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Abstract

We investigate the equilibrium market sturcture in virtual platform
duopoly (auctions or other market forms) that are prevalent in internet
settings. We take full account of the complexity of network effects in
such markets and determine optimal pricing strategies. We invstigate the
welfare implications of such strategies, look at the impact of non-exclusive
services and at what happens in large markets.

1 Introduction

Virtual market platforms such as auction platforms often reveal very different
price strategies despite the fact that such intermediaries offer homogenous prod-
ucts. Competition between Yahoo! vs. eBay in the US (see P.-L. Yin (2004)) or
Mobile.de vs. Autoscout24 the German used-car platforms (see FAZ (2003) sug-
gests that a cheaper platform is not able to attract all (or even more) customers.
In the latter case, the unilateral introduction of seller charges has only led to
very minor and temporary changes in market shares. An important explanation
for this observation is the presence of network externalities.

Optimal pricing strategies in two-sided platform duopoly have been investi-
gated recently by Rochet, J.-C. & Tirole, J. (2003) and M. Armstrong (2004).
Both papers focus on intermediation services for two types of agents but refrain
from modeling a stage in which transactions take place explicitly. Intermediation
between heterogenous agents such as buyers and sellers who bargain about some
good generates direct, ’congestion’ externalities (from more agents of their own
type) and indirect network externalities (from more agents of the other type).
These more complex forms of network externalities often remain unmodelled an
exception being the work of Ellison, G., Fudenberg, D., & Möbius, M. (EFM,
2004).

0 I am grateful for comments by Matthias Blonski, Thomas Gall, two referees, and the
participants of the ”Two-sided Markets” Seminar at Universität Frankfurt. Financial support
of the PREMIUM project of the BMBF is gratefully acknowledged.
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The role of ’congestion’ externalities on the transaction price is very relevant
in practice as has been argued in the business literature for sellers on eBay auc-
tions (see for example McGrath, S. (2005)). Whereas the analysis in EFM shows
that stable equilibria in such markets may be asymmetric, the consequences of
asymmetry for optimal platform pricing strategies is not pursued (see Section
7 in their paper). Endogenous competitive pricing decisions are studied by
Caillaud, B. & Jullien, B. (2001, 2003) albeit in a continuum model with ho-
mogenous agents on both sides of the platform focusing on indirect network
externalities only.

In this paper we model price competition of virtual platforms extending
the framework of EFM. We first look at the effects of introducing exogenous
charges into the model and investigate the effects on the equilibrium market
structure. We then determine charges endogenously and find that optimal pric-
ing decisions of platforms with potentially asymmetric market shares of buyers
and sellers exist and reveal strategic complementarities. Focusing on the role of
prices in this setting also allows us to tighten the set of equilibria of the model
compared to EFM and shows that we can often focus on a particularly simple
sub-class of equilibria which allows us to investigate the dependence prices on
the fundamentals of the model.

The model in EFM reveals a disconnected equilibrium set as corners (or
”dominant firm” outcomes) are part of the equilibrium set of the game but there
is a strictly positive critical mass of buyers necessary to make a second auction
site viable (see Section 4 in their paper). Their finding that two competing
platforms can coexists in equilibrium despite offering homogenous products is
thus not robust to extreme differences in size and raises implications for the
viability of new entrants in such markets and hence for regulatory concerns. We
are able to show that optimal seller charges can reestablish the connectedness
of the equilibrium set so that two competing platforms may coexist even for
extreme size differences. We eventually investigate the behaviour of the model
for platforms with many and possibly multihoming agents.

2 The Model

We model the duopolistic platform competition departing from a simple two-
stage game presented in EFM (2004).

The timing of the game is as follows: In the first stage risk-neutral buyers
(B ∈ N0) with uniformly and i.i.d. distributed valuation from the unit interval
and risk-neutral sellers (S ∈ N0) simultaneously decide whether to attend plat-
form 1 or platform 2 before knowing their valuation for the homogeneous good.
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In the second stage they learn their valuations and bargaining for the object
takes place. We model this bargain as a uniform price (multiobject if S > 1)
auction on each platform. By the revenue equivalence theorem this choice of the
bargaining process is quite general. Each buyer only demands one homogeneous
good. In order to guarantee strictly positive prices we make the ’non-triviality
assumption’ that

B > S + 1 (1)

for both being positive integers. Risk neutral sellers have zero reservation value
and their expected utility is given by the expected price on their chosen platform.
A buyer’s utility on a platform with B buyers and S sellers is given by his
expected net utility conditional on winning the good i.e.

uB = E
©
v − vS+1,B

¯̄
v ≥ vS,B

ª
Pr
©
v ≥ vS,B

ª
(2)

where vk,n gives the k highest order statistic of a draw of n values and thus in
this auction format the uniform price is simply the S + 1 highest of the buyers
valuations vS+1,B (i.e. the highest losing bid). This is the typical mathematical
convention as long as we deal with a discrete model.

Larger markets are more efficient than smaller ones as they come closer to
the ex-post efficient outcome to allocate a good to a buyer iff his valuation is
high. The ex-post efficient outcome implies that the buyers with the S highest
values obtain the good, so that the expectation of the maximum total ex-ante
surplus (welfare) is

B Pr
©
v ≥ vS,B

ª
E
©
v| v ≥ vS,B

ª
= SE

©
v| v ≥ vS,B

ª
=

SE
©
v| v > vS+1,B

ª
= S

Z 1

0

µZ 1

x

vf(v |v > x)dv)

¶
fS+1,B(x)dx (3)

where fS+1,B is the density function of vS+1,B, the S+1 highest order statistic
of a draw of B values under the uniform distribution.

Lemma 0 (EFM):

Under the uniform distribution total welfare on one platform can be written
as the sum of buyer and seller utilities

w(B,S) = S(1− 1
2

1 + S

B + 1
) = S

µ
B − S
B + 1

¶
+B

µ
S(1 + S)

2B(B + 1)

¶

Proof:
See Appendix.¥
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The result is intuitive: The total value of a sale is E
©
v| v > vS+1,B

ª
,

i.e. expected value of v given v > p. Under the uniform distribution this
is 1 − 1

2
1+S
B+1 = p + 1−p

2 . Clearly the second term is the value for one buyer

E
©
v − vS+1,B

¯̄
v > vS+1,B

ª
= 1−p

2 with the remaining p (as calculated above)
going to the seller and to obtain total welfare we multiply with the number of
sales.

Note that

∂w(1, SB = x̄ < 1)

∂B
=
1

2
x̄
(2− x̄)(B + 2)B + 1

(B + 1)
2 > 0 (4)

showing that for constant shares of sellers to buyers larger markets are more
efficient than smaller ones. The efficiency deficit makes it more difficult for small
markets to survive but the sequential structure of the game allows for equilibria
with two active platforms whenever the impact of switching of buyer and/or
seller on his expected surplus more than outweighs the efficiency advantage.

