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Abstract

This paper analyzes the impact of Research and Development (R&D) on the productivity of China’s
high technology industry. In order to capture important differences in the effect of R&D on output
that arise from geographic and socioeconomic differences across three major regions in China, we
use a novel semiparametric approach that allows us to model heterogeneities across provinces and
time. Using a unique provincial level panel dataset spanning the period 2000-2007, we find that the
impact of R&D on output varies substantially in terms of magnitude and significance across different
regions. Results show that the eastern region benefits the most from R&D investments, however
it benefits the least from technical progress, while the western region benefits the least from R&D
investments, but enjoys the highest benefits from technical progress. The central region benefits
from R&D investments more than the western region and benefits from technical progress more
than the eastern region. Our results suggest that R&D investments would significantly increase
output in both the eastern and central regions, however technical progress in the central region
may further compound the effects of R&D on output within the region.

Keywords: China, Research and Development (R&D), Productivity, Semiparametric smooth
coefficient model (SPSCM)

1. Introduction

In 2007, China’s high technology industry (consisting of, for example, the pharmaceutical sector,

aviation, electronics and communication, computer and office supplies, and medical equipment and

instruments) accounted for approximately 20% of manufacturing within China, but about 45%

of total Chinese exports (China Statistical Yearbook on High Technology Industry [1] and China

Statistical Yearbook [2]). The prominence of the high technology industry in Chinese exports

is primarily because of rising labor costs in other sectors of the Chinese economy, making other

industries less competitive in international markets. Hence, this industry will continue to be an

important component of Chinese exports in future years.

Despite the broad success of the high technology industry, there are substantial regional dif-

ferences in the productivity of the high technology industry across China. In total, China has 31

provinces, autonomous regions, and municipalities, leading to substantial geographical differences

and differences in natural resource endowments that ultimately effect the investment in and pro-
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ductivity of firms.1 Typically, China is divided into three broad regions - the eastern, central, and

western regions. The eastern region includes 11 provinces along the east coast of China, with an

area of 1,294,000 square kilometers, accounting for 13.5% of the total area of China. The eastern

region is rich in resources, such as seafood, fossil fuels, iron ore and minerals. The abundance of

resources and access to the coast has made the eastern region the primary region for economic

development in China. The central region includes 8 provinces, with an area of 2,818,000 square

kilometers, accounting for 29.3% of the total area of China. This region is rich in various metal and

non-metal resources, leading primarily to the development of heavy industry. The western region

includes 12 provinces, with an area of 5,414,000 square kilometers, accounting for 56.4% of the total

area of China. This region has a complex terrain with limited transportation and investment to

the extent that, only until recently, there has not been much development and investment in these

provinces. Figure 1 shows a map of China that clearly labels each of the three regions.2

The wide disparity in investment across each of the regions has led to a substantial disparity

in GDP per capita. In the western region (specifically Guizhou), GDP per capita in 2007 was

estimated to be about 6915 renminbi (RMB; Chinese currency). In Beijing (located in the eastern

region), GDP per capita in the same year was about 58204 RMB (China Statistical Yearbook [2]).

Hence, the differences in economic development across regions has led to considerable differences

in population well-being.

In addition to the vast divergence in overall economic development across the three regions, the

past several decades have witnessed a substantial divergence in terms of the development of the

high technology industry across the eastern, central, and western regions in China. In 2007, the

value-added of the high technology industry in the eastern region accounted for 88.9% of the total

value-added in China, while the central and western regions only accounted for 6.5% and 5.6%,

respectively (China Statistical Yearbook on High Technology Industry [1]). Moreover, exports from

the high technology industry in the eastern region accounted for 97.9% of the total high technology

exports from China, while the central and western regions only accounted for 1.34% and 0.77%,

respectively. That is, following other trends in Chinese investment and development, the high

technology industry is almost entirely located in the eastern region of the country.

In particular, research and development (R&D) is vitally important to the high technology

industry. According to the Organization for Economic Co-operation and Development (OECD [3]),

R&D refers to “creative work undertaken on a systematic basis in order to increase the stock of

knowledge, including knowledge of man, culture and society, and the use of this stock of knowledge

to devise new applications.” In 2007, the R&D inventory in the high technology industry in the

eastern, central, and western regions accounted for 83.7%, 6.7%, and 9.6%, respectively, of the

total R&D inventory in the high technology industry in China (China Statistical Yearbook on

High Technology Industry [1]). Furthermore, the percentages of patents in the high technology

industry held in the three regions are 86.6, 6.6, and 6.8, respectively, for the eastern, central, and

western regions. The broad discrepancies in R&D investments in China have considerable policy

1Chinese regional and provincial level statistics, including the ones summarized below, are available online from
the National Bureau of Statistics of China. See http://www.stats.gov.cn/english/ for further details and statistics.

2Map source: http : //www.chinamapxl.com/regional − map.html.
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implications for Chinese development and growth. For example, because the eastern region is

already highly developed, further investments in the high technology industry and R&D are likely

to be more and more costly over time, as the prices of productive inputs rise. This suggests that

the return on investments in the central and western regions may potentially be higher than in the

eastern region. Conversely, the lack of established infrastructure in the central and western regions

suggests that factors of production are likely to be cheaper, and potentially more productive than

their counterparts in the eastern region. Therefore, it is not necessarily clear as to where investments

in R&D will have the highest return.

The goal of this paper is to estimate the relationship between R&D and the productivity of

the high technology industry in China through a production function framework, and through this

lens ascertain in which provinces or regions R&D investments may draw the highest returns in

terms of firm productivity. Based on the fact that the regions in China are heterogeneous in terms

of their economic development, social characteristics, geographical locations, and resource endow-

ments, a standard production function framework that assumes all regions are identical cannot

accurately model the relationship between R&D and the productivity of the high technology indus-

try. Therefore, our primary approach generalizes the standard framework in order to accommodate

heterogeneity in the effect of R&D on output across regions. This approach allows for more accu-

rate estimation of the effect of R&D on firm productivity, and thus provides direction for future

investments in R&D in China.

