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Linear Regression Using Both Temporally Aggregated

and Temporally Disaggregated Data: Revisited

Hang Qian

Abstract

This paper discusses regression models with aggregated covariate data. Repa-

rameterized likelihood function is found to be separable when one endogenous

variable corresponds to one instrument. In that case, the full-information

maximum likelihood estimator has an analytic form, and thus outperforms

the conventional imputed value two-step estimator in terms of both efficiency

and computability. We also propose a competing Bayesian approach imple-

mented by the Gibbs sampler, which is advantageous in more flexible settings

where the likelihood does not have the separability property.

Keywords: Aggregated covariate, Maximum likelihood, Bayesian inference

1. Introduction

Incomplete data is a common problem in applied economics. In the re-

gression analysis, there are occasions in which complete data of many relevant

regressors are collected, but data on one or more key covariates are aggre-

gated by household, or by group, by region, by time, and so on. To make the

best use of the available data and minimize information loss, we hope to use

both aggregated and disaggregated data in a regression. The conventional

wisdom is a two-step regression in which the first regression imputes the ag-
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gregated data, and then the imputed covariate data are used in the second

regression. Three decades ago, with the same title, Hsiao (1979) and Palm

and Nijman (1982) considered the maximum likelihood (ML) estimation of

an aggregated covariate data (ACD) model in which data are measured at

different temporal frequencies. However, this approach received little atten-

tion in the subsequent empirical work. The least squares (LS) imputation

remains the typical solution. Perhaps part of the reason is that Palm and Nij-

man found that the likelihood function cannot be factorized into two parts as

suggested by Hsiao. So Palm and Nijman concluded that the computational

advantage of ML is lost in the ACD model.

This paper revisits the model in Hsiao (1979). One contribution of this

paper is that the likelihood function is found to be separable by suitable repa-

rameterization if one instrument corresponds to one endogenous regressor. In

that case, an analytic full-information ML estimator does exist. That implies

the efficient estimator can be obtained without computational barriers, and

thus overshadows the least squares imputation approach.

Our idea of likelihood separability is borrowed from the statistics liter-

ature addressing missing data. In contrast to the standard missing data

problem where a fraction of observations are unavailable, data aggregation

eliminates all the individual-level observations, leaving relatively few aggre-

gated data. However, once the correlation structure of aggregated and disag-

gregated values is accounted for, the ACD regression bears many similarities

to the missing data problem. Anderson (1957), in the context of missing

multivariate normal variates, raised the important idea of factoring the like-

lihood function into two parts, each of which can be maximized analytically.
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Gourieroux and Monfort (1981) extended that method to regression models

with missing covariate data. In this paper, we follow this track and extend

the idea of likelihood separability to the ACD model.

On top of that, we are aware that not every ACD model specification sat-

isfies the likelihood separability conditions. Furthermore, the practitioners

may have their own models while at the same time an aggregated covariate

is involved. In that case, the likelihood function has to be maximized numer-

ically. As an alternative to numerical ML, we propose a competing Bayesian

approach implemented by the Gibbs sampler, which is another contribution

of this paper. For models without analytic solutions, our Monte Carlo study

shows that the Bayesian estimator is more robust and less sensitive to the

initial values.

Our third contribution is a critique on LS imputation approaches ap-

plied to the ACD model. The asymptotics of LS-type estimators have been

extensively discussed in the literature. Gourieroux and Monfort (1981) pro-

vided asymptotic comparisons of a variety of LS estimators for the missing

data regression. In Hsiao (1979) and Palm and Nijman (1982) there are also

comparisons the relative efficiency of ML estimator with LS-type estimators

for the ACD regression. In addition, simulation-based multiple imputation

strategies (see Rubin, 1987; Schafer, 1997; Allison, 2000) can also be used to

compute the asymptotic standard error of those estimators. However, for a

ACD regression model with endogenity problems, some LS-type estimators

are not consistent, and some consistent estimators discard apparent informa-

tion. Those drawbacks are overcome by the ML and Bayesian estimators,

which is the main reason we do not recommend the usage of LS estimators.
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The model in Hsiao (1979) is originally designed for temporal aggregation,

which is commonly found in macroeconomic and financial data. Temporal

aggregation and mixed sampling frequencies regression can be appropriately

tackled by time series techniques. Geweke (1978), Ghysels et al. (2006) and

Andreou et al. (2010) developed corresponding models and estimation tech-

niques. Revisiting Hsiao (1979), we feel that his model might be most suitable

for aggregation problems encountered in applied microeconomics. We illus-

trate the potential applications of the ACD regression with three examples.

