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ABSTRACT: This study summarizes the available information on the technical characteristics 
and costs of those sulphur abatement technologies in operation at present or coming into 
operation in the near future. Relying on disaggregated source data and using engineering cost 
functions and various technical and economic assumptions, the least cost curves of sulphur 
abatement for all the European countries have been derived and some examples are presented. 
Finally, a sensitivity analysis of abatement strategies and costs to some alternative assumptions 
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INTRODUCTION  

 The generation of electricity from conventional power stations is associated with a 

number of environmental problems. For example, generation using coal causes significant air 

pollution due to emissions of sulphur oxides, carbon dioxide, nitrogen oxides and particulates. 

In the UK a 2000 MW coal fired station operating at 60% load factor burns about 4.4 million 

tonnes of coal per year and each year emits into the atmosphere about 10 million tonnes of 

carbon dioxide, 130,000 tonnes of sulphur dioxide, 40,000 tonnes of nitrogen oxides and 

between 4,000 and 40,000 tonnes of particulate matter depending on how well the stack 

emissions are cleared before they are released (Highton and Webb, 1980). Particular concern 

has been expressed about the emissions of sulphur dioxide because the use of tall stacks to 

disperse emissions can lead to problems of transnational pollution. Approximately 1 tonne of 

sulphur burned produces 2 tonnes of sulphur dioxide (SO2) and sulphur is present, in varying 

quantities, in both oil and coal.  

 Many abatement technologies are commercially available now (though costly) and that 

most of those being developed are near- or mid-term technologies and therefore are either on 

the verge of being commercially available or would be available by the year 2000.  Estimates 

of costs of pollution control systems provide a common language for making international 

comparisons of emissions control systems. Such abatement cost data could allow environ-

mental policy makers to identify that combination of desulphurization technologies which 

would achieve a given reduction of sulphur emissions at least cost, i.e. the most cost-effective 

combination.  

 The costs used in this study relate to the direct cost of construction, operation and 

design of sulphur abatement units. A full economic analysis would require also the inclusion of 

financial factors such as interest payments, subsidies and taxes and an examination of the 

external costs imposed by the operation of the control unit (for example, waste disposal, etc). 
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This study summarizes the information on the technical characteristics and costs of the sulphur 

abatement technologies.  Section 1 describes the technical characteristics of the available 

sulphur control techniques and presents the cost estimates used in this study for the derivation 

of the European abatement cost curves. Section 2 presents the economic and technical 

assumptions used in the derivation of the abatement cost curves. Section 3 discusses some of 

the energy alternative options and section 4 reports on the results obtained. Finally, some 

concluding remarks are presented. An appendix concerning the results obtained is also 

attached. 

1. ABATEMENT OPTIONS FOR SULPHUR EMISSIONS REDUCTION  

 Desulphurization processes exist to reduce the sulphur content of the fuel in use.  The 

extent of removal is dependent on the physical and chemical characteristics of the sulphur in 

the fuel. Control technologies can be classified into three categories: 1. pre-combustion 

(physical coal washing and oil desulphurization); 2. during-combustion (sorbent injection and 

fluidized bed combustion); and 3. post-combustion (flue gas desulphurization, FGD). Unfortu-

nately, there has been little commercial operating experience with many of these technologies; 

therefore, removal efficiencies and costs tend to be uncertain.  The choice of the technology 

will depend upon the characteristics of the fuel being burned and the standards for emissions 

which must be met.  Ease of disposition or ability to reuse waste products was found to be a 

secondary but important determinant of the technology used, especially as it affects the 

economics of certain processes. Sub-section 1 hereafter, will describe some of the technical 

characteristics of the sulphur control methods available now or in the near future; while sub-

section 2 will present the cost estimates adopted in this study for the derivation of sulphur 

abatement cost curves.  Also, sub-section 2 will discuss the issue of how easy handling or re-

using of by-products produced by the use of the control methods is, as a determinant for the 



  
 
 3 

choice of the control method.  

1.1. Technical characteristics of abatement methods used to abate sulphur emissions  

 Cleaning techniques are relatively simple and well-established. They take place before 

combustion and their effectiveness depends on the physical characteristics of the specific coal 

and crude oils which are subject to treatment. Sulphur in coal occurs in two forms: organic 

and pyritic. Organic sulphur cannot be removed by direct physical separation and comprises 

from 30 to 70 per cent of the total sulphur of most coals. The proportions vary with different 

coals although high sulphur content tends to be accompanied by proportionally large pyrite 

content.  As a guide, between 35% and 70% of pyritic sulphur can be removed by physical 

washing (EPA, 1978). However, the organic sulphur which is not removed by this process 

may make up between 30% and 70% of the total sulphur content. This suggests that, overall, 

only about 25% to 30% of the sulphur will be removed (Highton, 1978). In this context it 

should be pointed out that physical coal washing is applicable to hard coal only.  To remove 

sulphur in the form of pyrite, the coal is crushed, washed and then separated from impurities 

during a settling process. Further coal washing involves separation of coal into high and low 

sulphur streams and then processing of the high sulphur stream. This is termed "deep washing" 

and it is assumed that sulphur content is reduced by 30%. One drawback with coal cleaning is 

that it produces a large amount of solid waste. On the other hand, it also demands little power 

plant modification, reduces transport costs, and can be used in conjunction with other 

combustion or post combustion control methods (Parker, L.B. & Kaufman, A., 1985). 

Therefore, coal washing will be favoured over other methods when the sulphur content of coal 

is high, implying a high proportion of pyrites, and when coal is cheap(1). This technique will 

also be favoured when transport costs are high.   

 The desulphurization of oil products takes place before combustion and can be 
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incorporated into the refining process, where sulphur is obtained as a by-product. The two 

main candidates for desulphurization are middle distillates (gas oils) and heavy vacuum 

residues (heavy fuel oil, HFO). The techniques used are normally classified as direct and 

indirect desulphurization. In the direct method the residue from the initial distillation is reacted 

with hydrogen at high temperature and pressure in the presence of a catalyst and then 

reblended with the distillate to produce a lower sulphur oil. This method can remove up to 

90% of the sulphur (CONCAWE, 1972; 1982). Capital investment costs are relatively high 

and they are increased significantly if the process is retrofitted to an existing refinery. Typically 

the direct process involves about an 8% fuel loss (Highton and Webb, 1980). The hydrogen 

required for the process can be produced from suitable feedstock such as petroleum gases, 

naphtha, etc.  

