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Abstract. We develop a simple test for deviations from power law tails,
which is based on the asymptotic properties of the empirical distribu-
tion function. We use this test to answer the question whether great
natural disasters, financial crashes or electricity price spikes should be
classified as dragon kings or ‘only’ as black swans.

1 Introduction

In a recent article Didier Sornette [18] presents a number of data sets exhibiting
power law or other heavy-tailed behavior with extreme outliers. They range from
French city sizes with Paris as the extreme outlier to financial drawdowns (see the
discussion in Section 3.3), turbulent velocity fluctuations and earthquake magnitudes.
Sornette calls these extreme events dragon kings and says that they are the result of
positive feedback mechanisms that make them much larger than their peers. Being
outliers to heavy-tailed behavior, these dragon kings are unaccounted for by power
laws, for which Nassim Taleb coined the nowadays popular term black swans [17].

Interestingly, Taleb [19] does not define black swans as power law events. Rather he
describes them in a more literary way as events which: (i) are unpredictable outliers,
beyond the realm of regular expectations, (ii) carry an extreme impact and (iii)
human nature makes them explainable and predictable ... after they have happened.
Taleb regards almost all major scientific discoveries (like the personal computer, the
Internet) and historical events (like the market crash of 1987, the 9/11 attack) as black
swans. He also makes a distinction between the ‘totally intractable’ black swans and
– what he calls – the Mandelbrotian gray swans, which are ‘tractable scientifically’
... by means of power laws. But the gray swan terminology has not picked up and
black swans prevail. Why? Partly due to the fact that power law events pretty well
fit Taleb’s definition anyway. Recall, that power law distributions are scale invariant.
If extreme events are described by a power law distribution there is no way to predict
them because nothing can distinguish them from the smaller events: their extreme
impacts are ... beyond the realm of normal expectations.

According to Sornette, extreme events are significantly more likely to happen than
power laws suggest. Are dragon kings then ‘to blame’ for experiencing two or three
once-in-a-millennium floods or financial crises in the last couple of decades? What is a
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dragon king anyway? And how do we know that a given observation is a dragon king
and not simply a ‘normal’ deviation to be expected of any random sample? Definitely
these issues are intriguing and worth an investigation.

Having the latter question in focus, in Section 2 we develop a simple test for
deviations from power law tails. Actually, from the tails of any distribution. The test
is based on the asymptotic properties of the empirical distribution function (edf) and
– as we show in Section 3 – is a universal tool that can be used in many practical
situations.

2 Testing for dragon kings

The simple test we propose here is based on the properties of the empirical distribution
function (edf):

Fn(x) =
1

n

n
∑

i=1

I{xi<x}, (1)

which is defined for a sample of observations (x1, x2, ..., xn), with I being the indicator
function. To construct the test first note, that the number Y of observations xi smaller
than x is binomially distributed with parameters n and r = F (x), i.e.

Y =

n
∑

i=1

I{xi≤x} ∼ B(n, F (x)), (2)

where F (x) is the true cumulative distribution function (cdf). Recall, that the first
parameter of the binomial law represents the number of trials (here: sample size n)
and the second – the success probability in each trial (here: the value of the cdf at
point x). Hence, we can write:

P
(

qα

2
[n, F (x)] < Y ≤ q1−α

2
[n, F (x)]

)

= 1 − α, (3)

where qη[n, r] is the η-quantile of the binomial distribution B(n, r). Now, using def-
inition (1) and property (3), we can construct confidence intervals (CI) for the edf
and an arbitrarily chosen confidence level (1 − α). Indeed, we have:

P

(

1

n
qα

2
[n, F (x)] < Fn(x) ≤ 1

n
q1−α

2
[n, F (x)]

)

= 1 − α. (4)

Analogously, for the right tail we have:

P

(

1

n
qα

2
[n, 1 − F (x)] < 1 − Fn(x) ≤ 1

n
q1−α

2
[n, 1 − F (x)]

)

= 1 − α. (5)

Note, that these are pointwise intervals, meaning that for each specified value of x, we
are (1 − α) × 100% confident of observing edf(x) within those limits. This is not the
same as constructing the so-called confidence bands which guarantee, with a given
confidence level, that the edf falls within the band for all x’s (in some interval); these
bands are wider than the curves one obtains by using pointwise CI [2,13].

At this point assume that the true distribution F has power law tails, i.e.

