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Abstract

This article analyzes empirically the main existing theories on income and pop-

ulation city growth: increasing returns to scale, locational fundamentals and random

growth. To do this we implement a threshold nonlinearity test that extends standard

linear growth regression models to a dataset on urban, climatological and macroeco-

nomic variables on 1,175 U.S. cities. Our analysis reveals the existence of increas-

ing returns when per-capita income levels are beyond $19, 264. Despite this, income

growth is mostly explained by social and locational fundamentals. Population growth

also exhibits two distinct equilibria determined by a threshold value of 116,300 in-

habitants beyond which city population grows at a higher rate. Income and population

growth do not go hand in hand, implying an optimal value of population beyond which

income growth stagnates or deteriorates.
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1 Introduction

There are differences in the growth rates of cities. It is evident that some cities (or regions)

are more productive than others, or attract more population, and several explanations have

been proposed to try to explain these differentiated behaviors. Following Davis and We-

instein (2002), these theoretical explanations can be grouped into three main theories: the

existence of increasing returns to scale, the importance of locational fundamentals and the

absence of both (random growth).

The first theory is supported by the theoretical models of the New Economic Geog-

raphy. These models often obtain nonlinear behaviours and multiple equilibria as a con-

sequence of their basic assumptions, very different from the classic framework: mobile

factors, the existence of transport costs and centrifugal and centripetal forces (centripetal

forces favour the agglomeration of activity, such as increasing returns, whereas centrifugal

forces favour dispersion, such as congestion costs), the presence of Marshallian external

economies, the importance of expectations and of the small initial advantages, which can

eventually produce a global advantage (economics of qwerty), etc. Literature on urban in-

creasing returns, also known as agglomeration economies, is wide (see the meta-analysis

by Melo et al., 2009). The traditional sources of external economies of scale are labor

market pooling, input sharing, and knowledge spillovers (Marshall, 1920). Recently, Du-

ranton and Puga (2004) provide an alternative perspective; agglomeration economies could

be driven by sharing, matching or learning mechanisms. In addition, there is also evidence

that other factors contribute to agglomeration: home market effects, consumption oppor-

tunities, and rent-seeking (see the survey by Rosenthal and Strange, 2004). The role of

sorting and selection has also been emphasized (Combes et al., 2008; Combes et al., 2009).

Locational fundamentals are exogenous factors linked to the physical landscape, such

as temperature, rainfall, access to the sea, the presence of natural resources or the avail-

ability of arable land. These characteristics are randomly distributed across space and,

although they may have played a crucial role in early settlements, one would expect that
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their influence decreases over time. However, empirical studies demonstrate that their im-

portant influence in determining agglomeration still remains. For the case of the United

States, Ellison and Glaeser (1999) state that natural advantages, such as the presence of a

natural harbour or a particular climate, can explain about 20 percent of the observed geo-

graphic concentration. Glaeser and Shapiro (2003) find that in the 1990s people moved to

warmer, dryer places, and Rappaport (2007) explains that a large portion of weather-related

movement appears to be driven by an increased valuation of nice weather as a consumption

amenity. Black and Henderson (1998) conclude that the extent of city growth and mobility

are related to natural advantages or geography. Beeson et al. (2001) show that access to

transport networks, either natural (oceans) or produced (railroads) was an important source

of growth during the period 1840-1990, and that climate is one of the factors promoting

population growth. And Mitchener and McLean (2003) find that some geographical char-

acteristics account for a high proportion of the differences in productivity levels between

American states.

Random growth theories are based on stochastic growth processes and probabilistic

models. The most important models are Champernowne (1953), Simon (1955), and more

recently, Gabaix (1999) or Córdoba (2008). In the case of population growth these models

are able to reproduce two empirical regularities well-known in urban economics: Zipf’s

and Gibrat’s laws (or the rank-size rule and the law of proportionate growth). Both are

considered to be two sides of the same coin. While Gibrat’s Law has to do with the pop-

ulation growth process, Zipf’s Law refers to its resulting population distribution. They are

closely linked; if the city sizes exhibit random growth rates (Gibrat’s Law) then the city

size distribution will satisfy Zipf’s Law (Gabaix, 1999).

There are many studies on each of the different theories. However, literature consider-

ing the alternative approaches at the same time is shorter; only Davis and Weinstein (2002,

2008) and Bloom, Canning and Sevilla (2003) adopt such a broad perspective. The first

authors support a hybrid theory in which locational fundamentals establish the spatial pat-

tern of relative regional densities, but increasing returns help to determine the degree of

3



spatial differentiation in Japanese cities. Similarly, Bloom, Canning and Sevilla (2003)

study the influence of climatological and geographical variables on growth, at a country

level. These authors develop a Markov regime-switching model to analyze whether lo-

cational fundamentals have additional explanatory power to describe per-capita income

growth compared to nonlinear models based on lagged per-capita income. Finally, Davis

and Weinstein (2008) develop a threshold regression framework for distinguishing the hy-

pothesis of unique versus multiple equilibria, and apply it to the Allied bombing of Japan

during World War II finding evidence against multiple equilibria. Bosker et al. (2007)

replicate this analysis for the bombing of Germany during World War II and their results

support a model with two stable equilibria.

Our work contributes to this literature by developing a formal nonlinearity test robust

to the presence of locational variables that we apply to urban, climatological and macroe-

conomic data from U.S. cities in the 1990s. This nonlinear model allows us to test for the

presence of multiple growth regimes, which is one of the core topics in urban and regional

economics, and one of the advantages of our procedure is that we can identify the threshold

value. Our results provide evidence of increasing returns to scale on both per-capita income

and population growth. At the same time, we observe that the more explicative variables

are those that correspond to socioeconomic and environmental variables, what we call city

characteristics and locational fundamentals. One of the main conclusions of our model is

that the largest U.S. cities have increasing returns to scale on population growth but are not

in the group of cities with highest per-capita income. One possible explanation for this is

that despite the concentration of human capital, technology and strong financial and public

administration sectors, these cities also have higher inflation rates, more taxes and expen-

sive housing. Also, these cities suffer from a large heterogeneity in the characteristics of

their inhabitants due to more intense immigration inflows, concentration of ethnic minori-

ties, or creation of ghettos, with difficult access to the labour market causing per-capita

income to drop. In equilibrium, these individuals should flee to less densely populated

cities and more employment opportunities. Instead, we observe that the dynamics of popu-
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lation growth are more persistent than those of per-income growth, leading us to think that

these large cities can become poverty traps for these disadvantaged groups.