2. Theoretical Framework

2.1. Production Functions

Since we use a production function as a tool to examine the nexus between R&D and productiv-

ity, we provide a brief discussion on production functions in this subsection. A production function

in economics describes the technology (in mathematical form) that transforms various inputs into

output or outputs. In a single output case the production technology can be expressed as:

Y = A(t)f(X1, X2, . . . , XK) (1)

in which Y is the firm’s output, Xk (k = 1, . . . , K) are inputs used, f(·) is the production tech-

nology (black box) that defines the process by which inputs are transformed into output, A is the

technological (shift) parameter, and t denotes time. Often, the technological parameter of the firm

is assumed to be time dependent in order to capture the notion that firms can increase their output

over time through experience (learning by doing).

In applied production analysis, it is often helpful to specify the functional form of f(·), in order

to obtain parameters of the underlying production process using observable data. A popular choice

of production function is the Cobb-Douglas (Cobb and Douglas [4]). The Cobb-Douglas production

function is written as:

f(·) = Xβ1

1 × Xβ2

2 × · · · × XβK

K =
K
∏

k=1

Xβk

k (2)

in which βk are unknown parameters that determine the impact of input Xk on output. Many
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other functional forms can be used to represent the production technology. Substituting the Cobb-

Douglas form (2) in (1) gives the following form of the production technology:

Y = A(t)
K
∏

k=1

Xβk

k . (3)

To simplify econometric estimation of (3) it is often expressed in natural logarithm form with

the addition of a stochastic noise term u, viz.,

lnY = β0(t) +

K
∑

k=1

βk lnXk + u, (4)

in which β0(t) = lnA(t). The advantage of using the log transformation is that the production

function is now linear with respect to the unknown parameters, and is simple to estimate using

ordinary least squares (OLS). The parameters, βk, can now be interpreted as an input elasticity:

a 1% increase in the level of Xk used by the firm leads to a βk% change in output. In addition,

the sum of the coefficients also has a meaningful interpretation. If, for example,
∑

k βk = 1, then

the production function has constant returns to scale, meaning that if all inputs are simultaneously

doubled, output will also be doubled. If
∑

k βk > 1 (or < 1), then doubling all inputs will more

than (or less than) double output, thereby meaning that the returns to scale is greater (less) than

unity, i.e., increasing (decreasing) returns to scale.

Figure 2 provides a simple graphical illustration of a production function, assuming that the

firm is producing output using only one input. For any given time period, e.g., t = t0, we can see

that increasing inputs increases output by traveling northeast along the curve. However, over time

the technology can change and this can be illustrated by shifting (usually upward) the technological

parameter in the production function. The figure shows that the firm is able to produce a greater

amount of output over time using the same amount of the input. Thus, time can be viewed as an

environmental factor which is different from the standard (conventional) inputs. Traditional inputs

are capital (e.g., machines), labor (e.g., manpower), energy, and raw materials. Environmental

factors change output by changing the environment, thereby affecting productivity of the traditional

inputs. Hence, it is important to differentiate the environmental factors from the traditional inputs.

In addition to time, other factors may influence the production process (i.e., shift the produc-

tion function). In this paper, we follow Li et al. [5] and model R&D as an another important

environmental factor. By itself, R&D may not be capable of producing output (i.e., R&D is not

a traditional input), but further investment in R&D is likely to affect the ability of the firm to

transform inputs into outputs more effectively. We point out that producer theory is typically

silent when it comes to incorporating environmental variables in a production function. Although

these are recognized as shift variables, it is not clear whether these shifts are neutral or not. If the

shift is neutral, these environmental variables can be introduced in the technology parameter, i.e.,

β0(t, R&D). There is, however, no reason to believe that the shift in the production function is

neutral. That is, the environmental variables are likely to influence the productivity of traditional

inputs (e.g., capital and labor). Because of this we prefer to include the environmental variables into
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the model by allowing the elasticities of capital and labor to vary with respect to these variables.

2.2. Contribution to the Literature

Following the seminal article by Griliches [6], there has been an extensive literature analyzing

the impact of R&D activities on firm productivity. Some recent contributions include Griliches

[7], Griliches [8], Hall and Mairesse [9], Griliches [10], Griffith et al. [11], Hu and Jefferson [12],

Klette and Kortum [13], Hu et al. [14], Jefferson et al. [15], Lööf and Heshmati [16] and Wu [17]. In

general, empirical research shows that R&D positively and significantly impacts productivity (e.g.,

Hall and Mairesse [9], Griffith et al. [11], Hu and Jefferson [12]). However, results from studies

that use Chinese data have been mixed; some studies find a positive effect of R&D (e.g., Hu et al.

[14], Jefferson et al. [15] and Wu [17]) and others fail to find a positive effect (e.g., Zhang [18]

and Li [19]). We surmise that the lack of empirical consensus regarding the impact of R&D on

productivity in China is possibly because of large regional disparities in economic development,

technology, and human resources across different Chinese provinces. We therefore use Chinese

provincial level data to focus on China’s high technology industry, and measure the impact of R&D

on industry productivity across different Chinese provinces.

Previous studies have found that R&D significantly impacts productivity in various Chinese

manufacturing sectors; Wu [17], Jefferson et al. [15] and Hu et al. [14] find evidence that R&D

significantly affects productivity. Wu [17] estimates the elasticity of output with respect to R&D

using an industry level panel dataset spanning the period 1993-2002. He finds that the elasticity

of output with respect to R&D is approximately 0.4-0.67 for China’s high technology industry,

while it is higher in industries with larger average firm size and a smaller fraction of state-owned

enterprises. Jefferson et al. [15] use a recursive three-equation model to analyze a panel dataset

on large and medium sized manufacturing enterprises in China over the period 1997-1999. He

finds strong evidence of positive contributions of R&D expenditure on productivity, with an output

elasticity with respect to R&D of approximately 0.24. He also finds that there are substantial

differences in the return to R&D across firms with different types of ownership. Using a Cobb-

Douglas production function framework and an unbalanced sample of approximately 10,000 large

and medium sized manufacturing firms in China over the period 1995-1999, Hu et al. [14] find

evidence in favor of productivity of R&D in the high technology sector (the estimated elasticity is

approximately 0.064), but no significance of R&D on productivity in other sectors.