F (x) ≈ b1|x|p1 for x → −∞, (6)

1 − F (x) ≈ b2x
p2 for x → ∞. (7)



3

From (4), the left tail of the edf should lie in the interval
(

1

n
qα

2
[n, b1|x|p1 ],

1

n
q1−α

2
[n, b1|x|p1 ]

]

(8)

with probability 1 − α. Similarly, from (5), the right tail should lie in the interval
(

1

n
qα

2
[n, b2x

p2 ],
1

n
q1−α

2
[n, b2x

p2 ]

]

(9)

with probability 1 − α. Now, it suffices to fit a power law to the left or right tail of
the edf built from the analyzed sample and plot the respective intervals (8) or (9).
Observations lying outside the curves spanned by the CI are likely to be (i.e. with
probability 1 − α) dragon kings.

Although formulas (8) and (9) seem simple, the computation of the CI is not
straightforward – there are no closed form formulas (not involving special functions)
for the inverse of the binomial cdf. Naturally, the quantiles of the binomial distribution
B(n, r) can be obtained by inverting the binomial cdf, but this can be time consuming
for a large number of trials (here: the sample size). Alternatively the quantile qη[n, r]
can be obtained as a solution of

η = β1−r(n− qη[n, r], 1 + qη[n, r]), (10)

where β is the incomplete beta function [16]. But again this can be burdensome as
β is a special function and has to be approximated numerically. In particular, the
Matlab implementation of β is inefficient and leads to inaccurate CI. Moreover, for
the sample sizes considered in this paper the computational times are at least twice
longer than for the algorithm utilizing binomial inversion.

As a remedy to these numerical issues we suggest to use an approximation based
on asymptotic properties of the edf. Recall that by the Central Limit Theorem, Fn(x)
is asymptotically (i.e. as n → ∞) normally distributed [1]. Precisely,

√
n[Fn(x) − F (x)]
√

F (x)[1 − F (x)]

d→ N(0, 1), (11)

where
d→ denotes convergence in distribution. Letting zα

2
and z1−α

2
denote the (α

2 )
and (1 − α

2 )-quantiles of the standard normal distribution, respectively, we have:

P

(

zα

2
<

√
n[Fn(x) − F (x)]
√

F (x)[1 − F (x)]
< z1−α

2

)

≈ 1 − α, (12)

provided that n is large enough. Note, that since the standard Gaussian law N(0, 1)
is symmetric around 0, z1−α

2
= −zα

2
. Formula (12) implies that:

P

(

F (x) +

√

F (x)[1 − F (x)]

n
zα

2
< Fn(x) < F (x) +

√

F (x)[1 − F (x)]

n
z1−α

2

)

≈ 1−α.

(13)
Analogously, for the right tail we have:

P

(

1 − F (x) +

√

F (x)[1 − F (x)]

n
zα

2
< 1 − Fn(x) <

< 1 − F (x) +

√

F (x)[1 − F (x)]

n
z1−α

2

)

≈ 1 − α. (14)
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Now, assuming power law tails, the left tail of the edf should lie in the interval

(

b1|x|p1 +

√

b1|x|p1(1 − b1|x|p1)

n
zα

2
, b1|x|p1 +

√

b1|x|p1(1 − b1|x|p1)

n
z1−α

2

)

(15)

with probability 1 − α. Similarly, from (14) the right tail should lie in the interval

(

b2x
p2 +

√

b2xp2(1 − b2xp2)

n
zα

2
, b2x

p2 +

√

b2xp2(1 − b2xp2)

n
z1−α

2

)

(16)

with probability 1 − α. Formulas (15)-(16) are numerically much more efficient than
their exact, binomial-law based counterparts (8)-(9). The quantiles of the standard
normal distribution are easily computable since they can be expressed in terms of
the inverse error function, for which fast and accurate numerical algorithms exist.
Moreover, to construct the CLT-based CI only one value of the standard normal
quantiles, i.e. zα

2
= −z1−α

2
, is needed no matter what is the range of the CI, while

in the case of the exact CI the quantiles of the binomial distribution, qα

2
[n, b|x|p] and

q1−α

2
[n, b|x|p], have to be found for each point x. The speedup is considerable. For

a sample size of 1000 observations the CLT-based CI for a power law fitted to the
largest 10%-1% values can be computed ca. 60 times faster than the exact CI, but for
a sample size of 5000 observations over 220 times faster (0.003 vs. 0.665 seconds on an
Intel Core i7-820QM processor running Matlab 7.9). Computational times under one
second should not be worrying, however, for larger samples or fits to a wider range
of values (say, top 25% observations), they can become substantial for the exact CI.