The rest of the article is structured as follows. Section 2 sets out the econometric

framework and discusses the different hypothesis tests of interest. Section 3 discusses the

empirical results for a database containing 1,175 U.S. cities and Section 4 concludes. The

algorithm with the econometric nonlinearity test is found in the Appendix.

2 Econometric Methodology: Estimation and Testing

An equation similar to the national income identity for an open economy is used to measure

city income. The structural factors contributing to city income are consumption, invest-

ment, trade, and local government expenditures, among others. All these variables depend

in turn on a set of socioeconomic and geographical variables, denominated city charac-

teristics and locational fundamentals hereafter, that determine the economic size of a city.

These variables include literacy variables as schooling, socioeconomic variables as produc-

tive structure or unemployment rate, and geographical and environmental variables such as

temperature, climate or access to the sea. Our interest is then in studying the influence of

these explanatory variables in the aggregate measure of city per-capita income. This vari-

able is obtained from modeling separately city income growth and population growth. For

both aggregate response variables we have two working hypotheses defined by a linear and

a nonlinear model on a cross-sectional two-period model.

Let yio and lio denote log initial income and log initial population for city i, yif and lif

are the corresponding terminal period variables and xio is a vector of socio-economic and

geographical indicators. The linear model for income growth is

∆yi = β0 + β1yio + β′

2xio + εi, (1)

with ∆yi = yif −yio, β0 the intercept of the model, (β1, β
′

2) a vector of parameters describ-
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ing the marginal effect of the regressors, and εi is an independent and identically distributed

(iid) error term with constant variance.

The study of population growth follows similarly. Let Lio be the initial level of popula-

tion and Lif terminal period population levels; the structural equation to describe popula-

tion in city i is

Lif = birthsif − deathsif + net immigration flowsif + Lio.

Since the interest is in analyzing the aggregate dynamics of population growth in terms of

xio we concentrate, instead, on the regression equation

∆li = η0 + η1lio + η′2xio + ε∗i , (2)

with ∆li = lif − lio and ε∗i a mean zero iid error term with constant variance, that can be

correlated to εi for some i; η0, η1 and η2 are the parameters describing the marginal effect

of the explanatory variables. Economic foundations for equation (2) can be found in the

theoretical framework of urban growth put forward in Glaeser et al. (1995), and further

explicated in Glaeser (2000). This is a model of spatial equilibrium similar to the Roback

(1982) model, where the relationship between population growth and initial characteristics

is determined by changes in the demand for some aspect of the city’s initial endowment

in production or consumption, or by the effect of this initial characteristic on productivity

growth.

Putting together expressions (1) and (2) we can obtain the regression equation for per-

capita income. This is given by

∆
.
yi = γ0 + γ1

.
yio + γ2lio + γ′

3xio + vi, (3)

with
.
yi = yi − li denoting per-capita income, γ0 = β0 − η0, γ1 = β1, γ2 = β1 − η1,

γ3 = β2−η2 and vi = εi−ε∗i a mean zero error term with variance equal to the sum of each
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error variance contribution minus twice the covariance term. This is the well-known ex-

pression of the conditional β-convergence (Evans, 1997; Evans and Karras, 1996a; 1996b).

There are several theoretical economic growth models that can produce equation (3) at the

state-, county-, or region- level. For a neoclassical growth model, see Barro and Sala-i-

Martin (1992). The nonlinear alternative to (3) is motivated by the interest in macroeco-

nomics and the empirical growth literature in determining the existence of unique or mul-

tiple equilibria in per-capita income growth1. Thus, theoretical papers on the existence of

convergence clubs or conditional convergence are, for example, Baumol (1986), De Long

(1988) or Quah (1993, 1996, 1997). In our framework, the nonlinear alternative, assuming

the presence of at most two regimes in per-capita income, is

∆
.
yi = γ0 + γ11

.
yioI(

.
yio ≤ u) + γ12

.
yioI(

.
yio > u) + γ2lio + γ′

3xio + wi, (4)

with I(·) an indicator variable taking the value of one when the argument is true and zero

otherwise; and wi a new iid mean zero error term2. For γ11 < γ12, the model describes the

existence of increasing returns to scale for values of initial per-capita income greater than

a threshold value u defined on a compact space U ∈ R.

This model extends the study of Durlauf and Johnson (1995) by providing a formal

procedure for dividing the sample3. Equations (3) and (4) can be estimated by ordinary

least squares as long as the error term is uncorrelated to
.
yo and the xo vector. It is worth

mentioning that if there is no threshold effect this methodology causes a lack of efficiency

in parameter estimation due to an artificial split of the available sample. Likewise, if the

threshold effect is known to happen in some specific variable of the set xo one can alter-

1We consider the possibility of only one or two different growth regimes, as the maximum number of

multiple equilibria found in previous works is two (Bosker et al., 2007). A similar study can be easily carried

out for more than two regimes. The qualitative gains obtained from including more regimes are outweighted

by the increase in computational complexity.
2Alternatively, the nonlinear model (4) can be obtained from considering a threshold nonlinearity in either

model (2), (3) or both. For simplicity we choose to describe the nonlinearity in the per-capita income model

rather than in the aggregate variables yi and li.
3Possible alternatives to the use of nonlinear models for the conditional mean of per-capita economic

growth are the use of quantile regression techniques. These methods pursue a different strategy; they are

concerned with analyzing nonlinearities in the distribution of per-capita growth. This analysis is however

beyond the scope of this paper.
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natively devise nonlinear methods that only affect that variable and allow to use the full

sample to estimate the relation between the response variable and the rest of explanatory

variables. Statistically, this produces more efficient estimators, on the other hand, there is

the inconvenience of having more convoluted models.

