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Hang Qian

Abstract

This paper discusses the finite sample bias of analogue bounds under the

monotone instrumental variables assumption. By analyzing the bias func-

tion, we first propose a conservative estimator which is biased downwards

(upwards) when the analogue estimator is biased upwards (downwards). Us-

ing the bias function, we then show the mechanism of the parametric boot-

strap correction procedure, which can reduce but not eliminate the bias,

and there is also a possibility of overcorrection.This motivates us to propose

a simultaneous multi-level bootstrap procedure so as to further correct the

remaining bias. The procedure is justified under the assumption that the

bias function can be well approximated by a polynomial. Our multi-level

bootstrap algorithm is feasible and does not suffer from the curse of dimen-

sionality. Monte Carlo evidence supports the usefulness of this approach and

we apply it to the disability misreporting problem studied by Kreider and

Pepper (2007).
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1. Introduction

Proposed by Manski and Pepper (2000), Monotone instrumental variables

(MIV) is a powerful tool for treatment response identification. The MIV

assumption weakens the traditional instrumental variable assumption by a

weak inequality of mean response across sub-populations. As a result, the

MIV sharp lower bound invariably involves a supremum operator and the

upper bound contains an infimum operator.

However, when sampling variation is taken into account, the bounds

themselves assume randomness since the population moments or probabili-

ties are replaced by their analogues. Though the analogue estimates are still

consistent, finite sample bias is a serious concern. As is noted by Manski and

Pepper (2009, p.211), “the sup and inf operations . . . significantly complicate

the bounds under other MIV assumptions, rendering it difficult to analyze

the sampling behavior of analogue estimates.”1 The major statistical prob-

lem is that the analogue estimate of the lower bound is biased upwards and

upper bound biased downwards, resulting in the estimates narrower than the

true bounds.

To address this concern, two major lines of research are present in the

literature to our best knowledge. One is direct adjustment. Chernozhukov

et al. (2009) develop an inference method on intersection bounds with a con-

tinuum of inequalities. Their estimator maximizes or minimizes the precision-

1The bounds under the monontone treatment selection assumption have simple forms,

but under other MIV assumptions the supremum and infimum operators will appear in

the bounds.
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corrected curve defined by the analogue estimates plus a critical value mul-

tiplied by pointwise standard errors. Another solution is bootstrap adust-

ment. Kreider and Pepper (2007) propose a heuristic bootstrap bias cor-

rection and applied this approach to their employment gap identification

problems. Though Monte Carlo experiments in Manski and Pepper (2009)

provide evidence on the effectiveness of bias reduction, theoretical founda-

tion has not been established to justify the bootstrap correction. In addition,

the simulation results of Manski and Pepper (2009) show that in some cases

moderate biases remain after the correction.

The goal of this paper is to justify the bootstrap bias correction. Tradi-

tionally, the improvement of the corrected estimator is in the sense of asymp-

totic refinement. That is, we expect the bootstrap corrected estimator has

a bias going to zero at a faster rate than the uncorrected estimator. How-

ever, there are difficulties applying asymptotic expansion techniques to our

problem, since the bounds under the MIV assumption are not differentiable.

In this paper, we take an innovative, and perhaps more direct, approach

to study bootstrap bias reduction. We rely on asymptotic normality of the

estimators to derive our results. Given normally distributed variates, we

bound the magnitude of the upward bias induced by the max (·) operator

and show how the one-level bootstrap reduces this upward bias but cannot

eliminate it. In some circumstances, one-level bootstrap may over-correct

the bias. Then under an assumption that the bias function can be approxi-

mated by a polynomial, we show the mechanism of the multi-level bootstrap

bias correction, which successively lower the order of the polynomial towards

unbiasness. Lastly, to make multi-level bootstrap computationally feasible,
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we propose a simultaneous bootstrap procedure which conducts many levels

of bootstraps at affordable computational costs.

For convenience, we discretize every random variable so that we can use a

categorical distribution of several dimensions to characterize their joint dis-

tribution, which makes easier the statistical properties of the analogue MIV

bounds. For this problem discretization is not unreasonable. First, the treat-

ment variable is discrete, usually binary, in most applications. Second, the

MIV identification requires the response variable is bounded below and above.

Otherwise the MIV has no identification power unless it is used together with

the monotone treatment selection. Finite-valued discrete distribution by na-

ture has a lower and upper bound. Third, to compute the analogue estimates

for each subpopulation classified by MIV, we usually group the values of the

MIV so as to ensure sufficient sample size. Therefore, we model treatments,

responses and MIVs as finite-valued discrete random variables.

2. The mathematical structure of MIV bounds

Manski and Pepper (2000, 2009) use the MIV to help bound counter-

factual outcomes, while Kreider and Pepper (2007) consider MIV identifi-

cation in a partial misreporting problem. Though the derived MIV bounds

look different, they share the same mathematical structure, so the same bias

correction procedure can be applied to both problems. In this section, we

summarize their common structure.

The counterfactual outcomes identification problem can be raised as fol-

lows. LetD ∈ {d1, ..., dnD
} be a treatment variable. The nD varieties of treat-

ments generate nD types of latent responses, denoted as Yt ∈ {y1, ..., ynY
},
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t = 1, ..., nD. Since a person cannot receive all these treatments simultane-

ously, the only observable outcome is Y =
∑nD

t=1 Yt · I (D = dt), where I (·) is
an indicator function. Let Z ∈ {z1, ...znZ

} be a MIV such that for any two

realizations zi ≤ zj,

E (Yt |Z = zi ) ≤ E (Yt |Z = zj ) , ∀t = 1, ..., nD.

Without loss of generality, discrete values of Yt and Z are sorted in an

increasing order: y1 ≤ y2... ≤ ynY
, z1 ≤ z2... ≤ znZ

.

Consider E (Yt |Z = zj ) for some t = 1, ..., nD, j = 1, ..., nZ . It is bounded

below by sup1≤i≤j E (Yt |Z = zi ) and above by infj≤i≤nZ
E (Yt |Z = zi ). Since

the MIV is discretized, we can replace sup (·) by max (·), and inf (·) by

min (·). Furthermore, E (Yt |Z = zi ) can be dissembled into an observable

part E (Y |Z = zi, D = dt ) and an unobservable part E (Yt |Z = zi, D 6= dt ).

The latter need to be replaced by the worse-case lower bound y1 and upper

bound ynY
, which yield the sharp bounds under the MIV assumption alone:

max
1≤i≤j

E (Y |Z = zi, D = dt ) · P (D = dt |Z = zi ) + y1 · P (D 6= dt |Z = zi )

(1)

≤ E (Yt |Z = zj ) ≤

min
j≤i≤nZ

E (Y |Z = zi, D = dt ) · P (D = dt |Z = zi ) + ynY
· P (D 6= dt |Z = zi ) .

To make notations compact, let us define

pikm ≡ P (Z = zi, Y = yk, D = dm),

i = 1, ..., nZ , k = 1, ..., nY , m = 1, ..., nD,

pi·· ≡
∑nY

k=1

∑nD

m=1 pikm,

p ≡ vec
(
{pikm}nZ ,nY ,nD

i=1,k=1,m=1

)
,
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pi ≡ vec
(
{pikm}nY ,nD

k=1,m=1

)
.

