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Abstract

In this paper, we study the effect that different serial correlation adjustment methods

can have on panel cointegration testing. As an example, we consider the very popular tests

developed by Pedroni (1999, 2004). Results based on both simulated and real data suggest

that different adjustment methods can lead to significant variations in test outcome, and

thus also in the conclusions.
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1 Introduction

By now there exists a burgeoning literature on nonstationary panels, suggesting numerous tests

for panel cointegration.1 There are basically two classes of such tests. The first class is based

on the seminal work of Engle and Granger (1987), and develops residual-based tests for use

in the panel data context. Among the many contributions within this class, Kao (1999) and

Pedroni (1999, 2004) belong to the most well cited ones. The second class builds on the work

of Johansen (1988, 1991), and develops likelihood-ratio tests for panel data. The two most

notable contributions within this class include Larsson, Lyhagen and Lötgren (2001) and Groen

and Kleibergen (2003). As in the time series literature, most of these panel tests take no

cointegration as the null hypothesis.

Gutierrez (2003) and Banerjee, Marcellino and Osbat (2004) study small-sample perfor-

mance of many of these panel tests using Monte Carlo simulations, and find that no one test
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research grant number W2006-0068:1. The authors would also like to thank numerous people for making their
data available to us. The usual disclaimer applies.
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1See Breitung and Pesaran (2007) for a recent survey of the literature.
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can be said to dominate the others. In terms of applied work, however, the class of residual-based

tests has proven to be the most popular one.

Besides the classification as residual or likelihood-based, most existing panel tests can also be

classified according to the adjustment method undertaken to eliminate the dependence on nui-

sance parameters reflecting the serial correlation properties of the data, which would otherwise

impair inference.2 Parametric tests, such as those of Kao (1999), Larsson, Lyhagen and Lötgren

(2001) and Groen and Kleibergen (2003), allow for quite general dependencies by assuming that

the data admits to an autoregressive representation. By approximating this autoregression us-

ing the actual data, it is possible, at least in principle, to construct tests that do not not depend

on any nuisance parameters. However, by approximating the data generating process in this

way, the researcher faces the complicating factor of having to chose the appropriate order for

the autoregression, which is typically unknown. If the order is chosen too small, the problem of

nuisance parameter dependency will remain, whereas, if it is chosen too large, the small-sample

properties of the test will deteriorate. Only if it is chosen correctly can the test be expected to

perform well.

The tests by Pedroni (1999, 2004) can not only be constructed in this fully parametric way

but also semiparametrically, in which case the nuisance parameters are estimated directly by

using kernel methods. But this necessitates the researcher choosing the correct kernel to use

and, perhaps even more importantly, the appropriate bandwidth parameter, which reflects the

number of autocovariances to estimate for the kernel. As with the parametric method, this

choice makes the testing problematic in practice as the correct bandwidth window to use in any

given application is never known. Moreover, because these tests have the property that they

can be constructed using both parametric and semiparametric adjustments, their constriction

is even more uncertain in comparison to most other tests.

In addition to the problem that the true or optimal lag and bandwidth orders are never

available in practice, adjustments of this kind can have a significant impact on test performance

in small samples. Indeed, most empirical work tend to suggest that test results can be quite

sensitive to different choices of lag lengths and bandwidths. As a result, test results are often

reported for more than one value.

Of course, the problem of having to pick the best lag length or bandwidth is not unique

to panel data. However, if one admits to the possibility of an heterogeneous data generating

process, then this choice must be made not just once but as many times as there are individuals

in the panel. This means that the sensitivity of the choice of lag length or bandwidth becomes

2Although this paper focuses on the problem of correcting for serial correlation, readers should be aware that
there is generally the additional difficulty of correcting for the fact that the regressors may be endogenous.
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even greater as the cross-sectional dimension of the panel increases, especially considering that

the testing is often performed in situations when the time series dimension of the data is

substantially shorter than in the conventional time series case.

Fortunately, there are ways to eliminate this kind of problems. Indeed, in a recent study,

Westerlund (2005) proposes two simple residual-based panel data tests for the null of no coin-

tegration, which can be said to be fully nonparametric as they do not require any correction

for the temporal dependencies of the data. The key here is that no adjustment is required

even though the data generating process is identical to the one used by Pedroni (1999, 2004).