The game is solved by backward induction and the solution concept is Sub-
game Perfect Nash equilibrium (SPNE). The transaction of the good in stage
two yields ex-ante utility in stage one for a seller of

uS(B,S) = p =
B − S
B + 1

(5)

and for a potential buyer of

uB(B,S) =
1− p
2

S

B
=

S(1 + S)

2B(1 +B)
. (6)

Note that holding S/B (the relative advantages of buyers and sellers) con-
stant, sellers prefer larger, more liquid markets (where the expected equilibrium
price is higher) and buyers prefer small, less efficient markets as

∂uS(1,
S
B = x̄ < 1)

∂B
=

∂p(1, SB = x̄ < 1)

∂B
> 0 (7)

and

∂uB(1,
S
B = x̄ < 1)

∂B
< 0 (8)
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Extending the setting of EFM, platforms may charge buyers and/or sellers
some fee for participating. Without loss of generality we assume that such a fee
takes a non-negative value.

As buyers and sellers simultaneously decide which platform to join in stage
one, we can set up the relevant constraints that determine the set of all possible
SPNE of the game subject to the qualification that the integer constraint holds
otherwise we will speak of a quasi-equilibrium. The constraints to keep buyers
in place in stage one given buyer charge difference p2B − p1B ≡ ∆B ≥ 0 are
(B1)

uB(B1, S1) ≥ uB(B2 + 1, S2)−∆B (9)

and (B2)

uB(B2, S2)−∆B ≥ uB(B1 + 1, S1) (10)

In words: A buyer on platform 1 needs to have an expected utility from the
bargaining stage correcting for charges paid to the platform owner such that a
change to the other platform and the implied effect on the equilibrium bargain-
ing outcome there deters him from doing so.

To keep sellers in place in stage one given seller charge difference ∆S ≥ 0 we
need (S1)

uS(B1, S1) ≥ uS(B2, S2 + 1)−∆S (11)

and (S2)

uS(B2, S2)−∆S ≥ uB(B1, S1 + 1) (12)

to hold. The motivation for the constraints is analogous.
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3 Exogenous buyer charges

We now look explicitly at the form of the constraints and thus at the set of
possible SPNE with some exogenous charge differences ∆B > 0 to (winning)
buyers in auction two. Note that this does not imply that charges are made
only by one of the platforms but only that it is the difference between such
charges that influence location incentives.

Denoting s as the share of sellers on platform one and β as the share of
buyers at platform one the buyer constraint (9) becomes

sS(1 + sS)

2βB(1 + βB)
≥ (1− s)S(1 + (1− s)S)
2((1− β)B + 1)(1 + (1− β)B + 1)

−∆B (13)

and (B2) is

(1− s)S(1 + (1− s)S)
2(1− β)B(1 + (1− β)B)

−∆B ≥
sS(1 + sS)

2(βB + 1)(1 + βB + 1)
(14)

A numerical example (with B = 10, S = 5) may make clear how the buyer
constraints change. The two buyer constraints with ∆B = 0 and ∆B = 0.2 are:

0

0.2

0.4

0.6

0.8

1

(s)

0.2 0.4 0.6 0.8 1
(beta)

where the share of sellers on platform one (s) is on the ordinate and the
share of buyers on platform one (β) is on the abscissa.

The interpretation of this finding is as follows: The lower (B1) constraint
gives the condition that buyers stay on platform one if the fraction of sellers s
is large enough or, alternatively if β is low enough. The higher, (B2) constraint
gives the condition under which buyers stay on platform 2, i.e. if s is small (and
thus (1− s) the fraction of seller on his own platform is large enough). Between
the two curves is the candidate set of SPNE (we still need to check if the seller
constraints hold).
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Now with a charge of ∆B > 0 to buyers on the second platform both the
(B1) and the (B2) constraint shift downwards, i.e. the set of SPNE allows for
equilibria with a lower share of sellers on platform one for a given share of
buyers. The (B2) constraint also shifts downwards. i.e. buyers move from the
second platform at higher levels of s already, (and thus for a lower fraction of
seller (1− s) on his own platform) than before given the new charge.

4 Exogenous seller charges

We now introduce an exogenous charge difference ∆S for sellers of platform 2.
Seller constraints are (S1)

βB − sS
βB + 1

≥ (1− β)B − ((1− s)S + 1)
(1− β)B + 1

−∆S (15)

and (S2)

(1− β)B − (1− s)S
(1− β)B + 1

−∆S ≥
βB − (sS + 1)

βB + 1
(16)

With ∆S = 0.3 we find the picture with the seller constraints becomes:

0

0.2

0.4

0.6

0.8

1

s

0.2 0.4 0.6 0.8 1
beta

The interpretation of this finding is as follows: For the upper linear (S1)
constraint, a seller stays on platform 1 if s is not too high for a given share of β,
otherwise he will go to platform 2. For the lower linear (S2) constraint, a seller
stays at platform 2 if s is high (i.e. his own seller share 1−s is low) otherwise he
will go to platform one. Between the two curves is the candidate set of SPNE
(we need to check if the buyer constraint holds simultaneously).
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Now that there is a charge of ∆S > 0 to the sellers on the second platform,
the (S1) constraint in no longer linear and shifts upwards: Seller stay at platform
1 even if s is much higher than before for given β. Similarly the (S2) constraint
is no longer linear and also shifts upwards: Seller will move from platform 2
even if s is much higher (hence their own seller share 1 − s much lower) than
before.
The numerical example with ∆S = 0.3 yields both seller and buyer con-

straints as

0

0.2

0.4

0.6

0.8

1

s

0.2 0.4 0.6 0.8 1
beta

Only β = 0.2, s = 0.2 is a viable equilibrium here and the previous candidate
β = 0.4, s = 0.4 is no longer viable.

The result reveals that charging sellers on platform 2 allows for higher s
tolerance for given β on platform 1. Also, equally sized platforms are no longer
viable. As sellers like larger, more liquid platforms where the uncertainty about
the resulting final price is lower we find the following claim:

Claim 1: A positive and exogenous relative seller charge difference of plat-
form 2 can only be an equilibrium if platform 2 also has the larger share of
sellers.
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5 Equilibrium properties

We now propose some more general results that allow us to characterize the set
of SPNE more tightly than in EFM:

Definition 1 We call a platform duopoly equilibrium ”proportional” if the frac-
tion of buyers and sellers on each platform is identical.

Absent charges the set of subgame perfect quasi-equilibria as defined by the
incentive constraints is disconnected from the cornered market outcomes. The
cornered market outcomes (β = 0,s = 0 and β = 1, s = 1), i.e. the case where
the market is ”tipping” is always a true equilibrium and hence by definition part
of the quasi-equilibrium set.