Here vec (·) is an operator that vectorizes a multi-dimension array into a

long column vector. For instance, vec
(
{pikm}nZ ,nY ,nD

i=1,k=1,m=1

)
turns a nZ ×nY ×

nD array to a nZnY nD × 1 vector. Also assume pi·· > 0, ∀i = 1, ..., nZ . Then

we can rewrite Eq. (1) as

max
1≤i≤j

fL (pi) ≤ E (Yt |Z = zj ) ≤ min
j≤i≤nZ

fU (pi) , (2)

where

fL (pi) =

nY∑

k=1

nD∑

m=1

pikm

pi··
[yk · I (m = t) + y1 · I (m 6= t)] ,

fU (pi) =

nY∑

k=1

nD∑

m=1

pikm

pi··
[yk · I (m = t) + y1 · I (m 6= t)] .

The misreporting identification problem in Kreider and Pepper (2007)

uses respondents’ self-reported health information to bound the effects of

(true) disability on employment. Let L ∈ {0, 1} be observed employment

status, X ∈ {0, 1} and W ∈ {0, 1} be the reported and true disability status

respectively, and Z ∈ {z1, ...znZ
} , z1 ≤ z2... ≤ znZ

be a MIV (namely negative

age in their paper) such that

P (L = 1 |W,Z = zi ) ≤ P (L = 1 |W,Z = zj ) , if i ≤ j.

Respondents are classified into two groups, namely the verified (Y = 1)

and the unverified (Y = 0), on the basis of researchers’ prior information on

their accurate reporting rate. Taking this accuracy rate as given, Kreider and

Pepper (2007) derive the sharp bounds of P (L = 1 |W = 1). For simplicity,

we consider an extreme case that the verified group has a 100% truth-telling
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rate, while the unverified has an accuracy rate ≥ 0% (i.e., no information).

For each j = 1, ..., nZ , we have

max
1≤i≤j

P (L = 1, X = 1, Y = 1 |Z = zi )

P (X = 1, Y = 1 |Z = zi ) + P (L = 0, Y = 0 |Z = zi )
(3)

≤ P (L = 1 |W = 1, Z = zj ) ≤

min
j≤i≤nZ

P (L = 1, X = 1, Y = 1 |Z = zi ) + P (L = 1, Y = 0 |Z = zi )

P (X = 1, Y = 1 |Z = zi ) + P (L = 1, Y = 0 |Z = zi )

Readers are referred to Proposition 2, corollary 1 in Kreider and Pepper

(2007, p.436) for the derivation. Note that when the accuracy rate is not as

extreme as 100% and 0%, the bounds will be more cumbersome. However,

what remain unchanged are all the probabilities are conditional on Z =

zi. This feature makes the mathematical structure of the MIV bounds (see

below) unchanged.

Define a set of symbols similar to what we defined in the previous problem.

pijkl ≡ P (Z = zi, L = j,X = k, Y = l), i = 1, ..., nZ , j, k, l = 0, 1,

pi··· ≡
∑1

j=0

∑1
k=0

∑1
l=0 pijkl,

p ≡ vec
(
{pijkl}nZ ,1,1,1

i=1,j=0,k=0,k=0

)
,

pi ≡ vec
(
{pijkl}1,1,1j=0,k=0,k=0

)
.

Then Eq (3) can be written as

max
1≤i≤j

fL (pi) ≤ P (L = 1 |W = 1, Z = zj ) ≤ min
j≤i≤nZ

fU (pi) , (4)

where

fL (pi) =
pi111

pi111 + pi011 + pi010 + pi000

fU (pi) =
pi111 + pi110 + pi100

pi111 + pi011 + pi110 + pi100
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Comparing Eq. (2) with Eq. (4), we see the MIV bounds of the two

problems have some features in common:

First, the theoretical bounds are determined by p, the parameter vector

summarizing the joint probability of observable variates. In other words, the

observable variates follows a categorical distribution of multiple dimensions,

which is equivalent to a long single-dimension categorical distribution with

parameters p.

Second, MIV bounds take the form max1≤i≤j fL (pi) and minj≤i≤nZ
fU (pi),

where p1,p2, ...,pnZ
form a partition of p according to the possible values of

the MIV.

Third, both fL (pi) and fU (pi) are homogeneous functions of degree zero.

Eq. (1) and Eq. (3) involves probabilities conditional on Z = zi, which is the

ratio of the joint and the marginal probabilities. Since a constant cancels in

the nominator and denominator, fL (pi) and fU (pi) in Eq. (2) and Eq. (4)

always satisfy degree-zero homogeneity.

3. Sampling Variation

In applications, the probability vector p need to be estimated from the

data. Let {vs}ns=1 be i.i.d. draws from the categorical distribution with pa-

rameters p. Conceptually, this means there are n persons taking the survey

which asks for each respondent’s realized choice of (Z, Y,D) or (Z,L,X,W ).

All possible choices of (Z, Y,D) define nZnY nD categories and that of (Z,L,X,W )

define 8nZ categories. So the length of the vector vs is nZnY nD and 8nZ

respectively. The person s choose a category, so the component in vs corre-

sponding to that realized category will be coded as 1 with other elements in
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vs being 0.

By construction, the sample analogue of p can be expressed as

p̂ =
1

n

n∑

s=1

vs.

Proposition 1. p̂ is a consistent estimate of p, and the asymptotic distri-

bution is
√
n (p̂− p)

d−→ N [0, diag (p)− pp′] ,

where diag (p) refers to a diagonal matrix with the main diagonal being the

vector p.

Proofs of propositions in this paper are provided in the appendix.

Suppose the length of p is r, then diag (p)−pp′ is a positive semidefinite

matrix of reduced rank r−1. The linear combination ι′p̂, where ι is a vector

of ones, have the mean of one and variance of zero. Therefore, the analogue

probability estimates always sum up to one. In addition, the elements of p̂

are negatively correlated since they are subject to the aggregation constraint.

Proposition 1 suggests that the large-sample approximating distribution

of p̂ is N
[
p, 1

n
diag (p)− 1

n
pp′
]
. Of course, it is understood that p̂ is a

bounded random vector since each component must fall in the unit interval.

Partition p̂ into p̂1, ..., p̂nZ
in the same way we partition p into p1, ...,pnZ

.

Now we consider the asymptotic distribution of fL (p̂i), fU (p̂i), i = 1, ..., nZ .

Proposition 2. Let fL (·) be a real differentiable function satisfying homo-

geneity of degree zero, that is, fL (cx) = fL (x), ∀c > 0. Then fL (p̂1) , ..., fL (p̂nZ
)

are asymptotically independent and for each i = 1, ..., nZ,

√
n [fL (p̂i)− fL (pi)]

d−→ N [0,Gi · diag (pi) ·G′
i] ,
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where Gi is a row vector such that

Gi =
∂fL (p̂i)

∂p̂′
i

|p̂i=pi
.

The asymptotic distribution of fU (p̂i) can be derived similarly with the

subscript L replaced by U in Proposition 2.

The zero-degree homogeneity of fL (·) plays an important role in Proposi-

tion 2 since Euler’s Theorem implies that Gipi = 0, i = 1, ..., nZ , resulting in

both zero covariances and simplified variances of the normal variates. The-

oretically, Proposition 2 provides a unified asymptotic distribution of fL (·)
for any identification problem with the MIV, as long as fL (·) can be written

as a differentiable function of the population probabilities conditional on the

MIV. Proposition 2 will be also used to justify the assumptions of the boot-

strap bias correction in the next section. Practically, Proposition 2 can be

used to compute the asymptotically variance of fL (p̂i) if we are willing to

calculate the cumbersome gradients. However, for a specific problem, there

might be some better way to compute the finite-sample variance. For in-

stance, once we recognize that the fL (pi) in Eq. (2) can be represented as a

conditional expectation, the finite-sample variance of fL (p̂i) is readily given

in the next proposition.