Example 1. We want to evaluate the impact of the Low-Income Home En-

ergy Assistance Program (LIHEAP) on the subsequent energy expenditures

of its recipients. The LIHEAP grant is a one-time payment for the winter

season, whereas the gas or electricity is always billed monthly. Although we

can aggregate the monthly bills as well and conduct an analysis at the sea-

sonal level, we lose the monthly information contained in the dependent vari-

able,and other covariates such as monthly income and weather. Now consider

the ACD regression: monthly usage of the grant (in consumption or saving)

is latent, up to the individual choice and summing up to the observable total

amount. If we can impute the latent monthly grant usage, we will know what

proportion of the grant contributes to monthly energy expenditures.

Example 2. Occupational Outlook Handbook (Bureau of Labor Statistics,

U.S. Department of Labor, 2010) predicts that veterinarians will increase by

33% over the 2008–18 decade, much faster than the average for all occupa-

tions. Suppose we want to study whether the fast growth of the cat (pet)

population pushes up the demand for veterinary services. We searched the

database for public use and found that the veterinarian data, along with many
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other covariates, of each county are available, while the pet population is only

recorded for each state, hence the ACD.

Example 3. In development economics, we might be interested in the calorie-

income elasticity in poor countries. The calorie intake is an individual mea-

sure, varying among men, women and children. However, the observable

household income is likely to be redistributed within the family, and thus the

real individual income is a latent regressor to the researcher.

There are many practical reasons the covariate data are aggregated. In

Example 1 and 3, by the nature of the variable, the disaggregated values

are never observed. Example 2 illustrates that data collection difficulties,

confidentiality of the personal information, and grouping during the dataset

construction often lead to aggregated variables. This is especially true for

the public-used dataset.

The rest of the paper is organized as follows. Section 2 presents the ACD

model. Section 3 derives the full-information likelihood function and dis-

cusses conditions for separability. Section 4 proposes a competing Bayesian

estimator using the Gibbs sampler. Section 5 briefly reviews the tradi-

tional least squares based solutions. Section 6 compares various estimators

by Monte Carlo experiments. Section 7 extends the model to multiple ag-

gregated covariates, imbalanced aggregation, as well as partial aggregation.

Section 8 concludes the paper.
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2. The ACD model

We follow the model and notation in Hsiao (1979) and Palm and Nijman

(1982), but add a richer set of regressors to allow separability of the likelihood

function.

The ACD model consists of the following equations:

yt,i = xt,iβ +wt,iδ + ut,i (1)

xt,i = zt,iα+wt,iγ+vt,i (2)

xt =
n∑

i=1

xt,i (3)

where


 ut,i

vt,i




∼ i.i.d.N




 0

0


 ,


 σ2

u σuv

σuv σ2
v




 , t = 1, ..., T ; i = 1, ..., n,

wt,i, zt,i are exogenous explanatory variables (row vectors), uncorrelated with

disturbance terms, and parameters δ,α,γ are column vectors.

Eq. (1) is the main regression model and β is the parameter of interest.

The complete data of {yt,i,wt,i, zt,i} are observed, but {xt,i} are unavailable,

with aggregated values {xt} being observed. As in Hsiao (1979), the subscript

(t, i) originally refers to the ith observation in the year t. That is, semiannual

(or quarterly, monthly) data are aggregated into annual data. In more general

settings, we may interpret t as the group index, and i as the ith member in

that group. Data of individual members in a group are aggregated. For

instance, in Example 2, xt,i refers to the latent pet population in the county

i of the state t, but only the state-level population xt is observed.
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Eq. (2) is the regression imputation model for the unobserved xt,i. The

choice of variables for imputation was discussed in Schafer (1997) and Van Bu-

uren et al. (1999). They suggested that covariates in the main regression (i.e.

wt,i) should be included, and factors related to missing mechanisms and with

substantial explanatory power over xt,i can also be included, which are cap-

tured in zt,i. For instance, in Example 1, in addition to xt,i (the latent grant

usage) which explains the monthly energy bill, a plausible set of regressors

in wt,i may include the outdoor temperature, household income, family and

room size, the age indicator variable, etc. To impute xt,i, we may add all

variables in wt,i and monthly saving-to-income ratio as zt,i.

Of course, the data aggregation model per se does not require the ap-

pearance of wt,i in both Eq. (1) and (2). Even if some or none of the

variables in wt,i are included in Eq. (2), the model is still estimable by both

ML and Bayesian methods. However, the separability of the likelihood and

closed-form ML estimator requires the presence of wt,i in Eq. (2).