Thus, with these tests, there is no lag or bandwidth parameter that needs to be chosen by the

researcher, which of course reduces the uncertainty and ambiguity of the test outcome.

In view of this new development, a natural question arises of how robust parametric and

semiparametric tests can be expected to be, and what this has for implications in applied work.

In this paper, we try to shed some light on the issue using both simulated and actual data.

Simulation studies are usually conducted for a single choice of adjustment method. We therefore

begin our analysis with a small simulation exercise where we consider different methods. Our

main finding is that the Pedroni (1999, 2004) tests are much more prone to erroneous conclusions

than the Westerlund (2005) tests.

In the empirical section of the paper, we compare the results of conducting the various

tests using data sets from nine published studies that use the tests of Pedroni (1999, 2004).

Consistent with our simulation results, we find that different choices of adjustments can lead

to completely different conclusions when using these tests. By contrast, the results based on

the Westerlund (2005) tests are completely unambiguous in this respect, and are usually in

agreement with the results reported in the published studies.

The remainder of this paper is organized as follows. Section 2 provides a brief discussion

of the difficulty of having to adjust for serial correlation when testing for panel cointegration,

while Sections 3 and 4 report the simulation and empirical, respectively. Section 5 concludes.

2 Adjusting for serial correlation when testing for cointegration

in panel data

The purpose of this section is to provide a birds-eye account of the difficulties of having to adjust

for the presence of serial correlation when testing for panel cointegration using the Pedroni (1999,

2004) tests. The interested reader is referred to the original papers for a detailed description of

the construction of these tests.
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The tests of Pedroni (1999, 2004) and Westerlund (2005) are all based on examining the

stationarity of the error term in the following regression

yit = d′tδi + x′
itβi + eit, (1)

where t = 1, ..., T and i = 1, ..., N indexes the time series and cross-sectional dimensions,

respectively, dt is a vector of deterministic components, with a constant and time trend as

typical elements, βi are slope parameters, and xit is a vector of integrated regressors.3 Now,

consider the problem of testing the hypothesis of no cointegration based on the regression in (1).

The error eit is stationary when yit and xit are cointegrated and it has a unit root when they

are not. Thus, testing the null hypothesis of no cointegration for cross-sectional unit number i

is equivalent to testing whether eit possesses a unit root by using the following autoregression

eit = ρieit−1 + uit. (2)

In this paper, however, we are not interested in testing if the no cointegration null holds for a

single unit but rather if it holds for the panel as a whole. In other words, we want to test the

null that ρi = 1 for all i. This can be done in two ways depending on how ρi is estimated. The

group mean approach involves estimating ρi separately for each unit i before combining them

into a panel statistic, while the panel approach involves first restricting ρi = ρ for all i and then

using the resulting pooled estimate of ρ as a statistic.

Thus, one way in which the tests differ is in the treatment of ρi, which is important in the

sense that it has implications for the way a rejection is interpreted.4 From a practitioners point

of view, however, this is not the most important difference. Indeed, as in all testing situations

of this type, correcting for serial correlation is a key aspect when testing for cointegration in

panel data. This can essentially be done in two ways.

To appreciate this, assume that

uit =

Pi∑

j=1

φijuit−j + εit, (3)

where εit is assumed to be mean zero and serially uncorrelated. This equation says that uit

follows an autoregressive process of some unknown order Pi, which means that the data can be

serially correlated in a very general way. The problem is how to account for this correlation

3It might be noted that none of the tests considered here allow for cross-sectional dependence, except if it is
in the form of a simple common time effect. However, this is by no means restrictive for what we are trying to do
in this study. The issue of serial correlation correction is there whether the data is cross-sectionally dependent
or not.

4In particular, a rejection by the group mean approach is usually interpreted as that ρi < 1 for at least one
i, whereas, in the panel approach, it is interpreted as ρ < 1 for all i. Thus, a rejection of the null has different
meanings depending on whether ρi is estimated separately or not.
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when constructing the cointegration test. The most natural way is to simply substitute for uit

in (2), which yields the following augmented test regression

eit = ρieit−1 +

Pi∑

j=1

φij∆eit−j + εit. (4)

Thus, since the error εit is serially uncorrelated by constriction, one way to robustify the cointe-

gartion test is to simply replace (2) with (4). Because this approach involves explicitly modelling

the serial correlation, the resulting test is often called parametric. Another way to account for

the correlation is to estimate directly the long-run variance of uit, which is given by

lrvar(uit) =
∞∑

j=−∞

cov(uit, uit−j).

