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Abstract

Sampling variations complicate the classical inference on the analogue bounds

under the monotone instrumental variables assumption, since point estima-

tors are biased and confidence intervals are difficult to construct. From the

Bayesian perspective, a solution is offered in this paper. Using a conjugate

Dirichlet prior, we derive some analytic results on the posterior distribution

of the two bounds of the conditional mean response. The bounds of the un-

conditional mean response and the average treatment effect can be obtained

with Bayesian simulation techniques. Our Bayesian inference is applied to

an empirical problem which quantifies the effects of taking extra classes on

high school students’ test scores. The two MIVs are chosen as the educa-

tion levels of their fathers and mothers. The empirical results suggest that

the MIV assumption in conjunction with the monotone treatment response

assumption yield good identification power.

Keywords: Monotone instrumental variables, Bayesian, Dirichlet.

1. Introduction

Identification of treatment effects requires assumptions imposed on the

joint distribution of treatment and response variables as well as covariates.
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Under the monotone instrumental variable (MIV) assumption introduced by

Manski and Pepper (2000), mean responses vary monotonically across speci-

fied sub-populations defined by the MIV. It has a wide application potential

since an MIV is less restrictive and easier to provide than a valid instru-

mental variable. However, it comes across a barrier in applications. One

feature of the MIV model is that a supremum (infimum) operator will ap-

pear in the sharp lower (upper) bound. As is noted by Manski and Pepper

(2009, p.211), “the sup and inf operations . . . significantly complicate the

bounds under other MIV assumptions, rendering it difficult to analyze the

sampling behavior of analogue estimates. Moreover, the methods for form-

ing asymptotically valid confidence sets for partially identified parameters ...

appear not to apply.” 1 In a frequentist framework, the true bounds, fixed

but unknown, are functions of population moments or probabilities. Prob-

lems arise when we use the sample analogues to replace the true bounds,

since Jensen’s inequality indicates that the analogue estimate of the lower

(upper) bound will be biased upwards (downwards), resulting in the esti-

mates narrower than the true bounds. To resolve this complication, Kreider

and Pepper (2007) propose a heuristic bootstrap bias correction, and Qian

(2010) provides a justification for that approach and extend it to multi-level

simultaneous bootstraps. Chernozhukov et al. (2009) develop an inference

method on intersection bounds with a continuum of inequalities. Their esti-

mator maximizes or minimizes the precision-corrected curve defined by the

1The bounds under the monontone treatment selection assumption have simple forms,

but under other MIV assumptions the supremum and infimum operators will appear in

the bounds.
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analogue estimates plus a critical value multiplied by pointwise standard

errors.

In this paper, a Bayesian solution is offered. We argue that the complica-

tion is not induced by the sampling variation, but by the way we interpret our

uncertainty on the bounds. Bayesians interpret the probability as a degree of

belief, and therefore the MIV bounds themselves are random. It is likely that

little is known about the bounds prior to the data being observed. Learning

from the data, we sharpen our understandings on the MIV bounds. In that

sense, our posterior belief on the MIV bounds are simply the supremum or

infimum of a set of random variables. Once we find out their posterior dis-

tributions, we can articulate, for example, the most likely value of the MIV

upper bound, the interval which we are 95% sure the upper bound will fall

into. Since our knowledge on the bounds updates with the data, there never

exists an absolutely true bound, and therefore there is no biased or unbiased

belief.

The main contribution of this paper is to derive some finite sample ana-

lytic distributions of the MIV bounds. We begin by discretizing the treatment

variable, response variable as well as the MIV. With a conjugate Dirich-

let prior, we arrive at posterior probabilities. We then show that the MIV

bounds are the maximum or minimum of a set of random variables, each

of which is a linear combination of the conditional probabilities. With the

Gamma representation of the Dirichlet posteriors, it is possible to find out

the closed-form distribution function. Our work is closely related to a body of

statistics literature studying linear combinations of distributions in common

families. Imhof (1961) computes the distribution of quadratic form in normal
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variates. Moschopoulos (1985) provides algorithms on computing the distri-

bution function of linear combination of the gamma family. Provost and

Cheong (2000) study the linear combination of components of a Dirichlet

vector.