The relationship of disturbance terms across two equations determines

the role of xt,i in Eq. (1). For a given (t, i), if ut,i and vt,i are correlated, then

xt,i is an endogenous regressor in Eq. (1) since xt,i and ut,i are also correlated.

Of course, the data aggregation model per se is not necessarily associated

with endogenity. Maybe zt,i is included solely because it can better explain

and impute the missing xt,i. Nevertheless, note that zt,i satisfies all the

requirements of a valid instrument. As we will see below, if we do not restrict

σuv = 0 and let the data speak for themselves, we allow the separability of

the likelihood function.

Though disturbances across equations are allowed to be correlated, through-
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out this paper we assume no serial correlation of disturbances. If we had long

time series aggregated at varied frequencies, it would be more appropriate

to infer the dependency structure of disaggregated series from observed ag-

gregated series. However, in microeconomic applications, the aggregation is

often at the geographic or individual level as in Example 2 and 3, and the

dependency structure is not obvious. Example 1 does involve temporal ag-

gregation, but there are only 4 or 5 months in winter, so it is harder to model

their dependency.

3. Maximum likelihood estimation

3.1. Joint likelihood

Although the ACD model can be estimated by LS procedures, this ap-

proach is not efficient (see Palm and Nijman (1982) and Gourieroux and Mon-

fort (1981) for discussion). An efficient estimator of θ ≡ (α,β,γ, δ,σ2
u, σ

2
v, σuv)

can be obtained by making full use of the information conveyed by the ob-

served data, maximizing the joint likelihood

lnL (θ) =
T∑

t=1

ln f (yt,1, ..., yt,n, xt)

conditional on the exogenous regressors wt,i, zt,i.

Hsiao (1979) and Palm and Nijman (1982) derived the likelihood for the

case n = 2:
∑T

t=1 ln f (yt,1, yt,2, xt). Hsiao (1979) first introduced xt,1 into the

likelihood and then integrated it out: f (yt,1, yt,2, xt) =
∫
f (yt,1, yt,2 |xt, xt,1 ) ·

f (xt, xt,1) dxt,1. Palm and Nijman (1982) derived an equivalent form of the

likelihood f (yt,1 + yt,2, yt,1 − yt,2, xt) by integration with respect to xt,1.
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In fact, a shortcut to obtain the joint likelihood is by manipulation of Eq.

(1) to (3).

First of all, define the following symbols:

yt =
n∑

i=1

yt,i, zt =
n∑

i=1

zt,i, wt =
n∑

i=1

wt,i,

yt =




yt,1

...

yt,n


 , xt =




xt,1

...

xt,n


 , zt =




zt,1

...

zt,n


 , wt =




wt,1

...

wt,n


 .

Plugging Eq. (2) into Eq. (1) and (3), we have

yt,i = zt,iαβ +wt,i (βγ + δ) + (βvt,i + ut,i) ,

xt = ztα+wtγ+(vt,1 + ...+ vt,n) .

Since (vt,1, ..., vt,n, ut,1, ..., ut,n) can be viewed as 2n dimensional multivari-

ate normal, their n + 1 dimensional (mean-adjusted) linear combinations

(yt,1, ..., yt,n, xt) are also multivariate normal, and we have


 yt

xt




∼ N






 ztαβ +wt (βγ + δ)

ztα+wtγ


 ,



(
β2σ2

v + σ2
u + 2βσuv

)
In (βσ2

v + σuv) ιn

(βσ2
v + σuv) ι

′
n nσ2

v





 ,

where In is the identity matrix, and ιn is a column vector of ones.

If we decompose the joint multivariate normal density into

f (yt, xt) = f (yt |xt ) · f (xt) ,
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we will arrive at expression (11) on p.246 in Hsiao (1979) where f (yt |xt ) is

termed L1 and f (xt) termed L2. Palm and Nijman (1982) had the same in

expression (4) on p.335.

3.2. Separability of likelihood

The likelihood function L (θ) is separable if it can be factorized as

L (θ) = L1 (θ1) · L2 (θ2) ,

where (θ1,θ2) is a partition of θ.

A separable likelihood function has a computational advantage in that

maximization with respect to θ can be performed through maxθ1
L1 (θ1) and

maxθ2
L2 (θ2) respectively. Moreover, Anderson (1957) discovered that those

two maximizations may have analytic solutions for some (but not all) types

of missing multivariate normal variates.