 Indirect oil desulphurization (or hydro-desulphurization, HDS) is a simple and 

commercially well established technique. During refining, the light oils (or distillates) produced 

by the distillation of crude oil are distilled again, this time under vacuum (Persson, 1976). The 

product of this second distillate is "hydro-treated" so that the sulphur is made to react with 

hydrogen. This hydro-treated distillate is then blended with the heavy oil to yield a low sulphur 

fuel oil product. This procedure allows the desulphurization of crudes which are difficult to 

treat directly. Since only a proportion of the fuel oil is effectively treated, the sulphur content 

is reduced by 30-42% (CONCAWE, 1982), with an associated fuel loss of about 5% 

(Highton, 1978). Heavy residue desulphurization is a relatively new process and only limited 

commercial experience is available. There is almost no desulphurization of heavy residues in 

Europe at present. Sulphur removal from heavy fuel oil desulphurization is unlikely to be 

higher than 80% with current catalytic fixed-bed technology (Highton and Webb, 1984; 

UNECE, 1982; CONCAWE, 1972).  
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 Let us, now, turn to the case where the burning of fuels can be controlled to reduce the 

amount of sulphur released. New industrial and utility boiler designs are actively being 

developed to reduce sulphur dioxide emissions. These include in-boiler modifications and also 

fluidized bed combustion. Sulphur dioxide emission reduction is brought about through 

injection of sorbents (e.g. lime or limestone) into the furnace. The direct injection of limestone 

into the furnace does not require the installation of new complex equipment; thus it represents 

a solution for existing plants with adequate boiler type tube spacing where Flue Gas 

Desulphurization (FGD) cannot be installed.  

 In this process limestone is injected into the furnace to capture sulphur dioxide gases in 

the flue gas streams injected into the power plant and removed via the particulate removal 

equipment already in use. Where powdered coal is used, an absorbent (usually powdered 

limestone) is injected into the firebox and the combustion temperature lowered by using 

special burners. The limestone reacts with the sulphur to convert much of it into gypsum.  

However, this technique has not yet been applied industrially and presents a few technical 

uncertainties that will have to be clarified before its adoption at industrial level.   

 An alternative method, and one which is more favourable to sulphur dioxide 

absorption, is to employ dry limestone in fluidized bed boilers (FBC). The fluidized bed 

consists of solid fuel and limestone and is fluidized with air to allow chemical reactions which 

reduce the SO2 emissions. Natural gas is injected into the firebox and ignited, then pulverized 

coal is pushed into the combustion area and burned. After the coal has started to burn well, the 

natural gas is shut off and the fire is maintained by burning coal. Sulphur oxidized during 

combustion reacts with limestone or dolomite in the firebox forming calcium sulphate. 

Calcium sulphate and residual limestone or dolomite from fluidized bed combustion can be 
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disposed off in landfills or used in construction materials. Another product of the reaction is 

ash (EPA, 1980).  In FBC limestone reacts well with sulphur dioxide (SO2) at high 

temperatures and a 80-90% removal efficiency can be achieved. The amount of limestone 

required is typically about 25% by weight of the coal input (Highton, 1978). 

 The following FBC technologies have been developed: (1) Atmospheric Fluidized Bed 

Combustion (AFBC): The construction of an AFBC boiler allows fast inspection and better 

repair and maintenance. AFBC can be regarded primarily as a technique for burning poor 

quality coals (or no-coal fuels) rather than for production of low emission level. The AFBC 

can be divided into two types: (a) Bubbling Bed: In this process the gas velocity is controlled 

to minimize the entrainment of particles in the gas stream. (b) Circulating Fluidized Bed 

Combustion (CFBC): It has recently had its commercial breakthrough as a technique to burn 

various fuels efficiently and with low emissions. The system is not sensitive to fuel quality and 

sulphur present in the fuel is retained in the circulating bed material in the form of calcium or 

magnesium sulphate and removed in solid form. (2) Pressurised Fluidized Bed Combustion 

(PFBC): In addition to the conventional AFBC boiler, there is the PFBC system which passes 

air onto the combustion bed through the compressor of a gas turbine. An experimental PFBC 

system was built in the UK in 1985 with funding from that country, the USA and the FRG, but 

was abandoned in 1988 when it was found that it would not be economical for anything other 

than very small power stations (McCormick, 1989).  

 Finally, there is the flue gas desulphurization (FGD) technology which is a post 

combustion one. FGD is the most commercial technology, and the most commonly used 

method of removing sulphur oxides resulting from the combustion of fossil fuels. FGD 

processes result in SO2 removal by inducing exhaust gases to react with a chemical absorbent 

as they move through a long vertical or horizontal chamber. The absorbent is dissolved or 
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suspended in water, forming a solution or slurry that can be sprayed or otherwise forced into 

contact with the escaped gases. When this slurry comes into physical contact with flue gases 

the sulphur dioxide reacts with the limestone to produce a sludge(2). The chamber is known as 

a scrubber and the process is often referred to as wet scrubbing.  There are approximately 50 

FGD processes but only a few have received widespread use. Removal efficiencies average 

90% (80-95%) and the preferred technology varies from country to country.  

 The FGD processes can be broadly classified into three categories: 1) wet scrubbing -

non-regenerable (e.g. limestone, gypsum); 2) wet scrubbing - regenerable (e.g. Wellman-

Lord); and 3) spray drying. These processes are either throwaway, in the sense that by-

products are useless, or regenerable in the sense that sorbent material is recycled and sulphur 

or sulphuric acid is recovered as a potentially marketable product. The most widely used type 

of FGD installations  are wet scrubbers. The majority of wet scrubbers use lime or limestone 

as a sorbent. Economic factors and design improvements have made limestone the preferred 

sorbent in recent years and increasingly gypsum-producing processes are favoured (Vernon, 

1990); only this type of FGD will be considered later on in the derivation of the least-cost 

control curve.  Wet processes using lime/limestone, at 90% removal of sulphur, with sludge 

fixation and disposal is representative of the typical scrubber in Europe (OECD, 1978; Scharer 

and Haug, 1987). Sulphur dioxide reacts with the sorption agent in the watery phase. In 

modern plants the amount of lime/limestone used corresponds to the stoichiometric 

consumption, i.e. 1.76 tonnes CaO/tonne sulphur and 3.12 tonnes CaCO3/tonne sulphur 

respectively. Taking an input of hard coal of 30 tonnes per 100 MWh as a basis, with a 

sulphur content of 1.5% and 5% retention factor, the consumption of CaO and CaCO3 

amounts to 1440 Kg/h of CaO and 2540 Kg/h CaCO3 respectively  (Scharer and Haug, 1986).  
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1.2 Abatement cost estimates for different control methods   

 The cost of cleaning coal before combustion is a function of the level of cleaning, per 

cent energy  recovery, washability and physical characteristics of the coal, plant configuration 

and waste treatment. Each plant must be considered individually due to location, terrain, 

cleaning objectives, raw coal delivery arrangements etc (UNECE, 1982). The OECD has 

estimated that if all the hard coals (coals other than lignite) used in Western Europe were 

washed, SO2 emissions could be reduced by about a million tonnes a year at an annual cost of 

$350 million (1986 US$; McCormick, 1989). Operating costs mainly arise from thermal 

losses. 60% removal of pyrites may involve thermal losses of up to 25% which would 

probably make FGD cheaper at coal prices in excess of $23 per tonne (Prior M., 1977). 

