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This paper presents an alternative interpretation of the experimental data published by 

Kahneman and Tversky in their 1992 paper describing Cumulative Prospect Theory. It 

was assumed that mental transformations such as mental adaptation, prospect scaling, 

and logarithmic perception should be considered when analyzing the experimental data. 

This led to the design of a solution that did not require the probability weighting function. 

The double S&type function obtained (the decision utility) resembles the utility curve speci&

fied by the Markowitz hypothesis (1952) and substitutes the fourfold pattern of risk atti&

tudes introduced by Cumulative Prospect Theory.  
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The first approach to describe economic behavior in terms of utility was proposed by Da�

niel Bernoulli as early as 1738. However, it was von Neumann and Morgenstern (1944) who 

proved that rational decision making can be described using a utility function. A concave utility 

function reflecting the general risk aversion for different wealth levels was widely accepted 

among economists. However, as early as in 1948 Friedman and Savage argued that the utility 

function needs to be partially convex and concave to explain why people buy lottery tickets and 

insurances. A similar approach was proposed by Markowitz (1952), but he was the first to con�

sider the shape of the utility function around a “customary” level of wealth.  

A growing body of experimental data indicated, however, that no utility function could 
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satisfactorily explain human behavior. The best known counterexample was the Allais paradox 

(1953). This led to the creation of several theories collectively referred to as Non�Expected Util�

ity Theories. Cumulative Prospect Theory (Kahneman, Tversky, 1979, 1992) presupposes a value 

function to account for risk aversion for gain prospects and risk seeking for loss prospects, as 

well as a general aversion to loss. Additionally, the theory gave rise to the concept of the prob�

ability weighting function, which is meant to show the non�linear transformation of probabilities 

when making decisions. This, in turn, is meant to explain people’s willingness to participate in 

lotteries as well as their tendency towards less risky investments in the case of average probabili�

ties (Camerer, Ho, 1994; Wu, Gonzalez, 1996, 1999; Prelec, 1998; Tversky, Wakker, 1995).  

The theory was successfully used to explain several phenomena but has also met with crit�

icism. Nwogugu (2006) has compiled a large collection of objections and draws on a bibliogra�

phy of no fewer than 131 titles to support his claims. The author asserts that Prospect Theory was 

derived using improper methods and calculations and that it is not consonant with natural mental 

processes. Shu (1995) shows that it is wrong to assume the existence of probability weights. Neil�

son and Stowe (2002) demonstrate that Cumulative Prospect Theory cannot simultaneously ex�

plain participation in lotteries and the original Allais paradox. Blavatskyy (2005) shows that the 

theory does not explain the St. Petersburg paradox. Levy and Levy (2002) state that their experi�

mental results negate Prospect Theory and confirm the Markowitz hypothesis2.  

The present paper, too, is critical of Prospect Theory. However, it is not criticizing indi�

vidual components or individual methodological assumptions, but is rather focused on analyzing 

the entire process of experimental data interpretation. It has been stated that any analysis of the 

experimental data should include mental transformations such as mental adaptation, prospect 

scaling, and logarithmic perception (Point 2). This assumption finds its explanation in psychol�

ogy, in particular cognitive psychology, and in research at the sensory and neuronal levels. On 

the other hand, probability weighting should be excluded from this list as it is a mathematical, 

rather than psychological, concept.  

On the basis of the assumptions stated above and using exactly the same experimental da�

ta that were used to derive Cumulative Prospect Theory, a solution was obtained without the use 

of the probability weighting function (Point 3). This solution describes a direct relationship be�

tween probability and the relative certainty equivalent. The resulting curve (named the decision 
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utility function) has a double S�shape (Point 4) consistent with the Markowitz hypothesis (1952) 

(Point 5). More importantly, the decision utility function explains how people’s attitude towards 

risk depends on their aspiration levels. The description of risk attitudes given by the convex�

concave�convex�concave shape of the decision utility function substitutes the fourfold pattern 

introduced by CPT.  

The essential feature of the model presented is that lotteries under consideration are al�

ways framed before making decisions and decision utility is expressed in terms of probability 

(Point 6). This results in a multi�step valuation process, which reflects mental processes during 

decision making. A logarithmic perception of financial stimuli should be implemented for wider 

outcome ranges (Point 7). As the model is based on well documented mental transformations, and 

is described in simple mathematical terms, it may be regarded as superior to other theories of 

choice under condition of risk. 

�� �� �������������	
����
�������

2.1� Transformation of Probabilities  

That perception of probabilities is distorted is simultaneously one of the key assumptions 

and key results of Prospect Theory. The concept of decision weights was introduced into the first 

version of Prospect Theory in 1979. Even at that early stage, Kahneman and Tversky were stating 

that decision weights were not probabilities and did not comply with the axioms of probability. 

This led to serious mathematical objections (failure to comply with the First�Order Stochastic 

Dominance). As a result, Rank�Dependent Expected Utility Theory (Quiggin, 1982) was devel�

oped to remedy the shortcomings of its predecessor. The key concepts of that theory were later 

adopted by Cumulative Prospect Theory (Tversky, Kahneman, 1992). The axiomatization is 

based on pretty complex topological models (Schmeidler, 1989, Wakker 1989, 1990).  

It is important to note that Kahneman and Tversky (1979) distinguish overestimation (of�

ten encountered when assessing the probability of rare events) and overweighting (as a feature of 

decision weights). The latter phenomenon lacks psychological justification to the extent that the 

former has it (for instance by dint of insufficient knowledge). It is difficult to explain in psycho�

logical terms how a decision regarding an event whose probability is known seems to assume a 

different probability value. Furthermore no mechanism was posited to explain why this effect of 

probability transformation only manifests itself at the moment a decision is made. A failure to 
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distinguish between overestimation (which can be referred to as a kind of subjective view of 

events whose probabilities are not known) and overweighting (a mathematical concept to explain 

the results of experiments regarding events whose probabilities are known) leads to the com�

monly accepted view that the probability weighting function has a profound psychological justi�

fication.  

Despite the extensive research that has been conducted since Prospect Theory was intro�

duced, the basic question, however, remains unanswered: Why and how do people overweight 

small probabilities and underweight high probabilities when the probabilities are known? Until 

an answer to this question is given, and a psychological explanation of this phenomenon pre�

sented, probability weighting cannot be regarded as the psychological explanation of the decision 

making behaviors observed in lottery experiments.  