For the ACD model, Palm and Nijman (1982) pointed out that the L1

and L2 in Hsiao (1979) are not separable. However, there are two useful

special cases in which separability does exist. To find the separable form, we

first factorize the joint density in the other order:

f (yt, xt) = f (yt) · f (xt |yt ) ,

and then we reparameterize the model and construct the partition.

The first case is when zt,i is a scalar variable (so is α), and no restrictions

are imposed on σuv.

Then we have
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f (yt) = φ (yt; zt · A+wt ·B, C · In) ,

f (xt |yt ) = φ (xt; zt ·D +wt · E+ yt · F,G) ,

where φ (y;µ,Σ) is the density of N (µ,Σ) evaluated at y, and

A = αβ,

B = βγ + δ,

C = β2σ2
v + σ2

u + 2βσuv,

D = α−
(
βσ2

v + σuv

) (
β2σ2

v + σ2
u + 2βσuv

)−1
αβ,

E = γ −
(
βσ2

v + σuv

) (
β2σ2

v + σ2
u + 2βσuv

)−1
(βγ + δ) ,

F =
(
βσ2

v + σuv

) (
β2σ2

v + σ2
u + 2βσuv

)−1
,

G = nσ2
v − n

(
βσ2

v + σuv

)2 (
β2σ2

v + σ2
u + 2βσuv

)−1
.

The derivation is straightforward in that f (yt) and f (xt |yt ) are simply

the marginal and conditional density of the multivariate normal distribu-

tion. However, the result implies that the likelihood function have a sepa-

rable form with respect to the new parameters, which can be partitioned as

(A,B, C) , (D,E, F,G).

Furthermore, note that

max
A,B,C

T∑

t=1

ln f (yt)

is equivalent to the ML estimation of the linear regression

yt,i = zt,i · A+wt,i ·B+ ut,i.
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The analytic ML estimator is given by


 Â

B̂


 =

[
T∑

t=1

n∑

i=1

(zt,i,wt,i)
′ (zt,i,wt,i)

]−1 [ T∑

t=1

n∑

i=1

(zt,i,wt,i)
′
yt,i

]
,

Ĉ =
1

nT

T∑

t=1

n∑

i=1

(
yt,i − zt,iÂ−wt,iB̂

)2
.

Similarly,

max
D,E,F,G

T∑

t=1

ln f (xt |yt )

is equivalent to the ML estimation of the linear regression

xt = zt ·D +wt · E+ yt · F + εt,

with the estimator given by




D̂

Ê

F̂


 =

[
T∑

t=1

(zt,wt, yt)
′ (zt,wt, yt)

]−1 [ T∑

t=1

(zt,wt, yt)
′
xt

]
,

Ĝ =
1

T

T∑

t=1

(
xt − ztD̂ −wtÊ− ytF̂

)2
.

Finally, since the ML estimator is invariant to the one-to-one reparam-

eterization, the full-information ML estimator for (α,β,γ, δ,σ2
u, σ

2
v, σuv) can

be solved accordingly. The explicit solution is

12



α = D + AF ,

β =
A

D + AF
,

γ = E+BF ,

δ =
BD − AE

D + AF
,

σ2
u =

A2G+ nCD2

n (D + AF )2
,

σ2
v = CF 2 +

1

n
G,

σuv =
nCDF − AG

n (D + AF )
.

Plugging in the estimated values
(
Â, B̂, Ĉ, D̂, Ê, F̂ , Ĝ

)
, we will obtain

the ML estimator
(
α̂,β̂, γ̂,δ̂,σ̂2

u, σ̂
2
v, σ̂uv

)
.

There is one issue we need to clarify. Note that the covariance matrix

of ut,i, vt,i must be positive definite, which imposes inequality constraints

σ2
u > 0, σ2

v > 0, and σ2
uσ

2
v − σ2

uv > 0. By rewriting σ̂2
u, σ̂

2
v, σ̂

2
uσ̂

2
v − σ̂uv

in terms of
(
Â, B̂, Ĉ, D̂, Ê, F̂ , Ĝ

)
, we can verify the three expressions are

always strictly positive. In fact, the marginal distribution f (yt) and the

conditional distribution f (xt |yt ) are mechanically estimated by LS with

Ĉ > 0, Ĝ > 0 by construction. Therefore, the joint distribution f (yt, xt) is

always well defined with positive definite covariance matrix. Furthermore, a

little algebra reveals the positive definite covariance matrix of yt, xt implies

σ2
uσ

2
v − σ2

uv > 0. In a word, the above procedure guarantees that inequality

constraints are automatically satisfied.