Other studies find opposite results. Using data envelopment analysis (DEA), Li [19] shows

that the effect of R&D on output is negative. Zhang [18], using the same method as Li [19],

finds that R&D has no significant effect on the total factor productivity of Chinese manufacturing

industries. By splitting the industries or firms into different categories (e.g., high technology versus

low technology sectors, firm size, or foreign versus state-owned firms) Wakelin [20] and Tsai and

Wang [21] find that there are substantial differences in the impact of R&D on productivity growth

and the elasticities of labor and capital across different categories.

We focus on measuring the impact of R&D, capital, labor, and time on the productivity of

China’s high technology industry to assess whether the impact of these factors on output varies

substantially across different provinces and regions. While R&D and time are generally considered

to be important factors to account for when estimating industry productivity, it is difficult to justify
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their inclusion as inputs into the production function. Typically, economists think of R&D and time

as being important environmental variables that influence the productivity of traditional inputs,

such as capital and labor. Using a simple Cobb-Douglas production function with capital and labor

as traditional inputs, we generalize the model to allow the parameters associated with inputs to

vary with R&D and time. In the standard Cobb-Douglas production model no distinction is made

between traditional and environmental variables and the output elasticity of each input is constant

for all provinces and for every year. A generalization of the Cobb-Douglas function to the translog

allows the output elasticities of the inputs to vary linearly with respect to all inputs. Here we use

the Cobb-Douglas model for simplicity but generalize it so that the coefficients (i.e., elasticities) on

the traditional inputs (i.e., capital and labor) vary with respect to certain environmental factors,

namely R&D and time, while controlling for fixed province effects. The advantage of our approach is

that it incorporates R&D and time into the production process, without resorting to a specification

that treats these environmental factors as traditional inputs into the production process. We used a

semiparametric smooth coefficient model (Cai et al. [22]) to estimate our generalized Cobb-Douglas

production specification,3 and compare the results against a fully parametric model.

In addition to incorporating R&D and time into the regression model in an arguably more

appropriate fashion (i.e., not as traditional inputs into the production function), the generalized

production function framework allows for heterogeneity in the coefficients on capital and labor

(i.e., the elasticities of capital and labor) since these coefficients are functions of environmental

factors which affect the production function non-neutrally. An additional insight that comes from

the semiparametric model is that for a given level of the environmental variables (e.g., a given

level of R&D), the model is reduced to the standard constant coefficient Cobb-Douglas model

(Hartarska et al. [25]). Moreover, the semiparametric model provides further flexibility in the

estimated coefficients because it does not require specification of any parametric functional form

for the coefficients. Such parameter heterogeneity is crucial when analyzing productivity in China,

since rapid growth and recent structural transitions in China have left a substantial gap in the level

of economic development across provinces.

3. Methodology and Data

3.1. Econometric Methodology

Models of industry productivity typically require the specification of the industry production

function. As mentioned previously, the Cobb-Douglas production function in logarithmic form is

commonly used in practice. That is, the function being estimated is:

lnYit = β0 +
K

∑

k=1

βk lnXkit + uit, (5)

where Yit is the output of industry i at time t, Xkit is the level of input k for industry i at time t,

and uit is a random error. While the Cobb-Douglas framework provides a reasonable benchmark

3We note that the semiparametric smooth coefficient model has been used previously, for example, Mamuneas
et al. [23] and Asaftei and Parmeter [24].
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production function in applied research, it is often restrictive in its assumptions of strict parameter

homogeneity. Hence, instead of estimating the traditional Cobb-Douglas production function, we

make three generalizations to the model in (5) that incorporate heterogeneity in the intercept and

elasticities of capital and labor, while maintaining the basic Cobb-Douglas structure.

Our first generalization, which we refer to as Model 1, is to make the intercept, β0, a parametric

function of various environmental factors. The advantage of Model 1 over the traditional model is

to allow for industry heterogeneity via the intercept term, and is written as:

lnYit = β0(Zit; θ0) +

K
∑

k=1

βk lnXkit + uit, (6)

in which θ0 denotes a vector of parameters to be estimated, and Zit includes both continuous and

discrete exogenous environmental variables. If β0(Zit; θ0) = α0
0 +

∑L
l=1 α0

l Zlit + µi, in which Zlit

denotes the l-th continuous environmental factor of industry i at time t, and µi is the industry-

specific fixed effect (which can be treated as a dummy variable) the model can be estimated via

a least-squares dummy variable (LSDV) approach (Baltagi [26]). The marginal effect of Zlit on

the intercept is captured by α0
l . However, we can generalize the traditional model a bit further by

allowing the elasticities to be parametric functions of the same environmental factors, in addition

to the intercept. This gives rise to Model 2:

lnYit = β0(Zit; θ0) +
K

∑

k=1

βk(Zit; θk) lnXkit + uit, (7)

in which βk(Zit; θk) = αk
0 +

∑L
l=1 αk

l Zlit+µi, ∀k = 1, 2, . . . , K. Thus αk
l captures the marginal effect

of Zlit on the elasticities. Model 2 allows both the intercept and elasticities of capital and labor

to vary with respect to environmental factors, and thus constitutes a substantial generalization

of the traditional model. Although the dummy variables interact with lnXkit in this model, the

LSDV approach still applies here. However, Model 2 imposes potentially restrictive parametric

assumptions regarding the way in which heterogeneity is introduced into the model; in general,

specific functional forms for the coefficients are unknown to the econometrician. Thus, our third

model incorporates heterogeneity in the intercept as well as capital and labor elasticities without

requiring the practitioner to specify the functional form of the coefficient functions. That is,

we assume the intercept and capital and labor elasticities are unknown smooth functions of the

environmental factors, Zl, and fixed effects, to be estimated nonparametrically. Known as the

semiparametric smooth coefficient model (see Cai et al. [22] and Li et al. [5]), we write our Model

3 as:

lnYit = β0(Zit) +
K

∑

k=1

βk(Zit) lnXkit + uit, (8)

in which Zit = (Z1it, . . . , ZLit, µi) is an (L + 1) × 1 vector, µi are the fixed effects, βj(Zit) ∀j =

0, . . . , K are the unknown smooth coefficient functions to be estimated.

While Models 1 and 2 can be estimated using OLS, Model 3 must be estimated using nonpara-

metric methods. Following Li and Racine [27], we use the local-linear least-squares procedure to
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estimate the unknown coefficient functions. Specific details regarding the local-linear least-squares

estimator can be found in the technical appendix to this paper or in Li and Racine [27].