An important evidence against the “psychology” of the cumulative probability weighting 

concept was given by Birnbaum (2004). In several studies, subjects were assigned to receive dif�

ferent prospect formats: text displays, pie charts, tickets, list and semi�split lists, marbles in urns, 

and finally the cumulative probabilities. The last case is the way probabilities are used in Cumu�

lative Prospect Theory. If the theory were psychologically true, this format should facilitate cal�

culations and result in a lower percentage of violations. It turned out, however, that stochastic 

dominance violations were greatest when cumulative probabilities were supplied. This shows that 

cumulative representation is not a natural way of using probabilities when making decisions un�

der conditions of risk. Birnbaum concludes his research: “The weighting functions of 

RDU/RSDU/CPT are merely artifacts of wrong theory”.  

2.2� Mental Adaptation 

Evolutionary adaptation was first described by British natural theologians John Ray 

(1627–1705) and William Paley (1743–1805). The theory was later refined by Charles Darwin 

(1809–82). Peter Medawar, winner of the Nobel Prize for Medicine and Physiology in 1960, de�

scribes the term as “a process allowing organisms to change to become better suited for survival 

and reproduction in their given habitat”. On the other hand, the Oxford Dictionary of Science 

defines adaptation as “any change in the structure or functioning of an organism that makes it 

better suited to its environment”. More definitions can be found in Rappaport (1971) and Wil�

liams (1966). Summarizing “adaptation can refer to a trait that confers some fitness on an ani&
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mal, but it also represents the process by which that trait has come about” (Greenberg, 2010).  

 “Neural or sensory adaptation is a change over time in the responsiveness of the sensory 

system to a constant stimulus. More generally, the term refers to a temporary change of the neu&

ral response to a stimulus as the result of preceding stimulation”. This Wikipedia definition is 

close to those met in academic texts: “Adaptation in the context of sensation refers to the fact that 

a prolonged and uniform sensory stimulus eventually ceases to give rise to a sensory message” 

(Medawar, 1983, more in Laughlin, 1989, and Hildebrandt, 2010). The best example of neural 

adaptation is eye adaptation. Similar mechanisms are well attested for smell, temperature, taste, 

pain and touch (Gregory, Colman, 1995, Medawar, 1983). 

The definitions presented so far all assume that it is the living organism which adapts to 

changing environmental conditions. However, from the standpoint of a human being, adaptation 

may be seen as a process of changing the external world to suit its requirements. This was best 

expressed by Leakey (1981) as follows: “Animals adapt themselves to environment, hominids 

adapt environment to themselves using tools, language and complex cooperative social struc&

tures”. Mutual human � environment interaction was described by the famous Swiss psychologist 

Jean Piaget, who “considers in fact intelligence rising from mental adaptation, where the adapta&

tion is the equilibration of the action of an organism on the environment (assimilation) and of the 

action of the environment on the organism (accommodation)” (Maniezzo, Roffilli, 2005).  

In the author’s opinion, the term “mental adaptation” is best expressed as “the state of not 

thinking about certain phenomena”. This definition follows the Sulavik (1997) paper on mental 

adaptation to death in the case of professional rescuers, although it can easily be extended to cov�

er many other situations like stress, major illness, bereavement, financial loss, immigration (Ja�

sinskaja�Lahti, 2006), disasters (Leon, 2004), and even space travel (NASA). It should be borne 

in mind that mental adaptation occurs in positive situations as well – financial windfalls, profes�

sional achievements, falling in love etc. “Hedonic treadmill” is another term for mental adapta�

tion coined by Brickman and Campbell (1971) “to describe the now widely accepted notion that 

though people continue to accrue experiences and objects that make them happy – or unhappy – 

their overall level of well&being tends to remain fairly static.” (Mochon et al., 2008, also Kahne�

man, 1999). There are several other meanings of adaptation encountered in the literature (e.g. 

social adaptation). A wide coverage of hedonic adaptation examples is given by Frederick and 

Loewenstein (1999). Nevertheless, most of them have a common feature, viz. they signify a shift 
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of either the organism’s structure or its perception system to a new level. As a result, people (and 

animals) become better suited to external conditions, do not sense any more external stimuli, and 

cease to think about certain phenomena. Therefore, the mathematical representation of adaptation 

is shift (translation).  

2.3� Prospect Scaling  

Prospect scaling is of key significance for deriving the solution presented in this study. 

The springboard for discussion is the Weber law3, one of the fundamental laws of psychophysics. 

The law states that the Just Noticeable Difference (JND) is a constant proportion of the initial 

stimulus magnitude. It follows from the Weber law that the same change in stimulus (for instance 

0.2 kg) can be strongly felt, slightly noticed or not perceived at all depending on the magnitude of 

the initial stimulus. It further follows that an unambiguous and absolute perception level of a spe�

cific stimulus change cannot be determined, as this depends on the situational context.  

This applies equally to financial stimuli. The human sensory system adapts itself to finan�

cial quantities, just as it does to physical ones. This means that when looking at a financial pros�

pect (project, investment, lottery etc.), its size becomes a reference value in the entire mental 

process, causing an absolute amount of money (say 10 USD) to be relevant (for instance when 

shopping) or irrelevant (when buying a house), i.e. depending on the context. This conclusion 

constitutes a fundamental difference to Prospect Theory, which regards profits and losses in abso�

lute terms, and tries to draw a value function as a function of absolute amounts of money.  

Although not implemented by Prospect Theory, the phenomenon is well known to behav�

ioral researchers. Thaler (1999) considers the example that “most people will travel to save the $5 

when the item costs $15 but not when it costs $125”. Thaler (1980) proposes that “search for any 

purchase will continue until the expected amount saved as a proportion of the total price equals 

some critical value. This hypothesis is a simple application of the Weber&Fechner law of psycho&

physics”. Kahneman and Tversky (1985) define minimal, topical, and comprehensive accounts, 

where: “a topical account relates the consequences of possible choices to a reference level that is 

determined by the context within which the decision arises”. They suggest “that people sponta&

neously frame decisions in terms of topical account” and that “the topical organization of mental 

accounts leads people to evaluate gains and losses in relative rather than in absolute terms” 
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(emphasis added). Kahneman and Tversky stated this, however, only a few years after the intro�

duction of Prospect Theory. Baltussen, Post and Van den Assem (2008) used an extensive sample 

of choices from ten different editions of the high stakes TV game show “Deal or No Deal”: “In 

each sample, contestants respond in a similar way to the stakes relative to their initial level, even 

though the initial level differs widely across the various editions. Amounts therefore appear to be 

primarily evaluated relative to a subjective frame of reference rather than in terms of their abso&

lute monetary value”.  