2.1 Estimation of the different models

Before discussing the test statistics and asymptotic theory we note that the estimation of

the above models can be done via ordinary least squares (OLS). Let zi(u) = [1
.
yioI(

.
yio ≤

u)
.
yioI(

.
yio > u) lio xio ] for any given u, and γ(u) be a vector with the coefficients of

the nonlinear model (4). For a sample of N observations, Z(u) and ∆Y denote the corre-

sponding matrix and vector of observations. Model parameters are estimated by

γ̂(u) = (Z(u)′Z(u))
−1

Z(u)′∆Y.

The vector of residuals from the cross-sectional regression is e(u) = ∆Y − Z(u)γ̂(u).

Following Chan (1993) and Hansen (1997) the estimation of the threshold parameter is

done by minimization of the concentrated sum of squared residuals of each model: Ŝ(u) =

e(u)′e(u). Hence the least squares estimator of u is

û = argmin
u∈U

Ŝ(u), (5)

with U a compact set in the positive domain of the real line. The residual variance of

the nonlinear model is σ̂2(u) = 1
N−1

Ŝ(u). Under the null linear hypothesis the residual

variance is σ̂2
o = 1

N−1

N∑
n=1

e2o,i, with eo,i = ∆yi − γ̂0 − γ̂1yi0 − γ̂2lio − γ̂′

3xio obtained from

model (3) by OLS methods.
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2.2 Testing the three leading theories

The above models permit to derive hypothesis tests for each of the leading hypotheses in the

analysis of cross-sectional city growth: increasing returns, random growth and locational

fundamentals. We use the methods developed in Hansen (1997) to test for the existence

of multiple equilibria in cross-sectional growth models. The nonlinear model (4) allows

us to test for the different hypotheses using simple likelihood ratio tests, also denominated

in the regression literature as F-tests. For completeness, we also analyze the existence of

increasing returns to scale in population growth and the statistical validity of Gibrat’s law.

EXISTENCE OF INCREASING RETURNS VS. LOCATIONAL FUNDAMENTALS

The first hypothesis under study is the existence of increasing returns to scale. Under

increasing returns to scale accumulation of output beyond a threshold u makes cities more

productive4. In model (4) this hypothesis is the alternative of the test HOI : γ11 = γ12 vs

HAI : γ11 ̸= γ12. There are several methods to test the hypothesis. As Hansen (1997),

we focus on F-tests. The choice of threshold u is endogenous to the data, hence standard

econometric asymptotic theory cannot be applied, instead, we need to approximate the p-

value of the test by simulation methods. The method is outlined in the Appendix and its

asymptotic validity is proved in Hansen (1996).

The second hypothesis of interest is the statistical significance of locational fundamen-

tals. In order to be robust to the existence of increasing returns in per-capita income we

propose to test the hypothesis H0L : γ3 = 0 vs HA,L : γ3 ̸= 0 in model (4). One of

the few and pioneering studies concerned with the impact of locational fundamentals is

Bloom, Canning and Sevilla (2003). These authors are interested in modeling the presence

of nonlinearities in per-capita income growth from country-level data using a model that

incorporates climatological and geographical variables. These authors propose a Markov

4This is a macroeconomic approach to increasing returns. However, some of our exogenous variables,

i. e. human capital variables, are considered in the literature as source of aglomeration economics from a

microeconomic perspective, see Duranton and Puga (2004). This micro-treatment of the model is beyond the

scope of this paper.
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regime-switching model in which the probabilities that determine the change of regime de-

pend on these environmental (locational fundamentals) variables. Recently, Bleakley and

Lin (2010) examine portage sites in the U.S. South, Mid-Atlantic and Midwest as a natural

experiment providing evidence of multiple equilibria, history dependence, and the exis-

tence of strong local aggregate scale economies in explaining differences in density and

productivity across locations.

Another competing theory for explaining income growth is that of random growth, that

is, no explanatory variable helps to systematically explain city growth income. The null

hypothesis in model (4) is HOR : γ11 = γ12 = γ2 = γ3 = 0.

POPULATION GROWTH

A hypothesis test related to the latter hypothesis of random growth is Gibrat’s law.

Under this hypothesis population growth is random, and hence cannot be explained by past

growth, or other urban or macroeconomic variables. This hypothesis can be implemented

from different regression models. The simplest case considers

∆li = η0 + η1lio + ε∗i . (6)

More convoluted versions of the test, as model (2), also allow for possible effects of urban,

climatological or macroeconomic variables. In particular, we look at the population coun-

terpart of (4) that considers possible nonlinearities of lagged population levels under the

presence of locational fundamentals. The relevant regression model is

∆li = η0 + η11lioI(lio ≤ ν) + η12lioI(lio > ν) + η2xio + εi, (7)

with ν the population threshold value.

In the subsequent empirical analysis, Gibrat’s law is tested using regression equations

(6) and (7) and the simulation methods above discussed.
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3 Empirical Results

This section illustrates the above econometric models and tests for data from all cities in

the Unites States with more than 25,000 inhabitants in the year 2000 (1,175 cities). The

dataset includes urban, climatological, locational and macroeconomic variables on all these

1,175 cities.

3.1 Data

The data came from the census5 for 1990 and 2000. We identified cities as what the U.S.

Census Bureau calls incorporated places. Two census designated places (CDPs) are also

included (Honolulu CDP in Hawaii and Arlington CDP in Virginia). The U.S. Census

Bureau uses the generic term “incorporated place”to refer to a type of governmental unit

incorporated under state law as a city, town (except the New England states, New York,

and Wisconsin), borough (except in Alaska and New York), or village, and having legally

prescribed limits, powers, and functions. On the other hand there are the unincorporated

places (which were renamed Census Designated Places, CDPs, in 1980), which designate a

statistical entity, defined for each decennial census according to Census Bureau guidelines,

comprising a densely settled concentration of population that is not within an incorporated

place, but is locally identified by a name. They are the statistical counterpart of the in-

corporated places. The difference between them is in most cases merely political and/or

administrative. Thus for example, due to a state law of Hawaii there are no incorporated

places there; they are all unincorporated.