Proposition 3. fL (pi) in Eq. (2) takes the following form:

fL (pi) = E (Q |Z = zi ) ,

where

Q = Y · I (D = dt) + y1 · I (D 6= dt) .
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Conditional on the positive analogue pi··, the finite-sample variance of

fL (p̂i) is given by

V ar [fL (p̂i)] =

[
n∑

r=1

1

r

(
n

r

)
(pi··)

r (1− pi··)
n−r

1− (1− pi··)
n

]
· V ar (Q |Z = zi ) ,

where

V ar (Q |Z = zi ) = E
(
Q2 |Z = zi

)
− [E (Q |Z = zi )]

2

=

nY∑

k=1

nD∑

m=1

pikm

pi··
q2km −

[
nY∑

k=1

nD∑

m=1

pikm

pi··
qkm

]2
,

and

qkm = yk · I (dm = dt) + y1 · I (dm 6= dt) .

4. Estimating the MIV bounds

Proposition 2 indicates that the large-sample approximating distribution

of fL (p̂i) is N
[
fL (pi) ,

1
n
Gi · diag (pi) ·G′

i

]
. To estimate the MIV bounds

as in Eq. (2) and Eq. (4), we need to find an estimator for max1≤i≤j fL (pi).

An naive choice is max1≤i≤j fL (p̂i). Though fL (p̂i) is an asymptotically un-

biased estimator for fL (pi), max1≤i≤j fL (p̂i) is not an unbiased estimator

for max1≤i≤j fL (pi) in the finite sample. It is biased upwards simply be-

cause max (·) is convex and Jensen’s inequality implies E [max1≤i≤j fL (p̂i)] >

max1≤i≤j fL (pi). Similarly, minj≤i≤nZ
fU (p̂i) has a downward bias if it is

used to estimate minj≤i≤nZ
fU (pi). This is unfavorable from the perspective

of decision making in that the estimated bounds are narrower than the true

bounds. Kreider and Pepper (2007) propose a heuristic bootstrap bias cor-

rection. The Monte Carlo evidence in Manski and Pepper (2009) indicates
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the bias can be considerably reduced, but not eliminated after the correc-

tion. In this section, we will analyze the biases of a series of estimators and

provide a justification for the bootstrap correction. We will also suggest a

feasible approach to conduct several levels of bootstraps simultaneously. We

will focus on the bias correction of max1≤i≤j fL (p̂i), and the same principle

can be applied to the case of minj≤i≤nZ
fU (p̂i) as well.

To make our notations compact, define

µi ≡ fL (pi), σ
2
i ≡ 1

n
Gi · diag (pi) ·G′

i, Xi ≡ fL (p̂i), i = 1, ..., j.

µ ≡ (µ1, ..., µj)
′, σ2 ≡ diag

(
σ2
1, ..., σ

2
j

)
, X ≡ (X1, ..., Xj)

′.

Let x be a realization of X. That is, the only one realized x is what we

obtained from the data.

Essentially our task is to propose a good estimator for max (µ) by ob-

serving x. To that end, we need to make some assumptions.

Assumption 1: X ∼ N (µ,σ2).

Assumption 2: σ2 is known.

The rationale for the first assumption is Proposition 2, which suggests

X1, ..., Xj are asymptotically independent normal variates. The second as-

sumption is arguable. In practice, the variances of those variates are un-

known, and we at best can provide a consistent estimator for the variances,

say σ̂
2, using Proposition 2 or Proposition 3. It is true that each σ2

i is posi-

tively related to the magnitude of the upward bias (which is most apparent

if we assume the convex function is differentiable and examine the Taylor

expansion). However, we do not know whether E (σ̂2
i ) is larger or smaller

than σ2
i in the finite sample, so at best we can argue that the upward bias

derived with σ̂2
i will be close to the true upward bias determined by σ2

i . In
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this sense, we view Assumption 2 as a working assumption.

4.1. Bias function and a conservative estimator

A naive estimator is the maximum of the sample.

T1 (x) = max (x) .

By Jensen’s inequality, E [T1 (X)] > max (µ). So the estimator is biased

upwards. Define the first-level bias function B1 : R
j → R such that

B1 (µ) = E [T1 (X)]−max (µ) .

B1 (·) is a function of µ since X ∼ N (µ,σ2). Of course, it is also a

function of σ2, which is assumed to be known and therefore suppressed.

The first-level bias function has a useful property stated below.

Proposition 4 (Bounds of the bias function). B1 (·) is bounded by 0 <

B1 (µ) ≤ M , ∀ µ∈ R
j, where

M = E [max (X0)] ,

X0 ∼ N
(
0,σ2

)
.

Note that the upper bound M is computable, at least by simulation. For

the special case of j = 2, we have analytic results. See Clark (1961), Cain

(1994) for derivations.

B1 (µ) = ωµ1 + (1− ω)µ2 + σ0φ

(
µ1 − µ2

σ0

)
−max (µ1, µ2) ,

M = σ0φ (0) ,
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where φ (·), Φ (·) is the standard normal p.d.f. and c.d.f. respectively,

and

ω = Φ

(
µ1 − µ2

σ0

)
,

σ0 =
√
σ2
1 + σ2

2.

For j = 2, we may plot a 3-D graph of B1 (·), with µ1, µ2 on the x, y axis

and B1 on the z axis (see Figure 1). It is a ridge-shaped function. Along the

45◦ line on the x, y plane, B1 (·) attains the same maximum value σ0φ (0).

Off the 45◦ line, B1 (·) gradually decreases towards zero.

Proposition 4 shows that the bias of the naive estimator max (X) is

bounded above, so we can propose a conservative estimator for max (µ).

Tc (x) = max (x)−M .

By construction, Tc is biased downwards. We call it a conservative esti-

mator because we can use the same principle to propose an upward biased

estimator for minj≤i≤nZ
fU (p̂i), and then we will obtain bounds wider than

the true bounds. For decision making, perhaps we would rather have too

wide bounds than too narrow bounds. Also note that if we allow σ2→ 0,

M will also decrease to zero, so that Tc will converge to max (µ). There-

fore, if Tc is applied to the MIV bounds, it is still a consistent estimator.

Furthermore, since T1 is biased upwards and Tc is biased downwards, they

themselves bound the unbiased estimator of the MIV bounds.
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4.2. Bootstrap bias correction

Clearly, Tc over-corrects the bias. Is it possible to find an estimator

“being just right”? Kreider and Pepper (2007) proposed a heuristically mo-

tivated bootstrap bias corrected estimator. This subsection aims to provide

a rationale for this correction.

The idea of bootstrap bias correction is to use the bias function to correct

the naive estimator. Define

T ∗
2 (x) = T1 (x)− B1 (µ) ,

T2 (x) = T1 (x)− B1 (x) .

If T ∗
2 were an estimator, it would be unbiased by construction. That

is, E [T ∗
2 (X)] = max (µ). However, since T ∗

2 contains the unknown µ, it

is not computable. The bootstrap treats the sample as if it represents the

bootstrap population, evaluating the bias as E
[
T1

(
X̃
)]

− max (x), where

X̃ ∼ N (x,σ2). Analytically, this is equivalent to replacing B1 (µ) with

B1 (x), so that T2 is the bootstrap bias corrected estimator. Unfortunately,

T2 is not unbiased unless we have

E [B1 (X)] = B1 (µ) .

To further analyze the bias, define the second-level bias functionB2 : R
j →

R such that

B2 (µ) = E [T2 (X)]−max (µ) .

