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1 Introduction

People are heterogenous in the skills with which they turn effort into output. A central question

in normative public economics is how to redistribute resources from more- to less-skilled indi-

viduals efficiently. One policy tool with which to achieve this is income taxation, redistributing

resources from high- to low-income individuals. As is well-known, however, income taxation is

distortionary when individuals’ skills and efforts are private information (See Mirrlees (1971)).

In this paper, we consider an additional policy tool of redistribution. We do so by allowing

planner to choose the dispersion of skill distribution of the economy, taking the average skill

level as given.1 By choosing a less dispersed distribution, the planner can create an economy

with more equal earnings capacity among agents. This implies a more equal distribution of

consumption for given income taxes. It is important, though, to realize that changing skill

distribution not only affects how total output is shared across agents, but also affects the overall

productivity of the economy. The amount of output that can be produced by a given labor

force depends on the skill distribution chosen. Taking this effect on productivity into account,

we ask how the planner should use these two policy tools jointly for the efficient redistribution

of resources.

To answer this question we consider a static Mirrleesian economy in which the planner

chooses the skill distribution and income taxes. In the model, the planner first chooses the

skill distribution, agents then draw their types from the skill distribution privately, the planner

chooses the income tax system, and finally agents work, pay taxes and consume. The main

difference between our model and standard models in the optimal tax literature is the initial

stage of skill distribution choice in which the planner, taking the average level of skills as given,

chooses the dispersion of the skill distribution. We restrict the set of skill distributions available

to the planner to discrete distributions with a finite number of mass points. The planner thus

essentially chooses the value of the mass points.2

1We do not take a stance on any particular interpretation of skill distribution choice. However, one may
interpret this as a choice of education policy given that people attain a significant portion of their skills through
learning.

2We make two assumptions here. First, the number of mass points is fixed. Second, the planner takes the
probability attached to each mass point as given when he chooses the value of the mass points. The latter
assumption is not important because our main result holds regardless of the probability assigned to each mass
point.
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In such a world, at one extreme, the planner can choose a skill distribution in which the

value of all mass points is equal to the average skill level. In this extreme, after the skill draw,

all agents have the same earnings capacity. We call this the perfectly equal skill distribution.

In this case, redistribution is carried out solely via skill distribution choice; there is no need for

income taxation. At another extreme lies a skill distribution in which the value of all but one

mass point is set to zero. In this extreme, after the draw, a fraction of agents have very high

earnings capacity while the rest are completely unproductive. We call this the perfectly unequal

skill distribution. Here, income taxes are heavily needed for redistribution. In between, there

is a continuum of skill distributions available to the planner, each with a different level of skill

inequality. The main result of our paper is striking: depending on the parameters of the model,

either the perfectly equal or the perfectly unequal skill distribution is socially optimal, but an

interior level of skill inequality is never optimal. In other words, it might be optimal to use only

income taxation or egalitarian skill distribution for redistribution, but it is never optimal to use

these two redistribution tools together.

In the main body of the paper, we assume that the planner faces a linear skill constraint

with two mass points.3 More precisely, the planner chooses mass points w1, w2 subject to the

following skill constraint,

p1w1 + p2w2 = α,

where p1, p2 are exogenous probabilities attached to the mass points and α is the average skill

level in society. Under this assumption of linearity, we show that the socially optimal skill

distribution is always perfectly unequal, i.e., wi = 0, for some i. The intuition for this result

is as follows. Suppose that wi > 0, for all i. In this case, it is obvious that the optimal labor

levels are positive for both types. Then, by moving to a skill distribution in which the type with

a higher labor level has all the skills and setting the labor level of the other type to zero, the

planner increases total output and decreases total disutility. This shows that increasing skill

inequality benefits society because it increases productive efficiency. Under full information,

income taxes are not distortionary, which means that the planner can distribute consumption

according to its will using income taxes at no cost. This implies that the productive efficiency

3The assumption of two mass points is not restrictive. We show that all of our results hold in the case with
N types.
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gain is the only effect of increasing skill inequality on the economy. Thus, under full information,

perfectly unequal skill distribution is socially optimal. However, when skill levels are private

information, income taxes are distortionary. Increasing skill inequality exacerbates the distortion

associated with income taxation, because the benefit of pretending to be low-skilled is higher

for the high-skilled agents when skill inequality is higher. Therefore, increasing skill inequality

imposes a cost on society as well. We show, however, that the socially optimal skill distribution

is still perfectly unequal.

Next, we question the robustness of the optimality of perfectly unequal skill distribution.