Furthermore, FGD can effectively remove up to 90% of total sulphur. In some cases it may be 

economic to combine physical washing with FGD. 

 Regarding the desulphurization of oils, costs depend mainly on the size of the refinery, 

the degree of desulphurization obtained and the nature of the initial crude. Apfsen et al. (1986) 

calculate the cost of switching from high to low sulphur heavy fuel oil as $333 per tonne of 

SO2 removed when moving from 2.15% to 1% HFO and $722 when moving from 1% to 0.7% 

HFO ($ 1985). Due to the energy requirement at an oil desulphurization unit, operating costs 

are very sensitive to changes in energy prices. Oil prices are also important since the direct 

process involves 8% fuel loss and the indirect process 5% loss (Highton, 1978). From 

CONCAWE (1986) it can be seen that the total capital cost of plant with 1.46 million 

tonnes/year output capacity is equal to $245.2 million ($1985). This number has to be adjusted 

for country variations in capital and construction costs. Variable operating and maintenance 

costs (O and M) consist of the catalyst chemicals cost, the energy consumption cost and 

hydrocarbon losses and equals approximately $17 per tonne product (CONCAWE, 1986). 
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Additionally the fixed O and M cost is equal to $9 per tonne product adjusted to the labour 

cost factor for country differences.  

 The study by CONCAWE (1984) assumes that for a gas diesel oil desulphurization 

(GDOD) unit the average capital cost with usable capacity of 0.59 million tonnes per year is 

$26.5 million (in 1985 $). The variable O and M cost of a GDOD unit consists of energy 

consumption cost and the costs of hydrogen and catalyst used and equals approximately $3.5 

per tonne gas oil. Additionally, the fixed O and M cost equals $3 per tonne of gas oil used. To 

adjust for international differences this number is multiplied by the cost for labour.  

 Moving to the case of controlling sulphur emissions during combustion, a review of 

international developments and cost estimates regarding the sorbent injection technique was 

reported by Schweers (1986). Based on survey information, representative cost ranges were 

developed for a hypothetical 500 MW power plant burning either a low (1%) or high (3%) 

sulphur coal. Capital costs were estimated to range from $50 to $150 per KW (in mid-1985 

US $), with an overall cost-effectiveness ranging from $350 to $1340 per tonne SO2 removed 

for the low sulphur coal and $165 to $650 per tonne SO2 removed for the high sulphur coal. 

Barrett (1986) based on a 4x500 MW plant using limestone, concluded that a maximum of 

about 35% reduction in SO2 could be achieved at a capital cost of $111.5 million and an 

operational cost of $17.3 million per year (in 1985 $).  The primary advantage of these 

systems is that they are relatively simple and easier to retrofit at existing power plants when 

compared to larger more complex conventional dry and wet scrubbing systems(3). Less new 

equipment would be needed than for FGD, the capital costs would be expected to be relatively 

low and it would also seem less difficult to fit the system to an existing plant.  

 One major problem with the direct limestone injection (DLI) is the fact that abatement 

efficiency is not well established. Burdett et al. (1985) assumed an abatement efficiency of 
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35% and concluded that a single 4x500 MW FGD plant removes as much SO2 as 11x500 MW 

limestone injection units. Assuming an increase in abatement efficiency of DLI from 35% to 

40%, a delivered price of $8.6 per tonne and an average disposal cost of $2.86 per tonne, 

concluded that it would reduce the operating costs of the limestone injection equivalent system 

from $514 to $343 per tonne SO2 removed.  Hence, although the capital and operating costs 

per station fitted with limestone injection appear at present to be less than for a wet FGD, the 

former process operates at a considerably higher cost in terms of cost-effectiveness ($/tonne 

SO2 removed).   

 A Fluidized Bed Combustion (FBC) unit tackles pollutant emissions at source in the 

furnace; high and low-grade coal can be used. An FBC boiler takes up less space than boilers 

with other firing systems, construction is simple, personnel requirements are low, and overall 

investment costs are low (McCormick, 1989). Two types of FBC systems have been 

developed: the Atmospheric (AFBC) and the Pressurized (FFBC). Estimates of SO2 control 

costs typically include only the added costs of reagent, energy and waste disposal. On this 

basis Houvilainen (1986) reports a cost of $234 per tonne of SO2 removed for a 34 MW 

AFBC boiler burning a 1% sulphur content fuel. Total energy losses amount to approximately 

0.5-1.0%.  The raw material costs of limestone and dolomite are generally low, although these 

can be increased by local shortages and high transport costs. However, bubbling-bed AFBC 

units require more sorbent than the scrubber FGD to remove the same amount of sulphur. 

Capital costs are not greatly affected by sulphur dioxide removal, although operating costs are 

increased in a number of ways. The main elements in operating cost are operation and 

maintenance, energy costs of the process, limestone/dolomite raw material costs and waste 

disposal. PFBC disposal costs are nearly twice that of AFBC due to the additional volume of 

waste. Energy costs arise from electrical requirements for material preparation and feeding as 
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well as removal and gas clean up. 

  Finally, the costs of controlling sulphur emissions after combustion and by using a wet 

FGD vary with the different processes and with local needs and conditions but investment 

comes to about 15-20% of the total cost of a power plant. The cost of FGD per tonne of 

sulphur abated will vary between $629 per tonne and $1057.3 per tonne, depending on the 

process adopted; the average being about $786.3 per tonne sulphur abated (Barrett, 1986). 

The operating cost for all these FGD units would range from $610-720 /metric tonne of 

sulphur removed for oil-fired plants. The costs are much higher for FGD on hard coal fired 

plants because of the relative high sulphur content of European hard coals. The FGD costs for 

new plants are usually much higher than coal cleaning costs, which range from $560-$860 per 

metric tonne of sulphur removed (Remmers and Rentz, 1986; Barrett, 1986). Capital costs are 

highly sensitive to plant size. The most important determinant of cost is the fuel sulphur 

content. Some USA studies cited a 40% increase in capital costs for 4% sulphur compared 

with 2% sulphur coal (Vernon, 1989).  For low sulphur coals (0.6% sulphur content) capital 

costs of FGD systems ranged from $90 to $180 per kW with certain regenerable systems 

costing up to $300 per kW. Annual costs were mostly in the range of $4-6 millions/kWh. For 

high sulphur coals (up to 5% sulphur content) capital costs were $120-300 per kW and annual 

costs $7-12 millions per kWh (or $12-15 millions per kWh for some regenerable systems).  