The geographic boundaries of census places can change between censuses. As in

Glaeser and Shapiro (2003), we address this issue by controlling for change in land area.

Although this control may not be appropriate because it is also an endogenous variable that

may reflect the growth of the city, none of our results change significantly if this control

5The US Census Bureau offers information on a large number of variables for different geographical

levels, available on its website: www.census.gov.
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is excluded. Moreover, we also eliminated cities that either more than doubled land area

or lost more than 10 percent of their land area6. This correction eliminates extreme cases

where the city in 1990 is something very different from the city in 2000. The explicative

variables chosen are similar to those in other studies on city growth in the U.S. and city

size, and correspond to the initial 1990 values. The influence of some of these variables

on city size has been empirically proven by other works (Glaeser et al., 1995; Glaeser

and Shapiro, 2003). Our aim is to introduce variables to control for some of the already

known empirical determinants of city growth (human capital, density, or weather). Table 1

presents the variables, which can be grouped in four types: urban sprawl variables, human

capital variables, productive structure variables, and geographical variables.

Urban sprawl variables are basically intended to reflect the effect of city size on urban

growth. For this, we use population density (inhabitants per square mile), growth in land

area from 1990-2000 (as a control for boundary changes), and the variable median travel

time to work (in minutes) representing the commuting cost borne by workers. Commuting

time is endogenous and depends in part on the spatial organization of cities and location

choice within cities. The median commuting time may reflect traffic congestion in larger

urbanized areas, but might also reflect the size of the city in less densely populated areas,

or the remoteness of location for rural towns. This is one of the most characteristic costs

of urban growth, explicitly considered in some theoretical models; that is, the idea that as

a city’s population increases, so do costs in terms of individuals’ travel time to work.

Regarding human capital variables, there are many studies demonstrating the influence

of human capital on city size, as cities with better educated inhabitants tend to grow more.

Simon and Nardinelli (2002) analyse the period 1900–1990 for the U.S. and conclude that

cities with individuals with greater levels of human capital tend to grow more, and Glaeser

and Saiz (2003) analyse the period 1970–2000 and show that this is due to skilled cities be-

ing more productive economically. We took two human capital variables: Percentage pop-

ulation 18 years and over: High school graduate (includes equivalency) or higher degree,

6Land area data also comes from US Census Bureau: http://www.census.gov/population/www/censusdata/places.html,

and http://www.census.gov/geo/www/gazetteer/places2k.html.
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and Percentage population 18 years and over: Some college or higher degree. The former

represents a wider concept of human capital, while the latter centres on higher educational

levels (some college, Associate degree, Bachelor’s degree, and Graduate or professional

degree).

The third group of variables, referring to productive structure, contains the unemploy-

ment rate and the distribution of employment by sectors. The distribution of labor among

the various productive activities provides valuable information about other city character-

istics. Thus, the employment level in the primary sector (agriculture; forestry; fishing and

hunting; and mining) also represents a proxy of the natural physical resources available to

the city (cultivable land, port, etc.) This is also a sector which, like construction, is char-

acterized by constant or even decreasing returns to scale. Employment in manufacturing

informs us of the level of local economies of scale in production, as this is a sector which

normally presents increasing returns to scale. The level of pecuniary externalities also de-

pends on the size of the industrial sector. Marshall put forward that (i) the concentration of

firms of a single sector in a single place creates a joint market of qualified workers, benefit-

ing both workers and firms (labour market pooling); (ii) an industrial centre enables a larger

variety at a lower cost of concrete factors needed for the sector which are not traded (input

sharing), and (iii) an industrial centre generates knowledge spillovers. This approach forms

part of the basis of economic geography models, along with circular causation: workers go

to cities with strong industrial sectors, and firms prefer to locate nearer larger cities with

bigger markets. Thus, industrial employment also represents a measurement of the size

of the local market. Another proxy for the market size of the city is the employment in

commerce, whether retail or wholesale. Information is also included on employment in the

most relevant activities in the services sector: Finance, insurance, and real estate, Educa-

tional, health, and other professional and related services, and employment in the Public

administration.

We disaggregate “geography” into physical geography and the socio-economic envi-

ronment. We try to control for both types of characteristics. We use a temperature index as
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a measure of weather7. The temperature discomfort index (TEMP INDEX) represents

each city’s climate amenity, and it is constructed as in Zheng et al. (2009) or Zheng et al.

(2010). It is defined as:

TEMP INDEXk =

√√√√√
(Winter temperaturek −max (Winter temperature))2+

+(Summer temperaturek −min (Summer temperature))2
.

It represents the distance of the k−city’s winter and summer temperatures from the mildest

winter and summer temperatures across the 1,175 cities. A higher TEMP INDEX

means a harsher winter or a hotter summer, which makes the city a harder place where

to live or to produce.

We also include several dummies which give us information about geographic localiza-

tion, and which take a value of one depending on the region (Northeast Region, Midwest

Region, South Region or the West Region) and the state in which the city is located. These

dummies show the influence of a series of variables for which individual data are not avail-

able for all places, and which could be directly related to the geographical situation (access

to the sea, presence of natural resources, etc.), or, especially, the socio-economic environ-

ment (differences in economic and productive structures).

3.2 Econometric analysis

The first study concerns the existence of increasing/decreasing returns to scale in per-capita

income. The p-value obtained from the simulation method discussed in the Appendix is

zero for the average, exponential average and supremum tests applied to model (4). The

supremum test also provides a threshold estimate for initial per-capita income of ûn =

9.866 (≈ $19, 264). This threshold estimate defines two regimes characterized by the slope

parameter γ̂11 = −0.1356 for
·

yo below 9.866 and γ̂12 = −0.1308 otherwise. There are

7These data are the 30-year average values in Fahrenheit degrees computed from the data recorded

during the period 1971-2000. Source: U.S. National Oceanic and Atmospheric Administration

(NOAA), National Climatic Data Center (NCDC), Climatography of the United States, Number 81

(http://cdo.ncdc.noaa.gov/cgi-bin/climatenormals/climatenormals.pl).
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two distinct equilibria; also, the value of the slope parameter estimates implies increasing

returns for cities with income levels in 1989 beyond the threshold. There are 163 cities

in this group8. The p-value of the nonlinearity test also demonstrates that the difference

between parameter estimates is statistically significant.