This quantity can be estimated semiparametrically as suggested by Newey and West (1994),

using the following weighted sum of sample autocovariances

Ki−1∑

j=−(Ki−1)

(
1 −

|j|

Ki

)
1

T

T∑

t=|j|+1

uituit−j , (5)

where Ki is a bandwidth truncation parameter that determines the number of autocovariances

to use.5 In other words, choosing Ki in (5) is essentially the same as choosing Pi in (4).

Once lrvar(uit) has been estimated, the corresponding semiparametric test can be obtained by

basically using this estimate instead of the usual estimate of the contemporaneous variance

var(uit).

The tests of Pedroni (1999, 2004) all require correcting for serial correlation, either para-

metrically as in (4) or semiparametrically as in (5). This makes them uncertain in the sense

that their performance depends to a large degree on how well the researcher chooses Ki and

Pi. In particular, the problem is that there is no unique way of choosing these parameters, and

different choices can lead to very different test outcomes. In fact, as we will demonstrate in the

next section, depending on the choice of Ki and Pi, the conclusion of the test can in many cases

be completely reversed.

3 Simulation evidence

In this section, we conduct a small simulation exercise to evaluate the performance of the

Pedroni (1999, 2004) tests when considering different choices of Ki and Pi. For this purpose,

we make 1, 000 replications using (1) through (3) to generate the data.

5The advantage with this particular weighting scheme, usually referred to as the Bartlett kernel, is that it
ensures nonnegative variance estimates. Although the choice of kernel also affects the performance of the test,
in practice the Bartlett kernel is almost always used, and we therefore only consider this choice.
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For simplicity, we assume that there is a single regressor such that ∆xit ∼ N(0, 1), that (3)

is generated with one lag only, and that εit ∼ N(0, 1).6 All initial values are set to zero. For

the deterministic component, we have two configurations, one with an intercept and one with

an intercept and trend. In both cases, all the parameters of (1) are set equal to one.

The tests can be classified as group mean or panel, and as parametric or semiparametric.

Coefficient type tests will be denoted Zρ, while t-ratio type tests will be denoted Zt. A tilde

signifies that the test is of the group mean type, while a star signifies that the test is para-

metric. For convenience, we employ a uniform bandwidth and lag length truncation window,

and evaluate the tests for all truncations between one and 10, which, given the variety of the

choices that appear in applied work, seems like a very reasonable range of values.7 The same

truncation is used for all units of the panel. To economize on space, we only report the results

for the size of a nominal 5% level test.

The results are reported in Table 1. These are summarized by means of intervals comprising

the sizes that were generated by varying Ki and Pi between one and 10. The information

contained in the table can be described as follows.

On the one hand, we see that the while the size of the semiparametric tests appear to be

quite stable across bandwidths, these tests are usually also very oversized. The only exception

is when serial correlation coefficient φ is positive, in which case the distortions go in the other

direction, thus making the test more conservative.

On the other hand, the size of the parametric tests varies widely depending on the choice

of lag length, and can produce almost any result. Indeed, since most intervals contains both

endpoints, by simply choosing the appropriate lag length, it should in principle be possible to

always obtain the results one would like to have. Nevertheless, in contrast to the semiparametric

tests, we see that the parametric tests can actually be decently sized. However, this requires

the knowledge of the true lag length, which of course is never known in practice.

These findings present us with an intricate dilemma. On the one hand, when using the

semiparametric tests, we obtain results that are more stable across different truncation windows

than those obtained using the parametric tests. On the other hand, since the semiparametric

tests tend to be very distorted, there is a large risk of obtaining spurious results, especially in the

presence of serial correlation. As expected, we see that the distortions have a clear tendency of

accumulating, and to become even more serious as N increases. Also, although the distortions

6For simplicity, to be able to identify the effect of serial correlation, we assume that the regressor is strictly
exogenous. See Pedroni (1999, 2004) and Westerlund (2005) for some results when the regressor is permitted to
be endogenous.