To do so, we analyze several extensions of the baseline model, and find that the optimal skill

distribution is either perfectly unequal or perfectly equal, depending on the parameters of the

model. In the first extension, we relax the linear skill constraint assumption by allowing the

skill constraint to be convex in skill levels as follows,

p1w
β
1 + p2w

β
2 = α,

where β ≥ 1 is the convexity parameter. We show that under full information, the socially

optimal skill distribution is either perfectly unequal or perfectly equal, depending on the con-

vexity of the skill constraint and the convexity of the disutility function. When there is private

information about skills, we provide a sufficient condition for the optimality of perfectly equal

skill distribution. When this condition does not hold, it is hard to provide an analytical solution.

Instead, we parameterize the utility and disutility functions, and solve the planner’s problem

numerically. We show that the socially optimal skill distribution is again either perfectly equal

or perfectly unequal. This time, the concavity of the utility function is also one of the solution’s

determinants.

Second, we extend the baseline model by putting an exogenous uniform lower bound on the

skill levels of agents. The lower bound can be interpreted as skills that agents are born with. In

this case, we compute the socially optimal allocation numerically and find very robustly that the

optimal skill distribution is again extreme. Furthermore, we find that if the lower bound is low

relative to the average skill level, then the optimal skill distribution is the perfectly unequal one.

Finally, we extend the set of skill distributions available to the planner to discrete distributions
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with three mass points to show that our results do not depend on the number of types allowed

in the skill distribution. We show, as in the baseline model, that the optimal skill distribution

is again perfectly unequal, whereby the values of two mass points are set to zero and the value

of the remaining mass point to the maximum.

The paper closest to ours is Cremer, Pestieau, and Racionero (2010), which has a similar

model setup to our baseline model. However, their paper only compares the two extreme skill

distributions, perfectly equal and perfectly unequal, and shows that the perfectly unequal distri-

bution provides higher social welfare under a linear skill constraint. So, their paper only shows

that perfectly equal skill distribution cannot be the solution to the social planning problem. Our

paper considers the whole set of feasible skill distributions and proves that perfectly unequal

skill distribution provides the highest social welfare, and hence, is the socially optimal distri-

bution. Furthermore, in the case of convex skill constraints, our paper provides conditions on

the parameters under which perfectly equal and perfectly unequal skill distributions are socially

optimal whereas Cremer, Pestieau, and Racionero (2010) again merely compares perfectly equal

and unequal skill distributions.

A few other papers analyze comparative static properties of optimal allocations with respect

to certain parameters of the skill distribution. Instead of providing a comprehensive survey of

this literature, we will provide two brief examples.4 Brett and Weymark (2008) investigates

the effect of changing an agent’s skill level on the solution of a Mirrlees optimal income tax

problem. Hamilton and Pestieau (2005) studies the effect on individual utilities of changing the

fraction of individuals when the social welfare function is either maximin or maximax. The main

difference between these papers and ours should be apparent: while we analyze the optimal skill

distribution, they only study comparative static properties.

In our analysis we do not take a stance on any particular interpretation of the skill distri-

bution choice. However, if we think that skills can be partly attained through education, our

model may have implications for education policy. In this regard, the paper is related to several

papers that consider education policy as a redistribution tool in the presence of income taxation.

Hare and Ulph (1979) shows that when agents’ learning abilities are heterogenous and skill types

4Other papers that provide such comparative static results are Boadway and Pestieau (2006), and Simula
(2007).
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are observable, the “optimal choice of education policy reinforces [the] redistributive effect of

income tax.” Bovenberg and Jacobs (2006) constructs a model in which agents choose the edu-

cation level. The government can only influence education, and thus skill distribution, through

education subsidies. They show that providing more subsidies to smarter agents (a regressive

education policy) would make it more incentive compatible to undertake more redistribution

through income taxes.

Another potential interpretation of skill distribution choice is related to Skill-Biased Techni-

cal Change (SBTC), which refers to “a shift in the production technology that favors skilled over

unskilled labor by increasing its relative productivity” (Violante (2009)). Under this interpreta-

tion, the planner chooses the level of SBTC that determines the level of skill inequality between

skilled and unskilled labor. For instance, suppose that the government is choosing the degree

of computerization of the production process. In this case, a higher degree of computerization

increases the productivity of some workers (those who are more prone to using computers) but

decreases the productivity of the rest, thereby changing the skill distribution towards higher

inequality. While most papers in the SBTC literature are positive studies of the growth and in-

come distribution implications of SBTC, this paper could be interpreted as a normative analysis

of the optimal level of SBTC. However, this interpretation of our model should be approached

with caution because we treat skilled and unskilled labor as perfect substitutes as in almost all

the Mirleesian taxation literature (see Naito (1999) and Stiglitz (1982) for exceptions), contrary

to the empirically relevant case of production functions with complementarity.

The rest of this paper is structured as follows. In Section 2, we introduce the model formally.