The mechanism responsible for this mental transformation is attention – one of the most 

thoroughly examined concepts in cognitive psychology. According to one definition, attention is 

the process of selectively concentrating on a single perceived object, source of stimulation, or 

topic from among the many available options (Nęcka, 2007). The existence of attention is indis�

pensable on account of a living organism’s need to adapt to the demands of the environment 

(Broadbent, 1958) and on account of the finite ability of the brain to process information (Dun�

can, Humphreys, 1989). Several models of attention division are discussed, especially in relation 

to focused attention. The entire mechanism can be explained by such aspects of attention as se�

lection and gain (amplification) control, the existence of which is evidenced by attention research 

at the neuronal level. Hillyard et al. (1998) state that attention has a gain (amplification) control 

character which aims to increase the signal to noise ratio of the stimuli on which attention is fo�

cused. The signal of most interest to the brain is maintained at a stable and optimal level as a re�

sult. It may well be assumed that the amplification control mechanism operates at a higher mental 

level as well. This leads to problems differing in scale being perceived as equally significant 

when attention is focused. Very clearly, the mathematical equivalent of amplification is homo�

thety (scaling). 

The arguments cited indicate that the attention focused on specific payments in the con�

ducted experiments seems to be a natural effect that has to be factored into any analysis of the 

results. This is especially the case under experimental conditions as those surveyed are remuner�

ated for their participation; it means they are paid to focus their whole attention on the analyzed 

problems. The assumption that the size of a prospect becomes a reference value in the conducted 

experiments leads to a completely different solution than that which Prospect Theory proposes. 
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2.4� Logarithmic Perception 

Logarithmic perception is the last mental transformation necessary to derive the results 

presented in the final part of the study. Here, the reference point for discussion is also a funda�

mental psychophysical law, viz. the Weber�Fechner law. “Fechner assumed that JNDs corre&

spond to equal increments in subjective intensity and that JNDs are proportional to the physical 

variable being studied (Weber’s law). These assumptions led to the famous, logarithmic Weber&

Fechner law of subjective intensity” (Johnson, 2002). Hearing, as measured using the decibel 

scale, is an example of this sort of perception. The law applies to many other stimuli. Zauberman 

et al. (2008) argue that “error in time estimation following the Weber&Fechner law can explain 

both sub&additive and hyperbolic discounting”.  

Bernoulli stated that the St. Petersburg Paradox could be explained using logarithmic util�

ity as early as 1738. Logarithmic utility expresses the diminishing marginal value of money. In�

terestingly, Sinn (2002) proves that “expected utility maximization with logarithmic utility is a 

dominant preference in the biological selection process in the sense that a population following 

any other preference will disappear as time goes to infinity”.  

The Weber�Fechner law, however, has been severely criticized by Stevens (1957), who 

claimed that the power function better describes human perception. The power function was in�

cluded in Prospect Theory to describe the value function. Surprisingly, the difference in approach 

turns out to be insignificant as both functions (logarithmic and power) have an almost identical 

shape for low x�coordinate values.4 This leads to the conclusion that the perception of monetary 

amounts used in Kahneman and Tversky’s experiments could be equally well described using a 

logarithmic curve. Some arguments in favor of a logarithmic perception are provided by other 

results presented in CPT, which states that mixed prospects are accepted when gains are at least 

twice as high as losses. This effect can be easily explained by noticing that in logarithmic terms, a 

100% profit corresponds to a 50% loss. More arguments in support of a logarithmic, rather than a 

power, perception of monetary amounts are given in Point 7 of this paper.  

!� "������#���$�����������%������&�'
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This section contains an alternative analysis of the experimental data presented by Kah�

                                                 
4 Within the range [0, 0.6], x0.88�1.34 is the best approximation of the ln(1+x) function using a power function. The 
coefficient 0.88 is exactly the same as the power coefficient of the value function in Prospect Theory.    
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neman and Tversky in their 1992 paper (these data are replicated in the Appendix 1 of this pa�

per). The analysis is based on the assumption that mental adaptation and prospect scaling trans�

formations should be considered when analyzing the experimental data. During the experiment 

conducted by Kahneman and Tversky, certainty equivalents CE were collected for the prospects 

of payment Pmin with probability 1 � p or payment Pmax with probability p, where: 

    min maxP P<  (3.1) 

It is assumed that there is a function F such that:  

 ( )  ,  ,  min maxCE F P P p=  (3.2) 

The variables CE’ and Pmax’ are now introduced to account for the mental adaptation 

process. These are a Pmin translation of CE and P: 

 ’    minCE CE P= −  (3.3) 

 ’    max minP P P= −  (3.4) 

This step was implemented by Prospect Theory as well, but was abandoned by its Cumu�

lative version. The payment Pmin is interpreted as the riskless component. If Pmin = 0 then CE’ = 

CE and P’ = Pmax. Introducing these new variables presupposes the existence of a function G such 

that: 

 ( )’  ’,  CE G P p=  (3.5) 

This formula shows that the certainty equivalent is a function of both the prospect pay�

ment and the probability of its winning. Prospect Theory thus assumes that both the value and the 

probability weighting functions are required to describe the experimental data. At this point, 

however, the approaches diverge, and (3.5) is transformed in such a way that probability p, and 

not CE’, becomes the value to be determined. Due to the fact that CE’ is monotonic with respect 

to p, it may be assumed that there is an inverse function H such that: 

 ( )  ’,  ’p H CE P=  (3.6) 

In order to take prospect scaling into account, it is assumed that the value of payment P’ 

becomes the reference value for the certainty equivalent CE’ and that the equivalent values are 

scaled by a coefficient 1/P’. As a result, a variable r = CE’ / P’ is introduced as the relative cer�

tainty equivalent with a value in the range [0, 1]. This also supports the existence of the following 

D function defined over the range [0, 1]:  



 10 

 ( ) ( )  ’ / ’   p D CE P D r= =  (3.7) 

For example, for the specific values listed in Table 3.3 of Kahneman and Tversky’s paper, 

the relationships 0.10 = D(9/50), 0.50 = D(21/50), and 0.90 = D(37/50) are obtained for the pros�

pect (0, 50), and the relationships 0.05 = D(14/100), 0.25 = D(25/100) are obtained for the pros�

pect (0, 100). For the prospect with the riskless component (50, 150), the relationships 0.05 = 

D((64�50)/100) = D(14/100), 0.25 = D((72.5�50)/100) = D(22.5/100), and 0.5 = D((86�50)/100) = 

D(36/100), are obtained after the mental adaptation transformation. 

The obtained values are plotted on the graph p = D(r) and approximated using the least 

squares method with the assistance of the Cumulative Beta Distribution Ir(�, �) (i.e. regularized 

incomplete beta function). This particular function was selected because it is defined in the do�

main [0, 1] and because of the extraordinary flexibility the two parameters α and β give its shape. 