Two aspects of our econometric approach are worth emphasizing. First, the local-linear proce-

dure used to estimate the unknown coefficient functions also (simultaneously) provides estimates

of the first order derivatives of the coefficient functions with respect to the continuous environ-

mental factors (i.e., zc). Second, an interesting feature of the smooth coefficient model is that the

estimated parameters (functions) differs from the OLS estimates only through the inclusion of the

kernel function. Elimination of the kernel function in (14) reduces the estimator to simple OLS,

and subsequently reduces Model 3 to the traditional Cobb-Douglas model given in (5).

3.2. Data Construction

The dataset is constructed from the China Statistical Yearbook [2] and the China Statistical

Yearbook on High Technology Industry [1], and is a unique panel of 25 provinces and four munici-

palities (Beijing, Tianjin, Shanghai, and Chongqing) spanning the period 2000-2007.4 Our dataset

differs from the datasets used by Wu [17] and Hu et al. [14], who used industry-level and firm-level

panels to study Chinese manufacturing. We do not use firm level data because they are not available

for many small-sized firms and for every province in China. In order to better understand regional

heterogeneity in the impact of R&D on productivity across regions in China, we use provincial level

data because it provides more comprehensive coverage of output across Chinese provinces.

Output is measured as real value-added goods and services in thousands of RMB in China’s

high technology industry, deflated by the Producer Price Index (PPI). Production involves two

inputs: the number of employees and the inventory of real physical capital in thousands of RMB,

deflated by the Price Index for Investment in Fixed Assets. We include real R&D inventory in

thousands of RMB, a time trend, and an indicator for region as one of the environmental factors.

As productivity appears to be affected by the accumulated stocks of capital and R&D expen-

diture, stock indicators (rather than current or lagged flows) were used as impact variables; see for

example, Hulten [28], Jorgenson [29], Hall and Mairesse [9], Bönte [30]. Accordingly, R&D and the

stock of physical capital are computed using the perpetual inventory method based on the following

equations:

Rt0 =
Et0

gR + δR

, t0 = 1999 (9)

Rt = Rt−1(1 − δR) + Et, t = 2000, . . . , 2007 (10)

in which R is R&D inventory, E is R&D expenditure, gR denotes the compound average rate of

change in real R&D expenditure, and δR denotes the depreciation rate for R&D inventory.

Similarly,

Kt0 =
It0

gK + δK

, t0 = 1999 (11)

Kt = Kt−1(1 − δK) + It, t = 2000, . . . , 2007 (12)

in which K is the inventory of physical capital, I is physical capital expenditure, gK denotes the

4Xinjiang and Tibet are excluded from the sample because of a lack of data availability.
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compound average rates of change in fixed capital expenditure, and δK denotes the depreciation

rate for the stock of physical capital.

To obtain gR and gK , we calculate the compound average rates of change in real R&D ex-

penditure and fixed capital expenditure for every province over the period 2000-2007. We set the

depreciation rate for R&D (δR) equal to 15% following previous studies (for example, Schankerman

and Pakes [31], Hall and Mairesse [9], and Hall [32]). Other studies (for example, Musgrave [33],

Bischoff and Kokkelenberg [34], and Nadiri and Prucha [35]) assume the depreciation rate for phys-

ical capital (δK) is approximately 6%, however we use 10% as the depreciation rate for physical

capital because technologically advanced sectors are known to have shorter product life-cycles and

higher scrapping rates. With the exception of the time trend and regional indicator, all variables

are measured in logs.

Table 1 provides a brief summary of the variables used in our analysis. As can be seen from Ta-

ble 1, there are large discrepancies in terms of economic development across different regions. Hence

a regional analysis is appropriate when analyzing Chinese data. We classify the data into three

different regions (i.e., the eastern, central, and western regions) based on geographical location,

natural resources, economic development, and social characteristics.5

4. Results and Policy Implications

4.1. Parametric Results and Model Selection

We now present our results from each of our production function specifications. Table 2 sum-

marizes the results from each of the three models: the elasticity of output with respect to capital

(β̂1) and labor (β̂2), returns to scale, the elasticity of output with respect to R&D (∂ lnY/∂ lnZ1)

and technical change (∂ lnY/∂t). Since Models 2 and 3 give rise to observation specific estimates,

we summarize the results from these models by reporting the estimates at the mean, 25th (Q1),

50th (Q2), and 75th (Q3) percentiles.

In Model 1, R&D and time only neutrally shift the production function, while R&D and time

are allowed to non-neutrally affect the production function in Models 2 and 3. Hence, the elasticity

of output with respect to capital and labor are invariant with respect to R&D and time in Model

1, but are allowed to vary with respect to R&D and time in Models 2 and 3.

Results across each of the three models are generally consistent. We find the elasticity of output

with respect to capital (β̂1) and labor (β̂2) to be generally positive and significant across each of

the three models. We note that both elasticities are negative and significant at the 25th percentile

for Model 2, the fully parametric model. In the semiparametric model, all the quartile values of

capital and labor elasticities are positive, and the magnitudes of the elasticities are in line with

macroeconomic theory: the share of income going to physical capital is about 1/3 and the share

of income going to labor is about 2/3. Technical progress is positive and significant across each of

the models, and returns to scale, the sum of β̂1 and β̂2, is closest to unity in the semiparametric

5The eastern region includes Beijing, Tianjin, Liaoning, Shanghai, Jiangsu, Hebei, Zhejiang, Fujian, Shandong,
Guangdong, and Hainan; the central region includes Shanxi, Jilin, Heilongjiang, Anhui, Jiangxi, Henan, Hubei,
and Hunan; and the western region includes Neimenggu, Guangxi, Chongqing, Sichuan, Guizhou, Yunnan, Shaanxi,
Gansu, Qinghai, and Ningxia.
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model. We find evidence of decreasing returns to scale across each of the three models, except at

the 75th percentile for Model 2. In addition, we find much greater variability in the returns to

scale estimates in Model 2 than in Model 3. Nevertheless, both Models 2 and 3 suggest substantial

heterogeneity in the coefficients and returns to scale across the observations in this sample.

We find the effect of R&D on output to be insignificant in Model 1, mostly insignificant (some-

times even negative) in Model 2, but always positive and significant in Model 3. Note that the

magnitudes of the R&D elasticity is substantially larger in Model 3 compared to Models 1 and 2.