B2 (·) has the following property:

Proposition 5. B2 (µ) < B1 (µ), ∀µ∈ R
j.
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Proposition 5 justifies the usage of the bootstrap bias correction since the

upward bias of T1 will be reduced after the bootstrap correction. However,

in general it cannot eliminate the bias. It is helpful to consider the case

when µ1 = ... = µj. As suggested in the proof of Proposition 4, B1 (µ)

has already attained its maximum, while E [B1 (X)] is the weighted average

of B1 (·) evaluated at every realization of X with the weight given by the

normal p.d.f. φ (x;µ,σ2). So we have B2 (µ) = B1 (µ) − E [B1 (X)] > 0.

In that case, positive bias still exists after the bootstrap. Furthermore, it is

possible that the bootstrap over-corrects the upward bias since B1 (µ) might

be smaller than E [B1 (X)] for some µ. For illustration, Figure 2 plots the

two levels of bias functions when j = 2. We set σ2
1 = 1, σ2

2 = 1. Since only

the difference between µ1 and µ2 matters, we normalize µ1 = 0 and plot B1,

B2 against different values of µ2. As we can see, i) when µ2 goes to infinity

or minus infinity, both B1and B2 approach zero; ii) the largest bias occurs

when µ2 = 0; iii) the B2 curve always lies below the B1 curve; iv) though B1

is always positive, there is a region that B2 is slightly negative, which implies

there is a possibility that the one-level bootstrap may over-correct the bias.

4.3. Multi-level bootstrap correction

Since one level of bootstrap estimator T2 does not eliminate the bias, a

natural extension is using its bias B2 to further correct T2. Define

T ∗
3 (x) = T2 (x)− B2 (µ) ,

T3 (x) = T2 (x)− B2 (x) .

Again, If T ∗
3 were an estimator, it would be unbiased by construction.

However, our inability to evaluate B2 (·) at the right point, namely µ, forces
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us to compute B2 (x) instead. In essence, we treat the sample x as the

bootstrap population and evaluate B2 (x) = B1 (x) − E
[
B1

(
X̃
)]

, where

X̃ ∼ N (x,σ2). Since evaluating B1 (·) is equivalent to one level of boot-

strap, evaluating B2 (·) can be viewed as doubling the bootstrap. Clearly,

the estimator T3 is not unbiased unless we have

E [B2 (X)] = B2 (µ) .

The effect of bias reduction depends on the functional form of the bias

function as well as the discrepancy between x and µ. The latter is unknown,

and we cannot expect the realization x happens to be µ in the finite sample.

However, in some sense the bias function is under control. Note that if B1 (·)

were a linear function, T2 would be unbiased regardless of the unknown µ.

Similarly, if B2 (·) were a linear function, T3 would be unbiased. We double

the bootstrap because we hope B2 (·) ensembles more linearity. This raises

two questions: Is B2 (·) flatter than B1 (·)? If we proceed to higher level of

the bootstrap, will we eventually obtain an unbiased estimator?

Define the higher-level bias function and bias corrected estimator as

Bi (µ) = E [Ti (X)]−max (µ)

= Bi−1 (µ)− E [Bi−1 (X)] ,

Ti+1 (x) = Ti (x)− Bi (x) ,

for i = 3, 4, 5, ...

If we are willing to make an additional assumption, we have an answer

to the above two questions.

Assumption 3: B1 (µ) can be well approximated by a polynomial.
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There is a need to justify this assumption. Note that B1 (µ) is a con-

tinuous, but not differentiable function in that max (·) is not differentiable.
The Taylor theorem of polynomial approximation does not apply. However,

in Eq. (2) and Eq. (4), fL (pi) is bounded by [y1, ynY
] and [0, 1] respectively.

Therefore, µ is bounded. By Stone-Weierstrass theorem, the bias function

B1 (µ) can be uniformly approximated by a polynomial. A limitation of our

study is that we are unable to quantify the precision of the approximation.

We will designate a polynomial of large order and assume the approximation

error is negligible.

Proposition 6. Suppose B1 (µ) is a polynomial of order d, where d ≥ 2,

then B2 (µ) is a polynomial of order d−2. Each level of bootstrap will reduce

the polynomial order by 2 successively. Bias can be eliminated after
[
d
2

]
levels

of bootstraps, where [·] refers to the operator of taking integers.

Let us illustrate this property with a numerical example. Consider two

independent normal variates Xi ∼ N (µi, σ
2
i ), i = 1, 2. Assume B1 (µ) =

2µ5
1µ

6
2, a polynomial of order 11.

E [B1 (X)] = 2E
(
X5

1

)
E
(
X6

2

)

= 2
(
µ5
1 + 10σ2

1µ
3
1 + 15σ4

1µ1

)
·
(
µ6
2 + 15σ2

2µ
4
2 + 45σ4

2µ
2
2 + 15σ6

2

)

When B1 (µ) − E [B1 (X)], the leading term 2µ5
1µ

6
2 cancels, and there

are no terms of order 10 like µ5
1µ

5
2, µ

4
1µ

6
2. Therefore, B2 (µ) is reduced to

a polynomial of order 9. If we forward the bootstrap to higher levels, then

B3 (µ) will be a polynomial of order 7, and B4 (µ) of order 5, etc. Eventually

Bi (µ) will be of order one or zero. E [Bi (X)] = Bi (µ) is satisfied, and
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Ti+1 (x) becomes an unbiased estimator. In other words, d rounds of the

bootstraps can correct the bias for polynomial B1 (µ) of order up to 2d.

4.4. Simultaneous bootstrap

The upper level bias function Bi (·) is constructed by the expectation

of the lower level bias function E [Bi−1 (·)], which has to be evaluated with

simulation. The nested, iterative simulation suffers from the curse of di-

mensionality, and practically we are unable to proceed beyond double or

triple bootstraps. To resolve the computational difficulty, we propose a si-

multaneous bootstrap algorithm which can conduct many level of bootstrap

correction with affordable computational costs. Davidson and MacKinnon

(2002, 2007) provide a similar procedure which they refer to as “fast double

bootstrap”.

The rationale for the simultaneous bootstrap comes from the identity

Eξ

{
Eη|ξ [g (ξ, η)]

}
= Eξ,η [g (ξ, η)] ,

for arbitrary random variables ξ, η and real valued function g : R2 → R, where

the subscript in E (·) explicitly indicates random variables that expectation

operator applies to.

Suppose E (·) must be evaluated with simulation. The left hand side of

that identity prescribes a nested procedure. In the first step we draw a ξ.

Conditional on this value of ξ, we draw thousands of η, and then average

g (ξ, η). In the second step, we repeat the first step with thousands of ξ, and

then average the averaged g (ξ, η). However, the right hand side prescribes a

simultaneous procedure such that we draw (ξ, η) from their joint distribution,

and take the average of g (ξ, η).
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Given the same computational costs measured as the number of visits to

g (ξ, η), the latter procedure provides a more accurate approximation. This

is because in the simultaneous simulation procedure draws of the pair (ξ, η)

are independent, while in the nested simulation the same draw of ξ needs

to be used for multiple times, which induces positive correlation and larger

variance. To formalize this idea, we present the following proposition.

Proposition 7 (Efficiency of simultaneous simulation). Let the simulator

for Eξ,η [g (ξ, η)] be

S1 =
1

N2

N2∑

i=1

g (ξi, ηi) ,

where {ξi, ηi}N
2

i=1 are i.i.d. draws from the joint distribution of (ξ, η).

Let the simulator for Eξ

{
Eη|ξ [g (ξ, η)]

}
be

S2 =
1

N

N∑

j=1

[
1

N

N∑

k=1

g (ξj, ηj,k)

]
,

where {ξj}Nj=1 are i.i.d. draws from the marginal distribution of ξ, while

{ηj,k}Nk=1 are i.i.d. draws from the conditional distribution of η |(ξ = ξj) ,

j = 1, ..., N .