 The biggest disadvantage with wet FGD systems is the sludge they produce, which is 

difficult to store and handle. A 500 MW boiler would produce about 600 tonnes per hour. In a 

typical 1,000 MW plant, burning coal with 3.5% sulphur, wet FGD produces about 225,000 

tonnes of sludge annually (Regens and Rycroft, 1988). Barrett (1986) gives an output of 

520,000 tonnes of gypsum for a 2,000 MW plant, while Highton (1978) gives an output of 

200,000 tonnes of gypsum annually for an 800 MW plant.  The annual sludge production from 
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a 2,000 MW power station could exceed 300,000 m3 (Elsworth, 1984). Lime/limestone FGD 

processes produce a waste sludge comprising calcium sulphite and calcium carbonate or lime 

in various proportions.  The sludge is difficult to dewater which makes it difficult to dump. 

Opportunities for sales in the FRG and Japan have always favoured the production of gypsum, 

rather than calcium sulphite sludge, as an end product (Dacey and Cope, 1986). The sludge 

fixation and disposal cost was estimated to be $12.5 /tonne of dry waste in $ 1985 (Barrett, 

1986).  The lime/limestone process can be regarded as suitable for areas with a large disposal 

site.  For example a 500 MWe plant operating at an average load factor of 50% and aiming at 

90% SO2 removal using limestone absorbent, depending on the sulphur content of coal, 

produces between 4000 and 7500 acre-feet of waste over a thirty year period (Highton, 1980). 

 It is estimated that a new 500 MWe station burning 3.5% sulphur content coal, with 90% 

removal of SO2, requires 8.0 acres of land for sulphur dioxide and ash removal. In the case of 

the lime/limestone process on-site waste disposal would increase investment costs by 

approximately 18% and operating costs by about 7% (Highton, 1978).  

 Certain by-products may be marketable, e.g. sulphur, sulphuric acid and gypsum. But 

this must be weighted against the capital and operating costs of any extra items required to 

bring the by-products to marketable quality. Sulphur and sulphuric acid are basic industrial 

chemicals used in the paper industry, rubber processing, pesticides, fertiliser etc. The UK 

imports about 1.4 million tonnes of sulphur per year compared with a possible output of 

500,000 tonnes from FGD. This quantity could easily be absorbed into the UK market and 

help reduce imports. Sulphur is easily transported and stored, and even dumped with little 

environmental damage. Sulphuric acid is expensive to transport, cannot be dumped and has 

fewer industrial uses. UK production of sulphuric acid in 1976 was 3.3 million tonnes 

compared with a potential output from FGD of 1.5 million tonnes annually. Gypsum is a fairly 
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common naturally occurring mineral which is obtained by mining and used in the manufacture 

of plaster, plasterboard and cement. It is of low value, bulky and hence expensive to transport. 

It is, however, a more desirable by-product than sludge. It is easier to handle and almost 

certainly less damaging to the environment (Highton, 1978).  

 

2. ASSUMPTIONS USED IN THE DERIVATION OF THE ABATEMENT COST 

CURVES  

 Given the generic engineering capital and operating control cost functions for each 

efficient abatement technology, total and marginal costs of different levels of emission 

reduction at each individual source (power plant, industrial boiler, petroleum refinery) and in 

the national (country) level can be constructed. The previous section summarized the available 

information on the technical characteristics and costs of those abatement technologies in 

operation at present to reduce the sulphur content of fuels in use. We have seen that 

abatement technologies differ both as to cost and applicability (depending on the physical and 

chemical characteristics of the fuel used and on the size of abatement plant). It is assumed that 

control costs are independent of order of introduction and that abatement technologies are 

scale specific.  Each abatement technology is efficient over a defined range of sulphur 

removed; we have constant returns to scale over the range of abatement at which each 

technology is potentially efficient. In other words, each technology reduces emissions by some 

proportion, called the "abatement efficiency",  which is assumed to be fixed for each control 

method at the plant size at which the method is efficient. For example, an FGD unit has an 

abatement efficiency of 90% at the efficient plant size. Also, it is assumed that the objective of 

private users is to minimize the costs of abating a given level of emissions. Further, fuel use 

and costs are assumed given independently of abatement policy. For the purposes of this 



  
 
 15 

exercise, then, abatement by means of reducing the output of electricity or other industrial 

output is ruled out(4).  Finally, another basic assumption of the cost module is that there is a 

competitive market for sulphur abatement technologies accessible to all European countries.  

 It is assumed that the regulatory authority seeks to maximize abatement subject to a 

budget constraint: a cheaper option will always be preferred over a more costly one. It would 

be economically inefficient to introduce relatively costly control options unless opportunities 

for using cheaper alternatives had already been exhausted. The relative economic efficiency of 

alternative options is compared by reference to "cost-effectiveness" which, for a given option 

at a given site, is the total annualized cost divided by the annual tonnes of pollutant removed. 

This type of cost function is potentially useful to policy-makers because it indicates the 

maximum level of emission abatement that can be achieved with a given budget constraint. 

That is, we look for an efficient frontier or a minimal cost envelope, which will give us the 

optimal total abatement cost function; i.e. the corresponding point on the marginal cost curve 

specifies the set of country control options which minimize total abatement costs (Halkos, 

1992, 1994; Rubin et al., 1986; Mäler, 1990). If the objective function is to maximize 

abatement subject to a budget constraint then it will never be optimal to use a less efficient 

technology. Table 1 presents the applicability requirements, the abatement efficiencies and the 

capital and operating costs of each possible abatement option, as well as an estimate of the 

cost-effectiveness.  

  The actual control costs of each abatement technology are defined by national 

circumstances and the abatement cost curves depend on the energy scenario adopted. Such 

abatement costs differ considerably among countries even for the same technology, mainly due 

to sulphur content of fuels, capacity utilization and boiler sizes of installations. At present cost 

estimates for each technology take into account a wide range of site and plant specific factors, 
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e.g. plant size, fuel type, initial sulphur content of fuel, load factor and new or retrofit 

application (remaining life).  It is recognized that it is more expensive to retrofit an abatement 

technology to an existing plant than it is to design it into a new plant. Retrofit of equipment 

systems is usually assumed to carry out a cost penalty of 10% to 40% over the cost of 

installation with new plants. Here, an average approximation of 25% higher capital cost than 

the equivalent at a new plant is used.   