7Theoretically, an asymptotically valid test requires the lag or bandwidth truncation window to increase with
T . However, this is not always done in practice, especially when it comes to lag length selection. It is therefore
of interest to see how the tests perform when combined with a fixed truncation.
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seem to be exacerbated by the presence of the trend, we see that the deterministic specification

does not alter the conclusions.

Because of this difficulty in interpreting the results of the Pedroni (1999, 2004) tests, it is

useful to consider as an alternative the tests of Westerlund (2005), here denoted Vg and Vp,

which are interesting in the sense that they do not require any adjustment to account for the

serial correlation of the data.8 Thus, with these tests, there is no dependence on the choice of

lag length or bandwidth. However, the underlying assumptions are exactly as in Pedroni (1999,

2004), which means that the test outcomes can be easily compared and interpreted. The Vg test

is of the group mean type, and is thus comparable with the corresponding group mean tests of

Pedroni (1999, 2004), while Vp is of the panel type. Based on the results reported in Table 1,

it would appear as that the risk of obtaining misleading results is much lower when using the

Westerlund (2005) tests.

4 Empirical evidence

In this section, we reevaluate the results obtained from nine recent empirical studies that are

based on the tests of Pedroni (1999, 2004). The purpose is to show how different choices of Ki

and Pi can give rise to quite different conclusions.

In doing so, it is important to point out that these studies have been selected based on the

availability of the data and not based on their results. Thus, we hypothesize that our critique

should apply in general, and not only to the studies considered here. We would also like to

stress that the goal here is to examine the robustness of the tests when using actual data, and

not to suggest that the authors of the empirical studies have been in any way strategic in their

choice of lag length or bandwidth. The results are summarized in Table 2.

The data have been obtained directly from the authors of the studies, and have been pro-

cessed in accordance with their instructions. The interested reader is referred to the individual

papers for further details. Also, although most data sets could be used directly, in a few cases we

found that there were some observations missing. In these cases, for simplicity and convenience

of comparison, the data sets were excluded.

As explained briefly in the previous section, in the original published papers, the tests and

adjustment methods employed to test for cointegration vary, and are rarely explained in detail.

In particular, with exception of Pedroni (2004), there is no mentioning about the choice of lag

8The idea here is that instead of using a coefficient or t-ratio type test, which makes it necessary to adjust for
serial correlation, one looks at the ratio of two sample quantities that share the same nuisance parameter reflecting
the serial correlation of the data. Because this parameter is the same for both numerator and denominator it
cancels out in the limit, thus making the resulting test asymptotically independent of the serial correlation.
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length and bandwidth. Replicating the original published results is therefore very difficult, and

thus not attempted. Instead, we impose a unifying approach and use the same battery of tests

on all the data sets.

Table 3 summarizes the findings from this empirical exercise. The first column shows the

deterministic component of each regression, whereas the third column indicates the type of

model that is being estimated. A brief explanation of these models can be found in Table 2.

The remaining columns contain the p-values from the various tests, which are again summarized

by means of the intervals that were generated by considering all lag lengths and bandwidths

between one and 10.

Table 3 points to several interesting results that are worthy of further discussion. Firstly, in

accordance with our simulations, the results obtained by using the parametric tests of Pedroni

(1999, 2004) vary significantly in all cases considered, and do not appear to be particularly

robust with respect to the choice of lag length. The semiparametric tests are more stable and

lead to more unambiguous test results. Of course, since the null is almost always rejected, the

question is whether these results reflect the actual data generating process or the oversize effect

documented in the simulations.

Secondly, given this ambiguity, it is interesting to consider the results obtained by applying

the tests of Westerlund (2005). In particular, it is interesting to see whether these tests lead to

the same conclusions as those drawn in the original published papers. The results reported in

Table 3 suggest that in a majority of cases, Vg and Vp result in a rejection of the no cointegration

null, which is consistent with the results obtained in these studies. On the other hand, for the

Bahmani-Oskooee, Miteza and Nasir (2002), Harb (2004) and Jenkins and Snaith (2005) data

sets, we see that the null hypothesis is usually not rejected, which do not agree with the results

provided in these studies.