Lemma 2 Given ∆S = ∆B = 0 the set of SPNE is not connected.

Proof:
From looking at the numerical example for ∆S = 0 the seller constraint

(S1) prevents corner outcomes (0,0) just as symmetrically (S2) prevents corner
outcomes (1,1). The first constraint (15) reveals the intercept with the abscissa
as

β =
B − S − 1
B (3 + S)

> 0 (17)

which always holds from non-triviality.¥

The practical implication of this finding is that there may always be an
outcome with only one active platform but given that there are two platforms
operating there exists a critical mass of buyers necessary to render this second
platform operational. (See EFM (2004), Proposition 4).

Most importantly we find that the set of SPNE can be characterized further
than undertaken in EFM and we may often focus on the particular class of
proportional equilibria.

Proposition 3 Given ∆B = 0 the set of SPNE of the game does not contain
non-proportional equilibria even if exogenously ∆S > 0.

Proof:
See Appendix.¥

The fact that the buyer constraint is the ’stricter’ one relative to the seller
constraint around the proportional quasi-equilibrium set can be seen in the
numerical example. That this result holds for any B,S is quite intriguing and
can be rationalized by the fact that by the non-triviality assumption there are
strictly more buyers than sellers and hence they are more averse to inequalities
with regard to the buyer seller ratio (and hence their ex-ante probability to
obtain the good in the auction) than sellers.
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6 Welfare and Equilibrium refinements

Total welfare, given as the sum of welfare on each platform can be written as

W (β, s, B, S) =
1

2
S

(2S + SB) s2 + (B − 2S − 2SBβ − 2Bβ) s
−2B +Bβ + S + SBβ − 2B2β − 1 + 2B2β2

(Bβ + 1) (−B +Bβ − 1)

subject to the constraints that 0 ≤ s,β ≤ 1 for any ∆B ,∆S ≥ 0 as those
charges are only redistributed between buyers, sellers and the proprietors of the
platform. We then find that

Proposition 4 Constraint maximization of the welfare function yields corner
outcomes W (0, 0, B, S) and W (1, 1, B, S) for all B,S.

Proof:
See Appendix.¥

Lemma 5 Welfare of proportional equilibria is strictly decreasing in β until
β = 1

2 , the welfare worst proportional (quasi-)equilibrium.

Proof:
See Appendix.¥

As seen above, holding the relative advantages of buyers and sellers constant,
sellers prefer large markets (where the expected equilibrium price is higher) and
buyers prefer small, less efficient markets. The previous Proposition shows that
aggregating these welfare differentials from an overall welfare perspective, a
single platform is optimal in the set of all SPNE. From the above Proposition
in conjunction with the previous Lemma we can conclude that if ∆B = 0 then
an exogenous charge difference ∆S > 0 will always be welfare improving.

As noted by EFM, the multiplicity of equilibria of the game cannot be dis-
posed of by simple equilibrium refinement as outcomes cannot be Pareto-ranked.
Hence, for example, a coalition proof Nash equilibrium has no bite here. A sin-
gle Pareto-optimal equilibrium does not exit and thus we may not reduce the
set of SPNE set to some focal point. This observation makes the implication
of Proposition 3 even more valuable as it allows us to restrict the SPNE set
without further refinements and we will make ample use of the result below.
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7 Endogenous price competition

In order to discuss price formation in the above platform game we now introduce
a pricing game in a stage prior to the two-stage game above. In order to tackle
the issue of multiple equilibria in this game we make the assumption of ”bad-
expectation” beliefs (as in Caillaud, Jullien, 2003, p. 314) such that for any
given equilibrium in market shares a price deviation of a platform that violates
any of the incentive constraints (S1),(S2),(B1),(B2) will lead to a new market
equilibrium allocation in which the profit of the deviating platform is strictly
lower.

In other words: A platform charging sellers such that each one would be
better off leaving the current equilibrium allocation for the other platform will
also convey a signal to buyers whose beliefs are such that they will also decide
to leave. By assumption then both will coordinate on a new equilibrium that
yields strictly lower profits to the deviating platform. Given that optimal prices
are fully anticipated by buyers and sellers when they decide about locations a
rational expectations equilibrium can be derived.

We find the following result for the case where networks simultaneously
decide about profit-maximizing seller charges:

Proposition 6 If the model has a rational expectations equilibrium in stage two
with S1 sellers and B1 buyers on platform 1 and S2 sellers and B2 buyers on
platform 2 then the pricing game has an equilibrium where platform 1 charges
sellers at

p∗1s = fs +
1

3

S1B2 + 2S2B1 + 2S2 + S1 + 3 + 3B1
(B1 + 1) (B2 + 1)

(18)

and symmetrically platform 2 charges sellers at

p∗2s = fs +
1

3

S2B1 + 2S1B2 + 2S1 + S2 + 3 + 3B2
(B1 + 1) (B2 + 1)

(19)

Proof:
See Appendix.¥
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Note that equilibrium prices are strategic complements here, i.e. the reaction
functions are increasing in the price choice of the other platform. We can derive
the following equilibrium comparative statics results:

Lemma 7 The equilibrium seller charge (and profit) of platform 1 satisfies the
following comparative statics

∂p∗1s
∂S1

=
1

3 (B1 + 1)
> 0

∂p∗1s
∂S2

=
2

3 (B2 + 1)
> 0

∂p∗1s
∂B1

= −1
3

S1

(B1 + 1)
2 < 0

∂p∗1s
∂B2

= −1
3

2S2 + 3

(B2 + 1)
2 < 0

Proof:
By differentiation.¥

This result may surprise at first. Although the expected gains of a seller in
the bargaining stage are decreasing in the number of other sellers on its platform
the optimal seller charge paid to platform owners increases. Why is this the case?
Note that the optimal seller charge is also increasing in the number of sellers
on the other platform and at a larger magnitude if 2B1 > B2. This implies
that a larger own share of sellers also increases the price of the other platform
which relaxes the participation constraint for sellers on platform 1 (S1) so that
a platform can increase its own seller charge without violating the constraint.

The reasoning for the change in the seller charge in the number of own buyers
is more involved. Having more buyers on any platform will reduce the optimal
seller charge but the difference in magnitude depends on the number of buyers
and sellers on both platforms. If there are relatively few sellers and many buyers
on platform 1 again the cross-effect is stronger.
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If we rewrite equilibrium allocations in terms of market shares we find

p∗1s = fs +
1

3

sS(1− β)B + 2(1− s)SβB + 2(1− s)S + sS + 3 + 3βB
(βB + 1) ((1− β)B + 1)

(20)

and

p2s
∗ = fs +

1

3

SβB − 3sSβB + 2sSB + sS + S + 3 + 3B − 3βB
(βB + 1) ((1− β)B + 1)

(21)

By Proposition 3 we can focus on proportional equilibria, thus

p∗1s(s = β) = fs +
1

3

(3β ((1− β)S + 1))B + 3 + S(2− β)

(βB + 1) ((1− β)B + 1)
(22)

Interestingly eBay now prevents seller-fee-shifting, i.e. prevents sellers from
passing on sales- and listing-fees onto buyers which strengthens the case for
looking at proportional equilibria when looking at actual competition of on-line
auctions.