 The cost of an emission abatement option is given by the total annualized cost (TAC) 

of an abatement option, including capital and operating cost components:     

              TAC = [(TCC) * (r / (1-(1+r)-n)] VOMC + FOMC            

where TCC is the total capital cost ($), VOMC and FOMC are the variable and fixed 

operating and maintenance costs ($) respectively and (r/(1-(1+r)-n) is the capital recovery 

factor at real discount rate r, which converts a capital cost to an equivalent stream of equal 

annual future payments, considering the time value of money (represented by the discount 

rate, r); n represents the economic life of asset (in years). The estimation of the annual 

operating and maintenance costs requires a great deal of information (for example, the sulphur 

content of fuel used, the annual operating hours, removal efficiencies of the control methods, 

etc) and consists of a fixed portion that is dependent on the use of the plant (e.g. maintenance 

and labour costs) and a variable portion dependent on the prices for electricity, labour, 

sorbents and waste disposal and the specific demand for energy due to abatement process.  

Table 2 in the appendix presents the fuels used by each sector and to which we apply the 

available abatement technologies, while table 3 presents the control technologies applied to 

each fuel type(5).  

  The economic efficiency of alternative abatement options (expressed as $ per tonne 

pollutant removed) depends on site specific conditions and a least cost emission control 
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function for each source can be estimated by ranking alternative options in order of increasing 

marginal cost of control. The set of source-specific emission reduction opportunities can be 

merged in order of increasing marginal cost to yield a least cost emission reduction function 

for each country(6). Marginal costs increases are due to the effect of switching between 

technologies as the scale or level of abatement rises. The marginal cost curve has a staircase 

shape (i.e. it is a discontinuous step function) with each step representing a particular discrete 

abatement technology. The level of each step indicates the incremental cost of a technology 

relative to the maximum incremental amount of sulphur removed by introducing that 

technology. The sequence of efficient technologies gives us the long run marginal cost of 

abatement. At the low end of the curve the least expensive strategies are presented; the greater 

the percentage of pollutant removed the higher will be the cost of removing an additional 

amount. In the first step in ranking the technologies used in each plant (boiler) we take the 

lowest marginal cost equal to the average cost for the first technology used and then, we add 

up extra technologies to get the maximum feasible abatement that can be achieved by the 

plant/boiler under consideration. Building up the source cost functions we eliminate any 

technology choices which yield non-convex regions of the cost curve. National cost curves 

therefore will exhibit non-decreasing marginal costs and the most cost-effective techniques will 

be the proper abatement techniques for the national decision maker. In the final national cost 

curve each step represents an abatement measure that achieves an emission reduction of an 

extra unit at the least cost. The national cost curve consists of a large number of very small 

steps. In view of the differences between countries, with regard to both present and future 

energy demand, energy mix and fossil fuel qualities, this "optimization" must be carried out on 

a country-by-country basis.  
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3. ENERGY ALTERNATIVES TO POLLUTION CONTROL 

 The selection of appropriate strategies to reach and implement pollution control 

objectives is of crucial importance to planners. Because of the existing differences between 

countries in energy-use patterns, emissions, source locations and other economic factors, it is 

unlikely that a single, uniform program of secondary abatement will be appropriate in all 

countries. To reduce sulphur emissions the national decision maker may set a maximum 

allowable rate of pollution output for each generic type of source (electricity generating, 

industry, petroleum refineries and transport) by type of pollutant. Furthermore, fuel quality 

regulations can be structured around the types of fuels in use (e.g. coal, oil etc) and can be 

limited by the technical possibilities and the costs of cleaning process for the different fuels.  

 Sulphur emissions can be also reduced by reducing energy consumption through either 

conservation or energy improvements. The latter can be achieved for instance by reducing  

energy consumption through more efficient generation, use of combined heat and power, etc. 

Denmark, Norway and Sweden are the only OECD countries that continue to increase energy 

taxation since the 1980s aiming to encourage energy conservation. On the other hand, IEA 

claims that inconsistency of taxation and energy policy is evident in the UK which actually 

discourages efficiency by charging VAT on home-insulation products. IEA suggests that the 

potential for demand reductions for the UK, the Netherlands, Austria, the EEC and Western 

Europe in the industrial sector in 2000 can be as high as 25%, 21%, 10%, 25% and 30% 

respectively. At the same time Sweden can achieve demand reductions of 50% in its residential 

sector and 40% in its commercial sector. The EEC countries and the Netherlands can achieve 

an average of approximately 30% and 21% savings through cost-effective means in the 

residential and commercial sectors respectively. A 30% increase in energy efficiency can 

reduce energy requirements by 25% which is equivalent of more than 1200 million tonnes oil 
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equivalent per year in 2000 (IEA, 1987).    

 Low sulphur coal may be a good way to reduce emissions where emission standards 

are met by using coal within a specific range of sulphur content. For instance, a standard of 

2000 mg/m3 is equivalent to approximately 1% sulphur content of coal, as the cut-off level 

above which sulphur abatement technologies would be used. Emission standards between 

1000 and 2000 mg/m3 are equivalent to coal sulphur content of 0.5-1% and there is no 

percentage removal requirement. Plants facing these standards can use either low sulphur 

content coal alone, or in conjunction with a limited-efficiency abatement technique (Vernon, 

1989). 

  The use of low sulphur coal is a function of its availability and its cost relative to other 

control methods.  Obviously, if the demand for low sulphur coal increases then both price and 

availability will change.  Technical barriers exist to using low sulphur coal because it has a low 

calorific value and different ash characteristics which affect the operation of electrostatic 

precipitators.  A political barrier is when there are no local supplies and government energy 

policies restrict by import quotas the import of supplies from elsewhere (Germany, Spain). 

 Substitution of fossil fuels by nuclear power and natural gas is also possible.  But 

nuclear and hydropower have seen opposition on environmental grounds while other non-

fossil fuel sources have been under-developed. Public pressure may increase the demand for 

gas fired power plants.  High capital cost and costs of decommissioning mean that the nuclear 

plants have no advantage over coal-fired plants with secondary emissions control.  The costs 

of NOx and SO2 controls on coal-fired plants are similar to those of gas firing plants. A range 

of $36-$50 m per kWh (US $1987) for coal-fired plants with full environmental control 

compares with $44-$48 m per kWh for a natural gas plant meeting similar standards (assuming 

a coal price of $40-60 per tonne and a relative gas price of $160 per tonne coal equivalent) 
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(IEA, 1988).  Newbery (1993) cites that, if FGD investment is coordinated with gas then 

capital costs of a gas burning Combined Cycle Gas Turbine (CCGT) will be £360-£500/kW 

compared with FGD capital costs of £150-£175/kW capacity.  According to the same source, 

at the 1993 import parity price of coal, FGD was cheaper than new CCGT stations. This 

implies that FGD can be competitive against CCGT.  