5 Conclusions

In applied work with nonstationary panel data, researchers often face dilemma about which type

of serial correlation adjustment to use in cointegration testing. This can basically be achieved

in two ways, each with its own set of truncation problems. In the case of parametric testing, the

problem is how to choose the appropriate lag order to use in the autoregressive test regression,

while, in the case of semiparametric testing, the problem is how to choose the best bandwidth

window.

This issue is very important because different choices of adjustment methods can often lead

to significant variations in test outcome, and thus also in the conclusions based upon them.
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In particular, since the analysis of most studies critically rely on showing cointegration, such

variations could potentially undermine the analysis of the whole study.

In this paper, we systematically analyze this dilemma. As an example, we consider the very

popular tests developed by Pedroni (1999, 2004), which all require some kind of adjustment to

account for the serial correlation of the data. The properties of these tests are analyzed using

both simulated and empirical data. Our main finding is that the choice of adjustment method

matters, and that the results can be deceptive unless this choice is exactly right. As a solution

to this problem, we suggest using the tests of Westerlund (2005), which do not require this kind

of adjustment.
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Table 1: Size at the 5% level for different lag lengths and bandwidths.

Z̃t Z̃ρ Z̃∗
t Zt Zρ Zv Z∗

t

Determ φ N T Vg Vp min max min max min max min max min max min max min max

Const 0 10 50 4.0 3.8 30.5 37.4 12.3 20.6 1.0 26.6 16.4 19.7 13.8 13.8 9.3 11.7 1.9 29.1

10 100 3.8 4.7 15.3 24.2 10.6 17.8 1.6 14.0 10.9 11.9 11.3 11.3 12.3 13.6 3.0 18.7

20 50 5.4 6.2 46.9 58.8 17.2 30.6 0.9 40.7 19.2 23.8 15.5 15.9 8.2 12.0 0.8 33.3

20 100 4.9 6.6 22.1 36.0 12.3 26.5 1.0 18.8 11.7 13.3 10.4 10.4 10.3 10.8 1.1 19.3

0.3 10 50 2.2 2.5 3.8 6.3 0.2 0.7 1.1 5.2 2.0 2.9 0.4 0.4 0.4 1.4 1.9 8.3

10 100 2.4 3.4 1.4 3.8 0.2 1.3 0.8 6.8 1.3 1.5 0.5 0.5 0.4 3.5 2.2 8.9

20 50 2.2 3.7 2.5 6.3 0.0 0.4 0.7 5.9 1.2 1.7 0.2 0.2 0.2 0.7 0.2 6.0

20 100 3.1 4.4 0.9 4.3 0.2 1.0 0.0 4.6 0.3 0.7 0.1 0.1 0.1 1.5 1.0 6.7

−0.3 10 50 6.8 6.8 82.0 94.0 63.6 90.9 1.1 89.8 70.0 73.4 74.0 74.4 46.7 59.3 2.0 82.8

10 100 5.6 6.3 60.7 84.4 54.5 86.2 1.7 82.1 58.5 62.1 69.4 69.6 37.5 47.9 3.0 72.7

20 50 10.6 10.6 96.8 99.6 87.4 99.1 0.9 98.9 82.7 89.9 89.9 89.9 62.4 74.4 0.9 93.1

20 100 7.1 7.9 84.4 97.5 78.8 97.8 1.0 97.5 76.2 80.8 85.8 86.0 51.1 65.5 1.3 86.5

Trend 0 10 50 4.9 4.1 45.1 55.8 7.9 18.9 0.7 40.1 29.6 33.2 13.3 13.7 4.0 8.2 1.5 48.3

10 100 3.3 4.2 27.6 41.9 11.7 23.3 1.3 22.1 18.6 20.3 13.3 13.4 6.7 12.0 3.8 34.4

20 50 6.0 7.2 67.3 81.0 8.9 30.7 0.4 57.4 32.8 45.7 16.9 17.4 3.1 9.9 0.5 58.6

20 100 5.7 6.0 37.9 60.6 14.0 34.4 0.7 30.7 18.6 24.3 14.7 14.7 6.7 11.7 1.6 34.6