With a symmetric market allocation we find

p∗1s(s = β =
1

2
) = fs +

S + 2

B + 2
(23)

which is increasing in the total number of sellers (S) and decreasing in the total
number of buyers (B).More general equilibrium comparative statics results are:

Lemma 8 The equilibrium seller charge (and profit) of platform 1 in terms of
market shares satisfies the following comparative statics

∂p∗1s(s = β)

∂S
> 0

and for sufficiently many buyers B

∂p∗1s(s = β)

∂B
< 0

and

∂p∗1s(s = β)

∂β
> 0

Proof:
See Appendix.¥

Thus we find the result that optimal seller charges are always increasing if
the total number of sellers on the market increases. With regard to an increase
in the total number of buyers or the buyer market share of platform 1 there
exists a critical total number of buyers such that the optimal seller charges of
platform 1 is decreasing in the former and increasing in the latter. Clearly
profits π∗1 of platform 1 reveals the same comparative statics.
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We may also look at what happens to equilibrium seller utility. From above,
platform 1 equilibrium seller utility will clearly be increasing in B1 and decreas-
ing in S1 as the expected utility of the bargaining stage is reduced and optimal
charges paid to the platform owner is increased. For B2 and S2 only the price
effect matters so that the equilibrium seller utility increasing in the former and
decreasing in the latter.

Rewriting equilibrium allocations in terms ofmarket shares and using Propo-
sition 3 we also find:

Lemma 9 The equilibrium platform 1 customer utility satisfies the following
comparative statics

∂u∗1s(s = β)

∂S
< 0 (24)

and

∂u∗1B(s = β)

∂β
< 0 (25)

Also for sufficiently many buyers B

∂u∗1s(s = β)

∂B
> 0 (26)

and

∂u∗1s(s = β)

∂β
< 0 (27)

if β > 1
2 .

Proof:
See Appendix.¥

We see that an increase in the total number of sellers unambiguously reduces
net utility of sellers on platform 1 as it implies a higher optimal seller charge
both because of more sellers on the own but also because of more sellers on
the other platform. In addition the expected gains in the bargaining stage are
reduced. As buyers are unaffected by seller price changes only the bargaining
stage matters. Here in accordance with (8) buyers prefer the more illiquid
market.

Given there are many buyers, (which guarantees u∗1s to be strictly positive)
optimal seller charges are reduced by a further increase as seen in the previous
Lemma and expected gains in the bargaining stage are increased leading to a

14



higher expected seller utility. In contrast to (7) with endogenous seller charges
now sellers on the larger platform would also prefer a more illiquid market as
they face prices that are increasing in market scale which then outweigh their
preference for more liquid markets (and higher expected gains in the bargaining
stage).

Now we look at the implications of different prices on differences in the
number of buyers and sellers.

Lemma 10 Equilibrium prices satisfy p∗1s > p
∗
2s iff

S2
(B2 + 1)

− S1
(B1 + 1)

+
3(B1 −B2)

(B1 + 1) (B2 + 1)
> 0 (28)

or in terms of market shares iff

β = s >
1

2
. (29)

Proof:
See Appendix.¥

Note that the LHS in (28) is increasing in B1 and S2 and decreasing in B2
and S1. Looking at Lemma 7 we see that a larger S2 will imply that p

∗
1s is

increasing and this effect is more pronounced if B2 is small.

Note that Claim 1 above for exogenous charges has established a positive
seller price differential as being a necessary condition for having a larger share
of sellers. When endogenizing seller prices we find that the condition is also
sufficient.

Claim 2: A positive and endogenous relative seller charge difference of
platform 2 is an equilibrium iff platform 2 also has the larger share of sellers.
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Given the optimal prices above are rationally anticipated by buyers and
sellers when they decide about locations with charge differences being

∆∗s = p2s
∗ − p1s∗ =

1

3

(s− β)SB + (2s− 1)S + 3(1− 2β)B
(βB + 1) ((1− β)B + 1)

(30)

seller incentive constraints change accordingly.

Proposition 11 Given ∆s = ∆
∗
s the set of SPNE is connected.

Proof:
See Appendix.¥

For the numerical example we find the following picture:

0

0.2

0.4

0.6

0.8

1

s

0.2 0.4 0.6 0.8 1
beta

Corner equilibria where one network does not have any buyers and sellers
are now connected to the quasi-equilibrium set. In other words: there no longer
is a critical mass of buyers necessary to make any platform site viable.
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8 Large platforms

The above analysis finds that equilibria of this game may have non-Bertrand
outcomes where pricing differences between the two platforms may prevail in
subgame perfect equilibrium. We now investigate the robustness of this property
of the model for large platforms.

Proposition 12 On large platforms any equilibrium is proportional and charges
satisfy ∆B = ∆S = 0.

Proof:
See Appendix.¥

The intuition for this limit result is straightforward: The possibility that
the switching of either buyer or seller has a tangible impact on expectations
decreases as the number of buyers and sellers increases so that in the limit the
friction disappears from the model and we get a Bertrand type outcome with
regard to the charge differences and proportional equilibria. This Proposition
can be easily extended to an unspecified distribution of valuations and is thus
highly robust.

We also have a result for welfare on large platforms: As total welfare of a
platform goes out of bounds if the platform gets large we look at total welfare
per buyer and seller respectively

w(B,S)

B
= uB(B,S) + x̄uS(B,S) = x̄(1−

x̄

2
) (31)

and

w(B,S)

S
=
1

x̄
uB(B,S) + uS(B,S) = 1−

x̄

2
(32)

and by the non-triviality assumption the per capita welfare contribution of a
buyer is always lower than that of a seller.
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9 Multihoming buyers and sellers

So far the analysis has assumed that in the first stage of the game buyer and
sellers exclusively choose which platform to locate on being sensitive to relative
prices. In actual markets (especially in Internet marketplaces) buyers (and to a
lesser degree sellers) may decide to be present on both platforms.

We denote the total number of multihoming buyers as M and that of mul-
tihoming sellers as N both of which also only buy and sell one good. We find
the following result:

Proposition 13 Any numerical example with B = a > 0, S = b > 0, M = c >
0, and N = d > 0 satisfying B +M > S + N + 1 and a, b, c, d ∈ N0 can be
transformed into one with B = a+ c, S = b+ d, M = 0, and N = 0 such that
the incentive analysis in the location stage remains unchanged.