Then we have

E (S1) = E (S2) ,

V ar (S1) ≤ V ar (S2) ,

with equality of variance iff Eη|ξ [g (ξ, η)] = Eξ,η [g (ξ, η)] for all realizations

of ξ.

To illustrate the efficiency of the simultaneous simulation relative to the

nested simulation, consider a simple numerical example.
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Let (ξ, η) ∼ N (0, 0, 12, 12, 0.5), g (ξ, η) = ξ + η, N = 10.

Then V ar (S1) = V ar
[

1
100

∑100
i=1 (ξi + ηi)

]
= 3

100
,

but V ar (S2) = V ar
[

1
100

∑10
j=1

∑10
k=1 (ξj + ηj,k)

]
= 21

100
.

We see that the nested simulation has a variance seven times larger than

the simultaneous procedure, given 100 visits to g (ξ, η) in both procedures.

Even if we change the correlation of (ξ, η) from 0.5 to 0, nested simulation still

has a larger variance. In that case, we have V ar (S1) =
2

100
, and V ar (S2) =

11
100

. The inflation of variance is due to the fact that the same draw of ξj has

to be used 10 times in nested simulation.

Generally speaking, the simultaneous simulation will substantially im-

prove the quality of the simulator. The case of no improvement is rare. It

happens only when the conditional expectation is identical to the uncondi-

tional expectation for all realizations of the variable being conditioned on.

To give a example, consider (ξ, η) ∼ N (0, 0, 12, 12, 0.5) with g (ξ, η) = ξη. In

that case, V ar (S1) = V ar (S2) =
5

1000
. However, once (ξ, η) have non-zero

means, there will be improvement.

The results can be extended to multivariate and vector-valued random

variables. We have the identity

Eξ1Eξ2|ξ1 . . . Eξn|ξn−1...ξ1 g (ξ1, ..., ξn) = Eξ1,...,ξn [g (ξ1, ..., ξn)] ,

for arbitrary vector-valued random variables ξ1, ..., ξn and real valued function

g.

Again, the left hand side prescribes a multi-level nested simulation proce-

dure, while the right hand side suggests a simultaneous simulation algorithm.

The inefficiency of the nested procedure comes from the multiple usage of

the same draw of ξn−1, and of ξn−2, ..., and worst of all, of ξ1.
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Multi-level bootstrap bias correction is a direct application of the above

results.

Though B1 (·) might be evaluated by analytic formula or deterministic

quadrature, B2 (·), B3 (·), etc. are better evaluated by simulation. For ex-

ample, consider evaluating B3 (x):

B3 (x) = B2 (x)− EXB2 (X)

= [B1 (x)− EXB1 (X)]− EX

[
B1 (X)− E

X̃|XB1

(
X̃
)]

= EXEX̃|X

{
[B1 (x)− B1 (X)]−

[
B1 (X)− B1

(
X̃
)]}

= E
X,X̃

[
g
(
X,X̃

)]

whereX ∼ N (x,σ2), X̃ |(X = y) ∼ N (y, σ2). g
(
X,X̃

)
= [B1 (x)− B1 (X)]−[

B1 (X)− B1

(
X̃
)]

.

The simultaneous procedure for B3 (x) takes the following steps:

First, sample a pair (y, z) from the joint distribution of
(
X,X̃

)
. The

easiest way is the method of composition, that is, to sample y from N (x, σ2),

and then sample z from N (y,σ2).

Second, evaluate g (y, z), which is a difference of differenced B1 (·).

Third, repeat the first and second step, and average the results.

Higher order bias function Bi (·), i > 3 can be simultaneously simulated

in the same way. The first step is a hierarchical sampling of normal variates.

The second step is a multiple difference of B1 (·) evaluated at the obtained

sample.

From the perspective of computation, instead of being evaluated directly,

B1 (·) may be treated as another level (that is, the bottom level) of the

simultaneous simulation. It is less precise, but much faster. The saved com-
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putation time can be used for a larger scale simulation, which improves the

precision of all levels of bootstraps. Given the same computation costs mea-

sured in CPU time, whether the gains outweighs the loss is largely a practical

issue.

5. Monte Carlo evidence

In this section, we replicate the Monte Carlo experiment in Manski and

Pepper (2009), with multi-level bootstrap added to further reduce the bias.

The experiment simulates the MIV lower bound of the treatment response

E (Yt |Z = zj ) as in Eq. (1). The joint distribution of (Y,D, Z) is specified

in the identical way as in Manski and Pepper (2009). The MIV Z has a

categorical distribution with M equal-probability mass points
{

1
M
, 2
M
, ..., 1

}
.

The treatment variable D = I (Z + ε > 0), where ε ∼ N (0, 1). The response

variable Y follows N (0, σ2) censored to (−1.96, 1.96). With a random sample

of n observations, we evaluate the Monte Carlo distribution of the analogue

MIV bound for E (Y1 |Z = 1) with 1000 repetitions.

Our bootstrap correction algorithm assumes normality as well as fixed

variances. The finite-sample variances are computed from the analogue ver-

sion of the formula in Proposition 3. Note that there is no need to discretize

Y when we apply that formula since analogue conditional variance can be

used. This is advantageous to the asymptotic variances given by Proposition

2, where we have to discretize every variable and calculate the gradients.

Nevertheless, the computed variances are close no matter whatever approach

in use.

Once we obtained the variances, we apply the simultaneous multi-level
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bootstrap procedure to correct the bias. 100000 draws are used to evaluate

up to four levels of bootstraps. The simulation results are presented in Table

1. Each column is an experiment with selected values of M,σ2, n. The fourth

row displays the biases of raw analogue estimator (T1), which are comparable

to Table 1 in Manski and Pepper (2009). The fifth row shows the biases

of first-level bootstrap corrected estimator (T2), comparable to Table 2 in

Manski and Pepper (2009). The following rows show the biases of second,

third, fourth levels of bootstrap corrected estimators (T3, T4, T5). The last

row presents the biases of the conservative estimator (Tc), which is supposed

to be biased downwards.

Our results of the biases of T1 and T2 are very close to what reported by

Manski and Pepper (2009). The slight difference might due to the fact that

they used nonparametric bootstrap (resample from the empirical distribu-

tion) and we use parametric bootstrap (resample from the normal distribu-

tion with estimated variance). The most important new results are T3, T4, T5

has smaller biases. For example, in the setting M = 8, σ2 = 25, n = 100, T1

has a huge bias of 0.55. T2 reduces it to 0.22, but the bias is still relatively

large. As predicted by Proposition 6, higher level of bootstrap can further

improve the estimator. T3, T4, T5 have biases 0.15, 0.11, 0.09 respectively. In

fact, in most M,σ2, n settings the simulated biases are monotone decreasing

as the bootstrap is forwarded to higher level.

Also note that when the bias has already achieved a tiny level (compared

to the numerical standard errors of simulation), further bootstrap may not

improve the estimator any more, but there is also no sign of deterioration.

This observation is in line with Proposition 6, which indicates that d rounds
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of bootstraps can correct the bias for polynomial B1 (µ) of order up to 2d.

After that, the bias function becomes a constant, and no improvement after-

wards. This happens mostly in settings where n = 1000. In those cases, since

the raw analogue estimator is consistent, the finite sample bias of T1 is al-

ready small. We cannot expect multi-level bootstrap will eliminate the bias

because high dimensional simulation itself introduces non-negligible error.