Discretization of all variables is arguable. First, the treatment variable is

discrete, usually binary, in most applications. Second, the MIV identification

requires the response variable is bounded below and above. Otherwise the

MIV has no identification power unless it is used together with monotone

treatment selection (Manski, 1997). Lower and upper bounds are readily

available when the response variable is discretized into grids. Third, to com-

pute the analogue estimates for each subpopulation classified by the MIV,

we usually group the values of the MIV so as to ensure enough sample size,

which results in a discretized MIV.

The rest of the paper is organized as follows. Section 2 reviews the struc-

ture of the MIV bounds in Manski and Pepper (2000). Section 3 describes

a Bayesian inference on the distribution of bounds under the MIV assump-

tion. Section 4 extends the Bayesian inference method to other identification

problems such as those in Kreider and Pepper (2007). Section 5 provides an

application about bounding the impact of two factors on the test scores of

high school students. Posterior bounds on the effects of taking extra classes,

as well as the education level of parents are identified.

2. The structure of the MIV bounds

A discrete version of the counterfactual outcomes identification problem

in Manski and Pepper (2000) can be raised as follows. Let D ∈ {d1, ..., dnD
}
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be a treatment variable. For each treatment variety, there is a corresponding

latent response variable denoted as Yt ∈ {y1, ..., ynY
}, t = 1, ..., nD. Since a

person can receive only one variety of treatment, the only observable outcome

is Y =
∑nD

t=1
Yt · I (D = dt), where I (·) is an indicator function. Let Z ∈

{z1, ...znZ
} be a MIV such that for any two realizations zi ≤ zj,

E (Yt |Z = zi ) ≤ E (Yt |Z = zj ) , ∀t = 1, ..., nD.

Without loss of generality, the values of each variable are sorted in an

increasing order: d1 ≤ ... ≤ dnD
, y1 ≤ ... ≤ ynY

, z1 ≤ ... ≤ znZ
.

To bound E (Yt |Z = zj ), for some t = 1, ..., nD, j = 1, ..., nZ , we imme-

diately have

sup
1≤i≤j

E (Yt |Z = zi ) ≤ E (Yt |Z = zj ) ≤ inf
j≤i≤nZ

E (Yt |Z = zi ) .

Note that the MIV is discretized, below we will use max (·), min (·) in-

stead of sup (·), inf (·). However, E (Yt |Z = zi ) cannot be directly esti-

mated due to counterfactuals. We dissemble it into an observable part

E (Y |Z = zi, D = dt ) and an unobservable part E (Yt |Z = zi, D 6= dt ). The

latter need to be replaced by the worse-case lower bound y1 and upper bound

ynY
, which yield the sharp bounds under the MIV assumption alone:

max
1≤i≤j

E (Y |Z = zi, D = dt ) · P (D = dt |Z = zi ) + y1 · P (D 6= dt |Z = zi )

(1)

≤ E (Yt |Z = zj ) ≤

min
j≤i≤nZ

E (Y |Z = zi, D = dt ) · P (D = dt |Z = zi ) + ynY
· P (D 6= dt |Z = zi ) .

Since variables have been discretized, we can expand the conditional ex-

pectation in terms of conditional probabilities. To make notations compact,
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let us define

pikm ≡ P (Z = zi, Y = yk, D = dm),

i = 1, ..., nZ , k = 1, ..., nY , m = 1, ..., nD,

pi·· ≡
∑nY

k=1

∑nD

m=1
pikm,

xikm ≡ pikm
pi··

, where we assume pi·· > 0, ∀i = 1, ..., nZ . So xikm stands for

the conditional probability P (Y = yk, D = dm |Z = zi ),

p ≡ vec
(
{pikm}nZ ,nY ,nD

i=1,k=1,m=1

)
,

pi ≡ vec
(
{pikm}nY ,nD

k=1,m=1

)
.

Here we use the operator vec (·) to vectorize the multi-dimension array

into a long column vector. For instance, vec
(
{pikm}nZ ,nY ,nD

i=1,k=1,m=1

)
turns a

nZ × nY × nD array to a vector of length nZnY nD.

Then Eq. (1) can be written as

max
1≤i≤j

fL (xi) ≤ E (Yt |Z = zj ) ≤ min
j≤i≤nZ

fU (xi) , (2)

where

fL (xi) =

nY∑

k=1

nD∑

m=1

βikm · xikm,

fU (xi) =

nY∑

k=1

nD∑

m=1

β̃ikm · xikm,

βikm = yk · I (m = t) + y1 · I (m 6= t) ,

β̃ikm = yk · I (m = t) + ynY
· I (m 6= t) .