Proof:
See Appendix.¥

Whence all the above location results remain valid as having multihoming
buyers and sellers affects seller and buyer incentives just as having more sin-
glehoming buyers and sellers would do. In particular, the results about the
prevalence of proportional equilibria remain intact as they are valid for any B
and S. Having more buyers just tightens the buyer switching constraint further.

If we have B = 10, S = 5, M = 10 and N = 0 the constraints of the
singlehoming buyers and sellers (S1,2) and (B1,2) can be represented by B = 20,
S = 5, M = 0 and N = 0. We have to observe that the equilibrium set is

constrained by the fact that smin =
S1+N/2
S+N = 0 and βmin =

B1+M/2
B+M = 5

20 =
1
4 now whereas previously βmin = 0. The result is intuitive as multihomers
benefits both platforms simultaneously and hence equilibrium market shares
become ’more equal’. Note that if we have M →∞, (or β = 0 and M > 0) we
find an equal market sharing outcome as the quasi equilibrium set degenerates
to a point whereas B →∞ allows for a continuum of proportional equilibria.
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10 Conclusion

If buyers cannot be charged for participating on a platform, (or getting the good,
which is the case at platforms such as Mobile.de where the transaction cannot
be observed or at eBay where seller-fee-shifting is not allowed) the strictness of
the buyer switching constraints implies that independently of whether or not
there are charges to the sellers, the equilibrium market structure of the two
platform duopoly will imply proportional equilibria which in contrast to EFM
restricts the set of equilibria of the game substantially.

Endogenizing the pricing choice of the two platforms we find further evidence
for why it is that the platform with the larger share of sellers also has the higher
seller charge which turns out to be profit maximizing. Contrary to this, having
more buyers on ones platform will actually lead to a lower optimal equilibrium
seller charge being asked for in equilibrium. What were necessary conditions for
the link between the exogenous seller charge differentials and market shares in
the equilibria of the simple location game turns out to be necessary and sufficient
once a pricing game is introduced in which platforms set prices endogenously.
We also show that given sufficiently liquid markets we can expect prices to rise
in a duopoly with increasing total numbers of sellers and decreasing with total
numbers of buyers, no matter on which platform they decide to locate. We
further show that given optimal seller charges, sellers may prefer to be on less
liquid platforms (as do buyers) contrary to the case without charges in EFM as
charges on such liquid platforms will be higher, overcompensating the increased
benefits from the auction stage.

Our results are in accordance with casual observations of the virtual auction
platform competition between Yahoo! and eBay in the US. As eBay has gained
market share against its competitors by increasing its advertising and word-of-
mouth spreading it was able to raise its charges to sellers without loosing them
to competitors on the ground that being the relatively more liquid platform
increased the seller’s willingness to pay for the service. Charges for buyers
are not imposed at all so we can be confident that buyer switching guarantees
proportional equilibrium outcomes and hence a situation where a seller charge
differential (as is often the case in practice, see eBay vs. Yahoo or Mobile.de vs.
Autoscout24) is welfare superior. If this seller charge differential is the result of
optimal platform pricing choices we may also observe platforms with extremely
different sizes to co-exist.
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11 Appendix

Proof of Lemma 0:
Under the uniform distribution on [0,1] the ith lowest order statistic out of

n draws is distributed Beta(i, n− i+ 1) with probability density function

f i,n−i+1(x) =

(
xi−1(1−x)n−iR

1

0
ui−1(1−u)n−idu , x ∈ (0, 1)

0 otherwise
(33)

and expectation

Z 1

0

xf i,n−i+1(x)dx =
i

n+ 1
(34)

As the order statistic of the S + 1 highest of B draws is also that of the B − S
lowest, the expectation of the price given by the S + 1 highest buyer valuation
can be rewritten as

Z 1

0

xfS+1,B(x)dx =
B − S
B + 1

(35)

which is also expected seller surplus due to the normalized reservation value.
Thus the density of the order statistic vS+1,B is

fS+1,B(x) =

(
xB−S−1(1−x)SR

1

0
uB−S−1(1−u)Sdu , x ∈ (0, 1)

0 otherwise
(36)

Total welfare w(B,S) on one platform given uniformly distributed valuations
can thus be written as

w(B,S) = S

Z 1

0

µZ 1

x

vf(v |v > x)dv)

¶
fS+1,B(x)dx =

S
R 1
0
uB−S−1(1− u)Sdu

Z 1

0

µZ 1

x

v

µ
1

1− x

¶
dv

¶
(xB−S−1(1− x)S)dx =

S

2
R 1
0
uB−S−1(1− u)Sdu

Z 1

0

(x+ 1)(xB−S−1(1− x)S)dx =

= S(1− 1
2

1 + S

B + 1
) = S

µ
B − S
B + 1

¶
+B

µ
S(1 + S)

2B(B + 1)

¶
.¥

20



Proof of Proposition 3:
We look at the seller constraint and the buyer constraint in turns and show

whether it is possible to have them satisfied for non-proportional equilibria.
Constraint (S1) is

Bβ − Ss
Bβ + 1

=
B(1− β)− (S(1− s) + 1)

B(1− β) + 1
−∆S (37)

or

s(S1) =
3Bβ −B + SBβ + S + 1 +∆SB2β −∆SB2β2 +∆S(B + 1)

S (B + 2)
(38)

and (S2) is

B(1− β)− S(1− s)
B(1− β) + 1

−∆S =
Bβ − (Ss+ 1)

Bβ + 1
(39)

or

s(S2) =
−2B + 3Bβ + SBβ + S +∆SB2β −∆SB2β2 +∆S(B + 1)− 1

S (B + 2)
(40)

with vertical difference between the two seller constraints

s(S1) − s(S2) =
1

S
(41)

for any∆S . Thus it may be possible to have the seller constraint strictly satisfied
at a non-proportional equilibrium by ’squeezing in’ non-proportional equilibrium
candidate vertically.

For ∆S = 0 we have

β(S1) =
SsB + 2Ss+B − S − 1

B (3 + S)
(42)

and

β(S2) =
2B − S + 2Ss+ SsB + 1

B (3 + S)
(43)

so that the horizontal difference between the two seller constraints is

β(S2) − β(S1) =
B + 2

B (3 + S)
>
1

B
(44)
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as B > S + 1. Thus it may be possible to have the seller constraint satisfied at
a non-proportional equilibrium by ’squeezing in’ non-proportional equilibrium
candidate horizontally.

