ2
s

]

ds

}

≤ exp

{
∫ s

τ

[

−κ

2
−
(

κθ

2
− ν2

8

)

1

σ2
u

]

du

}

,

already follows from 2κθ ≥ ν2. This implies

|DτDrσt| ≤ C

∫ t

τ

exp

{
∫ s

τ

[

−κ − 2

(

κθ

2
− ν2

8

)

1

σ2
u

]

du

}

1

σ3
s

ds

≤ C

∫ t

τ

exp

{

−2

(

κθ

2
− ν2

8

)
∫ s

τ

1

σ2
u

du

}

1

σ3
s

ds

where C = ν2

2

(

κθ
2
− ν2

8

)

≤ ν2 · κθ
4

. Similar as in the proof of Proposition 4.1 and

Corollary 4.1 it follows that
∣

∣

∣
exp

{

−2
(

κθ
2
− ν2

8

)

∫ s

τ
1

σ2
u
du
}
∣

∣

∣
≤ 1 and therefore the

first statement of Proposition 4.2 easily follows from Lemma 4.2 with n = 3. The

second statement can now be derived as follows. Applying the Cauchy Schwarz

inequality we obtain |DτDrσt|2 ≤ ν2 · κθ
4

(t − τ)
∫ t

τ
1
σ6

s
ds and therefore, using Lemma

4.2 with n = 6, taking into account that L(t) ≥ κte−κt, we obtain

E |DτDrσt|2 ≤ (t − r)

∫ t

τ

E

(

1

σ6
s

)

ds

≤ C (n) · θν2

4σ2
0

(t − r)

∫ t

τ

eks

s

(

eks
)2

ds

≤ C (n, σ0, T ) ν2 (t − r) (ln t − ln r) ,
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with C (n, σ0, T ) = C (n) · θ
4σ2

0

eκT .

5. An approximate option pricing formula for the Heston model

Let us consider the Heston stochastic volatility model with correlation ρ, which

consists of a stock, a money market account with deterministic interest rate r and

the volatility process vt satisfying equations (1) and (2), where we assume that

dBt ·dWt = ρdt, with ρ ∈ (−1, 1). It is well known that there exists a 2-dimensional

Brownian motion (Zt,Wt)
⊤ on a filtered probability space (Ω, (Ft), P) satisfying

the usual conditions, s.t. Bt = ρWt +
√

1 − ρ2Zt. It is helpful in the following to

think of the dynamic described by (1) and (2) as driven by(Zt,Wt)
⊤ rather than

(Bt,Wt)
⊤. We also assume that the dynamics is satisfied under the risk neutral

measure chosen by the market and that this risk neutral measure is given by P.

This implies that b = r. In the following we work with the logarithmic price

Xt = ln(St) rather then the actual price. The price of a contingent claim h(XT )

at time t can then be computed via the formula Vt = e−r(T−t)
E (h(XT )|Ft). In the

following let us fix a payoff function h and denote with BS(t, x, σ) the price at

time t of the corresponding contingent claim in the standard Black-Scholes model

with constant volatility σ, given that the log price at time t is x. We assume

that this payoff function h : R → R is continuous and piecewise continuously

differentiable. Furthermore we denote with ϑt :=
√

1
T−t

∫ T

t
σ2

sds the average Heston

future volatility starting from time t and with D the Malliavin derivative operator

with respect to the Brownian motion W . The following proposition is in line with

Theorem 3 in [3] and Theorem 3 in [4].

Proposition 5.1. Consider the Heston model and assume that 2κθ ≥ ν2. Then

Vt = E (BS (t,Xt, ϑt)| Ft) +
ρ

2
E

(
∫ T

t

e−r(s−t)H (s,Xs, ϑs) Λsds

∣

∣

∣

∣

Ft

)

(5)



12 E. Alos, C.-O. Ewald

where H (s, x, σ) :=
(

∂3

∂x3 − ∂2

∂x2

)

BS (s, x, σ) and Λs :=
(

∫ T

s
Dsσ

2
rdr
)

σs.