Approximations were made separately for the loss (P < 0)5 and gain (P > 0) prospects. The results 

are presented in Figure 3.1. 
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The approximations obtained for the function p = D(r) for loss and gain prospects allow 

the following conclusions to be drawn:  

1. The function p = D(r) is S�shaped for both loss and gain prospects. 

2. The respective values of the parameters α and β are 2.03 and 2.83 for gain prospects and 1.60 

and 2.09 for loss prospects. The disparity between the parameters α and β in both cases confirms 

                                                 
5 It should be noted that for the loss prospects, the value of relative certainty equivalent r is also positive, as CE’ and 
P’ are both negative in this case. 
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the asymmetry of the function D(r) with respect to the center point (p, r)�= (1/2, 1/2).  

3. The intersection of the approximation functions p = D(r) with the straight line p = r occurs 

when r has a value of approximately 0.27 for gains and 0.25 for losses. This value is called the 

aspiration level, as (in case of gains) the risk seeking attitude is present for lower values of the 

relative outcome r, and risk aversion is present for greater values of r. This implies a change of 

attitude to risk at the aspiration level, which is in accordance with generally accepted interpreta�

tions of this term. The pattern for losses is reversed.  

Assuming mental adaptation and prospect scaling transformation thus led to a different 

solution than that presented by Prospect Theory. The entire description has been reduced to the 

relationship: 

 ( )p D r=  (3.8) 

where 

 min

max min

CE P
r

P P

−
=

−
 (3.9) 

The function D is called here “decision utility” because it describes how decisions are 

made under conditions of risk. The value function and the probability weighting function have 

disappeared altogether as they are not needed to describe the experimental results. Decision util�

ity is defined in the [0, 1] range: transformation (3.9) combines mental adaptation and prospect 

scaling, and normalizes the certainty equivalent within the [0, 1] range. Therefore, transformation 

(3.9) can simply be referred to as “framing”. This notion of framing is slightly different than the 

one normally discussed in the Prospect Theory context. In the latter case, framing is usually un�

derstood as considering the problem as a prospective gain or loss. In the present case, the prob�

lem is bounded from both sides, which is closer to the dictionary definition of frames. According 

to the present model, problems are always framed before making decisions. 

Please note that the decision utility function was derived using linearly assessed out�

comes. Despite this, the curve approximation is very good for lotteries from $50 to $400. How�

ever, a nonlinear perception utility function might be needed for wider outcome ranges. This is 

discussed in Point 7. 

0� 1������$�2���������������

The solutions obtained so far comprise two p = D(r) functions with one describing losses, 

the other gains. The two functions need to be scaled before they can be used together. The sim�
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plest assumption has been adopted with the use of the loss aversion coefficient λ. This is similar 

to the Prospect Theory approach when defining the value function, and allows both parts of deci�

sion utility to be presented on a single graph (Figure 4.1). The derivation of the loss aversion co�

efficient λ is presented later in this paper (see Point 6.4). 

 

)�$�
��0*��)��������Dl-r.��
�����������Dg-r.��
�$�����%
���������$��/�
��������$���$
�%/*�)�������Dl-r.����

�����%���������/����$��� ������� �
���������������λ*�

This decision utility curve presents the sum total of all the knowledge that has come out of 

Prospect Theory and its cumulative version.  

1. The fourfold pattern of risk attitudes, which was presented by CPT, is evident: 

a). in case of gain prospects, the curve is convex for probabilities below 27% (correspond�

ing to risk taking), and becomes concave for probabilities above 27% (corresponding to 

risk aversion); 

b). in case of loss prospects, the curve is concave for probabilities below 25% (corre�

sponding to risk aversion), and becomes convex for probabilities above 25% (correspond�

ing to risk seeking). 

2. The convex�concave�convex�concave shape of the decision utility substitutes therefore the 

fourfold pattern of risk attitudes described by CPT. 

3. Both parts of the curve are of different magnitude to reflect the loss aversion phenomenon.  

4. The function’s more linear shape for loss prospects confirms the results of other studies that 

people’s attitude to risk for losses is rather neutral in nature6. 

                                                 
6 See Wakker (2003) for reference, who confirms that the pattern for losses is less clear than in the case of gains. 
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In 1952, Markowitz published an article “The Utility of Wealth” presenting his hypothesis 

on the shape of the utility function. While this article was known to Kahneman and Tversky, they 

believed that neither this nor any other utility function could explain certain psychological ex�

periments. This led to the development of Prospect Theory as an alternative to classical economic 

theories based on utility functions. That the decision utility curve so closely resembles the curve 

presented in the Markowitz article (Figure 5.1) is highly surprising given the result was obtained 

using the same experimental data used to derive Cumulative Prospect Theory.  

 

)�$�
��3*��	/���/�%�����/���������������������
���$����/����
4���5�/�%�/��������73�*�

Markowitz specified the utility function as follows: “The utility function has three inflec&

tion points. The middle inflection point is defined to be at the ‘customary’ level of wealth. The 

first inflection point is below customary wealth and the third inflection point is above it. The dis&

tance between the inflection points is a non&decreasing function of wealth. The curve is mono&

tonically increasing but bounded from above and from below; it is first concave, then convex, 

then concave, and finally convex. We may also assume that |U(&X)| > U(X), X > 0 (where X = 0 

is customary wealth)
7”. 

It is clear that all but one of the requirements of the utility curve expressed by Markowitz 

in his hypothesis are met by the curve presented in Figure 4.1. The decision utility curve has three 

inflection points right where Markowitz predicted they would be. The function is monotonically 

                                                 
7 Markowitz also assumed that in the case of recent windfall gains or losses, the second inflection point may, tempo�
rarily, deviate from present wealth. This requirement does not influence the shape of the curve.  
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increasing and is bounded from the top and from the bottom. Convexities and concavities occur 

in the order assumed by Markowitz. The condition related to the function value for X values hav�

ing opposite signs is also met. The only condition not met is that the distances between the inflec�

tion points depend on people’s wealth. Markowitz noted: “If the chooser were rather rich, my 

guess is that he would act as if his first and third inflection points were farther from the origin. 

Conversely, if the chooser were rather poor, I should expect him to act as if his first and third 

inflection points were closer to the origin”. In the Markowitz hypothesis the position of inflection 

points changes because the w (wealth)�axis is expressed in absolute terms. This differs from the 

decision utility curve, where the r�axis is expressed relative to the size of the prospect.  

There is no reason to regard this approach as being in any way anomalous. People com�

monly say “I have gained 15% on my stock investments” rather than “I have gained 5% of my 

wealth on my stock investments”. It is clear enough that the former sentence assumes the value of 

the stock investment as the reference for gain/losses considerations. Moreover, according to Tha�

ler (1985), people keep mentally separate accounts, so that investments and expenditures are con�

sidered as separate parts rather than as a whole. As a result people typically consider “I have lost 

5% on my house but I have gained 15% on stocks” despite the fact that the absolute values of 

stock and house investments may differ substantially. It follows that the decision utility applies 

for each separate account, albeit with different reference values established by the attention focus. 