We now look at the critical buyer constraints: Now (B1) is

sS(1 + sS)

2βB(1 + βB)
≥ (1− s)S(1 + (1− s)S)
2((1− β)B + 1)(1 + (1− β)B + 1)

−∆B (45)

and (B2) is

(1− s)S(1 + (1− s)S)
2(1− β)B(1 + (1− β)B)

−∆B ≥
sS(1 + sS)

2(βB + 1)(1 + βB + 1)
(46)

For ∆B = 0 the solution to (B1) is

β(B1) =
1

2 (1 + S) (2s− 1) × (47)

(4S + 2SB) s2 + (−2S + 2 + 2B) s+ 1 + S −
√
Ψ

B

and the one for (B2) is

β(B2) =
1

2 (1 + S) (2s− 1) × (48)

(4S + 2SB) s2 + (2B − 2− 6S) s+ 3 + 3S −
√
Ψ

B

with

Ψ = 4S2 (B + 2)2 s4 − 8S2 (B + 2)2 s3 + (49)
¡
−16SB − 12 + 4S2B2 − 4SB2 − 8S + 20S2 − 16B + 16S2B − 4B2

¢
s2 −

4 (1 + S)
¡
S − 4B −B2 − 3

¢
s+ 1 + S2 + 2S

The horizontal difference is then

B(1)−B(2) = 1

B
(50)

Thus given that the two constraints with ∆B = 0 are always on opposite sides of
the β = s diagonal there will always be proportional equilibrium candidates and
it is impossible to ’squeeze in’ another non-proportional equilibrium candidate
horizontally. Note that the result does not hold for ∆B > 0 although the
horizontal difference remains the same.
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The vertical difference between (B2) and (B1) is difficult to calculate directly.
However we can use the fact that the distance between (B1) and the diagonal is
monotone increasing in β and the mirror image, between (B2) and the diagonal
is monotone decreasing in β which follows from buyers preference for the smaller
platform. Hence if we can show that this distance for (B1) at β = 1 (or the
distance for (B2) at β = 0 is smaller than 1

S again we can be sure that no non-
proportional equilibrium can be ’squeezed in’ next to the proportional equilibria
on the diagonal.

Using (B1)

β(B1) =
1

2 (1 + S) (2s− 1) × (51)

(4S + 2SB) s2 + (−2S + 2 + 2B) s+ 1 + S −
√
Ψ

B

we solve this equation for the relevant root and evaluate it at β = 1 to find

s(B1) = −
1

2

−2SB − 2SB2 −B −B2 − 2+p
(4 + 4B + 5B2 +B4 + 2B3 + 16SB + 8B2S2 + 8BS2 + 16SB2)

S (B +B2 − 2)
(52)

The vertical distance to the diagonal is then given as

1− s(B1)(β = 1) = (53)

1

2

−4S −B −B2 − 2+p
(4 + 4B + 5B2 +B4 + 2B3 + 16SB + 8B2S2 + 8BS2 + 16SB2)

S (B +B2 − 2)

Now

1− s(B1)(β = 1) <
1

S
(54)

will hold if

B < −S (55)

which cannot hold, or if

B > S − 1 (56)

which holds by the non-triviality constraint that B > S + 1.¥
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Proof of Proposition 4:
In order to obtain general results we need to maximize using the Kuhn-

Tucker approach

Maxs,βW =
1

2
S

(2S + SB) s2 + (B − 2S − 2SBβ − 2Bβ) s
−2B +Bβ + S + SBβ − 2B2β − 1 + 2B2β2

(Bβ + 1) (−B +Bβ − 1) (57)

subject to the constraints

β ≥ 0, s ≥ 0,β ≤ 1, s ≤ 1 (58)

so that we can set up the Lagrangian

L(β, s,λ1,λ2,λ3,λ4, ) = (59)

1

2
S

(2S + SB) s2 + (B − 2S − 2SBβ − 2Bβ) s
−2B +Bβ + S + SBβ − 2B2β − 1 + 2B2β2

(Bβ + 1) (−B +Bβ − 1)
−λ1(−β)− λ2(−s)− λ3(β − 1)− λ4(s− 1)

and the first order conditions can be written as

∂L

∂β
=
1

2
SB

(2s− 1)
¡
B2β2(S + 1) + S(2Bβ + 1) + 1

¢
+

(1− 2β) sB (sS(B + 2) +B) + (s− β)2B

(Bβ + 1)2 (B(1− β) + 1)2
+ λ1 − λ3 = 0 (60)

∂L

∂s
=
1

2
S
(1− 2s)2S + (2β − 1)B + (β − s)2SB

B2β(1− β) +B + 1
+ λ2 − λ4 = 0 (61)

∂L

∂λ1
= β ≥ 0,λ1 ≥ 0,λ1β = 0 (62)

∂L

∂λ2
= s ≥ 0,λ2 ≥ 0,λ2s = 0 (63)

∂L

∂λ3
= 1− β ≥ 0,λ3 ≥ 0,λ3(1− β) = 0 (64)

∂L

∂λ4
= 1− s ≥ 0,λ4 ≥,λ4(1− s) = 0 (65)

Note that the first term in (60) given by

A ≡ 1
2
SB

(2s− 1)
¡
B2β2(S + 1) + S(2Bβ + 1) + 1

¢
+

(1− 2β) sB (sS(B + 2) +B) + (s− β)2B

(Bβ + 1)
2
(B(1− β) + 1)

2 (66)
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is strictly negative if β ∈
¡
1
2 , 1
¤
and s ∈

£
0, 12

¤
(or if β ∈

£
1
2 , 1
¤
and s ∈

£
0, 12

¢
)

and positive otherwise.

Note that the first term B in (61) given by

B ≡ 1
2
S
(1− 2s)2S + (2β − 1)B + (β − s)2SB

B2β(1− β) +B + 1
(67)

is strictly negative if β ∈
£
0, 12

¤
and s ∈

¡
1
2 , 1
¤
(or if β ∈

¡
0, 12

¤
and s ∈

£
1
2 , 1
¤
)

and positive otherwise.