Proof. Follows from Proposition 4.1 in connection with Theorem 3 in [4]

It follows from the classical Hull and White formula, see [9] that E (BS (t,Xt, ϑt)| Ft)

is the price of the contingent claim in the Heston model without correlation. Propo-

sition 5.1 above therefore extends the classical Hull and White formula to the

Heston model with correlation and gives interesting insight into how the correlation

effects option prices. It says that this correlation effect is explicitly given by the

second summand in equation (10). This fact is very useful in order to study

price sensitivities with respect to ρ in the Heston stochastic volatility model or

for the purpose of calibration of the model. In the following we propose various

approximations for the correlation effect, which are computationally more accessible,

and derive bounds for the error of these approximations. For this we consider

maturities T − t < 1 and assume that σ2 < 1. From a financial point of view both

assumptions are reasonable, as market parameters are all denoted on a yearly scale

and maturity times of options are mostly less than one year, while annual volatility

is usually in the range of less than 10%.

Lemma 5.1. Assume 2κθ ≥ ν2 then E

[

(

∫ T

t
σ2

sds
)− 1

2

∣

∣

∣

∣

Ft

]

≤ C(σt)
(T−t)

where C(σt) is

a constant depending on the current level of volatility but not on t explicitly.

Proof. Since we are in a Markovian framework we can assume w.l.o.g. that t = 0

and replace all conditional expectations by their unconditional counterparts. Using

the identity 1
xα = 1

Γ(α)

∫∞
0

uα−1 exp(−ux)du while choosing x =
∫ T

0
σ2

sds and α = 1
2

we conclude that

E

[

(
∫ T

0

σ2
sds

)− 1

2

]

=
1

Γ
(

1
2

)

∫ ∞

0

u− 1

2 E

[

exp

(

−u

(
∫ T

0

σ2
sds

))]

du. (6)

Using that the Heston volatility is in fact a time-transformed and scaled squared
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Bessel process, we can write

E

[

exp

(

−u

(
∫ T

0

σ2
sds

))]

≤ E

[

exp

(

−u

(
∫ T

0

e−κsη

(

ν2

4κ
(eκs − 1)

)

ds

))]

≤ E

[

exp

(

−u

(

4

ν2

∫ ν2

4κ(eκT−1)

0

η (m) dm

))]

with η a squared Bessel process of dimension δ = 4κθ
ν2 . The following formula is well

known, see for example [1]:

E

[

exp

(

−u

(

4

ν2

∫ ν2

4κ(eκT−1)

0

η (α) dα

))]

≤
(

cosh
( ν

2κ

(

eκT − 1
)
√

2u
))− δ

2

× exp

(

−
√

2u

ν
· σ2

0 tanh
( ν

2κ

(

eκT − 1
)
√

2u
)

)

.

Substituting this into (6) it follows that

E

[

(
∫ T

0

σ2
sds

)− 1

2

]

≤ 1

Γ
(

1
2

)

∫ ∞

0

u− 1

2

(

cosh
( ν

2κ

(

eκT − 1
)
√

2u
))− δ

2

× exp

(

−
√

2u

ν
· σ2

0 tanh
( ν

2κ

(

eκT − 1
)
√

2u
)

)

du

Now, by substitution of m̃ := ν
2κ

(

eκT − 1
)√

2u we obtain

E

[

(
∫ T

0

σ2
sds

)− 1

2

]

≤ C1

(eκT − 1)

∫ ∞

0

(cosh (m̃))−
δ
2 exp

(

− m̃
√

2κ

ν2 (eκT − 1)
σ2

0 tanh (m̃)

)

dm̃

with C1 := 2
√

2κ
ν

a constant. It is not difficult to see that since δ ≥ 2 the

integral on the right hand side is finite and the last inequality can be written as

E

[

(

∫ T

0
σ2

sds
)− 1

2

]

≤ C1·I(σ0)
(eκT−1)

where I(σ0) denotes the value of the integral. Now we

can use the fact that for positive κ we have
(

eκT − 1
)

≥ κT and obtain E

[

(

∫ T

0
σ2

sds
)− 1

2

]

≤
C1·I(σ0)
(eκT−1)

≤ C1·I(σ0)
κT

= C(σ0)
T

with C(σ0) = C1·I(σ0)
κ

.
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Proposition 5.2. Consider the Heston model and assume that 2κθ ≥ 3ν2. For

t ∈ [0, T ] there exists a constant C(σt) which does not depend on t,ν and ρ explicitly,

such that
∣

∣

∣
Vt − E

(

BS (t,Xt; ϑt) + ρ
2
H (t,Xt, ϑt)

(

∫ T

t
Λsds

)∣

∣

∣
Ft

)∣

∣

∣
≤ C(σt)ν

2ρ2(T −
t).