Being aware of the extreme speedup in calculations, what remains to be tested
is the accuracy of the approximate CLT-based CI. We will deal with this issue in
Section 3.1. But before we do that let us only remark, that the presented approach
is general. The true distribution can be arbitrary, say, stretched exponential (also
known as Weibull). In that case the confidence intervals would be computed from
relations (4)-(5) or (13)-(14) using the stretched exponential cdf, see Figure 1.

3 Empirical examples

3.1 Simulated data

We start the empirical analysis with a simulation study to check the effectiveness of
the test for dragon kings. The results summarized in Tables 1 and 2 concern random
samples from two heavy-tailed distributions with power law decay in the tail(s):

– Cauchy with cdf F (x;µ, σ) = 1
π

arctan
(

x−µ
σ

)

+ 1
2 where x, µ ∈ R and σ > 0,

– Pareto with cdf F (x;λ, α) = 1 − λα(x + λ)−α where x ≥ 0 and λ, α > 0,

and two lighter tailed laws:

– symmetric Hyperbolic with the cdf obtained by numerically integrating the prob-
ability density function (pdf) f(x;α, δ) = exp(−α

√
δ2 + x2)/{2δK1(δα)}, where

K1 is the modified Bessel function of the third kind, x ∈ R and α, δ > 0,
– stretched exponential (or Weibull) with cdf F (x;β, τ) = 1 − e−βxτ

where x ≥ 0
and β, τ > 0.

For simulation and estimation issues, as well as, sample applications of these distri-
butions in finance and insurance see e.g. [8,14,15].
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Fig. 1. Comparison of exact, binomial law-based CI and approximate, CLT-implied CI
for simulated samples of 1000 observations of Pareto(2,1)-distributed (left panel) and
Weibull(1,0.5)-distributed random numbers (right panel). The power law and Weibull tails
were fitted to the 10%-1% largest observations. Apparently for samples sizes of 1000 or
more observations the differences between the CI are negligible, even in the very tails of the
distribution.

Table 1. Percentage of pointwise outliers with respect to the exact, binomial law-based CI
given by formula (5) and F (x) being a power law fitted to the 10%-1% or 25%-2.5% largest
observations. For Cauchy and Pareto distributions, outliers with respect to the true power
law (implied by the cdf) are also provided. The number of simulated samples is equal to 104.

CI Sample Cauchy(0,1) Pareto(2,1) Hyp(2,1) Weib(1, 1
2
)

size True Fitted True Fitted Fitted Fitted

Power law fitted to 10%-1% largest observations

90% 1000 10.0% 4.5% 9.8% 4.5% 24.7% 16.6%
95% 1000 5.2% 2.2% 4.6% 2.1% 10.7% 6.8%
99% 1000 1.1% 0.3% 1.0% 0.3% 0.7% 0.2%

Power law fitted to 25%-2.5% largest observations

90% 1000 ” 12.4% ” 11.1% 100.0% 96.9%
95% 1000 ” 6.1% ” 5.4% 99.9% 92.2%
99% 1000 ” 1.2% ” 0.8% 98.2% 70.6%

Power law fitted to 10%-1% largest observations

90% 5000 9.9% 10.1% 10.0% 11.0% 99.8% 98.5%
95% 5000 5.1% 5.2% 4.8% 5.4% 99.3% 96.7%
99% 5000 1.1% 0.7% 1.0% 1.1% 96.3% 84.8%

The validation procedure is the following. We calculate the edf for 104 simulated
samples from each of the four distributions and two sample sizes. Next, using least
squares regression we fit a power law to the 10%-1% (or 25%-2.5%) largest obser-
vations. The upper 1% (or 2.5%) of values are not used for calibration due to the
sensitivity of the least squares fit to outlying observations. Then, we compute the
pointwise CI given by the exact, binomial law-based formula (9), as well as, the CLT-
based approximation (16), see the left panel in Figure 1. Finally, we check whether for
a particular value of x the edf lies within the CI. Motivated by the fact that dragon
kings are to be expected in the very tails of the distribution, we arbitrarily set x to be
the fourth largest observation, i.e. x(4). However, we have checked that qualitatively
identical results are obtained for x(8) and x(12).
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Table 2. Percentage of pointwise outliers with respect to the approximate, CLT-based CI
given by formula (14) and F (x) being a power law fitted to the 10%-1% or 25%-2.5% largest
observations. For Cauchy and Pareto distributions, outliers with respect to the true power
law (implied by the cdf) are also provided. The number of simulated samples is equal to 104.