4. EMPIRICAL RESULTS 

 In order to compare the abatement costs between countries the least cost combination 

of abatement options for each emission reduction level from zero reduction up to the technical 

feasible limit is derived. Cost estimates for each technology are influenced by fuel type, plant 

size, sulphur content of fuel, new or retrofit application and labour, construction and 

electricity cost factors. The slopes of the total abatement cost curves differ from country to 

country and if the slope of the total abatement cost curve for one country is steeper than for 

another, for any given abatement level, then the abatement cost in the first country is higher 

than in the second. Given projections of uncontrolled emissions, estimates can be made of the 

potential for their reduction using available abatement technologies and of the likely cost.  

Following the procedure described in section 2, total and marginal abatement cost curves can 

be derived for each European country. Figures 1 and 2 present the total abatement cost curves 

for FRG and UK(7). The potential of the abatement technologies for reducing emissions in a 

particular country depends on the existing pattern of energy use. Table 4 presents the 

unconstrained emissions in the year 2000(8), the maximum feasible national emission abatement 

levels through the use of all available technologies and combination of technologies and the 

associated cost of achieving this maximum abatement in each country, as well as the total 

costs of achieving 30%, 50% and 60% sulphur emissions reduction. It can be seen that, for 

example in Turkey, a 50% sulphur emissions reduction costs $510 million while a 57% (the 
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maximum that can be achieved in Turkey) requires an amount of $1,395 million and which 

shows how more expensive is the reduction of just seven more percent, when a certain level of 

abatement is reached.  Similarly, for Sweden a 60% reduction requires $79 million, while a 

74% reduction requires $1,051 million and, for Italy, a 60% reduction costs $720 million and 

an 85% reduction costs $2,629 million and so on. 

 Similarly, the total cost of 50% reduction varies from $5 million in Luxembourg to 

$943  million in Russia(9).  The UK has a total cost of $605 million at this percentage level 

while Greece has a cost of $106 million, FRG has a total cost of $346 million, Austria of $15  

million and Norway of $12 million.  Similarly, we can find the total costs for all the European 

countries and for four different percentages (30%, 50%, 60% and maximum feasible 

abatement). The final interesting conclusion of table 4 is that the total cost for all European 

countries of achieving these different percentage reductions uniformly increases drastically as 

the reduction is moved from 30% to the maximum feasible abatement.  A 30% reduction 

requires a cost of $2,939 million, a 50% of $6,642 million, a 60% of $8,157 million and the 

maximum of $35,965 million. But would a massive program of sulphur control have a large 

effect on the prices which consumers pay for electricity? Highton and Webb (1984) showed 

that the price to the consumer of a 50% reduction in Central Electricity Generating Board of 

England and Wales (CEGB) emissions of sulphur would be about 4% in electricity costs. 

Besides, for large industrial consumers the effect would be an increase of slightly over 5%. Of 

course, this percentage increase in the electricity cost will vary across countries due to 

different domestic unrestricted tariffs or different industrial tariffs. 

 Forecasts of energy demand in a given future year depend crucially on the forecaster's 

assumptions about economic growth, the rate of conservation, energy policy objectives and 

the availability and price of fuels. As a result energy forecasts are subject to periodic 
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reassessment. In order to test the sensitivity of abatement strategies and costs to alternative 

assumptions about energy futures, a small number of energy variants have been developed: 

1. Base case: energy projections used according to the latest government energy forecasts 

regarding the fossil fuel consumption for the year 2000.  

2. Nuclear phaseout: nuclear power generation is assumed to be phased out by the year 2000. 

Countries which currently plan to introduce nuclear power during the period are assumed to 

cancel these plans. In this scenario, the output from conventional thermal stations is increased 

to compensate for the extra demand for electricity resulting from the 'nuclear phaseout' 

assumption. That is, we expect a higher fossil fuel consumption. 

3. Increased natural gas consumption: The European Community and IEA studies (Guilmot et 

al. 1986, IEA 1986) have recently identified the possibility of up to 25% increases in gas 

demand in Western Europe by the year 2000 over and above current official forecasts, 

particularly if gas reserves in former USSR are more fully utilized and if gas prices are 

relatively low. Natural gas competes primarily against coal and oil in the industrial market and 

in electricity generation and other sectors. In this scenario we assume a 25% increase for gas 

over forecast levels in each sector and demand for fossil fuels is reduced proportionately. 

 Using FRG as an example, table 5 presents the cost of achieving different percentage 

levels of emissions reduction under each of the different scenarios; while figure 3 gives a 

graphical presentation of the "estimated" total abatement cost curves in each different case. It 

is notable that the abatement cost curve derived from the base case coincides with the one 

derived under the "increased natural gas" scenario, while it is substantially different from the 

abatement cost curve derived according to the non nuclear scenario. 

 Finally, the abatement cost curves derived in this way represent a "hypothetical" 

situation, as far as it is assumed that countries apply a number of technologies in each fuel 
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used and in the most cost-effective way. However, the reality is different. Table 6 in the 

appendix presents the current level of abatement (if any) in each European country. In this 

table the first column represents the abatement reductions (if any) for every European country 

in levels and as a percentage of emissions at the end of 1989; the second column shows the 

future abatement (after 1990) in these countries, again in levels and percentage, and the last 

column presents the total emission reductions according to current and future plans. The main 

sources of this table are IEA Coal Research (1990 and personal communication) and Vernon 

(1989), which provide information on the number of control units installed in each European 

country (if there are any) at the end of 1989, and the future plans for control equipment 

instalment; also, the same sources present the number of control technologies used in each 

country (i.e. how many of these control units are SI, FGD etc) and their capacity (in MWe), as 

well as the number of control units which are retrofitted and/or installed on new power 

plants/boilers and their capacity in MWe (see Halkos, 1992).  

 

 

CONCLUDING REMARKS 

 Currently available technologies for SO2 have been classified into three categories: pre-

combustion, during combustion and post combustion. Fuel cleaning techniques are relatively 

simple and well-established but their effectiveness depends on the physical characteristics of 

the specific coals and crude oils which are subject to treatment. Fluidized bed combustion 

(FBC) can only be used for new installations and could only have an effect on total emissions 

over a long period. It is not possible to define abatement costs precisely since air pollution 

control is an integral part of the FBC boiler design. Sorbent injection could be a low cost 

retrofit option in cases where only moderate SO2 emission reductions are required. FGD is the 
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most commercially developed technology and the only one available for achieving very high 

removal efficiency at all types of installation, new or retrofit. The general trend is for sorbent 

injection to have the lowest capital costs, with  pre-combustion technologies, FBC and spray-

dry scrubbers next, followed by wet scrubbers with regenerable processes having the highest 

capital costs.   