This may mean that people could be risk seeking and risk averse at the same time depending on 

the status and prospects of each account.  

Markowitz’s assumption that the shape of the utility curve corresponds with the value of 

wealth precluded his curve (however tempting its shape) from being able to explain experiments 

on financial payments which were not directly related to the wealth of the people being studied. 

This is what led Kahneman and Tversky to reject the Markowitz hypothesis and develop Prospect 

Theory. The result presented here, however, may signal a return to an approach based on the util�

ity�like function and lead to a negation of Prospect Theory. Accepting that gains and losses need 

not be considered in relation to wealth, but to any other value depending on where a person’s 

attention is focused, is all that it would take to come back to this earlier concept. The payoff is a 

simpler and more accurate description of people’s behavior. 
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6.1� Two#Outcome Lotteries 

The essential feature of the model presented is that decision utility is expressed in terms 

of probability (see (3.8)). The greater the relative certainty equivalent r, the greater the probabil�

ity p of winning the lottery and hence the greater the lottery decision utility. This would suggest 

using probabilities to compare lotteries. This, however, is only possible when lotteries have the 

same outcome range.  

Decisions are always framed according to the model (see (3.9)). Some further steps are 

therefore required to compare lotteries of different ranges. As presented in Point 3, the relative 

certainty equivalent r is directly transformed into probability p (and vice versa). This means that 

in order to determine the certainty equivalent CE for probability p, the respective value of r need 

only be multiplied by the value of payment P’. For example, r = 0.75 for p = 0.95. Hence, CE’ = 

75 for P’ = 100 (the value obtained experimentally was 78). In case of prospects with riskless 

components, e.g. (50, 150), the riskless component Pmin (here 50) increases the value of the cer�

tainty equivalent: CE = Pmin + CE’ = 50 + 75 = 125 (the value 128 was obtained in the experi�

ment).  

This can be presented in a more general way. The certainty equivalent CE is derived from 

(3.8) and (3.9): 

 ( ) ( )1

min max minCE P D p P P−= + −  (6.1) 

For 0minP = , (6.1) simplifies to: 

 ( )1

maxCE P D p−=  (6.2) 

It may be noticed that (6.2) looks very similar to the certainty equivalent calculation pos�

tulated by Prospect Theory, with 1D− (p) being the probability weighting function w(p). This may 

lead to the conclusion that Decision Utility and Cumulative Prospect Theory are alternative mod�

els, the only difference being the inverse representation of the probability weighting function. 

This conclusion is only partially legitimate. One of the main differences between the decision 

utility D(p) and the CPT probability weighting function w(p) is that the former is expressed in 

terms of individual probabilities, whereas the latter concerns probabilities and probability weights 

expressed in a cumulative form. This form is required to avoid the stochastic dominance viola�
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tions introduced by the original Prospect Theory. Prospect Theory, Cumulative Prospect Theory, 

and Decision Utility Theory fortuitously reduce to essentially the same model in the case of two�

outcome lotteries. However, the last two models differ significantly for multi�outcome lotteries 

(Prospect Theory is restricted to a maximum of two non�null outcomes). 

6.2� Multi#Outcome Lotteries 

Decision utility of multi�outcome lotteries is likewise expressed in terms of probability. 

This time, however, it is the probability of winning the greater outcome in the equivalent two�

outcome lottery. This probability is therefore termed “equivalent probability” for convenience.  

From a psychological viewpoint, substituting a multi�outcome lottery by a two�outcome 

lottery should be regarded as a simplification of the problem. It results in a single value (equiva�

lent probability) describing the lottery considered, whatever the number of its outcomes. This 

likewise holds for the continuous outcome distribution. The operation is easy once the expected 

value of the lottery is considered. For example, let us assume a lottery offering x1 = $100 with a 

probability of p1 = 0.5, x2 = $60 with a probability of p2 = 0.3 and x3 = $0 with a probability p3 = 

0.2. The expected value of the lottery can be obtained from: 

 1 1 2 2 3 3 0.5 100 0.3 60 0.2 0 68EX x p x p x p= + + = × + × + × =  (6.3) 

Very obviously this lottery can be substituted by a two�outcome lottery offering x1 = $100 

with a probability of p1 = 0.68, and x2 = $0 with a probability of p2 = 0.32. The equivalent prob�

ability p’ of 0.68 can be calculated as:  

 
1

'
n

i i

i

p r p
=

=∑  (6.4) 

where ri denotes a relative outcome8: 

 i min
i

max min

x P
r

P P

−
=

−
 (6.5) 

with Pmax and Pmin being the maximum and minimum lottery outcomes (here p1 and p3 respec�

tively). As relative outcomes ri are normalized they can be represented by respective probabilities 

'

ip . Thus (6.4) takes the form of the joint probability calculation: 

                                                 
8 So far in this paper, r has been defined as the relative certainty equivalent (3.9). There is no conflict between this 
definition and the more general (6.5). The latter defines relative outcomes ri for given values of xi. In the same way, 
it defines the relative certainty equivalent r for a given value of certainty equivalent CE. 
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1

'
n

i i

i

p p p
=

=∑  (6.6) 

This form helps to derive a solution for a non�linear relationship between outcomes and 

probabilities (as stated in real lottery experiments). Here, each relative outcome ri is equivalent to 

the probability ( )'

i ip D r= , according to the decision utility model. Using (6.6), the equivalent 

probability is thus defined as: 

 ( )
1

'
n

i i

i

p D r p
=

=∑  (6.7) 

Equivalent probability (6.7) represents the decision utility of a multi�outcome lottery, si�

milarly as the single probability p represents decision utility in the two�outcome case. NB: for a 

two�outcome lottery, (6.7) simplifies to the probability of winning the greater outcome: 

 ( ) ( ) ( ) ( )' 0 1 1 0 1 1p D p D p p p p= − + = − + =  (6.8) 

Please note the strong resemblance of (6.7) to the Expected Utility Theory valuation. In 

fact, the decision utility model follows Expected Utility Theory with a transformed outcome do�

main. It is also worth noting that (6.7) can be easily extended to continuous outcome distribu�

tions: 

 ( ) ( )
1

0

'p D r f r dr= ∫  (6.9) 

where f(r) denotes the probability density function defined over the [0, 1] range.  