CI Sample Cauchy(0,1) Pareto(2,1) Hyp(2,1) Weib(1, 1
2
)

size True Fitted True Fitted Fitted Fitted

Power law fitted to 10%-1% largest observations

90% 1000 9.6% 4.2% 9.1% 4.3% 29.2% 20.4%
95% 1000 4.8% 2.1% 4.1% 1.7% 10.1% 6.1%
99% 1000 1.1% 0.6% 0.9% 0.4% 0.1% <0.1%

Power law fitted to 25%-2.5% largest observations

90% 1000 ” 10.7% ” 11.2% 99.1% 90.9%
95% 1000 ” 4.4% ” 4.7% 99.8% 78.1%
99% 1000 ” 0.7% ” 0.5% 74.3% 35.0%

Power law fitted to 10%-1% largest observations

90% 5000 10.0% 9.9% 9.8% 11.3% 99.8% 98.9%
95% 5000 4.6% 4.3% 4.7% 5.1% 99.5% 96.5%
99% 5000 1.0% 1.2% 1.0% 0.6% 93.3% 78.9%

Table 3. Percentage of pointwise outliers with respect to the exact, binomial law-based CI
given by formula (5) and F (x) being a stretched exponential (or Weibull) law fitted to the
10%-1% or 25%-2.5% largest observations. For the Weibull distribution, outliers with respect
to the tail of the true cdf are also provided. The number of simulated samples is equal to
104.

CI Sample Cauchy(0,1) Pareto(2,1) Hyp(2,1) Weib(1, 1
2
)

size Fitted Fitted Fitted True Fitted

Weibull tail fitted to 10%-1% largest observations

90% 1000 66.1% 63.3% 10.6% 10.7% 11.2%
95% 1000 57.5% 53.5% 5.5% 4.8% 6.6%
99% 1000 41.5% 38.6% 0.8% 1.2% 1.9%

Weibull tail fitted to 25%-2.5% largest observations

90% 1000 97.4% 97.9% 59.3% ” 14.6%
95% 1000 95.8% 97.0% 47.6% ” 8.0%
99% 1000 90.6% 92.7% 25.8% ” 2.4%

The percentages of pointwise outliers at x = x(4) with respect to the exact, as well
as, approximate CI are given in Tables 1 and 2, respectively. As we can observe, the
results are highly dependent on the subsample used to calibrate the power law. For the
larger sample size (5000 observations), the 10%-1% range leads to accurate coverage
rates for the Cauchy and Pareto laws, while for the lighter tailed distributions x(4)

is classified as an outlier nearly in all samples. For the smaller sample size (1000
observations), the power law fitted to the 10%-1% range yields overly conservative
CI for the Cauchy and Pareto laws – the rejection rates are roughly twice lower. In
such a case, the 25%-2.5% range has to be used to obtain a reliable coverage by the
CI. However, the percentages of pointwise outliers with respect to the true power law
(implied by the parameters of cdf) are accurate. The latter indicates that the dragon
king test works well – even for small sample sizes – provided that the power law is
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Table 4. Percentage of pointwise outliers with respect to the approximate, CLT-based CI
given by formula (14) and F (x) being a stretched exponential (or Weibull) law fitted to the
10%-1% or 25%-2.5% largest observations. For the Weibull distribution, outliers with respect
to the tail of the true cdf are also provided. The number of simulated samples is equal to
104.

CI Sample Cauchy(0,1) Pareto(2,1) Hyp(2,1) Weib(1, 1
2
)

size Fitted Fitted Fitted True Fitted

Weibull tail fitted to 10%-1% largest observations

90% 1000 62.1% 58.3% 11.5% 9.6% 10.6%
95% 1000 56.4% 52.4% 4.9% 4.8% 5.8%
99% 1000 44.8% 41.3% 0.6% 1.1% 2.4%

Weibull tail fitted to 25%-2.5% largest observations

90% 1000 96.7% 97.5% 63.2% ” 14.0%
95% 1000 95.3% 96.6% 47.7% ” 8.0%
99% 1000 91.8% 94.1% 19.0% ” 2.6%

correctly estimated. Otherwise it may lead to a lower rejection rate and, hence, a
lower number of observations classified as outliers.