Proof. It follows from Proposition 5.1 that
∣

∣

∣

∣

Vt − E

(

BS (t,Xt, ϑt) +
ρ

2
H (t,Xt, ϑt)

(
∫ T

t

Λsds

)∣

∣

∣

∣

Ft

)∣

∣

∣

∣

=

∣

∣

∣

∣

E

(

ρ

2

∫ T

t

e−r(s−t)H (s,Xs, ϑs) Λsds − ρ

2
H (t,Xt, ϑt)

(
∫ T

t

Λsds

)∣

∣

∣

∣

Ft

)

.

Let us now consider the process ρ
2
e−rtH (t,Xt, ϑt)

(

∫ T

t
Λudu

)

. Obviously this pro-

cess vanishes at t = T and it follows from Proposition 3.1. as in the proof of

Proposition 7 in [3] that

E

{

ρ

2

∫ T

t

e−r(s−t)H (s,Xs, ϑs) Λsds − ρ

2
H (t,Xt, vt)

(
∫ T

t

Λudu

)∣

∣

∣

∣

Ft

}

= E

{

ρ2

8

∫ T

t

e−r(s−t)G (s,Xs, ϑs)

(
∫ T

s

Λrdr

)

Λsds

+
ρ2

4

∫ T

t

e−r(s−t)∂H

∂x
(s,Xs, ϑs)

(
∫ T

s

DsΛrdr

)

σsds

∣

∣

∣

∣

Ft

}

=: A1 + A2

with G(s,Xs, ϑs) =
(

∂3

∂x3 − ∂2

∂x2

)

H(s,Xs, ϑs) and A1 resp. A2 the corresponding

summands above. Let Gt be the σ−algebra generated by the Brownian motion (Wt)

which drives the Heston volatility. Now the proof will be decomposed into two steps.

Step 1. Let us study the term A1. From Lemma 2 in [4] we conclude that

∣

∣

∣

∣

E

(

∂n

∂xn

(

∂2

∂x2
− ∂

∂x

)

BS (s,Xs, ϑs)

∣

∣

∣

∣

Gt

)∣

∣

∣

∣

≤ C(σt)ρ

(
∫ T

t

σ2
sds

)− 1

2
(n+1)

. (7)

Here C(σt) is a constant whose value depends on the current σt. The fact that

Drσ
2
θ = 2σθDrσθ and Hölder’s inequality allow us to write

∫ T

t

(
∫ T

s

Λrdr

)

Λsds ≤
(
∫ T

t

σ2
sds

)2(∫ T

t

(
∫ T

r

(Drσθ)
2 dθ

)

dr

)

(8)
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Then, (7) and (8) yield

A1 ≤ C
ρ2

8
E

[(

(
∫ T

t

σ2
sds

)−5/2

+

(
∫ T

t

σ2
sds

)−2

+

(
∫ T

t

σ2
sds

)−3/2
)

∫ T

t

(
∫ T

s

Λrdr

)

Λsds

∣

∣

∣

∣

∣

Ft

]

≤ C
ρ2

8
E

[(

1 +

(
∫ T

t

σ2
sds

)−1/2

+

(
∫ T

t

σ2
sds

)1/2
)

(
∫ T

t

(
∫ T

r

(Drσθ)
2 dθ

)

dr

)

∣

∣

∣

∣

∣

Ft

]

and now, using the fact that (Drσθ)
2 is bounded by ν2 it follows that

A1 ≤ Cν2ρ2 (T − t)2
E

[(

1 +

(
∫ T

t

σ2
sds

)−1/2

+

(
∫ T

t

σ2
sds

)1/2
)∣

∣

∣

∣

∣

Ft

]

.

The fact that E

(

∫ T

t
σ2

sds
)1/2

is finite and Lemma 5.1, as well as T − t < 1 now

imply that A1 ≤ C(σt)ν
2ρ2 (T − t).