As a practical suggestion, we recommend more levels of bootstrap correction

when the sample size is small, but one or two levels of bootstrap may suffice

for a large dataset. Of course, increasing simulation draws will make higher

level bootstrap bias correction more reliable, if we can afford the computation

costs.

The simulation results also suggest the usefulness of the conservative es-

timator Tc. If we prefer some wider, but not narrower, bounds than the true

bounds, and are not willing to resort to any bootstrap correction, we may

use the conservative estimator. For M = 4, the magnitude of downward bias

induced by Tc is relatively larger than the magnitude of upward bias caused

by T1, though still on the same scale. For M = 8, the absolute size of bias are

similar between Tc and T1. Furthermore, as n becomes larger, Tc decreases

as well, which suggests that in large sample Tc offers a cheap but effective

solution to the problematic analogue MIV bounds.

6. An application to disability misreporting identification

In this section, we reconsider the empirical study of Kreider and Pepper

(2007) on the employment gap between the disabled and non-disabled person.
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The employment gap is defined as

P (L = 1 |W = 1)− P (L = 1 |W = 0)

=
∑

P (Z = zj) · [P (L = 1 |W = 1, Z = zj )− P (L = 1 |W = 0, Z = zj )] ,

where the MIV bounds of P (L = 1 |W = 1, Z = zj ) is given by Eq. (4), and

that of P (L = 1 |W = 0, Z = zj ) can be formulated similarly.

Kreider and Pepper (2007) analyze two datasets: 1992-93 Health and Re-

tirement Study (HRS) and 1996 Survey of Income and Program Participation

(SIPP) with the sample size 12503 and 29807 respectively. Respondents’ em-

ployment status (L), reported disability status (X) and grouped age (Z) can

be directly read from the data. As for the verification status (Y ), it depends

on how researchers use prior information to classify the verified group. They

consider five different ways to define the verified subpopulation: a) disability

beneficiaries; b) those verified in Wave 2; c) gainfully employed workers; d)

those claiming no disability in the current wave; e) all of the above. Readers

are referred to Kreider and Pepper (2007, p.435) for the detailed definition

of subgroups.

From the data, the analogue joint probability of (L,X, Y, Z) are obtained,

and then the analogue bounds of employment gap are computed. Then we

use simultaneous multi-level bootstraps to correct the biases. The estimated

bounds are presented in Table 2. T1 and T2 are the raw analogue bounds and

first-level bootstrap corrected bounds respectively. Our results are almost

identical to what reported by Kreider and Pepper (2007) in their Table 4,

despite that they used the standard non-parametric bootstrap and we use

normal distribution with estimated variances to correct the biases. This is

because the current sample size is large, and the estimated probability vector
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is well approximated by the multivariate normal variates. As a result, our

parametric bootstrap works well.

In the finite sample, the raw analogue bounds are narrower than the true

bounds on average. After the bootstrap correction, the bounds are enlarged.

It seems that the first-level bootstrap does not fully remove the bias since

higher order bootstraps further enlarge the estimated bounds. This is most

apparent for the HRS data. For example, in the beneficiaries verification

scenario the analogue bounds are [−0.959, 0.809], first-level bootstrap mag-

nify the bounds to [−0.971, 0.830], and further bootstraps expand them to

[−0.975, 0.836] and [−0.978, 0.839], and so on. Of course the speed of expand

decreases with the level of bootstraps. As an empirical guide, when the ex-

pansion mitigates, it is better to stop increasing the bootstrap levels. For

the SIPP data, the sample size is twice as large as that of the HRS data.

Therefore, the speed of bounds expansion are modest. It seems that one or

two level of bootstraps suffice to remove most of the biases.

It is worth mentioning that the conservative estimator Tc provides widest

bounds. This is not surprising since the conservative lower (upper) bound

is biased downwards (upwards). However, it is not too wide to be informa-

tive. Whenever the raw analogue bounds and bootstrap corrected bounds

are indecisive on the sign of the employment gap, so are conservative bounds.

Only in the last case, the analogue estimator indicates the employment gap

in SIPP data is negative and bounded by [−0.413,−0.224]. Three levels

of bootstraps enlarge the bounds to [−0.447,−0.199], and the conservative

estimator also suggests the gap is negative and bounded by [−0.482,−0.131].
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7. Conclusion

To reduce the finite sample bias of the MIV analogue estimator, the boot-

strap correction turns out to be an effective method. Under the asymptotic

normality and known variance assumptions, we unveil the mechanism of that

correction, not in terms of asymptotic refinement but a direct reduction of the

upward bias induced by the max (·) operator. This reduction can be justified

by comparing the bias functions before and after the bootstrap correction.

Furthermore, since the bias function is bounded above, we can propose a con-

servative estimator which is biased downwards instead. This offers a cheap

solution to practitioners’ serious concern over the too-narrow MIV analogue

bounds. Monte Carlo evidence suggests the conservative estimator yields a

reasonable magnitude of downward bias, so the estimated bounds are not too

wide to be informative. Since the bias of the conservative estimator also de-

cays with the increasing sample size, it is most useful when the practitioners

have access to a large sample but limited computational resources.

The analysis of bias functions reveals that one level of the bootstrap

cannot eliminate the bias in general, and there is also a possibility of over-

correction, which can be seen by examining the maximum of two normal

variates as their difference in mean varies. The inadequacy of the single

bootstrap leaves room for higher level bootstraps, which are shown to be

able to further reduce the bias if we assume the bias function can be well

approximated by a polynomial function. Mostly importantly, higher level

bootstraps do not necessarily suffer from the curse of dimensionality, since a

simultaneous simulation strategy can be used to make multi-level bootstraps

computationally feasible. Monte Carlo evidence supports our simultaneous
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multi-level bootstraps procedure, since we observe the remaining bias does

shrink with the order of the bootstrap. For practitioners, once analogue

estimates as well as associated standard errors are provided in accordance

with Proposition 2 or 3, our Matlab routine can perform the rest of the bias

correction.
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Appendix A. Proof of Proposition 1

By the properties of the categorical distribution,

E (vs) = p

Cov (vs) = diag (p)− pp′

Since p̂ = 1
n

∑n

s=1 vs, it is a strongly consistent estimator of p, and the

central limit theorem implies

√
n (p̂− p)

d−→ N [0, diag (p)− pp′] .

�

Appendix B. Proof of Proposition 2

The Delta Method implies that

√
n








fL (p̂1)

...

fL (p̂nZ
)


−




fL (p1)

...

fL (pnZ
)








d−→ N {0,G [diag (p)− pp′]G′} ,

where G is a block diagonal matrix such that

G =




G1

. . .

GnZ


 .