A glance at the technical change measure suggests that the effects of R&D are mostly absorbed by

the time effect in the two parametric models.

In light of the fact that both Models 2 and 3 suggest substantial heterogeneities across the

observations in our sample, yet different models yield substantial variation in terms of the estimates

(i.e., magnitude, sign, and significance), we may rely on economic and statistical criteria to select the

preferred model. Table 3 reports the cross-validated optimal bandwidths for the Z variables in the

semiparametric model, along with percentage of violations in both parametric and semiparametric

models for comparison. We expect both β̂1 and β̂2 to be positive (as input elasticities); violations

occur when the estimates are negative. We can see that in the parametric model nearly 30% of the

elasticities are negative for both capital and labor, while the semiparametric model yields far fewer

violations (no violations for β̂2). This motivates the semiparametric model as more appropriate

than its parametric counterpart from an economic point of view. The third row of the table

reports twice the standard deviation (σz) of the continuous Z variables. We compare twice the

standard deviation with the optimal bandwidth: for local-linear regression, the rule-of-thumb for

each continuous Z variable to enter the model non-linearly is that the bandwidth is less than 2×σz,

which is shown in the table. For discrete regressors (i.e., the regional indicator), if the bandwidth

is less than c/(c−1), where c is the number of categories the variable can take, then the regressor is

a relevant predictor of the unknown function. We find that the optimal bandwidth on the regional

indicator is less than the upper bound. This implies that a regional fixed effect is not entering

into the coefficient function in a linearly and additively separable fashion, as is typically assumed

in parametric models of panel data. Hence, examination of the bandwidths suggests that a linear

parametric function would not accurately capture the data generating process. To formally test for

correct specification to choose our preferred model, we use the model specification test proposed

by Cai et al. [22] to determine which model best fits the data. Results from the model specification

tests reject the hypothesis that the coefficients are linear parametric functions of the environmental

variables with a p-value equal to 0.0000. Hence our preferred specification, and the focus of the

rest of this paper, is the semiparametric generalization, Model 3.

4.2. Semiparametric Results

4.2.1. The Elasticities of Capital and Labor

Figure 3 displays each of the partial effects from the semiparametric model, along with boot-

strapped confidence bounds for each partial effect. The advantage of reporting partial effects at

the mean (or quartile) values is limited because we are unable to see statistical significance for the

partial effect of each observation. Hence the objective of the plots is to report statistical significance

for each observation of the partial effects obtained from the semiparametric model.
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To understand these plots consider the following procedure for constructing these plots for any

given estimate, say for example β̂1. First, plot β̂1 against β̂1; this plots β̂1 along the 45 degree

line. Then, adding (or subtracting) twice the standard error from β̂1 gives the upper (or lower)

confidence bounds. Plot both the upper and lower confidence bounds against β̂1. Thus, for every

partial effect placed on the 45 degree line, we also can see an observation-specific confidence interval.

If the horizontal line at zero passes inside of the confidence bounds for any given observation, then

the partial effect for this observation is statistically insignificant. Conversely, if the horizontal

line at zero passes outside of the confidence bounds, then the partial effect for this observation is

statistically significant. In addition to showing statistical significance for each partial effect, the

plots show the sign of the partial effects as well as their density. If any given partial effect is to

the right of the vertical line at zero, it is positive; otherwise it is negative. Observations that lie in

close proximity to each other are located in areas of higher density, whereas observations that do

not lie in close proximity to others are located in areas of lower density.

From Figure 3, we can see that for β̂1 and β̂2, most of the lower bounds are greater than zero,

indicating that for most of the observations the elasticities of capital and labor are positive and

statistically significant. Hence, the results from our model generally satisfy the regularity conditions

imposed by economic theory.

We now plot the same estimates by region in Figures 4,5 and 6 in order to identify whether or

not the sign and significance of the partial effects vary by different regions. We find that for the

elasticity of physical capital, β̂1, more violations occur in the eastern and western regions than in

the central region. Note, however, that the number of violations is relatively small in each region.

We surmise that the (few) negative and significant elasticities probably occur because of insufficient

skilled labor which leads to under-utilized physical capital. In general, our results show that both

capital and labor positively and significantly increase output regardless of region.

4.2.2. Returns to Scale, Technical Change, and Input Bias

In terms of returns to scale, we can see from Figure 3 that a relatively small percentage of

observations (15%) exhibit statistically significant increasing returns to scale technology. A larger

fraction (54%) have statistically significant decreasing returns to scale, and 31% exhibit returns to

scale that are not statistically distinguishable from constant returns to scale.

Figures 4,5 and 6 show that decreasing returns to scale is statistically significant for a substantial

number of observations in each region, but occurs more frequently in the eastern and western regions

(64% in the eastern region, 44% in the central region, 53% in the western region). Decreasing returns

to scale is the sufficient condition for profit maximization, and indicates that firms may not benefit

from expansion. We find some evidence that increasing returns to scale is statistically significant

for some observations in each region, occurring more frequently in the central and western regions

(7% in the eastern region, 19% in the central region, 20% in the western region). Constant returns

to scale occurs most frequently in the central region (29% in the eastern region, 37% in the central

region, 27% in the western region).

In addition, we expect that as China’s economy becomes more competitive, returns to scale

will converge to unity over time. We find that while we estimate decreasing returns to scale for

most provinces, the evidence suggests that returns to scale may be converging to unity over time.
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Specifically, we find that returns to scale for approximately 45% of eastern provinces appears to be

converging to unity over time, 25% appear to be converging in the central region, and 20% appear

to be converging in the western region.

Turning to technical change, ∂ lnY/∂t in Figure 3, we find little evidence in favor of technical

regress. We find a positive and significant technical change for 79% of our sample, 13% of the sample

suggests technical regress, and 8% suggests neither progress nor regress. Thus for a majority of

our sample, we find significant technical progress. At a provincial level, we find less evidence of

technical regress in the central and western provinces (see Figures 5,6), while most of the negative

and significant observations come from the eastern region (see Figure 4). We note, however, that

there are still a substantial number of observations (45%) in the eastern region with significant

technical progress.