In words, the lower (upper) bound of E (Yt |Z = zj ) is the maximum

(minimum) of a set of variables, each of which is a linear combination of

conditional probabilities xikm with combination coefficients either yk or y1.
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3. Bayesian inference

Bayesians treat p as a random vector. Before data are observed, our un-

certainty over p can be modeled as a Dirichlet priorDir
[
vec
(
{bikm}nZ ,nY ,nD

i=1,k=1,m=1

)]
.

If we lack prior information or show less subjectiveness on its prior distri-

bution, we might choose each of the hyperparameters in {bikm}nZ ,nY ,nD

i=1,k=1,m=1

to be 1 (uniform prior), or 1

2
(Jeffreys’ prior), or 0 (improper prior). Then

we learn from the data, which are realizations from the multinomial dis-

tribution. Let {Nikm}nZ ,nY ,nD

i=1,k=1,m=1
be the number of occurrence of the type

(Z = zi, Y = yk, D = dm) in the sample. It is well known that the poste-

rior distribution of p is a conjugate Dir
[
vec
(
{aikm}nZ ,nY ,nD

i=1,k=1,m=1

)]
, where

aikm = bikm +Nikm.

Proposition 1. Posterior xi, i = 1, ..., nZ are independent Dirichlet vectors,

and

xi ∼ Dir
[
vec
(
{aikm}nY ,nD

k=1,m=1

)]
.

Proof:

We use the Gamma representation of the Dirichlet distribution.

Let {ξikm}nZ ,nY ,nD

i=1,k=1,m=1
be an array of independently distributed random

variables with each component ξikm ∼ Gamma (aikm, 1).

Let η =
∑nZ

i=1

∑nY

k=1

∑nD

m=1
ξikm, and pikm = ξikm

η
. By the change of vari-

able method, we know p ≡ vec
(
{pikm}nZ ,nY ,nD

i=1,k=1,m=1

)
has the Dirichlet distri-

bution Dir
[
vec
(
{aikm}nZ ,nY ,nD

i=1,k=1,m=1

)]
.

Consider the conditional probability

xikm =
pikm

pi··
=

ξikm

ξi··
,
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where ξi·· =
∑nY

k=1

∑nD

m=1
ξikm.

Use the Gamma representation again, we recognize that for each i =

1, ..., nZ , xi ≡ vec
(
{xikm}nY ,nD

k=1,m=1

)
has the Dirichlet distributionDir

[
vec
(
{aikm}nY ,nD

k=1,m=1

)]
.

Also, x1, ...,xnZ
use non-overlapping components in {ξikm}nZ ,nY ,nD

i=1,k=1,m=1
, hence

independence.�

Proposition 2. The two bounds of E (Yt |Z = zj ) defined in Eq. (2), namely

L ≡ max1≤i≤j fL (xi), U ≡ minj≤i≤nZ
fU (xi), has the posterior cumulative

distribution function (c.d.f.)

FL (c) =
∏

1≤i≤j

{
1

2
+

∫ ∞

0

1

πs

[
nY∏

k=1

nD∏

m=1

(rikm)
−aikm

]
· sin

(
nY∑

k=1

nD∑

m=1

aikmθikm

)
ds

}
,

FU (c) = 1−
∏

1≤i≤j

{
1

2
−
∫ ∞

0

1

πs

[
nY∏

k=1

nD∏

m=1

(r̃ikm)
−aikm

]
· sin

(
nY∑

k=1

nD∑

m=1

aikmθ̃ikm

)
ds

}

where

rikm =

√
1 + (βikm − c)2 s2,

θikm = arctan [− (βikm − c) s] ,

r̃ikm =

√
1 +

(
β̃ikm − c

)2
s2,

θ̃ikm = arctan
[
−
(
β̃ikm − c

)
s
]
.

Proof:

Let Li = fL (xi), i = 1, ...j. It follows that FL (c) =
∏

1≤i≤j

FLi
(c).

Use the Gamma representation with {ξikm}nZ ,nY ,nD

i=1,k=1,m=1
defined in the proof

of Proposition 1.

FLi
(c) = P

(
nY∑

k=1

nD∑

m=1

βikm

ξikm

ξi··
≤ c

)
= P (wi ≤ 0) ,
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where

wi =

nY∑

k=1

nD∑

m=1

(βikm − c) ξikm.