Step 2. Let us study the term A2. Using again Hölder’s inequality we can write

∫ T

t

(
∫ T

s

DsΛrdr

)

σsds ≤
(
∫ T

t

σ2
sds

)
∫ T

t

∫ T

r

(Drσα)2 dαdr (9)

+

(
∫ T

t

σ2
sds

)

3

2
(
∫ T

t

(
∫ T

s

(
∫ T

r

(DsDrσα)2 dα

)

dr

)

ds

)

1

2

Then, using (7) and (9) in a similar way as in Step 1 we obtain

A2 ≤ ρ2

4
E

[(

1 +

(
∫ T

t

σ2
sds

)− 1

2

)

(
∫ T

t

∫ T

r

(Drσα)2 dαdr

)

∣

∣

∣

∣

∣

Ft

]

+C(σt)
ρ2

4
E

[
∫ T

t

(
∫ T

s

(
∫ T

r

(DsDrσα)2 dα

)

dr

)

ds

∣

∣

∣

∣

Ft

]

Now Proposition 4.1, Proposition 4.2. and our assumption T − t < 1 enable us to

deduce that A2 ≤ C(σt)ν
2ρ2(T − t).

Remark 5.1. Let us briefly illustrate how the result in Proposition 5.2. should be

interpreted in a dynamic framework. As one can obviously see, the approximation

is getting better with a quadratic rate, as the factor ν decreases. The situation is

similar for ρ. As the constant C(σt) however depends implicitly on t through σt we
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can not say, that as time to maturity decreases, our approximation is getting better

in general. In fact a large change in the volatility during a trading day may lead

to the result that our approximation tomorrow is in fact worse then today. This

effect however is entirely caused by the random volatility. Putting aside this effect

and fixing the volatility artificially in time, then the accuracy of the approximation

increases at least linearly with decreasing time to maturity.

Let us now consider the following approximation for the correlation effect :

ρ

2
H (t,Xt, ϑ

∗
t ) E

(
∫ T

t

Λsds

∣

∣

∣

∣

Ft

)

(10)

with ϑ∗
t =

√

1
T−t

∫ T

t
E (σ2

s | Ft) ds and as an approximation of the option price

BS (t,Xt; ϑ
∗
t ) +

ρ

2
H (t,Xt, ϑ

∗
t ) E

((
∫ T

t

Λsds

)∣

∣

∣

∣

Ft

)

(11)

We will later need the following lemma, which is related to equation (7), but for the

specific case considered here gives a slightly better approximation.

Lemma 5.2. Let BS(t, x, σ) denote the Black-Scholes price in the log-stock price

x. Then there exists a constant such that for all times to maturity T − t < 1 we

have
∣

∣

∣

∣

∣

(

∂2

∂x2
− ∂

∂x

)2

BS (t, x, σ)

∣

∣

∣

∣

∣

≤ Cσ−2(T − t)−
3

2

Proof. Applying the chain rule of differential calculus with S = ex, the well known

formulas for the greeks delta and vega can be used to obtain

∂

∂x
BS(t, x, σ) = N(d1)e

x

∂2

∂x2
BS(t, x, σ) =

(

∂

∂x
(N(d1))) + N(d1)

)

ex =

(

N ′(d1)

σ
√

T − t
+ N(d1)

)

ex.

where d1 denotes the classical Black-Scholes parameter. Therefore
(

∂2

∂x2
− ∂

∂x

)

BS (t, x, σ) =
N ′(d1)

σ
√

T − t
ex
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Further differentiation now shows that

(

∂2

∂x2
− ∂

∂x

)2

BS (t, x, σ) =

(

∂2

∂x2
− ∂

∂x

)(

N ′(d1)

σ
√

T − t
ex

)

=

(

N ′′′(d1)

σ2(T − t)3/2
+

N ′′(d1)

σ(T − t)

)

ex

The result then follows, since all derivatives of the standard normal distribution

function N(x) are bounded and furthermore (T−t)3/2 dominates (T−t) for T−t < 1.

The following proposition represents an analytical result on the quality of this

approximation.