The derivation presented is straightforward as the decision utility model considers prob�

abilities within the framework of the classical axioms. This is not the case with Cumulative Pros�

pect Theory. To recapitulate, this theory requires that outcomes are first ranked, their respective 

probabilities are then transformed into cumulative form, these cumulative probabilities are then 

transformed into cumulative weights using the probability weighting function w(p), and finally 

the cumulative weights are decumulated. Only then are the resulting individual probability 

weights applied together with their corresponding outcomes in the expected utility formula. As 

presented, none of these operations is required by the decision utility model, which thus offers a 

much more straightforward valuation of multi�outcome lotteries.  

Cumulative Prospect Theory uses the presented cumulative approach because the original 

Prospect Theory suffers from stochastic dominance violations as a result of applying individual 

probabilities. Most importantly, the decision utility model, despite using individual probabilities, 
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obviates this problem. A basic proof of this statement is presented in Appendix 2 of this paper. 

6.3� Psychology of the Valuation Process 

As already discussed in Point 6.1, only lotteries having the same outcome range can be 

compared using decision utility p’ from a normative standpoint. In other cases, decision utility is 

applied in (6.1) or (6.2) instead of the single probability p to determine the lottery certainty 

equivalent; this finally serves to compare lotteries. 

Let us now summarize the entire valuation process from a psychological point of view. 

The process consists of three steps. In the first step, mental adaptation and prospect scaling trans�

formations result in problem framing (6.5) and in considering it in purely relative terms. In the 

second step, the multi�outcome lottery is simplified into a two�outcome one, and its equivalent 

probability (6.7) is determined. In the third step, the inverse transformation (6.1) to the absolute 

outcome scale is performed in order to compare lotteries using their certainty equivalents9.  

It needs to be pointed out that not all steps are required in all cases. The second step is ob�

viously redundant for a two�outcome lottery; the (equivalent) probability is known beforehand. 

As each step requires time and brain resources, it may well be assumed that some steps will be 

omitted if this is likely to simplify the decision making process. For instance, the third step is 

unnecessary when the lotteries under consideration are of the same range; their respective equiva�

lent probabilities are sufficient to compare them. This step may also be omitted when the out�

come ranges do not differ significantly; (equivalent) probabilities may still decide in this case.  

The last conclusion is in agreement with the choice heuristics proposed by Brandstätter et. 

al (2006). These are claimed to more satisfactorily explain lottery choices than “holistic” theories 

like EU or CPT. The authors state that people consider the probabilities (heuristic 2) first and 

only consider the lottery ranges when these are similar (heuristic 3). 

For the same reason, i.e. economy of time and brain resources, it may well be assumed 

that none of the steps is performed in some cases. People would then base their decisions on, for 

instance, minimum lottery payments. This coincides (and this is most likely no accident) with the 

first heuristic postulated by Brandstätter, which is applied even before probabilities are taken into 

account. Please note that the order of heuristics corresponds with the steps of the process; later 

                                                 
9 Please note that similar three�step processes are effectively applied in purely mathematical operations. The Laplace 
and Fourier transforms are the best known examples. 
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heuristics appear in later steps of the valuation process. 

In this context, the three�step process presented here, while seemingly lengthy and convo�

luted, seems to reflect the mental processes that take place during decision making. It provides a 

fully “holistic” approach while at the same time allowing the inclusion of heuristics and stopping 

rules at each step of the decision process. As each step is additionally well described in psycho�

logical and simple mathematical terms, the process described here can be regarded as having an 

advantage over other choice theories.  

6.4� Mixed Lotteries 

The valuation of mixed prospects is a matter of great concern. Gain�loss separability is a 

basic premise underlying Prospect Theory. This axiom requires that preferences for gains be in�

dependent of preferences for losses and that the valuation of a mixed lottery be the sum of the 

valuations of the gain and loss portions of that lottery. Unfortunately, this is more a theoretical 

assumption than an experimentally confirmed fact. Kahneman and Tversky (1979, 1992) gener�

ally examined gain and loss prospects separately. The only case where mixed lotteries were ex�

amined was limited to a probability of 0.5, and concerned the determination of the loss aversion 

coefficient rather than the shape of descriptive functions. 

Gain�loss separability has recently become a subject of criticism, as its violations have 

been evidenced (Wu, Markle, 2008; Birnbaum, Bahra, 2007). The authors have presented several 

explanations of the phenomenon based on Prospect Theory and the TAX model. Kontek (2011) 

also put forward a hypothesis, which explains the case by assuming a perception utility with a 

very different shape and properties than the Prospect Theory value function (see also Point 7). 

While this re�opens the subject of mixed prospect valuation, it is definitely too soon to give a 

definite answer. The decision utility function has been derived in this paper separately for gains 

and losses based on Tversky and Kahneman’s data, and no decision utility function can be pre�

sented for mixed prospects without any further data sets or new experiments. 

At this stage, a solution assuming separability is presented and this works well in many 

cases. This is because people usually first evaluate prospective gains and losses separately to as�

sess how much they can expect to win and lose when considering mixed prospects. Their deci�

sion will then be a trade�off between these two values. This method presupposes that positive 

outcomes are evaluated separately as a gain prospect and negative outcomes as a loss prospect. 
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These two valuations determine the respective certainty equivalents of 0gCE > for a gain portion 

and 0lCE < for a loss portion. The two certainty equivalent values are then compared and inte�

grated into the certainty equivalent of the mixed prospect.  

This requires the value of the loss aversion coefficient λ. Tversky and Kahneman (1992) 

conducted additional experiments in order to determine this value. The results, presented in Table 

3.6 of the original publication, indicate that the mixed prospects are accepted if the profit is at 

least twice as great as the loss. An exact ratio of 2.07, as the mean value of Θ resulting from 

problems 1�6, is assumed for further calculations10. The certainty equivalent of the loss outcome �

x should thus correspond to the certainty equivalent of the gain outcome of 2.07x. This can be 

presented using (6.2): 

 ( ) ( )1 10.5 2.07 0.5l gx D x Dλ − −− =  (6.10) 

where Dl and Dg denote decision utility functions for losses and gains respectively. This leads to  

 1.99 2λ = − ≈ −  (6.11) 

It follows that a mixed prospect has a value of 0 for 2g lCE CE= − . The certainty equiva�

lent CE of a mixed prospect can thus be derived as: 

 2 if 2g l g lCE CE CE CE CE= + ≥ −  (6.12) 

or: 

 / 2 if 2g l g lCE CE CE CE CE= + < −  (6.13) 

A simple application of the approach to explain the WTA�WTP disparity in risky choices 

is presented. It has been stated in many experiments that both the ‘willingness�to�accept’ and 

‘willingness�to�pay’ values differ both when riskless and risky options are considered. For exam�

ple, subjects with a commodity to sell invariably demand a price substantially in excess of that 

which subjects in a position to purchase it are prepared to pay (Kahneman, Knetsch and Thaler 

(1990). The disparity between the two values has also been observed for risky options (Schmidt, 

Traub, 2009). The experimentally determined WTA/WTP ratio assumes a value in the neighbor�

hood of 2 for a wide range of probabilities.  