We need to consider three cases in turn:
a) Given

0 ≤ β ≤ 1
2
< s ≤ 1

we may rewrite the constraints as:

∂L

∂β
= (A > 0) + λ1 − λ3 = 0 (68)

∂L

∂s
= (B < 0) + λ2 − λ4 = 0 (69)

∂L

∂λ1
= β ≥ 0,λ1 ≥ 0,λ1β = 0 (70)

∂L

∂λ2
= s ≥ 0,λ2 ≥ 0,λ2s = 0 (71)

∂L

∂λ3
= 1− β ≥ 0,λ3 ≥ 0,λ3(1− β) = 0 (72)

∂L

∂λ4
= 1− s ≥ 0,λ4 ≥ 0,λ4(1− s) = 0 (73)

As λ1 ≥ 0 we find that λ3 > 0 and as λ4 ≥ 0 we find that λ2 > 0. Then it fol-
lows that we need that β = 1 and s = 0 which cannot be the case. Contradiction.

b) Given

0 ≤ s ≤ 1
2
< β ≤ 1
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we may rewrite the constraints as:

∂L

∂β
= (A < 0) + λ1 − λ3 = 0 (74)

∂L

∂s
= (B > 0) + λ2 − λ4 = 0 (75)

∂L

∂λ1
= β ≥ 0,λ1 ≥ 0,λ1β = 0 (76)

∂L

∂λ2
= s ≥ 0,λ2 ≥ 0,λ2s = 0 (77)

∂L

∂λ3
= 1− β ≥ 0,λ3 ≥ 0,λ3(1− β) = 0 (78)

∂L

∂λ4
= 1− s ≥ 0,λ4 ≥ 0,λ4(1− s) = 0 (79)

As λ3 ≥ 0 we find that λ1 > 0 and as λ2 ≥ 0 we find that λ4 > 0. Then it
follows that we need that s = 1 and β = 0 which cannot be the case. Contra-
diction.

c) If we assume that

s = β

the Lagrangian reduces to

L(β, s,λ1,λ2,λ3,λ4) = L(s,λ) (80)

1

2
S

2Ss2 − SBs2 + 2Bs− 2sS − 2Bs2−
2B + S + SBs− 2B2s− 1 + 2B2s2

(Bs+ 1) (Bs−B − 1) − λ1(−s)− λ2(s− 1)

∂L

∂s
=

Ã

C =
1

2
S
(2s− 1) (B + 2) (B − S)
(Bs+ 1)2 (B(1− s) + 1)2

!

+ λ1 − λ2 = 0 (81)

∂L

∂λ1
= s ≥ 0,λ1 ≥ 0,λ1s = 0 (82)
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∂L

∂λ2
= 1− s ≥ 0,λ2 ≥ 0,λ2(1− s) = 0 (83)

Note that C negative if s < 1
2 and positive if s >

1
2 .

Case s > 1
2 :

∂L

∂s
= (C > 0) + λ1 − λ2 = 0 (84)

∂L

∂λ1
= s ≥ 0,λ1 ≥ 0,λ1s = 0 (85)

∂L

∂λ2
= 1− s ≥ 0,λ2 ≥ 0,λ2(1− s) = 0 (86)

As λ1 ≥ 0 and C > 0 then λ2 > 0 then s = 1, a corner solution.

Case s < 1
2 :

As λ2 ≥ 0 and C < 0 then λ1 > 0 then s = 0, a corner solution.
All we need to show for the second order condition to hold is that

S (B + 2) (S −B) 3B
2s(1− s)−B − 1−B2

(Bs+ 1)
3
(B(1− s) + 1)3

< 0 (87)

At the first corner solution s = 1 we find

H11(s = 1) = S (B + 2) (B − S)
B + 1 +B2

(B + 1)
3 < 0 (88)

Similarly at the second corner solution s = 0 we find

H11(s = 0) = S (B + 2) (B − S)
B + 1 +B2

(B + 1)
3 < 0 (89)

and thus both solutions are indeed maximizing the welfare function.¥
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Proof of Lemma 5:
Any proportional equilibrium implies that β = s and so total welfare reduces

to

W =
1

2
S

¡
2B + SB − 2B2 − 2S

¢
β2+¡

2B2 + 2S − 2B − SB
¢
β + 2B − S + 1

(Bβ + 1) (B(1− β) + 1)

with first derivative

∂W

∂β
!
= 0 =

1

2
S
(2β − 1) (B + 2) (B − S)
(Bβ + 1)

2
(B(1− β) + 1)

2

with solution β∗ = 1/2. See that ∂W/∂β < 0 for β < 1/2 and ∂W/∂β > 0 for
β > 1/2 and any B,S.

The second order condition is

∂2W

∂β2
|β=β∗ = 16S

B − S
(B + 2)3

> 0

as B > S + 1 and hence β∗ yields a minimum of the welfare function when we
look at proportional equilibria, the welfare worst proportional equilibrium.¥

Proof of Proposition 6:
First note that constraint (S1) is strictly binding, otherwise platform 1 can

increase its charge and profits. Then rearranging (S1) we find

S1 = B1 − (
B2 − (S2 + 1)

B2 + 1
− p2s + p1s)(B1 + 1) (90)

so that the profit maximization takes the form

max
p1s

π = (p1s − fs)S1 =

(p1s − fs)
µ
B1 −

µ
B2 − (S2 + 1)

B2 + 1
− p2s + p1s

¶
(B1 + 1)

¶

with first order condition

∂π

∂p1s
=

µ
B1 − (

B2 − (S2 + 1)
B2 + 1

− p2s + p1s)(B1 + 1)
¶
+ (p1s − fs)(−B1 − 1) = 0

(91)

giving the best response function

p1s =
1

2

2B1 −B2 + S2B1 + S2 + 1
(B1 + 1) (B2 + 1)

+
1

2
p2s +

1

2
fs (92)
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and second order condition

∂2π

∂p21s
= −B1 − 1 < 0 (93)

and

∂2π

∂p1∂p2
= B1 + 1 (94)

revealing strategic complementarities. Using symmetry we find the other best
response as

p2s =
1

2

2B2 −B1 + S1B2 + S1 + 1
(B2 + 1) (B1 + 1)

+
1

2
p1s +

1

2
fs (95)

Solving simultaneously yields equilibrium prices as

p∗1s = fs +
1

3

S1B2 + 2S2B1 + 2S2 + S1 + 3 + 3B1
(B1 + 1) (B2 + 1)

(96)

and

p∗2s = fs +
1

3

S2B1 + 2S1B2 + 2S1 + S2 + 3 + 3B2
(B1 + 1) (B2 + 1)

(97)

as claimed.¥

Proof of Lemma 8:

By differentiation we find that

∂p∗1s(s = β)

∂S
=
1

3

3β(β − 1)B − 2 + β

(βB + 1) ((β − 1)B − 1) > 0 (98)

and for sufficiently large B

∂p∗1s(s = β)

∂B
= −1

3

¡
3β2 (β − 1) ((β − 1)S − 1)

¢
B2+

(2β (β − 1) (S(β − 2)− 3))B+
3 + 2S − 4βS + 3Sβ2 − 3β
(βB + 1)

2
((1− β)B + 1)

2 < 0 (99)

and

∂p∗1s(s = β)

∂β
= −1

3

−3β2B3 +
¡
−6β − S + Sβ2 + 2βS

¢
B2 + (−3 + 6βS − 2S)B + S

(βB + 1)
2
((1− β)B + 1)

2 > 0

(100)

.¥

29



Proof of Lemma 9:
Taking the derivative we find

∂u∗1s(s = β)