These results are consistent with economic growth theory in what the sign of the pa-

rameters is negative indicating convergence towards equilibrium. Barro and Sala-i-Martin

(1992), Evans and Karras (1996a, 1996b), Sala-i-Martin (1996), and Evans (1997) also find

statistically significant β-convergence effects using U.S. state-level data, and Higgins et al.

(2006) use U.S. county-level data to document statistically significant β-convergence ef-

fects across the United States. Our analysis is more informative since it provides empirical

evidence of nonlinear dynamics in per-capita income growth across cities. A more detailed

reveals that California is the state with more cities in the high growth group: 38% of the

cities in this group are in California.

By looking at the average value of the variables under study (Table 4) we observe that

cities in the wealthiest group not only share high per-capita wealth but also high educational

levels, high population growth and are densely populated cities. The descriptive analysis

of the sectors of productive activity also reveals that these cities’ main economic activity is

services: financial, insurance, real estate and educational, health and other professional and

related services. Interestingly, the wealthiest U.S. cities do not rely heavily in the Public

Administration sector that contributes less to city development compared to middle and

lower income cities.

The second question that we aim to answer is whether locational fundamentals add

explanatory power to the nonlinear growth model discussed above. Our nonlinear test

for the hypothesis H0L : γ3 = 0 in model (4) reveals a strong statistical significance of

locational fundamentals. We also adapt our testing framework to test for H ′

0L : γ11 =

γ12 = 0. We obtain a p-value of zero that indicates that U.S. cities had increasing returns

on per-capita income growth in the 1990s. Nevertheless, the comparison of adjusted R2s

8The list of cities within this group is shown in Appendix.
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between the unreported regressions including 69 explanatory variables indicates that the

main driving force explaining income growth is locational fundamentals. A comparison

of parameter estimates between the restricted and unrestricted version of model (4) shows

important differences. This finding suggests the presence of endogeneity in the restricted

regression due to the correlation between locational fundamentals in 1990 and that year’s

income and highlights the importance of locational fundamentals also as a control variable

to assess correctly per-capita income growth.

To add robustness to the analysis we also control for the effect of the location of the city

within U.S. states. Given that our analysis suggests that these variables are not statistically

significant in most cases we repeat the estimation and above tests for a smaller set of loca-

tional fundamentals without considering the ’state’ dummy variables. Table 2 reports the

results of the different regression equations and test statistics. The outcomes of the differ-

ent hypothesis tests are qualitatively identical to the former analysis with the long model.

Interestingly, our results are consistent with related studies. For example, higher levels of

the wider measure of human capital (high school or higher degree) have a positive and sig-

nificant effect on income growth. Also, as Glaeser et al. (1995) for the period 1960–1990,

we also observe that the percentage of employment in manufacturing has a negative effect

on income growth; its explanation is related to the depreciation of capital, suggesting that

cities followed the fortunes of the industries that they were initially devoted to. The effect

of the temperature index is also negative, indicating that a higher index means that the city

is a harder place in which to produce.

The second part of the analysis on city growth concerns the study of population. We

first compute the test H0G : η1 = 0 for the simple regression relating population growth

and log of population in 1990. We obtain a p-value of zero that leads us to reject Gibrat’s

law, confirming that this law is a good approximation in the long run but not so much in

the short run. Two further tests for the marginal effect of per-capita income and locational

fundamentals show that the effect of both sets of variables do matter to explain population

growth.
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The last empirical exercise is to test for the nonlinearity of the regression model (7).

The p-values corresponding to the exponential average and supremum tests are zero. The

threshold estimate is ûn = 11.6639 (≈116,300 inhabitants) leaving 149 observations be-

yond the threshold9 and dividing the sample into two groups in terms of population growth.

The parameter estimate in the low growth regime is η̂21 = −0.044 and η̂22 = −0.036 in

the high growth regime. The p-value of the test and the differences in parameter estimates

lead us to conclude that population growth exhibits increasing returns that can produce the

existence of population city clusters.

Table 4 also provides very interesting insights on the characteristics of the group of

cities with largest population growth. Most of these cities are in the South of the U.S.

and share some features with the group of wealthiest cities. For example, they seem to be

largely populated cities with dense areas and growth in the land area below the total average

across U.S. cities. In contrast to the former group we observe now that cities in the upper

population growth regime are also characterized by a strong Public Administration sector,

high unemployment rates and low educational levels. The average per-capita income level

for this group is below the average. It is interesting to note that the largest U.S. cities are

also those that grow faster. This analysis is repeated suppressing the effect of dummy U.S.

state variables leading to qualitatively similar results. Table 3 details the specific marginal

effects of the different variables. It is worth mentioning the differences in the magnitude

and sign of the model parameter estimates for the different regressions. This gives a clear

indication of the existence of endogeneity in the data when relevant explanatory variables

are excluded from the analysis. The results in Table 3 also reveal that the unemployment

rate has no significant effect on income growth but a clear negative influence on population

growth. Unemployment’s main effect concerns individual’s movements rather than city’s

productivity. We also observe that cities with high unemployment experience lower pop-

ulation growth rates. This result is in contrast to the previous finding that noted that high

population growth cities have higher than average unemployment rates. Both results com-

9The composition of this group is shown in Appendix.
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bined stress the heterogeneity in living conditions observed in individuals living in these

cities. The results also show opposing behavior for the two human capital variables under

study; increases in the percentage of population with the highest education level (some col-

lege or higher degree) have a positive impact on population growth, while the wider concept

of human capital (high school graduate or higher degree) has a significant negative effect.

These results coincide with those of other studies analyzing the influence of education on

city growth. Glaeser and Shapiro (2003) also find that workers have a different impact

depending on their education level10 (high school or college). Finally, the study of envi-

ronmental variables reveals that the influence of climate on population growth is weaker.