Section 3 analyzes the optimal skill distribution problem. Section 4 discusses the extensions of

the baseline model. Finally, Section 5 concludes the paper.

2 Model

There is a unit measure of agents. They produce output individually according to the production

function

y = wl,

where y denotes output, w denotes skill level, and l denotes labor effort.
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Each agent’s preference is given by

u(c) − v(l),

where c is consumption and u and v satisfy u′,−u′′, v′ > 0 and v′′ > 0.

The novelty of our analysis is that we allow the planner to choose the distribution of skills.

For tractability, we assume that the planner has to choose a distribution in which skills can take

only two values, w1 and w2. The probability of drawing w1 is p1 and the probability of drawing

w2 is p2. We allow the planner to choose w1 and w2, but p1 and p2 are exogenously given. We

take the average skill level of the economy as given, at α. We assume that the planner chooses

w1 and w2 subject to a linear skill constraint:

p1w1 + p2w2 ≤ α.

The constraint states that the average skill level of the distribution chosen by planner cannot

exceed α.

Allocation. An allocation in this economy is defined as (wi, ci, li)i=1,2, where ci and li

represent consumption and labor allocation of type i.

Feasibility. An allocation is feasible if

p2c2 + p1c1 ≤ p2w2l2 + p1w1l1, (1)

p1w1 + p2w2 ≤ α, (2)

w1, w2, c1, c2, l1, l2 ≥ 0. (3)

The first inequality here states that total consumption cannot exceed total output. The

second inequality makes sure that the average skill level of the distribution chosen by planner

does not exceed α. Finally, the third inequality is just the non-negativity of skill, consumption

and labor allocations.

The timing of the events is as follows. First, the planner chooses the skill distribution. Then,

each agent privately draws her skill from this distribution. Finally, the planner chooses the
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consumption and labor allocations, agents announce their types and receive the corresponding

allocation. This informational friction requires the allocation to satisfy the following familiar

incentive compatibility conditions:

Incentive compatibility. An allocation is incentive compatible if

u(c2) − v(l2) ≥ u(c1) − v(w1l1/w2) (4)

u(c1) − v(l1) ≥ u(c2) − v(w2l2/w1) (5)

A social planner chooses the level of consumption, labor and the skill distribution to maximize

total welfare subject to social feasibility and incentive compatibility constraints.

Social Optimum. An allocation is a social optimum if it solves5

max
w1,w2,c1,l1,c2,l2

p2[u(c2) − v(l2)] + p1[u(c1) − v(l1)]

s.t. (1), (2), (3), (4), and (5).

We denote the optimal allocation by (w∗
1, w

∗
2, c

∗
1, l

∗
1, c

∗
2, l

∗
2).

As we are interested in the socially optimal skill distribution, we focus on w∗
1 and w∗

2 in

the above problem. To understand the question at hand, it is helpful to consider the set of

distributions that are available to society. On the one extreme, we can set w1 = 0 and w2 = α
p2

, or

w1 = α
p1

and w2 = 0. In both of these cases, a fraction of agents have very high earnings capacity

while the rest are completely unproductive. We call these perfectly unequal skill distributions.

On the other extreme, we can set w1 = w2 = α and make everyone in the society identical.

We call this the perfectly equal skill distribution. In between, there is a whole range of skill

distributions in which both w1, w2 > 0. In some of these distributions, w1 > w2 and in some

w1 < w2.

From now on, we denote by H the type that the planner allocates higher skills and by L

the other type, i.e., wi = wH and wj = wL, if wi > wj. In addition, let pi = pH and pj = pL.

5We use a utilitarian social welfare function with equal weights on all agents. However, all of our results hold
under any social welfare function that values equality beyond the laissez-faire market outcome. The only feature
of this utilitarian social welfare function on which we rely is that the high-skilled type’s incentive constraint
binds, which is true under any social welfare function that values equality.
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Hence, we redefine an allocation as (wH , wL, cH , lH , cL, lL). In section 3, we show that when skill

constraint is linear, the socially optimal skill distribution involves perfect inequality, meaning

wL = 0 and wH = α
pH

. Then, in section 4, we extend the model in several dimensions and

prove that either perfect inequality or perfect equality is optimal depending on certain critical

parameter values.

2.1 Rewriting Planner’s Problem

Let θ = wL

wH
. Observe that θ = 0 is the case in which there is perfect inequality in skill distribution.

As we increase θ towards 1, inequality in skill distribution decreases and at θ = 1 there is perfect

equality of skills. In the rest of the paper, we will be interested in the value of socially optimal

θ.