Proposition 5.3. Assume that 2κθ ≥ 3ν2 and define ϑ∗
t =

√

1
T−t

∫ T

t
E (σ2

s | Ft) ds

for t ∈ [0, T ]. Then there exists a constant C(σt) which does not depend explicitly on

t and ν s.t.
∣

∣

∣
Vt − BS (t,Xt; ϑ

∗
t ) − ρ

2
H (t,Xt, ϑ

∗
t ) E

((

∫ T

t
Λsds

)∣

∣

∣
Ft

)∣

∣

∣
≤ C(σt)ν

2(T−
t)

Proof. We can write

∣

∣

∣

∣

Vt − BS (t,Xt; ϑ
∗
t ) −

ρ

2
H (t,Xt, ϑ

∗
t ) E

((
∫ T

t

Λsds

)∣

∣

∣

∣

Ft

)∣

∣

∣

∣

≤
∣

∣

∣

∣

Vt − E

(

BS (t,Xt; ϑt) +
ρ

2
H (t,Xt, ϑt)

(
∫ T

t

Λsds

)∣

∣

∣

∣

Ft

)∣

∣

∣

∣

+ |E (BS (t,Xt; ϑt)| Ft) − BS (t,Xt; ϑ
∗
t )|

+
ρ

2

∣

∣

∣

∣

E

(

(H (t,Xt, ϑt) − H (t,Xt, ϑ
∗
t ))

(
∫ T

t

Λsds

)∣

∣

∣

∣

Ft

)∣

∣

∣

∣

= B1 + B2 + B3.

with B1, B2 and B3 the corresponding summands from above. We conclude from

the last proposition that B1 ≤ C(σt)ν
2ρ2(T − t) and we are left with the expressions

B2 and B3. Let us study the expression B2 first. Notice that

ϑ∗
t =

√

1

T − t

(

Mt −
∫ t

0

σ2
sds

)

, ϑt =

√

1

T − t

(

MT −
∫ t

0

σ2
sds

)
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where Mt :=
∫ T

0
E (σ2

s | Ft) ds. It is not difficult to verify the following:

Mt =

∫ T

t

[

σ2
t e

−κ(s−t) + θ
(

1 − e−κ(s−t)
)]

ds +

∫ t

0

σ2
sds (12)

dMt =

∫ T

t

[

κσ2
t e

−κ(s−t)dt + e−κ(s−t)dσ2
t − κθe−κ(s−t)

]

ds = νσt

(
∫ T

t

e−κ(s−t)ds

)

dWt

Using the classical Itô formula and the relationship between the Greeks

∂BS

∂σ
(s, x, σ)

1

σ (T − s)
=

(

∂2

∂x2
− ∂

∂x

)

BS (s, x, σ) (13)

we deduce that

B2 = E (BS (t,Xt; ϑt)| Ft) − BS (t,Xt; ϑ
∗
t )

= E

(

BS

(

t,Xt;

√

1

T − t

(

MT −
∫ t

0

σ2
sds

)

)∣

∣

∣

∣

∣

Ft

)

−E

(

BS

(

t,Xt;

√

1

T − t

(

Mt −
∫ t

0

σ2
sds

)

)∣

∣

∣

∣

∣

Ft

)

= ν2
E

(

∫ T

t

(

∂2

∂x2
− ∂

∂x

)2

BS

(

t,Xt;

√

1

T − t

(

Mu −
∫ t

0

σ2
sds

)

)

×
(
∫ T

u

e−k(s−u)ds

)2

σ2
udu

∣

∣

∣

∣

∣

Ft

)

We can now conclude from lemma 5.2. that

B2 ≤ ν2
E

(

∫ T

t

C

[

1

T − t

(

Mu −
∫ t

0

σ2
sds

)]−1(∫ T

u

e−κ(s−u)ds

)2

σ2
udu

∣

∣

∣

∣

∣

Ft

)

= Cν2(T − t)E

(

∫ T

t

[
∫ T

t

E
(

σ2
s

∣

∣Fu

)

ds

]−1(∫ T

u

e−κ(s−u)ds

)2

σ2
udu

∣

∣

∣

∣

∣

Ft

)

.