To avoid confusion with the subscript i, denote the imaginary number

ι =
√
−1. Since wi is a linear combination of independent Gamma random

variables, its characteristic function ϕwi
(·) takes the form

ϕwi
(s) =

nY∏

k=1

nD∏

m=1

[1− ι · (βikm − c) s]−aikm

=

nY∏

k=1

nD∏

m=1

(rikm)
−aikm · exp

(
−ι ·

nY∑

k=1

nD∑

m=1

aikmθikm

)
,

where rikm, θikm are the polar representation of 1− ι · (βikm − c) s.

Then we use the inversion method proposed by Gil-Pelaez (1951),

P (wi ≤ 0) =
1

2
−
∫ ∞

0

Im [e−ιs0ϕwi
(s)]

πs
ds

=
1

2
+

∫ ∞

0

1

πs

[
nY∏

k=1

nD∏

m=1

(rikm)
−aikm

]
· sin

(
nY∑

k=1

nD∑

m=1

aikmθikm

)
ds.

As for the upper bound, let Ui = fU (xi), i = j, ..., nZ . It follows that

FU (c) = 1−
∏

j≤i≤nZ

[1− FUi
(c)], where FUi

(c) takes the same form as FLi
(c)

with βikm replaced by β̃ikm. �

The integral above can be evaluated with deterministic Gaussian quadra-

tures without difficulty. With the posterior c.d.f., it is straightforward to

compute a 95% credible interval, especially the one with highest poste-

rior density (HPD). Chen and Shao (1998) propose algorithms to find the

Bayesian HPD regions. Frequentist confidence intervals for partially identi-

fied parameters are discussed in Imbens and Manski (2004), Chernozhukov

9



et al. (2007) and Rosen (2008). The advantage of the Bayesian interval is its

simplicity. The interpretation is that the lower bound of E (Ym |Z = zj ) falls

into the credible interval with 95% probability, precisely in the finite sample.

If we are also interested in the posterior mean, we might use the formula

suggested by David (1981) and Ross (2010).

E (L) =

∫ ∞

0

[1− FL (c)− FL (−c)] dc.

Note that the derived analytic distribution is for the bounds of conditional

mean response, so Proposition 2 is most useful when the MIV defines a sub-

population of interest, especially when we concern two factors which may

affect the potential outcomes–one is the treatment variable, the other is the

MIV. In section 5 we give an application of this type. If we are interested in

the bounds of unconditional mean response as well as the average treatment

effect (ATE), we need to marginalize the conditional mean in accordance with

the marginal distribution of the MIV. Analytic results are not available in

that the marginal probabilities (i.e., pj··, j = 1, ..., nZ) are also jointly Dirich-

let random variables. When we take the product of pj·· and max1≤i≤j fL (xi),

the resulting distribution is unknown. Despite this limitation, the Bayesian

inference on the bounds of marginal mean response and the ATE can never-

theless be performed by simulation. We may start from the posterior distribu-

tion of p. Random draws fromDir
[
vec
(
{aikm}nZ ,nY ,nD

i=1,k=1,m=1

)]
can be obtained

by either the Gamma representation or consecutive draws from the marginal

/ conditional Beta distributions. For each draw of p, we use Eq. (2) to obtain

the simulated {fL (xi)}nZ

i=1
, {fU (xi)}nZ

i=1
. The same draw of p can also be used

to obtain simulated {pj··}nZ

j=1
. Then we compute

∑nZ

j=1
pj·· max1≤i≤j fL (xi)

and
∑nZ

j=1
pj·· minj≤i≤nZ

fU (xi), which are simulated lower and upper bounds
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of E (Yt). Repeating the process many times, we obtain i.i.d. draws from the

posterior distribution of the two bounds of E (Yt). Therefore, we can find

the posterior mean, median, HPD credible interval, etc. using those draws.

Similarly, to simulate bounds of the ATE, say E (Yt1) − E (Yt2), we use one

draw of p to compute the upper bound of E (Yt1) and the lower bound of

E (Yt2) respectively. The difference is one draw from the posterior upper

bound for the ATE. By repeated drawing, we learn its posterior distribution.

The lower bound can be simulated similarly.