It is a well-known result that only the type H incentive constraint binds under a Utilitarian

social welfare function with equal weights. Now we can substitute the skill constraint into the

resource constraint and rewrite the problem as:

max
θ,cL,lL,cH ,lH

pH [u(cH) − v(lH)] + pL[u(cL) − v(lL)]

s.t.

pHcH + pLcL ≤ αlH + αpLθ(lL−lH)
pH+pLθ

u(cH) − v(lH) ≥ u(cL) − v(θlL)

cL, cH , lL, lH ≥ 0

θ ∈ [0, 1].

If the planner sets θ = 1, then agents choose their types from the perfectly equal skill

distribution where all agents have the skill level α. In this case, the right-hand side of feasibility

becomes pHαlH + pLαlL and the incentive compatibility constraint disappears.
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3 Socially Optimal Skill Distribution

3.1 Benchmark: Full Information Social Optimum

We first analyze the benchmark case with full information. The planner’s problem is the same

as above except that there is no incentive compatibility constraint.

It is always optimal for the planner in the full information case to choose the perfectly

unequal skill distribution, i.e. giving all of the skill to one of the two types. The intuition

is straightforward. In the absence of the incentive constraint, the planner can always equate

consumption across agents at zero cost, so the only criterion of optimal skill distribution is

productive efficiency. It is easy to see that productive efficiency requires skill distribution to be

perfectly unequal. Suppose that this is not true, θ∗ ∈ (0, 1]. From the first order optimality

condition between labor of H and L, we have:

v′(l∗L) = θ∗v′(l∗H)

which implies that l∗H ≥ l∗L since v′′ > 0 and θ∗ ∈ (0, 1]. We can find another feasible allocation

that strictly improves welfare. Consider a new allocation in which θ̂ = 0, l̂L = 0, and the rest of

the allocation stays the same. The feasibility constraint is relaxed because

αl∗H +
αpLθ̂(l̂L − l∗H)

pH + pLθ̂
= αl∗H ≥ αl∗H +

αpLθ∗(l∗L − l∗H)

pH + pLθ∗

and the disutility of L type decreases because

v(l̂L) = v(0) < v(l∗L)

which indicates that any θ ∈ (0, 1] cannot be optimal. Therefore, we have the following theorem:

Theorem 1. In the full information social optimum with linear skill constraint, θ∗ = 0.

10



3.2 Private Information Social Optimum

With private information, the choice of skill distribution not only affects productive efficiency,

but also, through the incentive constraint, affects the set of consumption distributions available

to the planner. In this section, we show that if the skill constraint is linear, then the optimal

skill distribution is still perfectly unequal.

First consider the effect of skill distribution choice on the production side of the economy.

From the analysis of the full information case, we know that increasing skill inequality increases

total output and decreases total disutility at the same time. Therefore, productive efficiency

pushes towards the perfectly unequal skill distribution. However, when skill is private informa-

tion, increasing skill inequality increases the distortions associated with income redistribution.

To see this, consider the incentive constraint of type H which holds with equality at the optimal

allocation:

u(cH) − v(lH) = u(cL) − v(θlL).

When the planner increases skill inequality, meaning a decrease in θ, keeping the rest of the

allocation intact would violate the incentive constraint. This means that the planner has to

accompany the increase in skill inequality by increasing consumption inequality and/or by in-

creasing lL relative to lH . Both are distortionary and involve a cost to society. Therefore, unlike

the full information benchmark, increasing skill inequality not only has a productive efficiency

gain but it also has a cost in terms of increasing the distortions associated with income re-

distribution. Theorem 2 formally proves that the optimal skill distribution is still perfectly

unequal.

Theorem 2. In the private information social optimum, θ∗ = 0.

Proof. We proceed in two steps.

Step 1: θ∗ cannot be interior.

Suppose not, θ∗ ∈ (0, 1), and there are two cases to consider.

Case 1: l∗H ≥ l∗L

Consider a new allocation where θ̂ = 0, l̂H = l∗H , l̂L = 0, ĉH > c∗H and ĉL such that the
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incentive constraint still holds,

u(ĉH) − v(l∗H) = u(ĉL) − v(0)

,

and total output is used up for consumption.

To see that we can make the above equality hold in the new allocation, observe the following.

In the new allocation, total output is weakly higher because it is given by

α[l∗H +
pLθ(l∗L − l∗H)

pH + pLθ
︸ ︷︷ ︸

≤0

]

which is decreasing in θ. Now if we gave all of the output to the high type, he would get

α
pH

l∗H > c∗H .

We can show that u( α
pH

l∗H) − v(l∗H) > u(0) − v(0) because if not, we have

u(0) − v(0) > u(
α

pH

lH) − v(l∗H) > u(c∗H) − v(l∗H),

where the second inequality is true because α
pH

l∗H > c∗H . Also observe that u(0)−v(0) > u(c∗H)−

v(l∗H) ≥ u(c∗L) − v(θl∗L) > u(c∗L) − v(l∗L). Therefore, the cH = cL = lH = lL = 0 allocation gives

a strictly higher utility than the efficient allocation, which is clearly incentive compatible and

feasible, so efficient allocation cannot be welfare maximizing, which is a contradiction.