  

In order to minimize the costs for a given reduction of sulphur emissions, the different 

desulphurization technologies can be used in the least-cost combination.  It was shown that 

the greater the percentage of pollutant already removed, the higher the cost of removing an 

additional amount.  In the beginning those sources of pollution are eliminated that can be 

removed most cheaply and easily.  Further reductions in pollution will usually prove more than 

proportionately costly and difficult.  This means that there is a maximum marginal quantity of 

sulphur removed and that, after this point, the pool of technologies starts to be less efficient, 

i.e. the marginal quantity of sulphur removed decreases progressively.  This implies the rise in 

marginal costs which is evident from the curves.  The important point is how steeply marginal 

cost rises with each successive increase in pollution control objectives. Obviously, there exist 

countries where abatement is cheaper.  As the transboundary nature of the acid rain problem 

requires cooperation between countries in order to achieve environmental targets, this implies 

that an optimization must be carried out (for more details see Halkos, 1993, 1994).  

 Finally, it was also shown that the control cost curve derived for the base case of the 

official energy projections coincides with the one derived under the "increased natural gas" 

scenario  and it is quite different from the control cost curve derived according to the nuclear 

phaseout scenario. It was, also, explained that the situation under which the abatement cost 

curves were derived is hypothetical in so far as it is assumed that countries use all the available 
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control methods for sulphur emissions reduction.  The actual current level of sulphur 

emissions abatement was presented and it was obviously quite different from the maximum 

feasible abatement level that can be achieved if countries use all the available abatement 

techniques.  
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     NOTES 
 
(1) The most significant cost is generally coal loss and hence the price of coal is very 
influential. The extent of loss depends on the intensity of washing and the type of coal used. 
 
(2) It is possible to convert the sludge to gypsum which may be saleable. 
 
(3) In order to compare the costs for a limestone injection operating at 35% removal efficiency 
with those already published for a conventional wet FGD plant operating at 90% removal 
efficiency, the limestone injection costs should increase by a factor of 90/35=2.57, to provide 
equivalent capacity for sulphur removal (Burdett et al, 1985). 
(4) Other types of abatement options that are omitted in this approach are abatement through 
energy conservation in its broadest sense (energy demand suppression, fuel switching, 
efficiency measures) and fuel substitution.  
 
(5) Ten individual fossil fuel types consumed by 5 economic sectors have been taken under 
consideration. The fuel types include hard coal and derivatives, coke, brown coal and 
derivatives,  other primary solid fuels such as peat and wood, heavy oil products (refinery fuel 
oil and residual fuel oil) and middle distillates (gas oil and diesel oil) in which the available 
abatement technologies are applied and natural gas. The economic sectors identified include 
thermo-electric plants (including district heating), industry (split between iron and steel, 
process emissions and others), energy sector (split between refineries and others), 
transportation and other sectors (including residential, commercial and agriculture).  
 
(6) For this reason a program in Basic has been constructed by the writer. The program 
consists of five separate algorithms, each corresponding to each single sector. The results of 
all algorithms are merged in a unique output file.  
(7) The data on which these estimates are based are projections made prior to the unification 
of Germany. For this reason the report refers to the Federal Republic of Germany, not 
Germany.  It turns out, however, it is  useful to work with 'old data'. It does not make much 
sense to aggregate FGR and GDR simply for the sake of using current boundaries simply for 
the reason that historic policies in the two areas have been so different.  
 
(8) The estimates of the unconstrained sulphur emissions used in this paper are based on early 
work undertaken by the Stockholm Environment Institute (SEI) at York. They should, 
however, be regarded as indicative only. Obviously, subsequent revisions to estimates of 
energy balances and fuel sulphur content for the year 2000 will lead to revisions of the cost 
estimates. Later estimates by the SEI, to be published shortly, may be more realistic.      
 
(9) Russian Federation within the EMEP area, Kola-Karelia and St Petersburg included. Also, 
the Baltic Region comprises Estonia, Latvia, Lithuania and Kaliningrad. 
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Table 1: Sulphur emission abatement options and costs  (costs in $ million 1985) 
 Costs are based on a new 500 MW power plant, using hard coal of 2% sulphur content, 70% 
 load factor and 5% retention factor. 

 
Abatement 

Method 

 
Applica- 

bility 

 
Sulphur 
removal 

efficiency 
(%) 

 
Capital 

Cost 

 
Operating 

and Maintenance 
cost 

 
FIXED   VAR 

 
Cost- 

effective 
ness 

 
$/t SR 

Fuel  
switching 

(e.g. oil to gas) 

All  
users 

Up to 99 - -       - 
 
 

(1) 

Physical coal 
cleaning 

All users 25 
 
 

- -       - 635-1625 
 
 

Heavy fuel oil 
desulphurization 

(HFOD) 

All users 
 

80 7.775 6.32  12.28 2100-2930 
 

Sorbent injection 
(SI) 

All users 50 0.344 0.22   2.59 485-750 
 

Atmospheric 
Fluidized 

Bed Combustion 
(AFBC) 

Power  
plants  and  
indust-rial 

boilers 

80 3.259 0.16   2.71 238-446 
 
 
 
 

Circulating 
Fluidized 

Bed Combustion 

New plants 
only 

85 7.061 0.35   4.77 529-835 
 

Flue Gas  
Desulphuri- 

zation 
(FGD) 

Power  
plants, 

indust-rial 
boilers 

and process 
emis-sions 

90 29.462 1.67   4.02 650-1200 

Gas Oil 
Desulphurization 

All users 90 1.918 1.93   2.2  2900-3740 

 
(1) Depends on relative price and sulphur content 
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TABLE 2: Fuels in which control technologies are applied in each sector 

        Fuels 
Sectors 

Hard 
Coal 

Brown 
Coal 

 

Brown 
Coal 

Briquettes 

Heavy 
Fuel 
Oil 

Gas 
Diesel 

Oil 

Peat Refinery 
Fuel 
Oil 

Electricity 
Generating 

* * * * * *  

Industry * * * * * *  

Energy       * 

Transport *   * *   

Others *   * *   
 
       TABLE 3: Technologies applied by fuel used 

Existing 
plants 

 

HARD COAL 
Hard Coal Washing (HCW) 

Sorbent Injection (SI) 
Flue Gas Desulphurization (FGD) 