∂S
= −2

3

3βB(1− β) + β + 1

(βB + 1) ((1− β)B + 1)
< 0 (101)

and

∂u∗1B(s = β)

∂β
=
1

2
S

S −B
B (βB + 1)2

< 0 (102)

from non-triviality. Also

∂u∗1s(s = β)

∂B
=
1

3

(3β (1− β) (2Sβ(1− β) + 1))B2+
(4β (1− β) ((1 + β)S + 3))B+

3 + 2S − 4βS + 6Sβ2

(βB + 1)
2
((1− β)B + 1)

2 (103)

which is positive for sufficiently large B. Then

∂u∗1s(s = β)

∂β
= −1

3

(−3 + 6β)B3+¡
12β + 4S − 6 + 2Sβ2 − 8βS

¢
B2+

(−12βS + 8S)B + 2S
(βB + 1)2 ((1− β)B + 1)2

(104)

which is negative for β > 1
2 and sufficiently large B.¥

Proof of Lemma 10:
Equilibrium prices are given by (18) and (19). Thus p∗1s > p

∗
2s implies

S2
(B2 + 1)

− S1
(B1 + 1)

+
3(B1 −B2)

(B1 + 1) (B2 + 1)
> 0 (105)

which is increasing in B1 and S2 and decreasing in B2 and S1. Hence large S2
at low B2 (or low S1 at large B1) will make this inequality hold. Written in
market shares we have

(1− s)S > (1− β)B + 1

βB + 1
sS − 3βB − (1− β)B

βB + 1
(106)

and using Proposition 3 again

β = s >
1

2
.¥ (107)
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Proof of Proposition 11:
The seller constraint (S1) becomes

Bβ − Ss
Bβ + 1

≥ B(1− β)− (S(1− s) + 1)
B(1− β) + 1

−
µ
1

3

(s− β)SB + (2s− 1)S + 3(1− 2β)B
(βB + 1) ((1− β)B + 1)

¶

(108)

and (S2) is

B(1− β)− S(1− s)
B(1− β) + 1

−
µ
1

3

(s− β)SB + (2s− 1)S + 3(1− 2β)B
(βB + 1) ((1− β)B + 1)

¶
≥ Bβ − (Ss+ 1)

Bβ + 1
(109)

(S1) can be solved for

s(S1) =
1

2

3 + 2S

S (B + 2)
(βB + 1) (110)

and the second constraint (S2) for

s(S2) =
1

2

−3B + 3βB + 2SβB + 2S − 3
S (B + 2)

(111)

Corner outcomes satisfy the buyer constraint if ∆B = 0 but not the seller
constraints if ∆S = 0. Now with ∆S = ∆

∗
S we need to show that for β = 0 we

have s(S1) > 0 and s(S2) < 0 and for β = 1 we have s(S1) > 1 and s(S2) < 1.
Thus

s(S1)(β = 0) =
1

2

3 + 2S

S (B + 2)
> 0 (112)

which always holds. Also

s(S2)(β = 0) =
1

2

−3B + 2S − 3
S (B + 2)

< 0 (113)

or B > 2
3S−1 which holds by non-triviality. Symmetrically the same conditions

are found by

s(S1)(β = 1) =
1

2

3 + 2S

S (B + 2)
(B + 1) > 1 (114)

or B > 2
3S − 1 and

s(S2)(β = 1) =
1

2

−3B + 3B + 2SB + 2S − 3
S (B + 2)

< 1 (115)

which always holds.¥
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Proof of Proposition 12:
The buyer constraints are given above as (9) and (10). Letting the share of

buyers to sellers on each platform be fixed at some x̄i = Si/Bi i = 1, 2 we find
that the first constraint becomes

x̄1(
1
B1
+ x̄1)

2( 1B1 + 1)
≥

x̄2(
1
B2

+ x̄2)

2(1 + 1
B2

)( 2B2

+ 1)
−∆B (116)

and on large platforms where B1, B2 →∞ we find that this reduces to

(x̄1)
2

2
≥ (x̄2)

2

2
−∆B (117)

for any share x̄1 as uB(1, x̄1)→ (x̄1)
2/2. The second constraint can similarly be

reduced to

(x̄2)
2

2
−∆B ≥

(x̄1)
2

2
(118)

so that the only outcome that satisfies these constraints has ∆B = 0 and x̄1 =
x̄2. Similarly for sellers we have from (15) that

1− x̄1 ≥ 1− x̄2 −∆S (119)

and (16)

1− x̄2 −∆S ≥ 1− x̄1 (120)

which again can only be satisfied for ∆S = 0 and x̄1 = x̄2 as uS(1, x̄1)→ 1− x̄1.
The conclusion follows from noting that x̄1 = x̄2 ⇔ β = s. Note that endogenous
seller charges also satisfy limB→∞(∆∗s) = 0.¥
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Proof of Proposition 13:
As in stage one of the game valuations are unknown each multihoming buyer

and seller will transact on each platform with equal probability. Hence the buyer
constraints (9) become

(sS + N
2 )(1 + sS +

N
2 )

2(βB + M
2 )(1 + βB + M

2 )
≥ ((1− s)S + N

2 )(1 + (1− s)S + N
2 )

2((1− β)B + M
2 + 1)(1 + (1− β)B + M

2 + 1)
−∆B
(121)

and (10) is

((1− s)S + N
2 )(1 + (1− s)S + N

2 )

2((1− β)B + M
2 )(1 + (1− β)B + M

2 )
−∆B ≥

(sS + N
2 )(1 + sS +

N
2 )

2(βB + M
2 + 1)(1 + βB + M

2 + 1)

(122)

When writing these constraints in term of total market shares with s = sS+N/2
S+N

and β = βB+M/2
B+M we find (B1)

s(S +N)(1 + s(S +N))

2(β(B +M))(1 + β(B +M))
≥ ((1− s)(S +N))(1 + (1− s)(S +N))
2((1− β)(B +M) + 1)(1 + (1− β)(B +M) + 1)

−∆B
(123)

and (B2)

(1− s)(S +N)(1 + (1− s)(S +N))
2(1− β)(B +M)(1 + (1− β)(B +M))

−∆B ≥
(s(S +N))(1 + s(S +N))

2(β(B +M) + 1)(1 + β(B +M) + 1)
(124)

Similarly the seller constraints change to (S1)

β(B +M)− s(S +N)
β(B +M) + 1

≥ (1− β)(B +M)− ((1− s)(S +N) + 1)
(1− β)(B +M) + 1

−∆S
(125)

and (S2)

(1− β)(B +M)− (1− s)(S +N)
(1− β)(B +M) + 1

−∆S ≥
β(B +M)− (s(S +N) + 1)

β(B +M) + 1
(126)

so that the choice of M and N is a perfect substitute for that of B and S in
any of the four incentive constraints.¥
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