Hence, we have shown that u( α
pH

l∗H) − v(l∗H) > u(0) − v(0). Now, decrease cH and increase

cL until this inequality holds with equality, and that is how we construct ĉH and ĉL.

Finally, observe that ĉH > c∗H , because otherwise ĉL > c∗L, and that would mean

u(ĉH) − v(l∗H) ≤ u(c∗H) − v(l∗H) = u(c∗L) − v(θl∗L) < u(ĉL) − v(0),

which is a contradiction.

ĉH > c∗H implies that H type’s welfare is strictly higher in the new allocation and the incentive

constraint holding with equality implies that so is L type’s. Hence, the new allocation strictly

improves over the efficient allocation, yielding the desired contradiction.
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Case 2: l∗H < l∗L

We can set θ̂ = 1, then the resource constraint is relaxed because

αl∗H +
αpLθ̂(l∗L − l∗H)

pH + pLθ̂
= αl∗H +

αpL(l∗L − l∗H)

pH + pL

> αl∗H +
αpLθ∗(l∗L − l∗H)

pH + pLθ∗

The incentive constraint is also relaxed because

u(c∗H) − v(l∗H) = u(c∗L) − v(θ∗l∗L) > u(c∗L) − v(θ̂l∗L) = u(c∗L) − v(l∗L)

Thus, it is easy to find another allocation that improves welfare.

Step 2: θ∗ = 0

Suppose not, θ∗ = 1, then it is easy to show c∗H = c∗L and l∗H = l∗L, but then we can set θ̂ = 0

and l̂L = 0. The resource constraint is unaffected because

αl∗H +
αpLθ∗(l∗L − l∗H)

pH + pLθ∗
= αl∗H +

αpLθ̂(l̂L − l∗H)

pH + pLθ̂
= αl∗H

We can also set ĉH > c∗H and ĉL such that the incentive constraint holds, as we did in Step

1 Case 1:

u(ĉH) − v(l∗H) = u(ĉL) − v(0)

This improves welfare because ĉH > c∗H and l̂L = 0 < l∗L.

4 Extensions

In the foregoing analysis, we show that the optimal skill distribution is extreme, in particular

θ∗ = 0. In this section, we generalize the baseline model in several dimensions to check how

robust is the optimality of perfectly unequal skill distribution. We find that the optimal skill

distribution is either perfectly unequal or perfectly equal, depending on the parameters of the

model.
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4.1 Convex Skill Constraint

In the previous analysis, we analyze a special case in which the skill constraint is linear. In

reality, however, there can be decreasing returns to scale when we transfer skills from the low

type to the high type. To allow for this possibility, we now assume a convex skill constraint as

follows:

pLwβ
L + pHwβ

H ≤ α (6)

where β ≥ 1 is the scalar for convexity of the skill constraint.

Using this skill constraint, we can write the total output as:

pLwLlL + pHwH lH = wH(θpLlL + pH lH)

= (
α

pLθβ + pH

)1/β(θpLlL + pH lH)

4.1.1 Full Information

First, we analyze the benchmark case with full information. Using the above expression for total

output, we can write the planner problem as:

max
θ,cH ,cL,lH ,lL

pH [u(cH) − v(lH)] + pL[u(cL) − v(lL)]

s.t.

pHcH + pLcL = ( α
pLθβ+pH

)1/β(θpLlL + pH lH)

cH , cL, lH , lL ≥ 0, θ ∈ [0, 1].

Denote c∗H(θ), c∗L(θ), l∗H(θ), l∗L(θ) as the values of cH , cL, lH , lL that maximize the above prob-

lem for a given θ, and denote U∗ as the maximized total utility:

U∗ ≡ pH [u(c∗H(θ)) − v(l∗H(θ))] + pL[u(c∗L(θ)) − v(l∗L(θ))]

We are interested in the optimal value of θ that maximizes U∗. The Envelop Theorem implies
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that the total derivative of the total utility with respect to θ can be expressed as the product

of the multiplier to the resource constraint (λ) and the partial derivative of total output with

respect to θ:

dU∗

dθ
=

∂λ[( α
pLθβ+pH

)1/β(θpLl∗L(θ) + pH l∗H(θ)) − pHc∗H(θ) − pLc∗L(θ)]

∂θ

= λ
α1/βpHpL

(θpLl∗L(θ) + pH l∗H(θ))1/β+1
[l∗L(θ) − θβ−1l∗H(θ)]