As we have said previously, the test of Section 2 is universal in the sense that
the true distribution can be arbitrary. We thus repeat the simulation study with
another popular heavy-tailed, but not power-law tailed, distribution – the stretched
exponential. Note, that in actuarial sciences and statistics it is more commonly known
as the Weibull law [8,14]. Now the intervals (8)-(9), or (15)-(16), are computed from
relations (4)-(5), or (13)-(14), using the Weibull cdf, see the right panel in Figure 1. To
save space, the results summarized in Tables 3 and 4 concern only the smaller sample
size (1000 obs.), which better reflects the sizes of the datasets considered in Sections
3.2-3.4 (they range from just under 500 to just over 1500). This time the situation is
quite the opposite to the one in Tables 1 and 2. The 10%-1% range leads to accurate
coverage rates for the Weibull law, while the rejection rate tends to be too high if
the 25%-2.5% range is used (due to a poor fit in the tail of the distribution). For
the power law type distributions, the percentage of observations identified as outliers
significantly exceeds the expected rejection rates. Only the tails of the hyperbolic law,
with their exponential decay, are hard to distinguish from the stretched exponential
tails (note, that for τ = 1, the Weibull law reduces to the exponential distribution).

Summing up, the 10%-1% range of largest observations used to fit the power law
or the stretched exponential tail seems to be a good choice. Only in the former case,
the resulting CI can be overly conservative yielding a lower number of observations
classified as outliers. Thus, once an observation is classified as a dragon king it is very
likely to be so. On the other hand, if the power law fit is not accurate, an observation
inside but close to the edge of the CI may be a dragon king as well.

Finally, comparing the exact, binomial law-based CI and approximate, CLT-
implied CI we can conclude that for the considered sample sizes the differences be-
tween the CI are negligible. This can be also seen in Figure 1, where both types of CI
are plotted for two samples of Pareto(2,1)-distributed and Weibull(1,0.5)-distributed
random numbers. Interestingly, in a related context of computing CI for the edf (not
for the power law or Weibull fits as in this paper) of seismic data, Pisarenko and Rod-
kin [16] conclude that the CLT approximation is good enough even for much smaller
sample sizes of n > 20. We are not as optimistic in our conclusions, but can certainly
declare that for sample sizes exceeding a few hundred observations the CLT-based
CI are a very good approximation. Hence, taking into account the huge differences
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Fig. 2. Left panel: PCS catastrophe loss data, 1990-2004. The three largest losses in this
period were caused by Hurricane Andrew (24 August 1992), the Northridge Earthquake
(17 January 1994) and the terrorist attack on WTC (11 September 2001). Right panel:
Right tail of the empirical distribution of claim sizes. The three largest losses do not deviate
significantly from the fitted power law. However, two out of three seem to be outliers with
respect to the Pareto law fit.

in computational efficiency (see the discussion at the end of Section 2), we suggest
to use the simpler CLT-based CI. We will also use them in the empirical examples of
the following sections.

3.2 Catastrophe claims

Severities of catastrophic events are known to exhibit a heavy-tailed behavior, even
after excluding the most extreme outliers [7,10]. We will now check whether these
outliers can be considered as dragon kings. To this end, we study the Property Claim
Services (PCS) dataset, which covers losses resulting from catastrophic events in the
U.S. The data include 1990-2004 market loss amounts in USD, adjusted for inflation
using the monthly values of the Consumer Price Index (CPI). Only natural events
– except for the terrorist attack on World Trade Center, WTC, and the August
2003 blackout – that caused damage exceeding five million dollars (nominal value,
i.e. unadjusted for inflation) were taken into account. The three largest losses in
this period were caused by Hurricane Andrew (24 August 1992), the Northridge
Earthquake (17 January 1994) and the terrorist attack on WTC (11 September 2001),
see the left panel in Figure 2.

An earlier study [4] of the PCS dataset spanning a five-year shorter time period
(1990-1999) revealed that the two largest losses of the 1990s (Hurricane Andrew and
the Northridge Earthquake) were outliers. At least such a conclusion could be drawn
from the Pareto probability plot, see Figure 7.5 in [4]. Using the technique developed
in Section 2, we want to check whether this assertion is justified. To this end, we plot
the right tail of the empirical distribution of claim sizes, see the right panel in Figure
2, and fit a power law to the 10%-1% largest observations.

The estimated power law exponent of p = −0.97 indicates a very heavy tailed
distribution (with a decay in the tail comparable to the Cauchy law). However, none
of the three largest claim sizes exceed the 95% CI allowing us to conclude that they
are not dragon kings, ‘merely’ black swans. Apparently, while the Pareto law exhibits
a power law tail, the fit to the whole PCS dataset is far from perfect. Indeed, the
reported maximum likelihood estimate of the Pareto law exponent for the 1990-1999
dataset was twice higher, i.e. the slope of the tail was much steeper [4]. With such a
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Fig. 3. Left panel: Stretched exponential (or Weibull) fit to the 10%-1% largest NASDAQ
drawdowns from the period Feb. 5, 1971 – May 31, 2000. Even the most extreme drawdowns
cannot be classified as outliers. Right panel: Weibull fit to all NASDAQ drawdowns from the
same period. The estimated exponent of 0.81 is roughly the same as obtained in [12]. Nearly
all of the largest 10% of drawdowns deviate significantly from the Weibull law, indicating
that perhaps a heavier-tailed distribution would yield a better fit.

fast decay, the two largest claims in the 1990s would seem to be outliers. However,
performing the test introduced in Section 2 after fitting a power law only to the tail
of the distribution (as in the right panel of Figure 2) results in the rejection of the
dragon king hypothesis.