0.3 10 50 1.4 1.3 1.3 5.2 0.1 0.3 0.7 7.1 0.6 1.3 0.0 0.0 0.0 0.6 1.5 9.8

10 100 1.3 1.8 1.2 3.2 0.0 0.6 0.2 6.4 0.3 0.7 0.0 0.0 0.1 0.8 1.5 13.4

20 50 0.6 1.6 1.0 6.8 0.0 0.0 0.0 7.9 0.2 0.6 0.0 0.0 0.0 0.3 0.3 8.2

20 100 2.0 2.6 0.3 2.1 0.0 0.1 0.0 5.6 0.1 0.2 0.0 0.0 0.0 0.5 0.2 8.4

−0.3 10 50 14.1 12.8 97.8 99.7 78.9 97.4 0.6 99.3 91.6 95.9 91.4 91.5 49.7 68.2 1.8 98.9

10 100 8.3 8.3 89.9 98.7 79.1 98.0 1.5 97.6 91.3 94.2 93.2 93.2 52.5 66.9 3.9 97.2

20 50 23.5 20.5 99.9 100.0 96.6 100.0 0.4 100.0 97.9 99.7 99.4 99.4 72.5 88.6 0.6 99.9

20 100 11.8 10.1 99.1 100.0 94.4 100.0 0.6 100.0 98.9 99.7 99.3 99.3 69.0 84.8 1.6 99.7

Notes: φ refers to the autoregressive parameter and measures the serial correlation in the regression errors. The intervals for the Pedroni (1999, 2004) tests in the seven rightmost

panels have been generated by allowing the lag lengths and bandwidths to vary between one and 10. A tilde indicates that the test is of group mean type, while no tilde indicates

that the test is of panel type. All tests are semiparametric except for those that are star superscripted, which are parametric. The Westerlund (2005) Vg and Vp tests do not require

any choice of lag length or bandwidth, and the results are therefore reported by a single value.
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Table 2: Summary of the empirical studies that use the tests of Pedroni (1999, 2004)

Study Sample Objective and model specification Findings

Bahmani-Oskooee, Annual data for A bivariate model for the relation between black market and All models were found to be cointegrated.

Miteza and 49 countries, official exchange rates was considered. The deterministic

Nasir (2002) 1973 to 1990. component includes a constant or a constant and trend.

Camarero and Annual data for Five models were employed to analyze the determinants of All five models are found to be cointegrated,

Tamarit (2002) 10 European the bilateral real exchange rate between Spanish peseta but the evidence was strongest for the one

countries, and nine European trading partners. All models were fitted with the real interest rate differential and

1973 to 1992. with a constant only. productivity as determinants.

Christopoulos, Annual data for A bivariate model for the relation between government size The null of no cointegration can only be

Loizides and 10 European and the unemployment rate. Five specifications were tested rejected when the unemployment rate was

Tsionas (2005) countries, to identify the direction of the causality between the considered as the dependent variable.

1961 to 1999. variables. All specifications included a constant.

Edmond (2001) Annual data for Uses a trivariate model to test whether investments in R&D The null hypothesis of no cointegration

22 industrial at home and abroad has spillover effects on total factor can be rejected in both specifications.

countries, productivity. Two different specifications with a constant

1971 to 1990. were considered.

Harb (2004) Annual data for Money demand is modelled as a function of both real GDP Cointegration is found when the trend

six Gulf nations, and real private consumption. The model is fitted with a is not included.

1979 to 2000. constant or with a constant and trend.

Jenkins and Monthly data for Use 25 subindices to test the weak version of the purchasing The evidence of cointegration is weaker

Snaith (2005) 11 countries, power parity hypothesis. The regression is fitted with a for nontraded goods.

1981M1 to 1995M6. constant only.

Lee (2005) Annual data for Test the direction of causality between energy consumption Cointegration is found in both

18 developing and GDP. The deterministic component includes a constant specifications. The causality seem to be

countries, or a constant and common time effects. running from energy to GDP.

1975 to 2001.

Pedroni (2004) Monthly data for Reevaluates the weak version of the purchasing power parity The null hypothesis of no cointegration

20 countries, hypothesis. The regression is fitted with a constant or a can be rejected in both specifications.