This expression states that whether more skill equality (higher θ) can increase welfare de-

pends on whether it can increase total output. Productive efficiency is the only concern because,

under full information, no incentive constraint restricts the planner from equalizing consump-

tion. Using the above expression, whether total output is increasing or decreasing in θ depends

on the sign of the following expression:

[l∗L(θ) − θβ−1l∗H(θ)] = l∗L(θ)[1 −
θβ−1

l∗L(θ)/l∗H(θ)
]

This expression tells us that whether output increases as skill inequality increases (θ de-

creases) depends on two parameters: β and the convexity of the disutility function. The intuition

is as follows. First, holding the
l∗L
l∗
H

ratio constant, when β = 1, increasing skill inequality means

transferring skills to the type that is already working harder (l∗L < l∗H), keeping the average skill

level constant. This increases total output. However, when β > 1, increasing skill inequality

is costly because it decreases the average skill level in the economy. In fact, this cost becomes

larger as β increases, and hence increasing skill inequality is less likely to increase total output

for higher β. Second, the convexity of the disutility is important because it determines the
l∗L
l∗
H

ratio. If disutility is more convex, then
l∗L
l∗
H

is closer to one, and hence increasing skill inequality

is less likely to increase total output.

To simplify the analysis, we assume a particular form for the disutility function, v(l) = lγ.

Then, the above expression becomes

[l∗L(θ) − θβ−1l∗H(θ)] = l∗L(θ)[1 − θβ−1+ 1

1−γ ]
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and we have the following result.

Theorem 3. In the full information social optimum,

θ∗ =







0 if β − 1 + 1
1−γ

< 0;

[0,1] if β − 1 + 1
1−γ

= 0;

1 if β − 1 + 1
1−γ

> 0.

The theorem states that optimal skill distribution is either perfectly equal or unequal, de-

pending on the values of β and γ. In particular, as our intuition suggested in the case with

the general disutility function, as β and γ increase it is more likely for the perfectly equal skill

distribution to be optimal.

4.1.2 Private Information

Under private information, the planning problem is the same as the full information planning

problem, except that there is an additional constraint– the usual incentive compatibility con-

straint.

u(cH) − v(lH) ≥ u(cL) − v(θlL).

We know from the full information analysis of the previous subsection that productive effi-

ciency calls for the optimality of the perfectly equal skill distribution whenever β − 1+ 1
1−γ

≥ 0.

As the perfectly equal skill distribution also brings perfect consumption equality without any

further need for distortionary income taxation, it is also socially optimal under private informa-

tion whenever this condition is satisfied. The theorem below follows.

Theorem 4. If β−1+ 1
1−γ

≥ 0, then we have θ∗ = 1 in the private information social optimum.

Proof. Consider a relaxed version of the private information planning problem in which we drop

the incentive constraint. That relaxed problem is equivalent to the full information planning

problem and we know that in the solution to that problem we have θ = 1, cH = cL, and

lH = lL. Clearly, this allocation satisfies the incentive constraint and hence is in the constraint

set of the original planning problem under private information, which means that it solves the

problem.
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It is difficult to provide an analytical solution to this problem when β−1+ 1
1−γ

< 0. Therefore,

in what follows we provide numerical solutions. We use constant relative risk aversion utility

function

u(c) =
c1−σ

1 − σ
.

We compute the value of the planning problem for θ ∈ [0, 1], and plot these value functions

in Figure 1 for different parameter values. As the concavity of the utility function and convexity

of the disutility function affect the result, we compute the value function with two values of σ

(σ = 0.5 and σ = 3) and two values of γ (γ = 2 and γ = 4). The four sub-figures of Figure

1 each correspond to one of the four combinations of σ and γ. To illustrate the importance of

the convexity of the skill constraint on the result, we compute the value function for 4 different

values of β. Within each sub-figure, each plot corresponds to a value function for a different

value of β.

The main message of Figure 1 is that there is no combination of parameters (β, γ, σ) for

which optimal θ is interior. Several factors determine the corner in which the optimal θ will lie.

The first factor is the convexity of the skill constraint. As the intuition in the full information

case suggests, a more linear skill constraint (lower β) makes unequal skill distribution less costly

and hence more likely to be socially optimal. Figure 1 confirms this: fixing γ and σ (i.e. looking

at each sub-figure), θ∗ changes from 0 to 1 as β increases. Also, observe that as we prove in

section 3, when β = 1, θ∗ = 0, which is true in all four sub-figures.

Second, again similar to the full information case, a more convex disutility (higher γ) implies

that
l∗L
l∗
H

has to be higher. Thus, increasing skill inequality (lower θ) increases output less, and

hence is less likely to be optimal. In Figure 1, holding σ and β constant, a higher γ (from 2 to

4) makes θ∗ = 1 more likely. For instance, when σ = 0.5 and β = 1.5, θ∗ changes from 0 to 1

when γ goes up from 2 to 4.