The notion of WTA coincides with that of the lottery certainty equivalent; both reflect the 

amount of money one is ready to accept in order to forgo the game. The risk that the lottery may 

                                                 
10 The statistic Θ is the ratio of the “slopes” at a higher and lower region of the value function, according to Tversky 
and Kahneman (1992). For further details, please refer to Table 3.6 in their paper. 
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result in a zero outcome has to be taken into account. In this case, the investment will be negative 

and equal in value to the price paid (WTP). WTP can thus be regarded as the certainty equivalent 

of the loss portion of the lottery. Following (6.12), both values should satisfy the condition: 

 0 WTA 2WTP= +  (6.14) 

Thus  

 WTA / WTP 2= −  (6.15)     

which result is in accordance with the experimental data. The WTA�WTP disparity of risky op�

tions thus finds an interpretation in the phenomenon of loss aversion, according to the model pre�

sented. 

The question may be raised as to whether the proposed method of mixed prospect valua�

tion negates the mental adaptation process described in this paper. This is because people should 

adapt to the minimum or maximum lottery outcome, according to the process. The answer is in�

conclusive at this moment. The level of 0, which separates gains and losses, may prevail over all 

other levels in the adaptation process. This leads, however, to the gain�loss separability violations 

mentioned earlier in this Point. A solution that satisfies the new evidence while taking the adapta�

tion to those extreme lottery outcomes into account is certainly a future possibility.    

6.5� Illustrative Example 

Let us consider the following two lotteries to illustrate the valuation method: 

A: $300 with probability 3/5  B: $100 with probability 1/3 

    �$200 with probability 2/5         $50 with probability 1/3 

           �$100 with probability 1/3  

Not only are the lotteries mixed, they are of different ranges, so their certainty equivalents 

have to be determined. The gain and loss parts of both lotteries are considered separately. In 

those cases where they contain only one outcome, (6.2) applies.  

Lottery A is considered first. The certainty equivalent of its gain part is equal to 

( )1$300 3 / 5 $139.7g gCEA D−= =  and that of its loss part is equal to ( )1$200 2 / 5l lCEA D−= − =     

�$70.6. The certainty equivalent of A is then determined to be $139.7 /2 � $70.6 = �$0.75, accord�

ing to (6.13). The value of A is thus close to $0; the gain and loss parts of A have a similar im�

pact on the valuation. 

Lottery B is next considered. The certainty equivalent of its loss part equals 
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( )1$100 1 / 3 $30.8l lCEB D−= − = − . The gain part of B, however, has more than 1 outcome, so its 

equivalent probability has first to be calculated using (6.7): 

 
1 100 1 50 1 0 1 1 1

' 0.551
3 100 3 100 3 100 3 3 2

p D D D D
       = + + = + =       
       

 (6.16) 

The gain part of lottery B is thus substituted by a lottery offering a single prize of $100 

with a probability of 0.551. It follows that its certainty equivalent equals CEBg =  

( )1$100 0.551gD−  = $43.6. It further follows that the certainty equivalent of B equals $43.6 / 2 – 

$30.8 = �$9.0. It turns out that A is better than B by $8.25. 

A different result is achieved using Cumulative Prospect Theory. The value of prospect A 

is �21.6, whereas the value of prospect B is �20.4. This means that both prospects are of similar 

negative values with a small preference for B11. A clear disadvantage of this approach is that the 

prospect values are expressed in meaningless units.  
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The decision utility function was derived in Point 3 using linearly assessed outcomes. The 

function derived this way works well in most cases. An important objection raised by one re�

viewer was that the proposed model fails to interpret the following case. Let us suppose that Pmin 

= 0 and p = 0.5. The model implies that CE/P is constant for a given probability according to 

(6.2). This seems unrealistic, because this ratio should decrease as P becomes very large. For 

instance, somebody may well be indifferent between a certain $40 and a 50% chance of winning 

$100, but will definitely prefer a certain $40 million to a 50% chance of winning $100 million.  

This objection is justified. Therefore, a nonlinear perception utility function should be im�

plemented, especially for wider outcome ranges, as in the case considered. Such a function leads 

to a different evaluation of relative outcomes, than presented by (6.5): 

 
( ) ( )
( ) ( )

i min

i

max min

u x u P
r

u P u P

−
=

−
 (7.1) 

where u denotes the perception utility. “Perception utility” is a psychophysical function describ�

ing how stimuli, e.g. monetary outcomes, are perceived.  Therefore, ri would be more aptly 

                                                 
11 The example considered was suggested by a reviewer. In order to compare the predictive power of the two models, 
a quick test was conducted among the staff of Acnet, a small telecommunications company in Warsaw, Poland. 19 
people of varying sex, age, and educational level responded. Prospect A was chosen by 14 people (73.7%) and pros�
pect B by 5 people (26.3%). The decision utility model therefore made a more accurate prediction in this case.  
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named the relatively perceived outcome in this case. Per contra, “decision utility” describes how 

these perceived and framed outcomes are factored into risky decisions. In principle, perception 

utility represents the same concept as the Prospect Theory value function. The two functions, 

however, differ in detail in almost every respect (Kontek, 2011). One of the differences is that the 

perception utility function is assumed to be logarithmic as the power function used by Cumula�

tive Prospect Theory surprisingly fails to explain the case considered. This means that increasing 

prospect size does not alter preference, according to Cumulative Prospect Theory. This property 

of the theory is not accidental; Tversky and Kahneman (1992) refer to it as “preference homoge�

neity”.   

The inability of the power function to explain this particular case might account for the 

other known Cumulative Prospect Theory failures. Neilson and Stowe (2002) demonstrate that 

Cumulative Prospect Theory cannot simultaneously explain participation in lotteries and the orig�

inal Allais paradox. Blavatskyy (2005) similarly demonstrated that Cumulative Prospect Theory, 

with its power value function, could not explain the St. Petersburg Paradox. This preference 

change can only be explained by assuming a value function of decreasing elasticity, whereas the 

power function is of constant elasticity (Scholten & Read, 2010). They propose using the loga�

rithmic function ( ) ( )1 / ln 1v x a a x= + in order to explain similar observations.   