Combination of HCW and SI 
Combination of HCW and FGD  

New 
plant 

(less or 
equal to 

500 MWe) 

All the above technologies and additionally: 
 

Atmospheric Fluidized Bed Combustion (AFBC) 
Circulating Fluidized Bed Combustion (CFBC) 

Combination of HCW and AFBC 
Combination of HCW and CFBC 

Existing 
plants 

BROWN COAL 
Sorbent Injection (SI) 

Flue Gas Desulphurization (FGD) 

New 
plants 

All the above technologies and additionally: 
 

Atmospheric Fluidized Bed Combustion (AFBC) 
Circulating Fluidized Bed Combustion (CFBC) 

 HEAVY FUEL OIL 
Heavy Fuel Oil Desulphurization (HFOD) 

Flue Gas Desulphurization (FGD) 
Combination of HFOD and FGD 

 GAS DIESEL OIL 
Gas Diesel Oil Desulphurization (GDOD) 

Flue Gas Desulphurization (FGD) 
Combination of GDOD and FGD 

 PEAT AND BROWN COAL BRIQUETTES 
Sorbent Injection (SI) 

Flue Gas Desulphurization (FGD) 
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Table 4: Total cost and sulphur removed of maximum abatement (TC of max ab)  (costs in m US $ 
1985 and abatement in 1000 t S) 

 
Countries 

Provisional 
emissions  

Sulphur 
Max ab 

% sulphur 
 max ab 

TC of 
max ab 

Albania 200 120 60 181.9 
Austria 187 142 76 330.1 
Belgium 329 269 82 689.8 
Bulgaria 961 692 72 530.5 

Former CSFR 1216 775 64 630.9 
Denmark 143 124 86 362.5 
Finland 270 196 72 900.4 
France 765 629 82 1950.8 
FRG 1556 1275 82 2949.3 

Former GDR 2099 1363 65 2569.2 
Greece 450 395 88 519.1 
Hungary 467 286 61 236.4 
Ireland  83 61 73 179.4 
Italy 1715 1282 75 2628.8 

Luxembourg 15 9 61 29.0 
Netherlands 242 192 80 813.0 

Norway 69 52 76 259.3 
Poland 2182 1433 66 1409.9 
Portugal 218 168 77 378.9 
Romania 1374 1051 76 779.6 
Spain 2573 2387 93 2270.9 
Sweden 248 184 74 1050.7 

Switzerland 50 39 78 276.0 
Turkey 2203 1263 57 1394.3 
UK 1844 1448 79 2987.6 

Russia 
Belarus 
Baltic R 
Ukraine 

6172 
737 
563 
4286 

3913 
464 
383 
2486 

63 
63 
68 
58 

5036.1 
456.9 
382.2 
2858.6 

Yugoslavia 1891 1329 70 922.6 
TOTAL 35108 24410 72 35965 
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Table 4: (continued) Total costs (TC) of different percentage levels (m $ 1985) 
 

Countries 
TC of a 30% 
reduction 

TC of a 50% 
reduction 

TC of a 60% 
reduction 

Albania 14.3 47.7 158.3 
Austria 0.97 15.3 27.2 
Belgium 17.1 52.4 85.7 
Bulgaria 73.4 128.0 163.0 

Former CSFR 123.4 218.0 302.0 
Denmark 12.0 31.3 52.7 
Finland 43.5 95.0 167.4 
France 127.5 296.7 405.2 
FRG 146.0 346.0 637.9 

Former GDR 228.0 398.0 634.0 
Greece 55.0 106.0 142.0 
Hungary 41.0 73.0 173.0 
Ireland  1.2 10.8 33.0 
Italy 271.5 528.7 719.7 

Luxembourg 1.2 5.0 16.4 
Netherlands 27.0 56.7 95.8 

Norway 5.0 12.0 33.9 
Poland 243.0 455.3 629.9 
Portugal 33.5 78.4 114.1 
Romania 100.7 185.0 229.4 
Spain 188.2 317.0 400.0 
Sweden 4.8 30.8 78.9 

Switzerland 4.6 45.0 60.0 
Turkey 210.0 509.6 no feasible 
UK 285.0 604.4 887.0 

Russia 
Belarus 
Baltic R 
Ukraine 

228.8 
2.8 
2.2 
275.0 

942.5 
57.6 
41.5 
637.0 

1265.0 
170.6 
76.1 

no feasible 
Yugoslavia 172.6 317.0 398.0 

TOTAL 2939.3 6641.7 8156.8 
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Table 5: Different percentage levels of sulphur reduction, level of sulphur emission reductions (SR, in 
thousand tonnes) and associated total abatement costs (TC, in million $ 1985) under different energy 
scenarios  

Sulphur 
reduction 

(%) 

SR  
 

Base case 

SR 
Nuclear 

phase-out 

SR 
Gas 

increase 

TC 
 

Base case 

TC 
Nuclear 

phase-out 

TC 
Gas  

increase 

10 155.6 192.92 141.75 2.68 3.3 2.45 

30 466.8 578.77 425.25 146.0 156.3 137.0 

50 778 964.62 708.75 346.0 370.0 293.0 

60 933.6 1157.54 850.5 638.0 468.8 479.0 

70 1089.2 1350.46 922.24 1100.0 920.0 835.0 

maximum 1274.8 1716.9 1245.7 2949.0 3685.8 2518.7 
 
 
Table 6: Current levels of abatement reductions (in 1000 t) 

Countries 1989 
Level 

 
(%) 

Post 1990 
Addition 

 
(%) 

Post 1990 
Total 

 
(%) 

Austria 29 15.51 5.31 2.84 34.31 18.35 

Belgium 2.482 0.8 1.635 0.5 4.117 1.3 

Denmark 14.18 9.92 18.565 12.98 32.745 22.9 

Finland 8.139 3.0 10.601 4.0 18.74 7.0 

France 1.945 0.25 1.418 0.2 3.363 0.45 

FRG 651.7 41.9 49.82 3.2 701.5 45.1 

Italy 3.422 0.2 139.56 8.2 142.98 8.4 

Netherlands 34.989 14.46 15.215 6.3 50.204 20.76 

Spain 0.06 .0023 7.013 0.27 7.073 0.272 

Sweden 8.419 3.4 0.973 0.4 9.392 3.8 

UK 7.236 0.4 198.975 10.8 206.211 11.2 

Turkey - - 37.13 1.7 37.13 1.7 

Former CSFR 26.422 2.2 16.985 1.4 43.407 3.6 

Former GDR 15.083 0.72 - - 15.083 0.72 

Ireland 0.357 0.43 - - 0.357 0.43 
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