The second case is that zt,i does not exist, and σuv is restricted to zero.
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Then we have

f (yt) = φ (yt;wt ·B, C · In) ,

f (xt |yt ) = φ (xt;wt · E+ yt · F,G) ,

where

B = βγ + δ,

C = β2σ2
v + σ2

u,

E = γ −
(
βσ2

v

) (
β2σ2

v + σ2
u

)−1
(βγ + δ) ,

F =
(
βσ2

v

) (
β2σ2

v + σ2
u

)−1
,

G = nσ2
v − n

(
βσ2

v

)2 (
β2σ2

v + σ2
u

)−1
.

The separability of the likelihood implies B̂, Ĉ coming from the linear

regression yt,i = wt,i ·B+ut,i, and Ê, F̂ , Ĝ coming from xt = wt ·E+yt ·F+εt.

The full-information ML estimator of (β,γ, δ,σ2
u, σ

2
v) can be solved with the

following closed form:

β =
nCF

nCF 2 +G
,

γ = E+BF ,

δ =
BG− nCEF

nCF 2 +G
,

σ2
u =

CG

nCF 2 +G
,

σ2
v = CF 2 +

1

n
G.
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The above two cases deserve some remarks.

First, if the ACD model specification does not belong to the two special

cases, it does not mean the model is not estimable by ML. As long as the

model is identifiable, the likelihood can always be maximized by numerical

procedures. However, separability of the likelihood offers a computational

advantage — it is even less costly than the imputed value two-step estima-

tor. Note that both point estimators are computed from two OLS regressions,

but the standard error adjustment for the two-step estimator is not straight-

forward, while standard errors for the ML estimator can be computed by the

Delta method.

Second, as far as an applied problem is concerned, the two special cases

are not so restrictive as they might seem. Separability of the likelihood can

be achieved if we reasonably redesign the model in use. Case 1 requires

one instrument variable zt,i per each one endogenous aggregated regressor

xt,i. Suppose the goal is to impute the aggregated xt,i, but the endogenity is

not of major concern. By allowing the possibility of non-zero σuv, we gain,

in addition to wt,i, another variable zt,i which lends explanatory power to

impute xt,i. If more than one such additional variables are available, we might

consider extracting the first principal component of them. In that fashion

we retain most of the explanatory power for imputation and meanwhile save

computational costs. Case 2 is suitable when xt,i is not endogenous, but the

only set of regressors wt,i appearing in both Eq. (1) and (2) seems restrictive.

If we have different covariates for the two equations in mind, we can take the

union of the regressors to form wt,i.

Lastly, if zt,i does not exist, and we allow σuv 6= 0, the model is not
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identified, and thus should be avoided.

4. Bayesian estimator

If conditions of the either special cases are satisfied, the analytic ML

estimator is the first choice of estimating the ACD model for the sake of

efficiency and computability. However, we are aware that there are circum-

stances when i) we cannot revise our model catering to the special cases, and

the numerical ML does not perform satisfactorily; ii) we have prior infor-

mation or beliefs on the parameter values or restrictions on the parameters;

or iii) we are primarily estimating other models, meanwhile some data are

aggregated. In these situations, the likelihood might be difficult to formu-

late and maximize numerically. We therefore propose a competing Bayesian

approach to handle an aggregated covariate, where the joint posteriors of

the latent covariate as well as other parameters of uncertainty are simulated

using the Gibbs sampler.

Despite that the frequentist and Bayesian inference treat parameter un-

certainty in fundamentally different ways, the structure of information con-

tained in the sampling distribution is the same. If the priors are diffuse,

the posteriors are mostly learned from the likelihood. Taking a pragmatic

stance, the ML and Bayesian inference is comparable in the sense that the

large-sample posterior mean (or mode) should be close to the ML estimator

and the posterior variance be close to the inverse of the information matrix

of the likelihood function.

The Gibbs sampler cycles through the full conditional posteriors (each

variable or variables block conditional on other variables as well as the data).
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In latent variable models, posterior conditionals for model parameters would

be of standard form if the latent variable were known. The key step is to

specify the posterior conditionals for the latent variable.

Let us first define the following symbols:

ψ = (β, δ′,α′,γ ′)
′
, Xti =


 (xt,i,wt,i) 0

0 (zt,i,wt,i)


,

Yt,i =


 yt,i

xt,i


 , Σ =


 σ2

u σuv

σuv σ2
v


.

For illustration, we specify the following proper priors:

ψ ∼ N
(
µ,V

)
,

Σ−1
∼ Wishart (Ω,ν) .