The third parameter that matters for the optimal θ is σ, the concavity parameter of the utility

function. Under private information, for any σ, if the planner wants the high type to produce

more output, he must provide the high type with incentives to do that, meaning cH > cL. Now,

keeping everything else constant, if we look at an economy with a higher σ, the planner would
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like to set consumption levels of the two types closer to each other. To do this, however, the

planner has to close the gap between lH and lL, which makes skill equality more appealing. In

Figure 1, holding β and γ constant, a higher σ (from 0.5 to 3) makes θ∗ = 1 more likely. For

instance, when γ = 2 and β = 1.5, θ∗ changes from 0 to 1 when σ goes up from 0.5 to 3.

4.2 Additive innate skills

We showed in section 3 that the socially optimal skill distribution is perfectly unequal, meaning

θ∗ = 0. However, one might think that all the people in an economy are born with a certain

level of innate skills that the planner cannot grab away from them. We incorporate this into

our analysis by considering the baseline model with linear skill constraint in which everyone has

K > 0 units of innate skills. Hence the skill level of type L is wL + K and the skill level of type

H is wH + K, where plwL + pHwH = α. The question we ask in this subsection is whether the

socially optimal skill distribution is still the perfectly unequal one, meaning θ∗ =
w∗

L

w∗

H

= 0.

Define θ̃ = wL+K
wH+K

and α̃ = α + K. Then, we can write the feasibility in the form similar to

before:

pHcH + pLcL ≤ α̃lH +
α̃pLθ̃(lL − lH)

pH + pLθ̃
. (7)

Incentive compatibility becomes:

u(cH) − v(lH) ≥ u(cL) − v(θ̃lL).

This problem is exactly the same as the problem in the baseline model where the average

skill in society is α̃ and the planner is restricted to choosing among skill distributions in which

each mass point has to be greater than or equal to K. This means that the domain of θ̃ for the

planner is

θ̃ ∈ [
K

α/pH + K
, 1].

In all four sub-figures of Figure 1 we can see that even in the extended model with innate

skills and linear skill constraint (β = 1), an interior distribution is never optimal. In particular,

when K is low relative to α, the lower bound on θ̃ is low and the figures tell us that we still
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Figure 1:

Value Functions
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have θ∗ = 0 (θ̃∗ = K
α/pH+K

) to be socially optimal. When K is high enough relative to α, the

lower bound on θ̃ is high and hence θ∗ can be equal to 0 or 1, depending on the concavity of the

utility function. In a similar fashion, one can also show that the extreme result of either θ∗ = 0

or θ∗ = 1 is robust to introducing innate abilities to the convex skill constraint model.

4.3 Three types

So far we have assumed that the planner is allowed to choose discrete distributions with two

mass points. In this subsection, we ask if the extremity of the socially optimal skill distribution

depends on this assumption. We analyze the baseline model of section 3 and allow the planner to

choose discrete distributions with three mass points. As in section 3, we find that the perfectly

unequal skill distribution, in which one type receives all the skills and the rest receive none, is

socially optimal.

Planning Problem:

max
w1,w2,w3,c1,l1,c2,l2,c3,l3

p3[u(c3) − v(l3)] + p2[u(c2) − v(l2)] + p1[u(c1) − v(l1)]

s.t.

p3c3 + p2c2 + p1c1 ≤ p3w3l3 + p2w2l2 + p1w1l1, (8)

p1w1 + p2w2 + p3w3 ≤ α, (9)

w1, w2, w3, c1, c2, c3, l1, l2, l3 ≥ 0. (10)

u(ci) − v(li) ≥ u(cj) − v(
wj

wi
lj), for i,j=1,2,3. (11)

As we did previously, by H we denote the type that receives the highest skills in the distri-

bution chosen by the planner, by M the type that receives medium skills, and by L the other

type, i.e., wi = wH , wj = wM , and wk = wL, if wi > wj > wk. In addition, pi = pH , pj = pM ,

and pk = pL. Hence, redefine an allocation as (wH , wM , wL, cH , lH , cM , lM , cL, lL). We also define

θM = wM

wH
and θL = wL

wH
. The following theorem provides the formal result.

Theorem 5. Both under full information and private information, θ∗L = θ∗M = 0 is socially
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optimal.

Proof. The proof for the full information case is exactly the same as the proof of Theorem 1.

Hence, we provide the proof of the private information case only.

Suppose for contradiction that both θ∗L and θ∗M are strictly positive (other cases are straight-

forward implications of the two-type case).

There are three possibilities.

Case 1. l∗H ≥ l∗i for i = M, L.