Since fL is homogeneous of degree zero, Euler’s theorem implies that

Gipi = 0, i = 1, ..., nZ . It follows that Gpp′G′ = 0. As a result, the
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n 100 100 100 100 100 100

M 4 4 4 8 8 8

σ2 1 4 25 1 4 25

T1 0.10 0.15 0.20 0.31 0.42 0.53

T2 0.01 0.03 0.06 0.09 0.14 0.21

T3 0.00 0.01 0.03 0.04 0.07 0.13

T4 -0.01 0.00 0.02 0.02 0.03 0.09

T5 -0.01 -0.01 0.01 0.00 0.01 0.07

Tc -0.15 -0.16 -0.17 -0.22 -0.23 -0.23

n 500 500 500 500 500 500

M 4 4 4 8 8 8

σ2 1 4 25 1 4 25

T1 0.02 0.02 0.04 0.08 0.12 0.15

T2 0.00 -0.01 -0.01 0.01 0.03 0.04

T3 -0.01 -0.02 -0.02 0.00 0.01 0.01

T4 -0.01 -0.02 -0.02 0.00 0.00 0.00

T5 -0.01 -0.02 -0.02 -0.01 0.00 0.00

Tc -0.09 -0.11 -0.12 -0.14 -0.15 -0.16

n 1000 1000 1000 1000 1000 1000

M 4 4 4 8 8 8

σ2 1 4 25 1 4 25

T1 0.00 0.01 0.02 0.04 0.07 0.09

T2 -0.01 -0.01 0.00 0.00 0.01 0.02

T3 0.00 -0.01 0.00 0.00 0.01 0.01

T4 0.00 -0.01 0.00 -0.01 0.00 0.01

T5 0.00 -0.01 0.00 -0.01 0.00 0.01

Tc -0.07 -0.09 -0.09 -0.11 -0.12 -0.13

T1 is the average bias of the naive estimator (maximum of the sample). T2 is the average bias of

first-level bootstrap corrected estimator. T3, T4, T5 are biases of second-, third-, fourth- level bootstrap

corrected estimators. Tc is the bias of the (downward biased) conservative estimator. Two decimals are

retained since the average numerical standard error is 0.007 (maximum 0.022, minimum 0.002)

Table 1: Bias of analogue estimate of the MIV lower bound with the bootstrap correction
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HRS Beneficiaries Wave 2 Workers No disability All of above

T1 [-0.959, 0.809] [-0.741, 0.645] [-0.811, 0.350] [-0.760, 0.350] [-0.402, -0.341]

T2 [-0.971, 0.830] [-0.760, 0.672] [-0.824, 0.358] [-0.767, 0.358] [-0.430, -0.307]

T3 [-0.975, 0.836] [-0.763, 0.681] [-0.826, 0.359] [-0.766, 0.359] [-0.434, -0.302]

T4 [-0.978, 0.839] [-0.764, 0.688] [-0.826, 0.359] [-0.766, 0.359] [-0.434, -0.300]

Tc [-0.980, 0.857] [-0.794, 0.704] [-0.847, 0.383] [-0.788, 0.383] [-0.492, -0.217]

SIPP Beneficiaries Wave 2 Workers No disability All of above

T1 [-0.967, 0.908] [-0.793, 0.869] [-0.784, 0.318] [-0.781, 0.318] [-0.413, -0.224]

T2 [-0.974, 0.915] [-0.804, 0.880] [-0.794, 0.322] [-0.785, 0.322] [-0.437, -0.202]

T3 [-0.977, 0.916] [-0.808, 0.882] [-0.795, 0.322] [-0.786, 0.322] [-0.444, -0.199]

T4 [-0.978, 0.917] [-0.811, 0.883] [-0.795, 0.322] [-0.786, 0.322] [-0.447, -0.199]

Tc [-0.982, 0.925] [-0.820, 0.900] [-0.816, 0.346] [-0.797, 0.346] [-0.482, -0.131]

Beneficiaries, Wave 2, Workers, No disability are defined identically as in Kreider

and Pepper (2007). T1 is the raw analogue estimator,that is,maximum of the

sample, comparable to Table 4 in Kreider and Pepper (2007). T2 is first-level

bootstrap corrected estimator, comparable to Table 4 in Kreider and Pepper

(2007). T3 is second-level bootstrap corrected estimator. T4 is the third-level

bootstrap corrected estimator. The upper panel shows the results for the HRS

dataset, and the lower panel for SIPP dataset.

Table 2: MIV bounds of employment gap with the bootstrap correction
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Figure 1: The first-level bias (B1) is plotted for the case of two normal variates. The two

arguments of B1 function is the mean of the two normal variates. We set σ2

1
= 1, σ2

2
= 1.
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Figure 2: The first level (B1) and second level (B2) of the bias functions are plotted for

the case of two normal variates. We set σ2

1
= 1, σ2

2
= 1. Since only the difference in mean

matters, µ1 is normalized to zero. As µ2 moves, the magnitude of the first-level bias and

the second-level bias change accordingly. However, the B1 curve always lies above the B2

curve. Though B1 is always positive, there is a region where B2 falls below zero.
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covariance matrix simplifies to

G [diag (p)− pp′]G′ =




G1 · diag (p1) ·G′
1

. . .

GnZ
· diag (pnZ

) ·G′
nZ


 .

In the case of the multivariate normal distribution, zero covariance implies

independence. �

Appendix C. Proof of Proposition 3

From Eq. (1),

fL (pi) = E (Y |Z = zi, D = dt ) · P (D = dt |Z = zi ) + y1 · P (D 6= dt |Z = zi )

= E [Y · I (D = dt) |Z = zi ] + y1 · E [I (D 6= dt) |Z = zi ]

= E (Q |Z = zi )

=

nY∑

k=1

nD∑

m=1

pikm

pi··
qkm.

The last equality is consistent with Eq. (2).

Now consider sampling variations. Previously in the paper, we use the

encoded vectors {vs}ns=1 to summarize the sample, which defines p̂ and

p̂1, ..., p̂nZ
as well as fL (p̂i) accordingly. We can equivalently use i.i.d.

{Zs, Ys, Ds}ns=1 to denote the sample, where the law of (Zs, Ys, Ds) is identical

to the representative triple (Z, Y,D). Also define

Qs = Ys · I (Ds = dt) + y1 · I (Ds 6= dt) .
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When p̂i·· =
1
n

∑n

s=1 I (Zs = zi) > 0, the analogue probability estimator

fL (p̂i) is well-defined and can be written as

fL (p̂i) =

nY∑

k=1

nD∑

m=1

[ 1
n

∑n

s=1 I (Zs = zi, Ys = yk, Ds = dm)
1
n

∑n

s=1 I (Zs = zi)
qkm

]

=

nY∑

k=1

nD∑

m=1

[∑n

s=1 I (Zs = zi, Qs = qkm)∑n

s=1 I (Zs = zi)
qkm

]

=

∑n

s=1 [
∑nY

k=1

∑nD

m=1 qkmI (Qs = qkm)] · I (Zs = zi)∑n

s=1 I (Zs = zi)

=

∑n

s=1 Qs · I (Zs = zi)∑n

s=1 I (Zs = zi)
≡ f̃L (pi) .

Note that f̃L (pi) is simply the analogue moment estimator for E (Q |Z = zi ).

It indicates that whether we use analogue probability or analogue moment,

the functional form of the estimator is the same. Working on the variance of

f̃L (pi) is easier than directly computing the variance of fL (p̂i).

To make notations compact, denote θ ≡ fL (pi), θ̃ ≡ f̃L (pi) = fL (p̂i),

γ ≡ V ar (Q |Z = zi ).

From here to the end of the proof, when we write E (·), we leave implicit

that the expectation is conditional on p̂i·· > 0.