Temperature index has a negative effect on growth, as expected: a higher index means that

the city is a harder place in which to live. However, this coefficient lost significance when

all the variables were included.

4 Conclusion

The empirical analysis of city growth has been open to debate by researchers in Urban and

Geographical Economics since long ago. Whereas some studies claim that city growth is

nonlinear due to increasing returns to scale, other studies postulate that city growth is lin-

ear but affected by locational fundamentals, that is, the socioeconomic and geographical

conditions defining a city are the key variables to characterize city growth. So far, these

studies have been divided into separate analyses of population growth and per-capita in-

come growth, and more importantly, most of these studies have been based on econometric

methods based on estimation but where no formal statistical test has been implemented.

This study has proposed a battery of threshold nonlinearity tests for different inter-

twined hypotheses concerning the dynamics of per-capita income and population growth.

The tests make use of formal nonlinearity tests for the conditional mean of city growth, and

are well suited to test for the existence of increasing returns to scale/locational fundamen-

10In their sample of cities, the different effect is completely due to the impact of California.
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tals in a framework robust to the presence of the other phenomenon, that is, locational fun-

damentals/increasing returns. The conclusions of our empirical analysis covering a large

sample comprising 1,175 U.S. cities are that there are small, although statistically signif-

icant increasing returns to scale on city income growth. Nevertheless, the most important

variables to explain income growth are locational fundamentals. We claim that a proper

analysis of city income growth needs to account for both types of explanatory variables.

For population growth we also observe increasing returns: larger cities grow at a faster

pace than smaller cities. As for per-capita income growth, locational fundamentals have

also more explanatory power than lagged population to describe population growth.

The split between cities obeying per-capita income differences is more informative than

the division for population growth. The wealthiest cities are those that have highest edu-

cational levels, blue collar jobs in the financial and educational sectors, and surprisingly,

have a relatively smaller contribution of the public administration sector than the average

U.S. city to per-capita income. These cities are also within the group of cities that grow

at a faster pace and more densely populated. Our descriptive analysis also suggests that

in the group of cities with increasing returns to scale on population growth there are also

cities with high unemployment rates, a large share of public administration workers and

lower educational levels. A subgroup from this class of cities with increasing returns on

population growth is that of the largest U.S. cities. These cities are important centres of

economic and industrial activity, but at the same time, have higher inflationary pressures,

more expensive housing or a higher tax burden. They also attract domestic and foreign im-

migration, unskilled workers and people with low income perspectives that bring down the

average per-capita income. The creation of ghettos of low income individuals or from dis-

advantaged ethnic minorities is also more likely to occur in large cities than in middle and

small size cities. All these factors play an important role in the large variability observed

in their per-capita income levels.

Our results also show that the nonlinear dynamics in population growth are more per-

sistent than the corresponding nonlinear income growth dynamics reinforcing the fact that
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as cities become larger their per-capita income stagnates or even deteriorates, as it can be

the case if current income levels drop below the threshold. This empirical analysis suggests

the existence of an optimal size beyond which cities lose living standards. More work is

needed however to formalize this idea.
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Appendix

Algorithm to approximate p-value of nonlinearity test

This section outlines the methodology to approximate via boostrap methods the p-value of

the nonlinearity test. To do this we define an auxiliary process indexed by a threshold u

contained in a compact set;

F (u) = N

(
σ̂2
o − σ̂2(u)

σ̂2(u)

)
,

with σ̂2
o and σ̂2(u) the estimated variance of the error term under the null and alternative hy-

potheses, respectively. For u known this process is asymptotically distributed as a χ2 with

degrees of freedom equal to the number of constraints in the model. Otherwise, it converges

weakly to a nonlinear function of a Gaussian process with covariance kernel that depends

on moments of the sample, and thus critical values cannot be tabulated. Following Davies

(1977, 1987) and Andrews and Ploberger (1994) the test statistics that we propose are the

supremum, average and exponential average. Andrews and Ploberger (1994) show that the

exponential average test is optimal in terms of power in very general frameworks. On the

other hand, the supremum test has the advantage of providing very valuable information

about the location of the rejection, and hence of the threshold value.

The null finite-sample distribution of these statistics is constructed using bootstrap

methods. For the supremum, average or exponential average cases this bootstrap proce-

dure gives a random sample (T s(1), . . . , T s(B)) of B simulated observations.

• Generate a grid of j = 1, . . . ,m different u values, with u ∈ U a compact set, let

Γ = (u1, . . . , um).

• Generate a sequence of N observations {ε
(b)
0,i}

N
i=1 indexed by b with b = 1, . . . , B,

from a N(0, 1) distribution.

• Regress ε
(b)
0,i on the set of explanatory variables in model (3) to obtain the residuals:

e0,i = ε
(b)
0,i − γ̂0 − γ̂1

.
yio − γ̂2lio − γ̂′

3xio with i = 1, . . . , N and compute σ̂
2(b)
o .

• Estimate process (4) with response variable {ε
(b)
0,i}

N
i=1, and obtain the corresponding

model parameter estimates under the alternative hypothesis.

• Compute the corresponding residuals ei(uj) = ε
(b)
0,i − γ̂0 − γ̂11

.
yioI(

.
yio ≤ u) −

γ̂12
.
yioI(

.
yio > u)− γ̂2lio − γ̂3xio, and estimated error variance σ̂2(b)(uj).
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• Set F (b)(uj) = (N − 1)
(

σ̂
2(b)
o −σ̂2(b)(uj)

σ̂2(b)(uj)

)
and F (b)(uj) = (N − 1)

(
σ̂
2(b)
o −σ̂2(b)(uj)

σ̂2(b)(uj)

)
for

each uj ∈ U and b = 1, . . . , B.

• Compute T s(b) = sup
u∈U

F (b)(uj), T a(b) = ave
u∈U

F (b)(uj) and T e(b) = exp ave
u∈U

F (b)(uj)

for each b = 1, . . . , B.

• Compute the empirical p-value:

p̂B =
1

B

B∑

b=1

I(T (b) ≥ T ),

with T (b) = T s(b), or T a(b) or T e(b); and T the test statistic computed from the

original available sample.