Conditional on the latent {xt,i}, it is a standard seemingly unrelated

regression (SUR) model. The full posterior conditionals are (refer to the

textbook Koop et al. (2007) for a derivation):

ψ |· ∼ N (Dd,D) ,

Σ−1 |· ∼ Wishart
(
Ω,ν

)
,

where
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D=

(
T∑

t=1

n∑

i=1

X′
tiΣ

−1Xti +V−1

)−1

,

d =
T∑

t=1

n∑

i=1

X′
tiΣ

−1Yt,i +V−1µ,

Ω =

[
Ω−1 +

T∑

t=1

n∑

i=1

(Yt,i −Xtiψ) (Yt,i −Xtiψ)
′

]−1

,

ν = ν + nT.

To derive the full posterior conditional distribution for the latent {xt,i},
we first introduce a proposition on restricted multivariate normal distribu-

tion. Fraser (1951) solved for the general form of n-dimension distribution

subject to k (k < n) linear constraints by transforming the linear space, but

his procedure is descriptive and no explicit distributional forms are given.

However, for the purpose of this paper, we only need to solve for a special

case — n originally uncorrelated normal variates subject to one aggregation

constraint. Explicit solutions are provided in the following proposition (See

the appendix for a proof).

Proposition 1. Let x = (x1, ..., xn)
′ be a multivariate normal random vector

with zero correlations. xi ∼ N (µi, σ
2) , i = 1, ..., n. Conditional on the

aggregation constraint:
∑n

i=1 xi = x where x is fixed, we have

x−n |x ∼ N

[
µ−n +

1

n

(
x−

n∑

i=1

µi

)
ιn−1, σ

2

(
In−1 −

1

n
ιn−1ι

′
n−1

)]
,

where x−n = (x1, ..., xn−1)
′, µ−n =

(
µ1, ..., µn−1

)′
, In−1 is the identity matrix,

and ιn−1 is a vector of ones. Moreover, xn |x−n, x is degenerated, and equals

to x−∑n−1
i=1 xi.
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Marginally, each xi |x is N
[
µi +

1
n
(x−∑n

i=1 µi) ,
(
1− 1

n

)
σ2
]
for i =

1, ..., n. However, only n− 1 of them can form a multivariate normal distri-

bution, with the remaining variable having a degenerated distribution. To

sample from that restricted distribution, we first take draws from f (x−n |x),
and then subtract

∑n−1
i=1 xi from x to obtain xn.

We now derive the posterior conditional distribution of the latent {xt,i} in

the ACD model. The latent covariate data are uncorrelated unconditionally,

but correlated conditional on the aggregation constraint. So for each group

t = 1, ...T , we sample (xt,1, ..., xt,n) using Proposition 1. The distributional

form is provided in the next proposition (See the appendix for a proof).

Proposition 2. For every group t, the full posterior conditional xt |· can be

decomposed as

xt,−n |· ∼ N

[
µt,−n +

1

n

(
xt −

n∑

i=1

µt,i

)
ιn−1, σ

2

(
In−1 −

1

n
ιn−1ι

′
n−1

)]
,

xt,n |·,xt,−n = xt −
n−1∑

i=1

xt,i,

where

xt,−n = (xt,1, ..., xt,n−1)
′ ,

µt,−n =
(
µt,1, ..., µt,n−1

)′
,

µt,i = zt,iα+wt,iγ+
βσ2

v + σuv

β2σ2
v + σ2

u + 2βσuv

[yt,i − zt,iαβ −wt,i (βγ + δ)] ,

σ2 = σ2
v −

(
βσ2

v + σuv

)2 (
β2σ2

v + σ2
u + 2βσuv

)−1
.

The result is conformable with the “Exercise 14.19 (Missing data, 3)” in

Koop et al. (2007), That exercise solves a missing data problem with a uni-

variate regression imputation. The intuition underlying the approach is that
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our knowledge of missing data is updated by two pieces of information: one

from the main regression equation, while the other from the imputation equa-

tion. The ACD proceeds further, since there is a third piece of information

from the aggregation constraint.

The Gibbs sampler cycles through ψ |· , Σ−1 |· and xt |· , t = 1, ..., T . Once

the chain converges, we obtain posterior draws from the joint distribution of

ψ,Σ−1, {xt} conditional on {yt,i} , {xt}.
Note that our prior knowledge can be flexibly incorporated into the

Bayesian model. For instance, if we know that parameters must belong

to some set, we might use truncated priors; if the parameters are subject

to equality or inequality constraints, methods in Geweke (1995) can be em-

ployed; if we take an objective Bayesian stance, we might use non-informative

priors for ψ and Σ−1. In all those cases, sampling procedures for model pa-

rameters may change accordingly, but the essential step to sample the latent

{xt,i} remains the same.