4. Extension

First, we provide two simple extensions, which will be used in our appli-

cation in the next section. The MIV assumption is sometimes used together

with the monotone treatment response (MTR) assumption (Manski, 1997)

so that the identification power will be enhanced. The MTR implies, ceteris

paribus, conjectured response varies monotonically with treatment every-

where in the sample space. With the MTR assumption, a better lower bound

of E (Yt |Z = zi, D = dm ), m < t can be identified by E (Y |Z = zi, D = dm )

instead of the worst-case bound y1. Similarly, to identify the upper bound

of E (Yt |Z = zi, D = dm ), m > t, we can use E (Y |Z = zi, D = dm ) instead

of the worst-case bound ynY
.

As a result, the bounds of E (Yt |Z = zj ) under the MIV plus MTR as-
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sumptions are

max
1≤i≤j

nY∑

k=1

nD∑

m=1

xikm [yk · I (m ≤ t) + y1 · I (m > t)] (3)

≤ E (Yt |Z = zj ) ≤

min
j≤i≤nZ

nY∑

k=1

nD∑

m=1

xikm [yk · I (m ≥ t) + ynY
· I (m < t)] .

The Bayesian inference procedure is largely unchanged with the additional

MTR assumption. Proposition 2 still applies, with the linear combination

coefficients replaced by βikm = yk · I (m ≤ t) + y1 · I (m > t) for the lower

bound.

Another straightforward extension is multiple MIVs. In practice, to find

a MIV is easier than to find a traditional instrumental variable. It is likely

that several MIVs are available. Let Z be a MIV vector such that for any

two realizations zi, zj,

E (Yt |Z = zi ) ≤ E (Yt |Z = zj ) , ∀t, if zi ≤ zj,

where the meaning of zi ≤ zj is that each component in zi is no larger than

the corresponding element in zj.

In the presence of multiple MIVs, Eq. (2), Eq. (3) and Proposition 2

take the same form except that we interpret 1, i, j, nZ as multiple indices in

max1≤i≤j and minj≤i≤nZ
, etc.

Next, we extend our Bayesian inference procedure to other applied iden-

tification problems under the MIV assumption. Kreider and Pepper (2007)

consider a partial misreporting problem in which people are surveyed on
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their employment and health conditions. However, people may not truth-

fully report their health, but researchers have some prior information on the

truth-telling rate of some subpopulations. In other words, researchers classify

the respondents into the verified group and unverified group. Let L ∈ {0, 1}
be the employment status, X ∈ {0, 1} and W ∈ {0, 1} be the reported and

the true disability status respectively, Y ∈ {0, 1} be the verification status,

and Z ∈ {z1, ...znZ
} be a MIV such that

P (L = 1 |W,Z = zi ) ≥ P (L = 1 |W,Z = zj ) , if zi ≤ zj.

The joint distribution of (Z,L,X, Y ) can be learned from the data, while

the joint distribution of (Z,L,X, Y,W ) is unknown. For simplicity, we con-

sider an extreme case that the verified group has a 100% truth-telling rate,

while the unverified has an accuracy rate≥ 0% (i.e., no information). Kreider

and Pepper (2007) show that the sharp bounds of P (L = 1 |W = 1, Z = zj )

are

max
zi≥zj

P (L = 1, X = 1, Y = 1 |Z = zi )

P (X = 1, Y = 1 |Z = zi ) + P (L = 0, Y = 0 |Z = zi )
(4)

≤ P (L = 1 |W = 1, Z = zj ) ≤

min
zi≤zj

P (L = 1, X = 1, Y = 1 |Z = zi ) + P (L = 1, Y = 0 |Z = zi )

P (X = 1, Y = 1 |Z = zi ) + P (L = 1, Y = 0 |Z = zi )
.

Readers are referred to Proposition 2, corollary 1 in Kreider and Pepper

(2007, p.436) for the derivation.

Unlike Eq. (2) or Eq. (3) where the lower bound of interest is the

maximum of a linear combination of conditional probabilities, here in Eq.

(4) the lower bound is the maximum of a ratio of conditional probabilities.

Despite this difference, a similar analytic Bayesian inference can be applied
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to the current problem. This is largely due to the flexibility of the Dirichlet

distribution in dealing with partition, summation and taking ratios.

Without loss of generality, arrange the values of the MIV as z1 ≤ ... ≤ znZ
.