Now, using that t < u, the definition of Mt and equation (12) we obtain
[
∫ T

t

E
(

σ2
s

∣

∣Fu

)

ds

]−1

≤
[
∫ T

u

E
(

σ2
s

∣

∣Fu

)

ds

]−1

=

[
∫ T

u

(

σ2
ue

−κ(s−u) + θ
(

1 − e−κ(s−u)
))

]−1

≤ σ−2
u

(
∫ T

u

e−κ(s−u)ds

)−1
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as θ
(

1 − e−κ(s−u)
)

≥ 0 for all s ≥ u. Back-substitution gives

B2 ≤ Cν2(T − t)E

(

∫ T

t

σ−2
u

(
∫ T

u

e−κ(s−u)ds

)−1(∫ T

u

e−κ(s−u)ds

)2

σ2
udu

∣

∣

∣

∣

∣

Ft

)

≤ Cν2(T − t)

∫ T

t

∫ T

u

e−κ(s−u)dsdu ≤ C

κ
ν2(T − t)2

The latter is bounded from above by C
κ
ν2(T − t) for all T − t < 1. Let us finally

consider the term B3. Proposition 3.1 and (13) imply that

B3 = E

(

(H (t,Xt, ϑt) − H (t,Xt, ϑ
∗
t ))

(
∫ T

t

Λsds

)∣

∣

∣

∣

Ft

)

= νE

[

∫ T

t

(

∂2

∂x2
− ∂

∂x

)

H

(

t,Xt,

√

1

T − t

(

Mu −
∫ t

0

σ2
sds

)

)

×
(

Du

∫ T

t

Λsds

)

σu

(
∫ T

u

e−κ(s−u)ds

)

du

∣

∣

∣

∣

Ft

]

+ νE

[

∫ T

t

(

∂2

∂x2
− ∂

∂x

)2

H

(

t,Xt,

√

1

T − t

(

Mu −
∫ t

0

σ2
sds

)

)

×
(
∫ T

t

Λsds

)

σ2
u

(
∫ T

u

e−κ(s−u)ds

)2

du

∣

∣

∣

∣

∣

Ft

]

Now, similar arguments as used for B2 give us that B3 ≤ C(σt)ν
2 (T − t).

Let us now make things more transparent by evaluating the expression

1

2
H (t,Xt, ϑ

∗
t ) E

(
∫ T

t

Λsds

∣

∣

∣

∣

Ft

)

(14)

which determines the effect of correlation on option prices in the Heston model.

We have to evaluate ϑ∗
t and E

(

∫ T

t
Λsds

∣

∣

∣
Ft

)

. Since the framework is a Markovian

one, we can assume without loss of generality that t = 0. In this case we have to

evaluate the quantities ϑ∗
0 =

√

1
T

∫ T

0
E (σ2

s) ds and E

(

∫ T

0
Λsds

)

. Let us start with

the computation of ϑ∗
t . It follows from σs =

√
vt and the dynamics of (vt) by taking

expectations and solving the corresponding ordinary ODE for the expectation, that
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E(σ2
s) = E(vs) = θ + (v0 − θ)e−κs. From this it follows that

(ϑ∗
0)

2 =
1

T

∫ T

0

E
(

σ2
s

)

ds = θ +
(v0 − θ)

T

∫ T

0

e−κsds = θ +
(v0 − θ)

(

1 − e−κT
)

κT
.

Now consider the expression E

(

∫ T

0
Λsds

)

. By definition of Λs we have that

E

(
∫ T

0

Λsds

)

= E

(
∫ T

0

(
∫ T

s

E
(

Dsσ
2
r

∣

∣Fs

)

dr

)

σsds

)

Lemma 5.3. Assume 2κθ ≥ ν2 then E (Dsσ
2
r | Fs) = ν exp (−κ (r − s))

√
vs.

Proof. Notice that it follows from Corollary 4.2 and the Clark-Ocone formula that

vr = σ2
r = E(σ2

r) +

∫ r

0

E
(

Dsσ
2
r

∣

∣Fs

)

dWs (15)

On the other hand consider the process defined by the stochastic integral equation

ṽr = θ + (v0 − θ)e−κr + ν

∫ r

0

exp (−κ (r − s))
√

ṽsdWs.