There are also circumstances when some other models are of primary

interest while some data are aggregated. The Bayesian procedure is flexible

enough to handle that complicity. For example, when estimating a Probit

model where {yt,i} is binary, while at the same time one covariate {xt,i} is

aggregated, the standard Gibbs sampler for the Probit model can still be

used, with the insertion of an additional step outlined earlier to sample the

latent covariate.
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5. Least squares estimators

For completeness of estimation strategies, we outline several ways to es-

timate the ACD model on the basis of LS.

The first approach is an all-aggregated-data estimator. Since the param-

eters of primary interest are β and δ, we effectively ignore the imputation

regression Eq. (2), but aggregate yt,i and wt,i as well to regress

yt = xtβ +wtδ + ut.

This estimator is consistent as T → ∞, the asymptotic variance is n times

larger than what it would be attained by regressing Eq. (1) if complete data

were observed.

The second approach is a two-step estimator due to Dagenais (1973),

which is used to address the conventional missing data problems. In the

first step, we use aggregated data {xt, zt,wt} to fit Eq. (2), and then use

disaggregated data
{
zt,i,wt,i

}
to predict (impute) {xt,i} as

x̂t,i = zt,iα̂+wt,iγ̂,

where α̂, γ̂ is the OLS estimator of regressing {zt,wt} on {xt}.
In the second step, with x̂t,i in place of xt,i, we regress Eq. (1). Provided

that the set zt,i is non-empty, the Dagenais estimator is consistent. Oth-

erwise, we have perfect multicollinearity and β is not identified. This is a

difference between data aggregation and general missing data problems.

There is one obvious problem with this estimator — the imputed {xt,i}
cannot sum up to {xt}. Therefore, the information content in the aggregated

data is not fully explored.
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The third is the minimum mean squared error (MSE) two-step estimator

proposed by Hsiao (1979). The estimator is similar to the Dagenais estimator

except that the imputed value is given by

x̂t,i = zt,iα̂+wt,iγ̂ +
1

n

(
xt −

n∑

i=1

zt,iα̂+wt,iγ̂

)
.

Essentially, we spread the imputation discrepancy xt−
∑n

i=1 zt,iα̂+wt,iγ̂

evenly across the fitted value zt,iα̂+wt,iγ̂. By construction, the aggregation

constraint is always satisfied. The rationale of the imputation can be seen in

Proposition 1. The imputed value is the conditional mean of xt,i |xt , hence the

minimum MSE. Furthermore the covariance structure of xt,−n |xt implies the

negative correlation of imputation errors. Therefore, Hsiao (1979) proposed

using GLS in the second step regression. When σuv = 0, the covariance

matrix of the disturbances is block diagonal, with the covariance within a

group (block) given by β2σ2
v

(
In − 1

n
ιnι

′
n

)
+ σ2

uIn.

Although it seems that the minimum MSE estimator makes the best use

of the information and should outperform the other two estimators, in fact

that none of the three LS estimators dominates the others. First, if σuv 6= 0,

the minimum MSE estimator is inconsistent due to endogeneity, while the

Dagenais estimator is still consistent. Second, if imputation is of poor quality

— σ2
v is large, it is possible that Dagenais estimator is less efficient than

the all-aggregated-data estimator. We will demonstrate those claims in the

appendix.

Lastly, since both the Dagenais estimator and the minimum MSE es-

timator replace the true xt,i with the imputed value x̂t,i in Eq. (1), the

conventional OLS standard error underestimates the true variability of the
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estimator. One solution is to analytically derive a modified standard er-

ror by accounting for all uncertainties, and an alternative strategy is to use

multiple imputation. In the latter case, we sample
(
α̂

∗
, γ̂

∗
, σ̂2∗

v

)
from the dis-

tribution of
(
α̂, γ̂, σ̂2

v

)
, and then generate the noise term v∗t,i from N

(
0, σ̂2∗

v

)
.

Therefore, one set of simulated “complete data” for the Dagenais estimator

is constructed as

x̂∗
t,i = zt,iα̂

∗ +wt,iγ̂
∗ + v∗t,i.

Similarly, the simulated “complete data” for the minimum MSE estimator is

x̂∗
t,i = zt,iα̂

∗ +wt,iγ̂
∗ + v∗t,i +

1

n

(
xt −

n∑

i=1

zt,iα̂
∗ +wt,iγ̂

∗ + v∗t,i

)
.