1973M6 to 1994M12. constant and common time effects.

Sarantis and Annual data for Examine the determinants of aggregate private savings using Strong support in favor of cointegration

Stewart (2001) 20 OECD a modified version of the life-cycle model of Modigliani. is found.

countries, The regression id fitted with a constant only.

1955 to 1994.
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Table 3: Panel cointegration test results for different lag lengths and bandwidths.

Z̃t Z̃ρ Z̃∗
t Zt Zρ Zv Z∗

t

Determ Model Vg Vp min max min max min max min max min max min max min max

Bahmani-Oskooee, Miteza and Nasir (2002)

Const 0.11 0.22 0.00 0.00 0.00 0.03 0.00 0.83 0.00 0.00 0.00 0.00 0.00 0.19 0.00 0.00

Trend 0.02 0.41 0.00 0.00 0.01 0.19 0.00 1.00 0.00 0.00 0.00 0.00 0.00 0.18 0.00 0.00

Camarero and Tamarit (2002)

Const 1 0.00 0.00 0.00 0.00 0.00 0.00 0.00 1.00 0.00 0.00 0.00 0.00 0.00 0.97 0.00 1.00

2 0.00 0.01 0.00 0.00 0.00 0.00 0.00 1.00 0.00 0.00 0.00 0.00 0.35 1.00 0.00 1.00

3 0.00 0.01 0.00 0.00 0.00 0.00 0.00 1.00 0.00 0.00 0.00 0.00 1.00 1.00 0.00 1.00

4 0.00 0.00 0.00 0.00 0.00 0.00 0.00 1.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.99

5 0.00 0.00 0.00 0.00 0.00 0.00 0.00 1.00 0.00 0.00 0.00 0.00 0.00 1.00 0.00 1.00

Christopoulos, Loizides and Tsionas (2005)

Const u 0.03 0.07 0.00 0.00 0.00 0.00 0.00 1.00 0.00 0.00 0.00 0.00 0.25 1.00 0.00 0.98

g 0.00 0.03 0.00 0.00 0.00 0.00 0.00 1.00 0.00 0.00 0.00 0.00 0.02 1.00 0.00 0.97

y 0.00 0.02 0.00 0.00 0.00 0.00 0.00 1.00 0.00 0.00 0.00 0.00 0.00 1.00 0.00 0.99

ṗ 1.00 0.66 0.00 0.00 0.00 0.06 0.00 1.00 0.00 0.79 0.00 0.00 0.03 0.52 0.00 0.94

pop 0.00 0.01 0.00 0.00 0.00 0.00 0.00 1.00 0.00 0.00 0.00 0.00 0.00 1.00 0.00 1.00

Edmond (2001)

Const (i) 0.00 0.01 0.09 0.81 0.83 1.00 0.00 0.96 0.15 0.71 0.41 0.45 0.14 1.00 0.00 0.92

(iii) 0.00 0.01 0.06 0.72 0.78 1.00 0.00 0.94 0.17 0.84 0.40 0.45 0.09 1.00 0.00 0.88

Harb (2004)

Const GDP 0.11 0.17 0.00 0.00 0.51 0.93 0.00 1.00 0.06 0.48 0.17 0.19 0.77 0.99 0.00 0.97

Trend 0.77 0.34 0.00 0.03 0.83 0.99 0.00 1.00 0.23 0.76 0.52 0.55 0.96 1.00 0.00 1.00

Const Cons 0.11 0.19 0.00 0.01 0.52 0.97 0.00 0.99 0.20 0.64 0.21 0.23 0.78 0.99 0.00 0.99

Trend 0.80 0.57 0.08 0.15 0.90 1.00 0.00 1.00 0.64 0.97 0.65 0.69 0.99 1.00 0.00 1.00

Continued overleaf
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Table 3: Continued.