Taking differentials of ṽr leads to

dṽr = −κ

[

(v0 − θ)e−κr + ν

∫ r

0

exp (−κ (r − s))
√

ṽsdWs

]

dr + ν
√

ṽrdWr

= κ (θ − ṽr) + ν
√

ṽrdWr

We therefore see that (ṽr) has the same differential as (vr) and since E(ṽr) = E(vr)

we have ṽr = vr. This leads to

E(σ2
r) +

∫ r

0

E
(

Dsσ
2
r

∣

∣Fs

)

= E(vr) + ν

∫ r

0

exp (−κ(r − s))
√

vsdWs

and since E(σ2
r) = E(vr) Lemma 5.2 follows from the uniqueness of this representa-

tion.
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By application of Lemma 5.2. we now obtain

E

(
∫ T

0

Λsds

)

= E

(
∫ T

0

(
∫ T

s

E
(

Dsσ
2
r

∣

∣Fs

)

dr

)

σsds

)

= νE

(
∫ T

0

(
∫ T

s

exp (−κ (r − s)) dr

)

σ2
sds

)

= ν

∫ T

0

(
∫ T

s

exp (−κ (r − s)) dr

)

E
(

σ2
s

)

ds

= ν

∫ T

0

(
∫ T

s

exp (−κ (r − s)) dr

)

(

θ + (v0 − θ)e−κs
)

ds

These integrals can easily be evaluated and we obtain

E

(
∫ T

0

Λsds

)

=
ν

κ2
·
[

θ(κ − 2) + v0 + e−κT (κT (θ − v0) + 2θ − v0)
]

.

With these explicit expressions for ϑ∗
0 and E

(

∫ T

0
Λsds

)

expression (14) which by the

previous discussion approximates the effect of correlation on option prices becomes

semi explicit, depending on the corresponding option valuation formula in the Black-

Scholes model. If this value does not admit an explicit expression one can use Monte

Carlo methods in order to compute it. For a standard European call option however

we derive a fully explicit expression, where H is given by

1

2
H (0, x, σ) =

ex

2σ
√

2πT
exp

(

−d2
1

2

)(

1 − d1

σ
√

T

)

,

with d1 = x−ln K+rT
σ
√

T
+ σ

√
T

2
. The effect of correlation on option prices using our

approximation can then be obtained in explicit form by substituting the corre-

sponding expressions above in (18). The case of a European call is important,

not as a particular application of our method in practice, but in order to test its

quality, with respect to the benchmark [8]. The following figures illustrates the

goodness of our approximation. Figure 1 represents the error of our approxima-

tion from Proposition 5.3 relative to the option price computed using a standard

analytic Heston pricer for plain vanilla calls, such as it is available at http://kluge.in-

chemnitz.de/tools/pricer/. The model parameters have been chosen as κ = 8,
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θ = 0.04, ν = 0.1, r = 0.0953, σ2
0 = 0.0225, S0 = 100, T = 0.1 and K = 100.

Figure 1 documents that our approximation is rather accurate. The figure in the

lower left corner indicates that the larger part of the error is produced by replacing

E (BS (t,Xt, ϑt)| Ft) in Proposition 5.1 with BS (t,Xt; ϑ
∗
t ) in Proposition 5.3, while

the error contributed by our approximation of the correlation effect decreases to

zero as the correlation ρ decreases to zero. Figure 2 shows the dependence of the

accuracy of our approximation on time to maturity T − t. The second graph in

particular shows a linear relationship for small times to maturity, as predicted by

Proposition 5.3. Figure 3 shows total error and percentage error as function of time

to maturity, where parameters has changed to κ = 2, θ = 0.015, ν = 0.2, which

violates the strong coefficients assumption 2κθ ≥ 3ν2 in Proposition 5.3. Comparing

with figure 2 we see that absolute and percentage errors are significantly higher and

do not appear to flatten out in the observed time interval.

6. Conclusions

We have proved that under the usual coefficient condition 2κθ ≥ ν2 the Heston

stochastic volatility vt as well as its square root σt are Malliavin differentiable and

have given compact formulas for their derivatives. Under stricter conditions on the

coefficients we have shown that the second Malliavin derivatives also exist. These

two results are key results in so far as that they open the door for applications

of Malliavin calculus in the framework of the Heston stochastic volatility model.

We have discussed an explicit application by deriving and approximate option

pricing formula for the Heston model, which is extremely accurate and easy to

compute. Furthermore we derived analytical expressions which control the error of

this approximation.
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Figure 1: Error of approx. from Prop. 5.3 as function of ρ
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