We find substantial heterogeneity in input bias - the marginal effects of R&D and time on the

elasticities of capital and labor - in the semiparametric model (see Stevenson [36] for a discussion

on input bias). The marginal effect of time on the elasticities of labor is statistically different from

zero in the fully parametric model, Model 2, which suggests that production technology is not input

neutral.6 In the semiparametric model, we find no evidence of input-neutrality at the mean and at

each of the three quartile values of marginal effects. We find strong evidence in favor of capital-using

technology at the 25th percentile (Q1), and labor-using technology at all the percentiles.

4.2.3. R&D Elasticity

We now turn to the productivity of R&D. For this we examine the elasticity ∂ lnY/∂ lnZ1

where Z1 is R&D. Figure 3 shows a plot of the productivity of R&D. We find that in general,

R&D has a positive effect on output: the mean value of ∂ lnY/∂ lnZ1 for Model 3 in Table 2 is

0.1531, which means that if R&D investments are increased by 1%, ceteris paribus, output would

increase by 0.1531%. The effect of R&D on output is positive and statistically significant for 79%

of the observations in the sample. This suggests that China may see increased productive efficiency

by reallocating R&D investments to regions (or provinces) with positive and significant returns to

R&D.

In order to identify in which regions R&D has the greatest impact on output, we turn to

Figures 4,5 and 6. We find evidence of a positive and significant effect of R&D on output for 83%

of the observations in the eastern region, 94% of the observations in the central region, and 63% of

the observations in the western region. In terms of magnitude, the mean R&D impacts are 0.2202,

0.1637 and 0.0707 in the eastern, central, and western regions, respectively. Therefore, our results

suggest that while there are positive effects of R&D in all regions of China, the magnitudes of such

effects are different across regions.

In general, we find a positive and significant effect of R&D on output in the eastern region.

In particular, the effect of R&D on output in Tianjin province is closest to that in Beijing, which

has the largest R&D effect. This is because of the geographical proximity of Tianjin to Beijing

and hence, recent economic development: as costs of land and labor rise in Beijing, Tianjin easily

attracts resources from Beijing (e.g., capital, technology, and skilled labor) for lower production

6Technology is always input-neutral in Model 1 by construction.
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costs. Hence, R&D investments exhibit a high return in Tianjin.

The elasticity of output with respect to R&D is insignificant for only two of the eleven eastern

provinces (specifically, Guangdong and Zhejiang). The two eastern provinces with an insignificant

effect of R&D on output suggests that even if a province has a well-established infrastructure,

advanced science and technology, and sufficient skilled labor, higher R&D investments do not nec-

essarily lead to higher productivity. This may be because of the fact that much of the technological

innovation introduced in these two provinces of the eastern region is developed internationally and

imported into China. There are many multinational corporations operating in the eastern region,

and technological innovations are often directly introduced from company headquarters overseas

instead of being developed locally by Chinese companies. Hence, the expected relationship between

R&D and output in these provinces may not necessarily exist. Another possible explanation may

be the diminishing marginal product of R&D, after controlling for time effects (see Marsili [37] and

Mairesse and Mohnen [38]). It is likely that some provinces in the eastern region are fully utilizing

their R&D capital, so that the marginal product of R&D is close to zero. Therefore, further invest-

ments in R&D may not always have a positive and significant impact on output. Hainan province,

in particular, has a significantly negative relationship between R&D and output. Although Hainan

province is geographically located in the southeastern part of China, it appears to be an outlier in

the eastern region in that most of the investments are attracted by nearby provinces.7

We find the R&D elasticity is positive and significant in most of the central provinces over all

time periods. This suggests that under current levels of production, science, and technology, the

central region is not making full use of its R&D investments and the marginal product of R&D

is greater than zero. Since most of the central provinces have the necessary prerequisites (e.g.,

infrastructure and human resources) for R&D investments to be effective, the marginal product

of R&D is positive. While this suggests potentially large gains in productivity to be achieved

from reallocating R&D investments to the central region, we note that the elasticity of R&D is

insignificant in Heilongjiang province for many years, in particular.

We find that in three of the ten western provinces,8 the elasticity of output with respect to R&D

is significantly negative in most time periods. Since the western region is the most underdeveloped

region in China, this may indicate that these provinces lack certain prerequisites for R&D to be

effective. Descriptive statistics (see Table 1) show that the mean level of R&D investment is

lowest in the western region. Without a sound manufacturing infrastructure, advanced science and

technological abilities, and abundant skilled labor, R&D may not be able to positively influence

productivity because it may either be potentially missallocated or not correctly used.9 All the other

seven western provinces benefit from a positive and significant effect of R&D.

Figure 7 reports the empirical cumulative distribution functions (ECDFs) of the R&D elasticity

and technical change. To understand these plots, see that if the ECDF of the R&D elasticity

for the western region lies below (to the left of) the ECDF of the R&D elasticity for the eastern

7In particular, Hainan province has greater investments in tourism than in the high technology industry.
8Specifically, Neimenggu, Shaanxi, and Ningxia.
9Negative R&D elasticities were also found in Li [19] who employed the DEA method to estimate the elasticity

using data on thirty-two industries in China over the period 1996-2003.

13



region over a sufficiently large interval, then the R&D elasticity in the eastern region stochastically

dominates the R&D elasticity in the western region. This means that the estimates from the eastern

region are generally larger than those from the western region. This figure confirms that there is a

substantial amount of heterogeneity across regions. The first panel (left) reports the ECDF of the

R&D elasticity. It can be seen that the eastern region generally has a higher return to R&D than

the central region, which in turn generally has a higher return to R&D than the western region.

This confirms our previous discussion of positive and significant R&D effects in the eastern and

central regions, and smaller or even negative R&D effects in the western region. The second panel

(right) reports the ECDF of technical change. We can see that technical progress (i.e., positive

technical change) more frequently occurs in the western region than in the central region, while in

the eastern region sometimes technical regress (negative technical change) occurs. In addition, the

eastern region generally has a smaller magnitude of technical progress than the central region.

These results indicate that while the eastern region benefits the most from R&D investments, it

suffers the most from technical regress at the same time. While the western region benefits the least

from R&D investments, it enjoys the most from technical progress. The implications regarding the

central region are interesting: the central region benefits from R&D investments more than the

western region and benefits from technical progress more than the eastern region. This suggests

that R&D investments in the central region would be effective while technical progress may further

consolidate the development of the central region.