Using the law of iterated expectations, we have

E
(
θ̃
)
= E

[
E
(
θ̃ |{Zs}ns=1

)]

= E

[∑n

s=1 θI (Zs = zi)∑n

s=1 I (Zs = zi)

]

= θ.
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Then the variance of θ̃ equals

V ar
(
θ̃
)
= E

[
E
(
θ̃2 |{Zs}ns=1

)]
− θ2

= E

{∑n

a=1

∑n

b=1 E (QaQb |{Zs}ns=1 ) I (Za = zi) I (Zb = zi)∑n

a=1

∑n

b=1 I (Za = zi) I (Zb = zi)

}
− θ2

= E

{∑n

a=1

∑n

b=1 θ
2I (Za = zi) I (Zb = zi) +

∑n

a=1 γI (Za = zi)∑n

a=1

∑n

b=1 I (Za = zi) I (Zb = zi)

}
− θ2

= E

[
1∑n

a=1 I (Za = zi)

]
· γ

=

[
n∑

r=1

1

r

(
n

r

)
(pi··)

r (1− pi··)
n−r

1− (1− pi··)
n

]
· γ

Note that in the second and third equality, E (QaQb |{Zs}ns=1 ) itself does

not equal to E (QaQb |Za = zi, Zb = zi ). However, E (QaQb |{Zs}ns=1 ) I (Za = zi) I (Zb = zi)

equals E (QaQb |Za = zi, Zb = zi ) I (Za = zi) I (Zb = zi). For a 6= b, E (QaQb |Za = zi, Zb = zi ) =

θ2; for a = b, E (QaQb |Za = zi, Zb = zi ) = θ2 + γ. The results follows. �

Appendix D. Proof of Proposition 4

Jensen’s inequality implies B1 (µ) is bounded below by zero. To show it

is also bounded above, we first show E [T1 (X)] is strictly increasing in each

µi. As the maximum of j normal variates, T1 (X) has the c.d.f.

F (c;µ) =

j∏

i=1

P (Xi ≤ c) =

j∏

i=1

Φ
(
c− µi; 0, σ

2
i

)
.

Since the normal c.d.f. is a strictly increasing function, F (c;µ) is strictly

decreasing in µ. To evaluate the expectation, we use the formula, as is

suggested by David (1981) and Ross (2010),

E [T1 (X)] =

∫ ∞

0

[1− F (c;µ)− F (−c;µ)] dc,
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It follows that E [T1 (X)] is strictly increasing in each µi. Also note that

max (µ) is merely non-decreasing in each µi. Therefore, to maximize B1 (µ)

with respect to µ, a necessary condition is µa = µb, ∀a, b = 1, ..., j. Other-

wise, consider µa < µb, for some a, b. Let ∆′ = µb−µa, then increasing µa by

∆′ will increase E [T1 (X)] while leaving max (µ) unchanged. A contradiction

to the maximum.

Lastly, by the property of the max (·) function,

B1 (µ+c · ι) = E [T1 (X) + c]− [max (µ) + c]

= B1 (µ) ,

∀c ∈ R, where ι is a vector of ones. This implies as long as µa = µb ≡ µ0,

∀a, b = 1, ..., j, B1 (·) does not depend on specific choice of µ0. We pick

µ0 = 0, and B1 (0) attains the maximum E [max (X0)].�

Appendix E. Proof of Proposition 5

B2 (µ) = E [T1 (X)− B1 (X)]−max (µ)

= B1 (µ)− E [B1 (X)] .

Proposition 4 indicates that B1 (µ) > 0, ∀µ∈ R
j, so that E [B1 (X)] > 0. So

we have B2 (µ) < B1 (µ). �

Appendix F. Proof of Proposition 6

To show the proposition, we first introduce a lemma.
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Lemma: The nth (uncentered) moment of N (µ, σ2) is a polynomial of

order n with respect to µ. The leading coefficient (that of µn) is one, and

the next leading coefficient (that of µn−1) is zero.

Proof: It is well known that the central moment of N (µ, σ2) has a closed-

form expression.

E [(X − µ)n] =





0 if n is odd

σd (n− 1)!! if n is even
,

where (n− 1)!! is the double factorial. This implies that E [(X − µ)n] is a

constant with respect to µ. To find the raw moment E (Xn), we expand

E [(X − µ)n] with the formula

(a+ b)n =
n∑

k=0

(
n

k

)
an−kbk.

Put a = 1, b = −1, we have
n∑

k=0

(
n

k

)
(−1)k = 0, or

n∑

k=1

(
n

k

)
(−1)k = −1. We

will show the lemma by induction. Clearly, the it holds for n = 1. Suppose

it is true for the first n − 1 raw moments, we want to show it holds for the

nth raw moment. Note that

E [(X − µ)n] = E (Xn) +
n∑

k=1

(
n

k

)
(−µ)k E

(
Xn−k

)
.

As is assumed, E
(
Xn−k

)
is a polynomial of order n−k, the leading coefficient

is one and the next leading coefficient is zero, hence
n∑

k=1

(
n

k

)
(−µ)k E

(
Xn−k

)

is a polynomial of order n, the leading coefficient is
n∑

k=1

(
n

k

)
(−1)k = −1, and

the next leading coefficient is zero. It follows that E (Xn) is a polynomial of

order n, with the leading coefficient being one and the next leading coefficient

being zero. This proves the lemma.
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Now put r = 2 and consider Br (µ) = Br−1 (µ) − E [Br−1 (X)]. Since

Br−1 (µ) is a polynomial of order d w.r.t. µ, so the leading term takes the

form

j∏

i=1

µai
i , where

j∑

i=1

ai = d. The corresponding term in E [Br−1 (X)] takes

the form E

(
j∏

i=1

Xai
i

)
=

j∏

i=1

E (Xai
i ). By the lemma, E (Xai

i ) is a polynomial

of order ai w.r.t. µi, and the coefficient of the leading term µai
i is one,

and the coefficient of the next leading term µai−1
i is zero. This implies that

j∏

i=1

E (Xai
i ) is a polynomial of order d w.r.t. µ, with the leading term (of

order d) coefficient one and next leading terms (of order d − 1) zero. As a

result, when Br−1 (µ) is subtracted by E [Br−1 (X)], the terms corresponding

to order d and d− 1 are canceled, so the order of the polynomial is reduced

by 2. The same arguments can be applied to r = 3, 4, 5, etc. �

Appendix G. Proof of Proposition 7

LetA ≡ E [g (ξi, ηi)] = E [g (ξj, ηj,k)], B ≡ V ar [g (ξi, ηi)] = V ar [g (ξj, ηj,k)],

∀i = 1, ..., N2, j = 1, ..., N , k = 1, ..., N. The two equalities hold be-

cause (ξj, ηj,k) are drawn by the method of composition, the joint distri-

bution of (ξj, ηj,k) is the same as that of directly sampled (ξi, ηi). Clearly,

E (S1) = E (S2) = A, V ar (S1) = 1
N2B. When we compute V ar (S2), we
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need to consider the covariance terms as well.

V ar (S2) =
1

N
V ar

[
1

N

N∑

k=1

g (ξ1, η1,k)

]

=
1

N

1

N2

N∑

k=1

N∑

h=1

cov [g (ξ1, η1,k) , g (ξ1, η1,h)]

=
1

N2
B +

1

N3

N∑

k=1

N∑

h=1,h 6=k

cov [g (ξ1, η1,k) , g (ξ1, η1,h)] .

Now we show each of those covariance terms is non-negative.

cov [g (ξ1, η1,k) , g (ξ1, η1,h)]

= E {[g (ξ1, η1,k)− A] · [g (ξ1, η1,h)− A]}

= Eξ1

{
Eη1,k|ξ1 [g (ξ1, η1,k)− A] · Eη1,h|ξ1 [g (ξ1, η1,h)− A]

}

= Eξ1

[
c2 (ξ1)

]
≥ 0,

where c (ξ1) ≡ Eη1,k|ξ1 [g (ξ1, η1,k)− A] = Eη1,h|ξ1 [g (ξ1, η1,h)− A]. It follows

that V ar (S1) ≤ V ar (S2).

Note that in the above proof, V ar (S1) = V ar (S2) only if Eη1,k|ξ1 [g (ξ1, η1,k)] =

A for all realizations of ξ1. The independency of ξ and η does not necessar-

ily imply V ar (S1) = V ar (S2). When we take conditional expectation of

g (ξ1, η1,k), ξ1 should be treated as a constant and in general c (ξ1) 6= 0, even

if for independent variates. �
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