3.3 Financial drawdowns

Johansen and Sornette [12] claim that dragon kings are common in the distribu-
tions of financial drawdowns. In this Section we test whether this is really the case.
Following [12], we define a drawdown as the loss between the local price maximum
and the following local minimum. It is calculated as the percentage difference be-
tween the lowest price and the highest price in a decline period, i.e. the time series
1, 2, 5, 4, 3, 3, 1, 3, 4, 3, 2, 3 would result in two drawdowns, namely 1−5

5 and 2−4
4 .

The dataset analyzed here comprises 7661 NASDAQ index closing values from
the period Feb. 5, 1971 – May 31, 2000. The data were sampled at daily frequency
and obtained from the Reuters EcoWin database. Although the time period studied
seems to be the same as the one in [12], denoted there by [1971.1:2000.5], most likely
it is not identical. The number of drawdowns we study is 1543, compared to 1495 in
[12]. Perhaps the precision of the index closing values is not the same (two decimal
places in our dataset) or the ways of computing the drawdowns are slightly different.

In the left panel of Figure 3 we plot the stretched exponential (or Weibull) fit to
the 10%-1% largest NASDAQ drawdowns. Note that, in fact, we fit an inverse of the
Weibull distribution with the cdf F (x) = 1− e−β|x|τ defined for negative values of x.
Apparently, even the most extreme drawdowns cannot be classified as outliers in this
case. However, if we follow the same approach as Johansen and Sornette [12] and using
maximum likelihood calibrate the Weibull distribution to all NASDAQ drawdowns we
obtain a nearly identical fit: β ≈ 31 and τ ≈ 0.81; compare with the values in Table
2 in [12]. This time almost all of the largest 10% of drawdowns deviate significantly
from the Weibull law, see the right panel in Fig. 3 and compare it with Fig. 15 in
[18]. In our opinion this is not evidence for dragon kings, but rather indicates that
a heavier-tailed distribution would better describe the data. At the same time, this
simple exercise shows that dragon kings are a model dependent feature. Depending
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Fig. 4. Electricity spot prices and the estimated long term seasonal components (LTSC) in
the German EEX market for four sample hours and 1092 days in the period Jan. 1, 2007 –
Dec. 27, 2009. Note, the different y axis scales in the four panels.

on the model (stretched exponential distribution vs. tail) the same observations can
or cannot be classified as outliers.

3.4 Electricity spot prices

3.4.1 Why do they spike?

Electricity is a unique commodity and the power markets exhibit behavior like no
other financial or commodity markets. Severe weather conditions, often in combina-
tion with the execution of market power by some players, have led in the recent past
to spectacular price fluctuations – ranging even two orders of magnitude within a
matter of hours, see Figures 4 and 5. These abrupt and short-lived price changes are
known as spikes and are one of the most profound features of electricity spot prices
[3,5,21]. But why do electricity spot prices spike in the first place?

The answer lies in the way these prices are determined. The spot price is typi-
cally set in a one- or two-sided uniform-price auction for each hour or a half-hourly
time interval of the next day. It is determined as the intersection of the supply curve
constructed from aggregated supply bids and the demand curve constructed from ag-
gregated demand bids (for two-sided auctions) or system operator’s demand forecast
(for one-sided auctions). On the supply side of the market, all generation units of
a utility or of a set of utilities in a given region are ranked (and form the so-called
supply stack). This ranking is based on many factors, such as the marginal cost of
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Fig. 5. Electricity spot prices and the estimated LTSC in the Australian NSW market for
four sample hours (in fact, half-hourly intervals starting at full hours) and 1092 days in the
period Jan. 1, 2007 – Dec. 27, 2009. Note, the semilogarithmic scale for hours 10, 12 and 18.
The few extremely spiky prices would render the ‘normal’ prices invisible on a linear scale.

production and the response time. The utility will typically first dispatch nuclear and
hydro units, if available, followed by coal units. These types of plants are generally
used to cover the so-called base load, whereas oil-, gas-fired and hydro-storage plants
are used to meet peak demand.