Our results have direct implications for future investment and resource allocation in China.

Because we find strong significance of R&D on productivity in the eastern and central regions,

and significance of technical progress in the central and western regions, resources should be allo-

cated accordingly between the regions to maximize their productivity. R&D investments should

be focused in the eastern and central regions; the combination of R&D and technical progress in

the central region potentially suggests that returns to R&D investments in this region may be

very large. We point out, however, that there is still a positive and significant effect of R&D on

productivity in certain provinces in the western region. Hence, it would not necessarily be effi-

cient to abandon R&D investments in the western region for R&D investments in the central or

eastern regions. Since the eastern region is more developed, we hypothesize that more advanced

(e.g., scientific) research should continue to be done in the eastern region to take advantage of the

established infrastructure, while R&D in manufacturing could potentially be moved to the central

region.10

5. Conclusion

In this paper we focus on the effect of R&D on the productivity of the Chinese high technology

industry across three major geographical regions in China. Due to large regional differences in

China, we use a simple generalization of a Cobb-Douglas production function to incorporate pa-

rameter heterogeneity and flexibility into a standard production function framework. We model the

10Indeed, Foxconn International Holdings, one of the largest manufacturers of electronics and computer components
worldwide, has recently begun relocating its factories to the central region of China, presumably to take advantage
of the lower costs of labor in the central region.
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elasticities of capital and labor as unknown functions of R&D, one of the environmental factors that

may shift the production frontier for each region. We estimate both a semiparametric model and

its parametric counterpart, and find that the semiparametric model yields more intuitive results

and fewer economic violations while the parametric specification is rejected by a formal statistical

goodness-of-fit test. The results from semiparametric model generally show positive and signifi-

cant contributions of R&D on the productivity in China’s high technology industry, with the mean

R&D elasticity being 0.1531. As expected, we find that the overall impact of R&D on productivity

varies substantially across regions and provinces. In particular, we find that the eastern and central

regions have the largest returns on R&D investments, while the central and western regions enjoy

the most technical progress. This suggest that a partial reallocation of R&D investments to the

central region of China is reasonable since it benefits from R&D investments more than the western

region and benefits from technical progress more than the eastern region. A possible future study

may employ the empirical model presented in this paper as a foundation for the investigation of

regional heterogeneity in China or other countries.
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Technical Appendix

This appendix describes in further detail the semiparametric model used to estimate Model 3.

Recent development of kernel methods allows one to smooth both continuous (i.e., Zlit ∀l = 1, . . . , L)

and (discrete) categorical variables (i.e., µi) (see Racine and Li [39] and Li and Racine [40]). To

simplify notation, we rewrite (8) as

Yit = X ′

itΦ(Zit) + uit, (13)

in which Yit is the log of Yit, Xit is a (K +1)×1 vector containing one and the log of the regressors

in Xit, Zit is an (L + 1) × 1 vector of environmental variables, and Φ(·) is a vector of unknown

coefficient functions to be estimated. Following Cai et al. [22] and Li and Racine [27], the local-

linear least-squares estimator yields Φ̂(z) and the first order gradient of Φ̂(z) (i.e., ∂Φ̂(z)/∂zl).

Letting γ̂(z) = (Φ̂(z), ∂Φ̂(z)/∂zl), we have

γ̂(z) =

[ N
∑

i=1

T
∑

t=1

SitS ′

itKh (Zit, z)

]

−1 N
∑

i=1

T
∑

t=1

SitYitKh (Zit, z) (14)

in which N denotes the total number of industries, T denotes the time period, h is an L + 1

dimensioned vector of bandwidths, and K(·) is a generalized product kernel function. Let Zc
it be

an L-vector of continuous variables only (i.e., Zc
it = (Z1it, . . . , ZLit)), then

Sit =

(

Xit

Xit

⊗

(Zc
it − zc)

)

, (15)

in which
⊗

denotes the Kronecker product. Let Zu
it be the unordered categorical variable, or fixed

industry effects (i.e., Zu
it = µi),

11 thus Zit = (Zc
it, Z

u
it). We can then define the kernel function as

Kh(Zit, z) = Ku(Zu
it, z

u, hu)

L
∏

l=1

K

(

Zlit − zl

hl

)

, (16)

in which hu denotes the bandwidth for the unordered categorical variable, and hl denotes the

bandwidth for the l-th continuous variable. Following Aitchison and Aitken [41], and letting c

denote the number of categories the discrete variable can take,

Ku(·) =

{

1 − hu, if Zu
it = zu

hu/(c − 1), otherwise
(17)

and

K(·) =
1√
2π

exp

(

−1

2

(

Zlit − zl

hl

)2
)

. (18)

11Kernel methods also allow for ordered categorical variables (e.g. time). We treat time as continuous in our
model since technical change can be most easily captured by a time trend variable whose derivatives are well-defined.
We note that using an ordered categorical variable to control for time yields qualitatively consistent results to those
reported here.
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We select the vector of bandwidths, h, using least-squares cross-validation. The cross-validation

criterion function is given by:

CVll(h) = min
h

N
∑

i=1

T
∑

t=1

[Yi −X ′

itΦ̂(Zit)−it]
2, (19)

in which X ′

itΦ̂(Zit)−it is the leave-one-out estimator of the conditional mean. The advantage of using

least-squares cross-validation to select the bandwidths is that it allows us to avoid any potential

pitfalls associated with an ad hoc choice of bandwidth. See Li and Racine [27] for details.

17



References

[1] China Statistical Yearbook on High Technology Industry, China Statistical Yearbook on High
Technology Industry 2000-2009, China Statistics Press, 2009.

[2] China Statistical Yearbook, China Statistical Yearbook 2000-2009, China Statistics Press,
2009.

[3] OECD, OECD Factbook 2010: Economic, Environmental and Social Statistics, OECD Pub-
lishing, 2010.

[4] C. Cobb, P. Douglas, A theory of production, American Economic Review 18 (1928) 139–165.

[5] Q. Li, C. Huang, D. Li, T. Fu, Semiparametric smooth coefficient models, Journal of Business
and Economic Statistics 20 (2002) 412–422.

[6] Z. Griliches, Issues in assessing the contribution of research and development to productivity
growth, Bell Journal of Economics 10 (1979) 92–116.