Z̃t Z̃ρ Z̃∗
t Zt Zρ Zv Z∗

t

Determ Model Vg Vp min max min max min max min max min max min max min max

Jenkins and Snaith (2005)

Const 1000 0.12 0.06 0.00 0.00 0.00 0.00 0.00 0.60 0.00 0.00 0.00 0.00 0.60 0.87 0.00 0.27

1110 0.24 0.11 0.00 0.00 0.00 0.00 0.00 0.74 0.00 0.00 0.00 0.00 0.67 0.90 0.00 0.40

1111 0.07 0.04 0.00 0.00 0.00 0.00 0.00 0.48 0.00 0.00 0.00 0.00 0.55 0.85 0.00 0.27

1112 0.27 0.12 0.00 0.00 0.00 0.00 0.00 0.74 0.00 0.00 0.00 0.00 0.68 0.90 0.00 0.38

1114 0.28 0.13 0.00 0.00 0.00 0.00 0.00 0.86 0.00 0.00 0.00 0.00 0.69 0.90 0.00 0.46

1116 0.27 0.13 0.00 0.00 0.00 0.00 0.00 0.77 0.00 0.00 0.00 0.00 0.69 0.90 0.00 0.56

1150 0.19 0.09 0.00 0.00 0.00 0.00 0.00 0.74 0.00 0.00 0.00 0.00 0.65 0.89 0.00 0.46

1160 0.13 0.06 0.00 0.00 0.00 0.00 0.00 0.70 0.00 0.00 0.00 0.00 0.61 0.87 0.00 0.32

1200 0.18 0.09 0.00 0.00 0.00 0.00 0.00 0.83 0.00 0.00 0.00 0.00 0.65 0.89 0.00 0.44

1210 0.19 0.10 0.00 0.00 0.00 0.00 0.00 0.85 0.00 0.00 0.00 0.00 0.65 0.89 0.00 0.48

1220 0.21 0.11 0.00 0.00 0.00 0.00 0.00 0.85 0.00 0.00 0.00 0.00 0.66 0.90 0.00 0.44

1300 0.22 0.10 0.00 0.00 0.00 0.00 0.00 0.87 0.00 0.00 0.00 0.00 0.67 0.89 0.00 0.54

1330 0.98 0.82 0.29 0.69 0.19 0.78 0.14 1.00 0.00 0.00 0.00 0.00 0.88 0.96 0.00 0.76

1600 0.33 0.15 0.00 0.00 0.00 0.00 0.00 0.80 0.00 0.00 0.00 0.00 0.71 0.91 0.00 0.44

1630 0.07 0.03 0.00 0.00 0.00 0.00 0.00 0.60 0.00 0.00 0.00 0.00 0.52 0.83 0.00 0.29

1640 0.67 0.37 0.00 0.00 0.00 0.00 0.00 0.95 0.00 0.00 0.00 0.00 0.79 0.94 0.00 0.69

1700 0.14 0.07 0.00 0.00 0.00 0.00 0.00 0.72 0.00 0.00 0.00 0.00 0.61 0.87 0.00 0.38

1730 0.04 0.03 0.00 0.00 0.00 0.00 0.00 0.50 0.00 0.00 0.00 0.00 0.51 0.83 0.00 0.24

1800 0.03 0.02 0.00 0.00 0.00 0.00 0.00 0.41 0.00 0.00 0.00 0.00 0.45 0.80 0.00 0.15

Lee (2005)

Const 0.04 0.02 0.00 0.00 0.00 0.00 0.00 1.00 0.00 0.00 0.00 0.00 0.00 0.96 0.00 1.00

Const, CTE 0.00 0.00 0.00 0.00 0.00 0.00 0.00 1.00 0.00 0.00 0.00 0.00 0.00 0.77 0.00 0.97

Pedroni (2004)

Const 0.00 0.00 0.71 0.87 0.83 0.93 0.54 0.98 0.27 0.99 0.03 0.03 0.00 0.01 0.00 0.74

Const, CTE 0.00 0.00 0.00 0.02 0.00 0.00 0.00 0.57 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.50

Sarantis and Stewart (2001)

Const 0.02 0.09 0.23 0.96 0.97 1.00 0.29 1.00 0.64 1.00 0.01 0.01 0.99 1.00 0.16 1.00

Notes: The values reported in the table are the asymptotic normal p-values. The intervals have been generated by allowing the lag lengths and bandwidths to vary between

one and 10. The abbreviation CTE refers to the common time effects specification. See Table 2 for a summary of the various studies. See Table 1 for an explanation of the

various tests. For further information regarding the various models, we make reference to the original studies to which they belong.
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