Consider a new allocation in which we set θL = θM = 0, lL = lM = 0, and lH = l∗H .

This weakly increases total output and strictly decreases total disutility. We construct the

consumption part of the new allocation in the following way. Set cM = cL, and u(cH)− v(l∗H) =

u(cM)− v(0). To show that such a consumption allocation is achievable, we first show u(αl∗H)−

v(l∗H) > u(0)−v(0). Suppose not. Then, u(c∗H)−v(l∗H) ≤ u(0)−v(0), which implies u(c∗L)−v(l∗L) <

u(c∗M)− v(l∗M) < u(c∗H)− v(l∗H) ≤ u(0)− v(0), which is a contradiction because then ci = li = 0

for all i allocation dominates the efficient allocation. Hence, in the new allocation we have

u(cH) − v(l∗H) = u(cM) − v(0) = u(cL) − v(0). If cH ≥ c∗H , then type H is better off, which

further implies type L and type M are strictly better off. This means that the new allocation

is an improvement over the efficient one, which is a contradiction. If cH < c∗H , then another

consumption allocation in which we set cH equals to c∗H and divide the rest of the output equally

between type L and type M provides a strictly higher total welfare compared to the efficient

allocation because type H’s welfare is unchanged and type L and type M ’s average welfare

strictly increases (as the total output they consume is higher and they share it equally). This

allocation is obviously incentive compatible, which again means that it is an improvement over

the efficient allocation, once again a contradiction.

Case 2. l∗H < l∗L.

Consider a new allocation in which we increase θL and θM by setting wH = w∗
H − ǫ and

w̃L = w∗
L + ǫpH/pL, and leave the rest of the efficient allocation unchanged. This increases the

total output and relaxes the incentive constraint from type H to type M and type M to type

L, creating a contradiction.

Case 3. l∗L ≤ l∗H < l∗M .
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Consider a new allocation in which we set wL = 0, keep θM unchanged, i.e., wM

wH
=

w∗

M

w∗

H

, set

lL = 0, and keep l∗M and l∗H unchanged. This strictly increases total output and decreases type

L’s disutility to 0.

We construct the consumption allocation such that incentive constraints hold with equality

and total output is used up for consumption: u(cH) − v(l∗H) = u(cM) − v(θM l∗M) and u(cM) −

v(l∗M) = u(cL) − v(0).

To see that we can find such a consumption allocation, observe that if we divide all of the

output between cM and cH such that type H’s incentive constraint holds with equality, we

obtain u(cH) − v(l∗H) > u(0) − v(0), u(cM) − v(l∗M) > u(0) − v(0). Suppose that the first strict

inequality does not hold. Then, u(c∗H) − v(l∗H) ≤ u(0) − v(0), which gives a contradiction in a

similar way as in case 1. Now suppose for contradiction that u(c̃M)−v(l∗M) ≤ u(0)−v(0). Then,

consider a new allocation in which we give both type L and M (0, 0) and type H (c∗H , l∗H). This is

incentive compatible, feasible, and gives a strictly higher utility, which is a contradiction. Now,

decrease cM , cH and increase cL until the incentive constraint of type M holds with equality,

keeping the incentive constraint of type H holding with equality. In this way we construct our

consumption allocation. We argue that in this allocation cH > c∗H , which also implies cM > c∗M

due to incentive constraint of type H holding with equality. Suppose that cH ≤ c∗H . This implies

cM ≤ c∗M and cL > c∗L (as the total output is increased in the new allocation), which implies

u(cM) − v(l∗M) ≤ u(cM) − v(l∗M) < u(cL) − v(0), which contradicts the type M ’s incentive

constraint holding with equality. Thus, cH > c∗H and cM > c∗M .

Hence, in the perturbed allocation, type M and type H welfare is strictly increased, and type

L welfare is increased because u(cM) − v(l∗M) = u(cL) − v(0) > u(c∗M) − v(l∗M) > u(c∗L) − v(l∗L).

Thus, perturbed allocation offers an improvement over the efficient allocation, yielding the

desired contradiction.

5 Conclusion

This paper has studied the socially optimal distribution of skills in a Mirrleesian economy. We

have shown that optimal skill distribution is either perfectly equal or perfectly unequal, but
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an interior level of skill inequality is never optimal. We have also provided conditions on the

parameters under which perfectly equal and perfectly unequal skill distributions are optimal.

We acknowledge that our analysis is purely theoretical, and we do not take a stance on any

particular interpretation of the skill distribution choice. However, we believe that our model

of skill distribution choice could serve as a benchmark for analyzing policy questions regarding

education and SBTC. A normative analysis of that kind would require a modification and

enrichment of the current model tailored to the specific policy question at hand. We believe

that such an analysis of education and SBTC policies based on our model could be an interesting

line of future research.
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