The empirical p-value is computed as the percentage of these artificial observations

which exceed the actual test statistic, T s:

p̂B =
1

B

B∑

b=1

I(T s(b) ≥ T s).
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Cities within groups

Cities with initial income levels beyond the threshold estimate (ûn = 9.866) are Alameda,

Alexandria, Alpharetta, Anchorage municipality, Arcadia, Arlington CDP, Arlington Heights

village, Ballwin, Bedford, Bellevue, Belmont, Benicia, Beverly Hills, Bloomington, Boca

Raton, Bowie, Brea, Brookfield, Buffalo Grove village, Burlingame, Camarillo, Cam-

bridge, Carlsbad, Carmel, Cary town, Chesterfield, Claremont, Coconut Creek, Coppell,

Coral Gables, Culver City, Cupertino, Dana Point, Danbury, Danville town, Delray Beach,

Diamond Bar, Downers Grove village, Dublin, Eden Prairie, Edina, Edmonds, Elmhurst,

Encinitas, Englewood, Evanston, Fair Lawn borough, Farmington Hills, Fort Lauderdale,

Fort Lee borough, Foster City, Fountain Valley, Fremont, Friendswood, Germantown, Glen

Cove, Glen Ellyn village, Glenview village, Grapevine, Gurnee village, Hackensack, High-

land Park, Hilton Head Island town, Hoboken, Hoover, Huntington Beach, Irvine, Juneau

and borough, Jupiter town, Keller, Kirkland, Kirkwood, Laguna Niguel, Lake Oswego,

Leawood, Lenexa, Livermore, Long Beach, Los Altos, Los Gatos town, Madison, Man-

hattan Beach, Martinez, Melrose, Menlo Park, Minnetonka, Mission Viejo, Morgan Hill,

Mount Prospect village, Mountain View, Naperville, New Rochelle, Newport Beach, New-

ton, Northbrook village, Norwalk, Novato, Novi, Oak Park village, Orland Park village,

Oro Valley town, Overland Park, Palatine village, Palm Desert, Palm Springs, Palo Alto,

Paramus borough, Park Ridge, Pasadena, Plano, Plantation, Pleasant Hill, Pleasanton, Ply-

mouth, Poway, Rancho Palos Verdes, Redmond, Redondo Beach, Redwood City, Richard-

son, Rochester Hills, Rockville, Roswell, San Carlos, San Clemente, San Dimas, San Fran-

cisco, San Juan Capistrano, San Mateo, San Rafael, San Ramon, Santa Clara, Santa Clarita,

Santa Monica, Saratoga, Schaumburg village, Scottsdale, Shaker Heights, Shelton, Shore-

view, Skokie village, Southfield, St. Charles, Stamford, Strongsville, Sugar Land, Sunny-

vale, Thousand Oaks, Torrance, Troy, Upland, Upper Arlington, Walnut Creek, Watertown,

West Des Moines, West Hollywood, Westfield town, Westlake, Wheaton, White Plains,

Wilmette village, Woodbury and Yorba Linda.

Cities with initial log population beyond the threshold estimate (ûn = 11.6639) are

Akron, Albuquerque, Amarillo, Anaheim, Anchorage municipality, Arlington CDP, Ar-

lington, Atlanta, Aurora, Austin, Bakersfield, Baltimore, Baton Rouge, Birmingham, Boise

City, Boston, Bridgeport, Buffalo, Charlotte, Chattanooga, Chesapeake, Chicago, Chula

Vista, Cincinnati, Cleveland, Colorado Springs, Columbus, Corpus Christi, Dallas, Day-

ton, Denver, Des Moines, Detroit, Durham, El Paso, Evansville, Flint, Fort Lauderdale,

Fort Wayne, Fort Worth, Fremont, Fresno, Garden Grove, Garland, Gary, Glendale, Glen-

dale, Grand Rapids, Greensboro, Hampton, Hartford, Hialeah, Hollywood, Honolulu CDP,

Houston, Huntington Beach, Huntsville, Irving, Jackson, Jersey City, Kansas City (KS),

Kansas City (MO), Knoxville, Lakewood, Lansing, Las Vegas, Lincoln, Little Rock, Long
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Beach, Los Angeles, Lubbock, Madison, Memphis, Mesa, Miami, Milwaukee, Minneapo-

lis, Mobile, Modesto, Montgomery, Moreno Valley, Nashville-Davidson, New Haven, New

Orleans, New York, Newark, Newport News, Norfolk, Oakland, Oceanside, Oklahoma

City, Omaha, Ontario, Orlando, Oxnard, Pasadena, Pasadena, Paterson, Philadelphia, Phoenix,

Pittsburgh, Plano, Pomona, Portland, Providence, Raleigh, Reno, Richmond, Riverside,

Rochester, Rockford, Sacramento, Salt Lake City, San Antonio, San Bernardino, San Diego,

San Francisco, San Jose, Santa Ana, Savannah, Scottsdale, Seattle, Shreveport, Spokane,

Springfield (MA), Springfield (MO), St. Louis, St. Paul, St. Petersburg, Sterling Heights,

Stockton, Sunnyvale, Syracuse, Tacoma, Tallahassee, Tampa, Tempe, Toledo, Topeka,

Torrance, Tucson, Tulsa, Virginia Beach, Warren, Washington, Wichita, Winston-Salem,

Worcester and Yonkers.
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Table 1: MEANS AND STANDARD DEVIATIONS, CITY VARIABLES IN 1990
Variable Mean Stand. dev.