We will define a set of symbols close to those in the previous identification

problem.

pijkl ≡ P (Z = zi, L = j,X = k, Y = l), i = 1, ..., nZ , j, k, l = 0, 1,

pi··· ≡
∑

1

j=0

∑
1

k=0

∑
1

l=0
pijkl,

xijkl ≡ pijkl
pi···

, standing for the conditional probability P (L = j,X = k, Y = l |Z = zi ),

p ≡ vec
(
{pijkl}nZ ,1,1,1

i=1,j=0,k=0,k=0

)
,

xi ≡ vec
(
{xijkl}1,1,1j=0,k=0,k=0

)
.

Then Eq. (4) can be written as

max
1≤i≤j

fL (xi) ≤ P (L = 1 |W = 1, Z = zj ) ≤ min
j≤i≤nZ

fU (xi) , (5)

where

fL (xi) =
xi111

xi111 + xi011 + xi010 + xi000

,

fU (xi) =
xi111 + xi110 + xi100

xi111 + xi011 + xi110 + xi100

.

With a Dirichlet prior on p, we will arrive at the conjugate Dirichlet

posterior, say p ∼ Dir
[
vec
(
{aijkl}nZ ,1,1,1

i=1,j=0,k=0,k=0

)]
. Proposition 1 still holds

with the independent

xi ∼ Dir
[
vec
(
{aijkl}1,1,1j=0,k=0,k=0

)]

Taking ratios of components in xi, we arrive at a Beta distribution, and

then we can derive the posterior distribution of the bounds in Eq. (5).
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Proposition 3. The two bounds of P (L = 1 |W = 1, Z = zj ) defined in Eq.

(5), namely L ≡ max1≤i≤j fL (xi), U ≡ minj≤i≤nZ
fU (xi), has the posterior

c.d.f.

FL (c) =
∏

1≤i≤j

B (c; ai111, ai011 + ai010 + ai000)

B (1; ai111, ai011 + ai010 + ai000)
,

FU (c) = 1−
∏

j≤i≤nZ

[
1− B (c; ai111 + ai110 + ai100, ai011)

B (1; ai111 + ai110 + ai100, ai011)

]
,

where B (c; a, b) is the incomplete beta function, namely

B (c; a, b) =

∫ c

0

ta−1 (1− t)b−1
dt.

Proof:

Let Li = fL (xi), i = 1, ...j.

For each i = 1, ..., j as given, Let {ξijkl}1,1,1j=0,k=0,k=0
be an array of indepen-

dently distributed random variables with each component ξijkl ∼ Gamma (aijkl, 1).

Let η =
∑

1

j=0

∑
1

k=0

∑
1

l=0
ξijkl, and xijkl =

ξijkl
η
. It is known that xi ≡

vec
(
{xijkl}1,1,1j=0,k=0,k=0

)
has the Dirichlet distributionDir

[
vec
(
{aijkl}1,1,1j=0,k=0,k=0

)]
.

Then we have

Li =
ξi111

ξi111 + (ξi011 + ξi010 + ξi000)
,

which is recognized as a Beta distribution:

Li ∼ Beta (ai111, ai011 + ai010 + ai000) .

Proposition 1 implies x1, ...,xnZ
are independent, so are L1, ..., Lj. It

follows that FL (c) =
∏

1≤i≤j

FLi
(c), where FLi

(c) can be expressed as the ratio

of the incomplete and complete beta function.
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Similarly, let Ui = fU (xi), i = j, ..., nZ , so we have

Ui ∼ Beta (ai111 + ai110 + ai100, ai011) .

It follows that FU (c) = 1 −
∏

j≤i≤nZ

[1− FUi
(c)], where FUi

(c) is also a ratio

of the incomplete and complete beta function. �

5. An application

As an application to the Bayesian inference on the treatment effect iden-

tification with MIVs, we consider the effect of taking extra classes as well

as the effect of parents’ education on students’ academic skills. The data

come from National Longitudinal Survey of Youth 1997 (NLSY97). High

school students were asked whether they spent any time taking extra classes.