[7] Z. Griliches, R&D and productivity slowdown, American Economic Review 70 (1980) 343–348.

[8] Z. Griliches, Productivity, R&D and basic research at the firm level in the 1970’s, American
Economic Review 76 (1986) 141–154.

[9] B. Hall, J. Mairesse, Exploring the relationship between R&D and productivity in French
manufacturing firms, Journal of Econometrics 65 (1995) 263–293.

[10] Z. Griliches, R&D, Education and Productivity, Harvard University Press, 2000.

[11] R. Griffith, S. Redding, J. V. Reenen, Mapping the two faces of R&D: Productivity growth in
a panel of OECD industries, Review of Economics and Statistics 86 (2004) 883–895.

[12] G. Hu, G. Jefferson, Returns to research and development in Chinese industry: Evidence from
state-owned enterprises in Beijing, China Economic Review 15 (2004) 86–107.

[13] J. Klette, S. Kortum, Innovating firms and aggregate innovation, Journal of Political Economy
112 (2004) 986–1018.

[14] G. Hu, G. Jefferson, J. Qian, R&D and technology transfer: Firm-level evidence from Chinese
industry, Review of Economics and Statistics 87 (2005) 780–786.

[15] G. Jefferson, H. Bai, X. Guan, X. Yu, R&D performance in Chinese industry, Economics of
Innovation and New Technology 13 (2006).
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Table 1: Summary Statistics of the Variables

Variable Mean Sd. Min. Max.

Log of Output (ln Y ) Total obs. 4.2713 1.5111 -0.2614 7.8262

Eastern 5.440 1.3280 1.797 7.826

Central 4.018 0.6018 2.630 5.553

Western 3.1880 1.2973 -0.2614 5.8237

Log of Capital (ln X1) Total obs. 4.0304 1.3091 0.8419 7.1989

Eastern 4.848 1.2296 1.489 7.199

Central 4.066 0.7808 2.160 5.326

Western 3.1026 1.1146 0.8419 5.2076

Log of Labor (ln X2) Total obs. 11.362 1.3280 7.948 14.845

Eastern 12.21 1.3253 8.74 14.84

Central 11.30 0.3587 10.60 12.02

Western 10.474 1.2294 7.948 12.419

Log of R&D (ln Z1) Total obs. 11.083 2.0751 5.388 15.565

Eastern 12.401 1.7941 6.782 15.565

Central 10.89 1.0302 8.62 12.67

Western 9.791 2.1310 5.388 13.511

1. The sample consists of 232 observations spanning 29 provinces over 8
years (2000-2007).
2. There are 88 observations for the eastern region, 64 observations for
the central region, and 80 observations for the western region.
3. Output, capital, labor, and R&D are measured in thousands RMB
(Chinese currency).
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Table 2: Summary of Results for Models 1-3

β̂1 β̂2 RTS ∂ ln Y/∂ ln Z1 ∂ ln Y/∂t ∂β̂1/∂ ln Z1 ∂β̂1/∂t ∂β̂2/∂ ln Z1 ∂β̂2/∂t

Model 1 0.1241 0.5046 0.6287 0.0388 0.1038 - - - -

(0.0386) (0.0551) (0.0583) (0.0363) (0.0112)

Model 2

Mean 0.1617 0.5552 0.7168 0.0004 0.1074 -0.1063 0.0324 0.0561 -0.0775

(0.0266) (0.0744) (0.0865) (0.0054) (0.0082) (0.0646) (0.0206) (0.0769) (0.0263)

Q1 -0.0515 -0.1110 0.0877 -0.0601 0.0635 - - - -

(0.0182) (0.0306) (0.0481) (0.0054) (0.0022)

Q2 0.1536 0.6106 0.6999 -0.0049 0.1022 - - - -

(0.0140) (0.0482) (0.0425) (0.0049) (0.0033)

Q3 0.3486 1.0569 1.4669 0.0544 0.1376 - - - -

(0.0296) (0.1715) (0.2082) (0.0041) (0.0354)

Model 3

Mean 0.2755 0.6572 0.9327 0.1531 0.0544 0.0206 0.0070 0.0145 -0.0366

(0.0232) (0.0439) (0.0633) (0.0150) (0.0061) (0.0047) (0.0028) (0.0054) (0.0037)

Q1 0.1620 0.5253 0.8529 0.0691 0.0192 -0.0186 -0.0206 -0.0348 -0.0592

(0.0082) (0.0059) (0.0067) (0.0050) (0.0029) (0.0029) (0.0031) (0.0034) (0.0047)

Q2 0.2636 0.6618 0.9123 0.1588 0.0438 0.0165 0.0014 0.0303 -0.0317

(0.0129) (0.0147) (0.0066) (0.0081) (0.0019) (0.0029) (0.0016) (0.0042) (0.0019)

Q3 0.3917 0.7914 0.9997 0.2474 0.0891 0.0560 0.0262 0.0666 -0.0071

(0.0648) (0.3048) (0.6383) (0.0191) (0.0119) (0.0048) (0.0017) (0.0069) (0.0017)

1. The numbers in the parentheses are standard errors.
2. ∂ ln Y/∂ ln Z1 is an elasticity.
3. Each model includes provincial level fixed effects.
4. The null of equality of distributions across Models 2 and 3 for β̂1, β̂2, RTS, ∂ ln Y/∂ ln Z1, ∂ ln Y/∂t, respectively, is
rejected at the 1% level.
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Table 3: Bandwidths and Percentage of Violations

Z Variable R&D t Province

Bandwidth 1.9823 2.7810 0.2489

2 × σz 4.1502 4.5925 -

X Variable Intercept Capital Labor

Coefficient β̂0 β̂1 β̂2

Percentage of violations: Semiparametric - 12% 0%

Percentage of violations: Parametric - 27% 28%

1. Both R&D and t are continuous, Province is an unordered categorical
variable in the semiparametric model and dummy variables in the parametric
model.
2. Bandwidths are selected via least-squares cross-validation.
3. σz denotes standard deviations of continuous Z variables.
4. Model specification test proposed by Cai et al. [22] rejects the parametric
model with a zero empirical p-value from 399 wild bootstrap replications.
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Figure 1: Regional Map of China

Figure 2: A Single Input Production Function.
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