Population Growth (ln scale), 1990-2000 0.14 0.20

Per Capita Income Growth (ln scale), 1989-1999 0.38 0.10

Urban sprawl

Land Area Growth (ln scale), 1990-2000 0.09 0.14

Population per Square Mile 3618.33 3376.04

Median Travel Time to Work (in minutes) 20.68 4.95

Human capital variables

Percentage population 18 years and over: Some college or higher degree 37.88 11.77

Percentage population 18 years and over: High school graduate (includes equivalency) or higher degree 58.57 9.67

Productive structure variables

Unemployment rate 6.24 2.83

Percentage employed civilian population 16 years and over:

Agriculture, forestry, fishing, and mining 1.94 2.62

Construction 5.62 1.99

Manufacturing (durable and nondurable goods) 17.44 7.56

Wholesale and Retail trade 22.51 3.02

Finance, insurance, and real estate 7.08 2.62

Educational, health, and other professional and related services 24.19 6.75

Public administration 4.72 3.39

Weather

Temperature index 65.62 11.43

Source: 1990 and 2000 Census, www.census.gov
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Table 2: PER CAPITA INCOME GROWTH
Econometric Models (1) (2) (3) (4)

Intercept 0.5536*** 0.9499*** 2.4040*** 2.4313***

Variables

Per Capita Income (ln scale) in 1989 -0.0183*

Per Capita Income (ln scale) in 1989 ≤ u -0.0605*** -0.1598*** -0.1568***

Per Capita Income (ln scale) in 1989 > u -0.0553*** -0.1536*** -0.1509***

Population in 1990 (ln scale) -0.0049

Urban sprawl

Land Area Growth (ln scale) 0.0951*** 0.0911***

Population per Square Mile (ln scale) -0.0338*** -0.0328***

Median Travel Time to Work (in minutes) 0.0007 0.0006

Human capital variables

Percentage population 18 years and over: some college or higher degree 0.0007 0.0007

Percentage population 18 years and over: high school graduate (includes equivalency) or higher degree 0.0021** 0.0020**

Productive structure variables

Unemployment rate -0.0016 -0.0012

Percentage employed civilian population 16 years and over:

Agriculture, forestry, fishing, and mining -0.0023* -0.0027**

Construction -0.0079*** -0.0081***

Manufacturing (durable and nondurable goods) -0.0018** -0.0019**

Wholesale and Retail trade -0.0049*** -0.0050***

Finance, insurance, and real estate 0.0008 0.0009

Educational, health, and other professional and related services -0.0033*** -0.0033***

Public administration -0.0031*** -0.0032***

Weather

Temperature index -0.0025*** -0.0025***

Geographical dummy variables

Midwest Region 0.0347*** 0.0357***

South Region 0.0581*** 0.0600***

West Region 0.0458*** 0.0477***

F-test 3.50 11.49 26.19 25.00

Adjusted R2 0.0030 0.0176 0.2896 0.2902

Note: Dependent variable: Per Capita Income growth 1989-1999 (ln scale). ***Significant

at the 1% level **Significant at the 5% level *Significant at the 10 % level
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Table 3: POPULATION GROWTH
Econometric Models (1) (2) (3) (4)

Intercept 0.9803*** 1.2703*** 1.8930*** 3.8341***

Variables

Population in 1990 (ln scale) -0.0706***

Population in 1990 (ln scale) ≤ u -0.1048*** -0.0477*** -0.0458***

Population in 1990 (ln scale) > u -0.0902*** -0.0395*** -0.0381***

Per Capita Income (ln scale) in 1989 -0.2090***

Urban sprawl

Land Area Growth (ln scale) 0.4892*** 0.4656***

Population per Square Mile (ln scale) -0.0724*** -0.0767***

Median Travel Time to Work (in minutes) 0.0068*** 0.0080***

Human capital variables

Percentage population 18 years and over: some college or higher degree 0.0083*** 0.0099***

Percentage population 18 years and over: high school graduate (includes equivalency) or higher degree -0.0073*** -0.0059***

Productive structure variables

Unemployment rate -0.0083*** -0.0135***

Percentage employed civilian population 16 years and over:

Agriculture, forestry, fishing, and mining 0.0038* 0.0049**

Construction 0.0008 -0.0005

Manufacturing (durable and nondurable goods) -0.0052*** -0.0049***

Wholesale and Retail trade -0.0059*** -0.0097***

Finance. insurance. and real estate -0.0050* 0.0015

Educational, health, and other professional and related services -0.0114*** -0.0134***

Public administration -0.0069*** -0.0079***

Weather

Temperature index -0.0017*** -0.0009

Geographical dummy variables

Midwest Region -0.0466*** -0.0543***

South Region -0.0156 -0.0389**

West Region 0.0131 -0.0118

F-test 104.31 69.52 69.80 71.38

Adjusted R2 0.0809 0.1045 0.5269 0.5452

Note: Dependent variable: Population growth 1990-2000 (ln scale). ***Significant at the

1% level **Significant at the 5% level *Significant at the 10 % level

3
1



Table 4: SUMMARY TABLE
Variable All sample Top income group Top population group

Population Growth (ln scale) 1990-2000 0.14 0.18 0.09

Per Capita Income Growth (ln scale) in 1989-1999 0.38 0.39 0.36

Urban sprawl

Land Area Growth (ln scale) 0.09 0.06 0.06

Population per Square Mile (ln scale) 3618.33 3939.07 4443.91

Median Travel Time to Work (in minutes) 20.68 24.27 21.17

Human capital variables

Percentage population 18 years and over: some college or higher degree 37.88 52.78 36.91

Percentage population 18 years and over: high school graduate (includes equivalency) or higher degree 58.57 68.64 56.57

Productive structure variables

Unemployment rate 6.24 3.59 7.34

Percentage employed civilian population 16 years and over:

Agriculture, forestry, fishing, and mining 1.94 1.36 1.58

Construction 5.62 5.24 5.48

Manufacturing (durable and nondurable goods) 17.44 15.75 15.53

Wholesale and Retail trade 22.51 20.96 21.67

Finance. insurance. and real estate 7.08 10.28 7.41

Educational, health, and other professional and related services 24.19 25.32 24.83

Public administration 4.72 3.62 5.45

Weather

Temperature index 65.62 68.58 67.56

Geographical dummy variables

Northeast Region 13.28% 11.66% 11.41%

Midwest Region 28.60% 28.83% 20.13%

South Region 27.57% 15.95% 35.57%

West Region 30.55% 43.56% 32.89%

Note: Average values of the variables under study across 1,175 observations (All sample),

across the top per-capita income group (163 observations) and across top population group

(149 observations).
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