Using a logarithmic function to describe perception utility explains the case considered on 

the basis of the decision utility model. Please note that the relatively perceived outcome r is 

greater in the case of the lottery with greater outcomes: 

 
( )
( )

( )
( )

ln 1 40 ln 1 40,000,000

ln 1 100 ln 1 100,000,000

a a

a a

+ +
<

+ +
 (7.2) 

This shifts considerations more to the right part of the decision utility function, which 

represents greater risk aversion, and explains the preference for a sure payment in the case of a 

million dollar lottery. Such an explanation would not be possible with linearly assessed out�

comes, in which case the relative outcomes are the same: 

 
40 40,000,000

100 100,000,000
=  (7.3) 

or with perception utility described using a power function, in which case the ratio CE/P remains 

constant whatever the power coefficient value: 
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40 40,000,000

100 100,000,000

α α

α α=  (7.4) 

The latter case incidentally shows why Cumulative Prospect Theory with its power value 

function fails to interpret lotteries with increasing stakes. The ratio of outcome values does not 

change when these outcomes are multiplied by the same number; this property of the power func�

tion, known as “scale invariance”, leads to “preference homogeneity”. 

;� "����
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This article presents an alternative interpretation of the experimental data published by 

Kahneman and Tversky in their 1992 paper "Advances in Prospect Theory". Mental transforma�

tions, crucial to deriving the results, were discussed in the introduction. Later, the solution was 

derived without using the probability weighting function. The obtained function has a double S�

type shape that strongly resembles the utility curve specified by the Markowitz hypothesis 

(1952). The presented decision utility function shows that risk seeking appears for relative out�

comes below the aspiration level. On the other hand, risk aversion is present for relative out�

comes above the aspiration level. This pattern is reversed for losses. The description of risk atti�

tudes given by the convex�concave�convex�concave shape of the decision utility function substi�

tutes the fourfold pattern introduced by CPT.  

The essential feature of the model presented is that lotteries under consideration are al�

ways framed before making decision and decision utility is expressed in terms of probability. 

This results in a multi�step valuation process reflecting mental processes during decision making. 

The lottery is first framed as the result of mental adaptation and prospect scaling transformation. 

This operation plays a crucial role in the model. Framing leads people to consider changes in 

wealth in relative, rather than absolute terms (see also Kontek, 2009). In the next step the lottery 

is simplified to a two�outcome lottery and its decision utility (equivalent probability) is deter�

mined. This utility is finally transformed back to the absolute outcome scale in order to calculate 

the lottery certainty equivalent. The psychophysical perception of outcomes should additionally 

be implemented in the process if the lotteries under consideration are of wider outcome ranges. 

As the whole, the model proposed provides a fully “holistic” approach to lottery valuation simi�

larly to Expected Utility or Cumulative Prospect Theory. It allows, however, the inclusion of heu�

ristics and stopping rules at each step of the decision process. This reflects the tendency to sim�

plify decisions in order to save time and limited brain resources.  
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Each step of the process presented in this paper is based on well known and well docu�

mented mental transformations, and is described in simple mathematical terms. The decision util�

ity model follows the Expected Utility Theory method of assessing multi�outcome lotteries. De�

spite using individual probabilities, it avoids stochastic dominance violations. Returning to the 

classical notion of probability makes the model easy to apply in real world conditions. The model 

may be regarded as superior to other choice theories by virtue of the arguments presented.  

One issue requires further clarification. Recently evidenced gain�loss separability viola�

tions have called the approach of evaluating mixed prospects into question. Tversky and Kahne�

man’s data, obtained separately for gain and loss prospects, were used in this paper to derive the 

decision utility function. Therefore no decision utility function can be presented for mixed pros�

pects without any further data sets or new experiments. Although the approach proposed seems to 

perform better than that of Cumulative Prospect Theory, the valuation of mixed prospects seems 

to be one of the most important subjects for future research. 

 

��4�����$������

I would like to thank several people for their discussions, comments and other assistance: Harry 

Markowitz, Tomasz Berent, Konrad Rotuski, Tadeusz Tyszka and the participants of seminars, 

Joanna Sokołowska, Steve Canty, Jonathan Leland, Michael Birnbaum, Ulrich Schmidt, Michał 

Krawczyk, and the staff of Acnet. Special thanks to an anonymous reviewer for comments which 

led to substantial changes and improvements of the manuscript. 

 

�%%����+����

�
�$������+%�
�������������%�����/������	 �
�4��������/������-�77�.*�

�
x1 (in $) x2 (in $) Probability p of x2 CE for Gains ($) CE for Losses ($) 

0 50 0.10 9 �8 

0 50 0.50 21 �21 

0 50 0.90 37 �39 

0 100 0.05 14 �8 

0 100 0.25 25 �23.5 

0 100 0.50 36 �42 

0 100 0.75 52 �63 

0 100 0.95 78 �84 

0 200 0.01 10 �3 

0 200 0.10 20 �23 

0 200 0.50 76 �89 

0 200 0.90 131 �155 
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0 200 0.99 188 �190 

0 400 0.01 12 �14 

0 400 0.99 377 �380 

50 100 0.10 59 �59 

50 100 0.50 71 �71 

50 100 0.90 83 �85 

50 150 0.05 64 �60 

50 150 0.25 72.5 �71 

50 150 0.50 86 �92 

50 150 0.75 102 �113 

50 150 0.95 128 �132 

100 200 0.05 118 �112 

100 200 0.25 130 �121 

100 200 0.50 141 �142 

100 200 0.75 162 �158 

100 200 0.95 178 �179 
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Let us assume two lotteries, A and B, which have the same outcome range but different 

cumulative outcome distributions: FA and FB respectively. Lottery A first�order stochastically 

dominates lottery B if: 

 ( ) ( )A BF x F x≤  (1.1) 

for all x, with strict inequality at some x. According to the decision utility model, FA and FB are 

normalized to obtain the cumulative relative outcome distributions GA and GB defined in the [0, 

1] range. A condition similar to (1.1), viz. 

 ( ) ( )A BG r G r≤  (1.2) 

likewise holds in this case for all r in the [0, 1] range, with strict inequality at some r. The deci�

sion utility formula (6.9) takes the following form: 

 ( ) ( )
1

0

'p D r dG r= ∫  (1.3) 

where dG(r) denotes the probability density function. Integrating (1.3) by parts results in the fol�

lowing decision utility for lottery A: 

 ( ) ( ) ( ) ( ) ( ) ( )
1 1

1

0
0 0

' 1|A A A Ap D r G r dD r G r dD r G r= − = −∫ ∫  (1.4) 

Similarly, for lottery B one gets: 
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 ( ) ( )
1

0

' 1B Bp dD r G r= − ∫  (1.5) 

It is easy to state that ' 'A Bp p>  if condition (1.2) holds. This means that if A first�order 

stochastically dominates B then the decision utility of A is greater than that of B. This holds for 

any decision utility function D(r). Considerations on A and B having different ranges are left for 

future writings. 
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