Demand, on the other hand, exhibits seasonal fluctuations reflecting variable busi-
ness activities and changing climate conditions. In Northern Europe and Canada the
demand peaks normally in the winter because of excessive heating. In Australia or
mid-western U.S. it peaks in the summer months due to air-conditioning. Unexpected
weather conditions can cause sudden shocks with demand typically falling back to its
normal level as soon as the underlying weather phenomenon is over.

The spot price is not very sensitive to demand shifts when the demand is low, since
the supply stack is flat in the low-demand region. However, when demand is high and
a larger fraction of power comes from ‘expensive’ sources, even a small increase in
consumption can force the prices to rise substantially. Then, when the demand drops,
the price can rapidly decrease to the normal level. Likewise, if the consumption stays
almost constant, price spikes can still appear when a considerable amount of ‘cheap’
generation is withdrawn from the market (due to outages, maintenance, etc.).

While the supply-demand equilibrium explains price volatility it does not, how-
ever, justify the extreme severity of the spikes. It is not simply a matter of higher
marginal costs. Rather, the spikes are a result of the bidding strategies of the market
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participants. Since electricity is a non-storable commodity, some agents are willing
to pay almost any price to secure a sufficient and continuous supply. On a regular
basis they place bids at the maximum level allowed [21]. The risk of having to pay
the maximum price is relatively low, because in uniform-price auctions the spot price
is what a buyer has to pay for each unit of power irrespective of what he or she did
bid initially, as long as the bid was not less than the spot price.

3.4.2 Dragon kings or black swans?

We will now try to answer the question whether electricity price spikes should be
classified as dragon kings or ‘only’ as black swans. Or perhaps they are so common that
they cannot be even regarded as black swans. To this end, we analyze the hourly (day-
ahead) spot prices from two major power markets: the European Energy Exchange
(EEX; Germany) and the New South Wales region of the National Electricity Market
(NSW; Australia), see Figures 4 and 5. For each market the sample totals 1096 daily
observations for each hour of the day (h = 1, 2, ..., 24) and covers the 3-year period
Jan. 1, 2007 – Dec. 27, 2009.

It is well known that electricity spot prices exhibit several characteristic features,
which have to be taken into account when analyzing or modeling such processes [9,
21]. These include seasonality on the annual, weekly and daily level. To cope with it
we use the standard time series decomposition approach and let the electricity spot
price Pt for a particular hour h be represented by a sum of two independent parts: a
predictable (seasonal) component ft and a stochastic component Xt, i.e. Pt = ft+Xt.
Following [22] the deseasonalization is conducted in three steps. First, the long term
seasonal component (LTSC) Tt is estimated from the spot price Pt using a wavelet
filter-smoother of order 6 (for the EEX prices; for details see [20]) or a Gaussian
kernel smoother with a bandwidth of 26 (for the NSW prices). In the latter case
the kernel smoother is used instead of the wavelet one due to it’s lower sensitivity
to extreme observations. A single non-parametric LTSC is used here to represent the
long-term non-periodic fuel price levels, the changing climate/consumption conditions
throughout the years and strategic bidding practices. As shown by Janczura and
Weron [11], the wavelet-estimated LTSC pretty well reflects the ‘average’ fuel price
level, understood as a combination of natural gas, crude oil and coal prices.

The price series without the LTSC is obtained by subtracting the Tt approximation
from Pt. Next, weekly periodicity st is removed by subtracting the ‘average week’
calculated as the arithmetic mean (for EEX data) or median (for NSW data; again for
the sake of robustness) of prices corresponding to each day of the week. Additionally
for the EEX dataset, the German national holidays are treated as the eight day of
the week. Finally, the deseasonalized prices, i.e. Xt = Pt −Tt − st, are shifted so that
the minimum of the new process Xt is the same as the minimum of Pt.

In Figures 6 and 7 we present the dragon king test results for the right tails of the
distributions of deseasonalized price changes, i.e. of ∆Xt, for four selected hours of
the day. The more common returns (or changes of the log-prices) cannot be analyzed
due to the existence of negative spot prices, which is another peculiarity of electricity
markets. Two interesting conclusions can be drawn from these two figures.