Among the 5385 respondents to this question, 1458 provided a positive an-

swer (hereafter refer to them “class-takers”, and the rest “non-takers”). Later

in 1997-98, most NLSY97 respondents participated the Armed Services Voca-

tional Aptitude Battery (ASVAB), a comprehensive ability test on arithmetic

reasoning, word knowledge and general sciences, etc. NLSY97 also collected

information on their family background. In our study, we will use their bi-

ological father and mother’s highest degree as two MIVs, since we believe

the expectation of conjectured class-takers’ test scores (and non-takers’ test

scores as well) vary monotonically with fathers’ (mothers’) education levels,

with mothers’ (fathers’) education being the same. To increase the identifi-

cation power, the MTR assumption is also imposed, which states that ceteris

paribus, everyone’s conjectured class-taker’s test scores is higher than his or

her conjectured non-taker’s test scores. To put it simply, class taking is good
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for everyone’s score. The MIV and MTR assumptions represent two distinct

ways to improve test scores. One is an internal source, which guarantees a

higher score as long as one endeavors to take extra classes. The other one is

an external source, which asserts knowledgeable parents’ guidance will help

children in the sense that average score increases, but not necessarily for

everyone. Therefore, for the distribution of conjectured response variables,

both the conditional and unconditional mean response are of interest when

we study the sources conducive to academic performance.

Our inference approach requires discretization of all variables. The treat-

ment variable (D), namely taking extra classes, is binary. The two MIVs

(Z) take on one of the 7 values: none degree, GED, high school diploma,

associate/Junior college, Bachelor’s degree, Master’s degree, Ph.D. or pro-

fessional degrees. As for the observed response variable (Y ), we discretize it

into 11 evenly spaced grids (0, 10, 20, ..., 100), rounding the original ASVAB

math-verbal score percent to the nearest grid. Clearly, the lower bound of

the conjectured response variables (Y0, Y1) is 0, and the upper bound is 100.

The descriptive statistics of variables are provided in Table 1. The largest

two cohorts are students with both parents being high school graduates

(31.3%), and students with both parents holding Bachelor’s degrees (5.9%).

So we mainly compare distributions conditional on those two groups. On

the basis of Proposition 2, the analytic c.d.f. of lower and upper bounds of

E (Y1 |Z ), E (Y0 |Z ) are calculated with a uniform prior (setting all Dirichlet

hyperparameters equal to one). The c.d.f. is evaluated at 500 points along

the interval [0, 100] and by differencing we have density estimates. Figure 1

displays the distribution of bounds of expected Y1 and Y0 conditional on par-
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ents’ education, and Table 2 presents corresponding summary statistics on

those posterior distributions. First we compare the left-top and left-bottom

panels of Figure 1, which contrasts the role of educated parents on children’s

academic performance. Parents’ education substantially shifts the average

conjectured class-takers’ test scores. The mean lower bound of expected Y1

is 46.5 with the standard deviation 2.3 conditional on high school graduated

parents, while the mean lower bound conditional on parents with Bachelor’s

degrees is 66.2 with the standard deviation 1.7. For children who do not

take extra classes, parents’ education also have substantial impact on chil-

dren’s test scores, which can be seen from the right-top and right-bottom

two panels. Next, a horizontal comparison of the top two (and the bottom

two) panels of Figure 1 reveals the effects of extra-class taking on conjectured

response variables, conditional on the same parents’ education level. Even if

we compare the mean upper bound of the expected Y0 with the mean lower

bound of the expected Y1, we still find an improvement of ASVAB score

by 17.3 percentage points when parents are college graduates, and by 3.3

percentage points when parents are high school graduates.

By marginalization in accordance with the distribution of the MIVs, we

find the distribution of unconditional mean of Y1, Y0 as well as the ATE.

Since analytic distributions are not available, 50000 draws from the posterior

Dirichlet distribution are generated to simulated the posterior bounds of

expected Y1, Y0 and Y1−Y0. The relevant distributions are graphed in Figure

2, 3 and summarized in Table 3. The lower bound of E (Y1) has the mean

51.7 and the upper bound of E (Y0) averages 43.3. The ATE is positive for

the sure, since the lower bound of E (Y1 − Y0) is distributed with the mean
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8.5 and the 95% HPD credible interval is (4.8, 12.7). The mean of the upper

bound of E (Y1 − Y0) is 33.9, with the 95% HPD interval (26.6, 40.5). This

seems to suggest attending some extra classes is worthwhile.

There is a note to this application. One might argue that taking extra

classes may not be beneficial for everyone. This concern is legitimate. How-

ever, if we give up the MTR assumption, the MIV assumption alone will

not yield much identification power. Note that students who received the

treatment accounts for 29%, while the rest 71% did not attend extra classes.