First, looking at the price trajectories in Figures 4-5 and the estimated power
law exponents in Figures 6-7 it is apparent that Australian prices are more volatile
and exhibit heavier-tails than their German counterparts. This can be explained by
the fact that Australian markets operate as ‘energy only’ markets, meaning that the
wholesale electricity price should provide compensation to investors for both variable
and fixed costs. Indeed it does. For instance, in South Australia the installed capacity
increased by nearly 50% in the period 1998-2003, almost half of it being open cycle
gas turbines (OCGT) for peaking purposes [21].
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Fig. 6. Right tails of the empirical distribution of electricity spot price changes, computed
for EEX prices depicted in Figure 4. The solid lines represent the fitted power law tails (to
the lowest or highest 1%-10% of observations). The dashed and dotted curves indicate the
95% and 99% CI, respectively.

Second, in the EEX market only night hours (in particular 4 a.m.) yield price
changes that can be classified as outliers, see the upper left panel in Figure 6. This
is due to extreme negative prices on some days, possibly resulting from relatively
large wind farm generation and very limited demand at this time of night. Somewhat
surprisingly, the most spiky afternoon peak hours (like 6 p.m.) do not lead to dragon
kings. The price changes on some days are extreme, but they do not deviate signifi-
cantly from the fitted power law, see the lower right panel in Figure 6. On the other
hand, the Australian NSW market is abundant in dragon kings. Nearly all daytime
hours (including the three depicted in Figure 7) yield outliers, deviating significantly
from the power law tails. Even some night hours (like 4 a.m.) exhibit extreme price
changes that are nearly dragon kings.

4 Conclusions

In this paper we have developed a simple test for deviations from power law tails,
which is based on the asymptotic properties of the empirical distribution function. We
have used it to test whether great natural disasters, financial crashes or electricity
price spikes should be classified as dragon kings or ‘only’ as black swans. While
not every observation deviating from a power law (or stretched exponential) fit can
be called a dragon king, the bottom line is that outliers to power law tails exist.
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Fig. 7. Right tails of the empirical distribution of electricity spot price changes, computed
for NSW prices depicted in Figure 5. The solid lines represent the fitted power law tails (to
the lowest or highest 1%-10% of observations). The dashed and dotted curves indicate the
95% and 99% CI, respectively.

Following Sornette [18] we can call them dragon kings. We have to stress, however,
that the qualification is (strongly) model dependent. As we have shown in Section
3.3, depending on the model (stretched exponential distribution vs. tail) the same
observations can or cannot be classified as outliers.

Interestingly, Sornette actually goes one step further and argues that dragon kings
may have properties that make them predictable. Now, this is controversial. It’s one
thing to identify dragon kings but quite another to spot the event that triggers a
crash or a price spike. The assertion that dragon kings are more easily predictable
than other events requires proofs, which go well beyond the scope of this paper.

Let us just mention one fact that might justify this line of thought. Recently
Cartea et al. [6] have shown in the context of power market modeling that predicting
the timing of electricity price spikes is possible, at least to some extent, when forward
looking information on capacity constraints is taken into account. Unfortunately, in
most power markets the availability (to every power market participant) of the reserve
margin data is limited.
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8. Čižek, P., Härdle, W., Weron, R. (eds.), Statistical Tools for Finance and Insurance, 2nd
ed. (Springer, 2011).

9. Eydeland, A., Wolyniec, K., Energy and Power Risk Management (Wiley, 2003).
10. Härdle, W., Lopez Cabrera, B., Journal of Risk and Insurance 77 (2010) 625-650.
11. Janczura, J., Weron, R., Energy Economics 32(5) (2010) 1059-1073.
12. Johansen, A., Sornette, D., Journal of Risk 4(2) (2001) 69-110.
13. Klein, J.P., Moeschberger, M.L., Survival Analysis (Springer, 2003).
14. Klugman, S.A., Panjer, H.H., Willmot, G.E., Loss Models: From Data to Decisions, 3rd
ed. (Wiley, 2008).

15. Paolella, M.S., Intermediate Probability: A Computational Approach (Wiley, 2007).
16. Pisarenko, V.F., Rodkin, M.V., Izvestia, Physics of the Solid Earth 44(1) (2008) 1-8.
17. Shaywitz, D.A., Shattering the Bell Curve, The Wall Street Journal, April 24 (2007) D8.
18. Sornette, D., International Journal of Terraspace Science and Engineering 2 (2009) 1-18.
19. Taleb, N.N., The Black Swan: The Impact of the Highly Improbable (Random House,

2007).
20. Trück, S., Weron, R., Wolff, R., Bulletin of the International Statistical Institute 62,

1524. Available at MPRA: http://mpra.ub.uni-muenchen.de/4711/.
21. Weron, R., Modeling and Forecasting Electricity Loads and Prices: A Statistical Approach

(Wiley, 2006).
22. Weron, R., Mathematical Methods of Operations Research 69(3) (2009) 457-473.