Put aside sampling variations and let us have a quick account of the lower

bounds of E (Y1) and E (Y0). E (Y1 |D = 0), E (Y0 |D = 1) are unobservable

and have to be assigned 0 in the absence of the MTR assumption. Then we

compute the lower bounds of E (Y1) as E (Y1 |D = 1)× 21% + 0× 79% and

that of E (Y0) as E (Y0 |D = 0)×79%+0×21%. Even if Y1 > Y0 everywhere,

the large weights on zeros may cause our estimated lower bound of E (Y1)

lower than that of E (Y0), and lower than the upper bound of E (Y0) as well.

Therefore the lower bound of the ATE could be negative. The mechanism of

MIV identification is to divide the population into sub-populations and re-

peat the above calculation in each sub-population. By taking the maximum

and minimum, the MIV assumption pulls up the lower bound of E (Y1) and

pushes down the upper bound of E (Y0), but it still has difficulty reversing

the sign of the ATE when most respondents do not receive the treatment.

However, if one adopts the MTR assumption, the lower bounds of E (Y1)

can be identified as E (Y1 |D = 1) × 21% + E (Y0 |D = 0) × 79%, which is

a substantial improvement. In that sense, we argue that if the non-treated

constitute the majority in the sample, the MIV assumption alone is not very
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likely to have significant identification power.
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Extra class taking (Treatment variable)

Value 0 1

Percent 71 29

ASVAB score (Response variable)

Value 0 10 20 30 40 50 60 70 80 90 100

Percent 5 11 11 10 10 10 9 10 9 9 5

Mother highest degree (MIV 1)

Value 1 2 3 4 5 6 7

Percent 14 5 47 11 16 6 1

Father highest degree (MIV 2)

Value 1 2 3 4 5 6 7

Percent 16 4 48 8 15 6 3

Table 1: Descriptive statistics on the treatment variable, response variable, and MIVs.
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Mean Std Median Mode 95% HPD

Distribution of lower bounds

E (Y1 |Z = Bachelor ) 66.19 1.66 66.13 66.13 [62.93 , 69.14]

E (Y0 |Z = Bachelor ) 41.11 1.86 40.88 40.28 [36.67 , 46.09]

E (Y1 |Z = HighSchool ) 46.46 2.25 45.89 44.69 [42.89 , 50.70]

E (Y0 |Z = HighSchool ) 33.92 1.76 33.47 31.86 [29.86 , 39.08]

Distribution of upper bounds

E (Y1 |Z = Bachelor ) 71.43 5.12 71.94 72.95 [61.32 , 80.56]

E (Y0 |Z = Bachelor ) 48.87 4.83 49.10 49.50 [39.28 , 57.72]

E (Y1 |Z = HighSchool ) 68.66 4.25 69.14 70.14 [60.52 , 76.15]

E (Y0 |Z = HighSchool ) 43.18 1.95 43.69 43.89 [38.88 , 45.69]

Table 2: Summary statistics on the distribution of lower and upper bounds for the expec-

tation of the conjectured ASVAB score (Y1, Y0) conditional on parents education levels.

Mean Std Median Mode 95% HPD

Distribution of lower bounds

E (Y1) 51.72 0.99 51.63 51.50 [49.92 , 53.69]

E (Y0) 34.74 1.38 34.56 34.27 [32.34 , 37.60]

E (Y1)− E (Y0) 8.46 2.08 8.19 7.82 [4.78 , 12.72]

Distribution of upper bounds

E (Y1) 68.69 3.37 69.10 69.74 [62.03 , 74.84]

E (Y0) 43.26 1.86 43.56 44.09 [39.39 , 46.38]

E (Y1)− E (Y0) 33.95 3.64 34.33 35.07 [26.58 , 40.53]

Table 3: Summary statistics on the distribution of lower and upper bounds for the uncon-

ditional expectation of the conjectured ASVAB score (Y1, Y0).
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Figure 1: Analytic lower and upper bounds for the expectation of the conjectured ASVAB

score (Y1, Y0) conditional on parents education levels. Density estimates of the score dis-

tribution obtained from the analytic c.d.f. are plotted in four graphs. Vertical comparison

of two graphs shows the effect of parents education, while horizontal comparison of two

graphs shows the effect of taking extra classes.
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Figure 2: Simulated lower and upper bounds for the unconditional expectation of conjec-

tured ASVAB score (Y1, Y0). Kernel density estimates are obtained from 50000 posterior

draws.
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Figure 3: Simulated lower and upper bounds for the average treatment effect. Kernel

density estimates are obtained from 50000 posterior draws.
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