Repeat the process several times, hence several copies of the “complete

data”. For each copy, estimate Eq. (1) by OLS. The final point estimator

is the average of repeated estimates, with the total variance equal to the

variance of repeated estimates (the between variability), plus the average of

the estimated variances (the within variability).

6. Simulation studies

In this section, we use simulated data to evaluate the performance of vari-

ous estimators listed in previous sections. For the ACD model with likelihood

separability, we compare the analytic ML estimator to three LS estimators,

focusing on their relative efficiency. For the model without separability, we

compare the performance of the numerical ML and the Gibbs sampler, with

the focus on the estimator stability.
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For the case with separability, the simulated data experiment is specified

as follows:

n = 12, T = 300,

yt,i = (xt,i,wt,i) · (1, 2, 3, 4)′ + ut,i,

xt,i = (zt,i,wt,i) ·
(
1
2
, 1, 1, 1

)′
+ vt,i,

 ut,i

vt,i




∼ N




 0

0


 ,


 0.5 0.1

0.1 0.1




.

zt,i and three components of wt,i are generated from i.i.d. N
(
0, 1

4

)
.

For each set of simulated data, we obtain the three LS estimators (i.e.

the all-aggregated-data, Dagenais, and minimum MSE estimators) as well as

the analytic ML estimator. Then we repeat the data generating process 500

times, hence 500 copies of estimators.

Summary statistics are reported in Table 1. Each estimation approach

takes three columns. The first column reports the estimator corresponding

to the first simulated data set. The second column shows the average point

estimators in 500 repetitions. The third column lists the standard deviation

of the 500 repetitions, which can be viewed as the Monte Carlo standard

error of the point estimator. If divided by
√
500, it indicates the numerical

standard error (NSE) of the average estimator.

In the current setting, σuv 6= 0, the minimum MSE estimator is incon-

sistent (see Section 5). The point estimator β̂ averages 1.115 with the NSE

0.0038, significantly different from the true value of 1. Similarly, δ̂ is also

biased due to the endogeneity of xt,i.

The simulation results also confirm that both the Dagenais estimator

and ML estimator are consistent. β̂ using the Dagenais imputation averages
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0.998 with the NSE 0.0036, and ML has an average value of 0.996 and NSE

0.0031. Both are close to the true value. However, the Dagenais estimator

neglects the aggregation constraint and information usage is inadequate, so

we observe that the Monte Carlo standard error of Dagenais estimator is

0.081, which is larger than that of the ML estimator which is 0.069.

The presence of the correlation between disturbances across equations

biases the minimum MSE estimator and all-aggregated-data OLS estimator.

However, both are consistent when σuv = 0. Results when σuv is changed

from 0.1 to 0 are shown in Table 2. On average, β̂ for the all-aggregated-data,

Dagenais, and minimum MSE estimators are 1.001, 0.997, 0.997 respectively.

However, the standard errors are 0.105, 0.084, 0.076 respectively. The mini-

mum MSE estimator incorporates the information content of both zt,iα̂ and

xt, and therefore outperforms the other two. Also note that the likelihood is

not separable when σuv = 0, if we still use analytic ML we have to estimate

σuv as well, which is a source of efficiency loss.
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OLS Dagenais Minimum MSE ML

True 1st mean std 1st mean std 1st mean std 1st mean std

β 1 1.576 1.614 0.099 1.008 0.998 0.081 1.133 1.115 0.085 0.983 0.996 0.069

δ1 2 1.425 1.386 0.123 1.992 1.999 0.091 1.866 1.882 0.095 2.019 2.003 0.077

δ2 3 2.312 2.391 0.124 2.968 3.004 0.091 2.842 2.887 0.096 2.970 3.007 0.076

δ3 4 3.421 3.392 0.130 3.921 4.004 0.091 3.786 3.887 0.096 3.985 4.007 0.078

σ2
u 0.5 0.412 0.434 0.036 0.412 0.434 0.036 0.412 0.434 0.036 0.497 0.500 0.026

α1 0.5 0.483 0.502 0.036 0.483 0.502 0.036 0.495 0.502 0.028

γ1 1 1.011 1.003 0.036 1.011 1.003 0.036 1.010 1.002 0.027

γ2 1 0.993 1.000 0.037 0.993 1.000 0.037 1.017 0.999 0.027

γ3 1 1.075 0.998 0.038 1.075 0.998 0.038 1.037 0.997 0.027

σ2
v 0.1 0.105 0.099 0.008 0.105 0.099 0.008 0.108 0.100 0.007

σuv 0.1 0.153 0.135 0.026 0.124 0.110 0.024 0.115 0.101 0.010

Table 1: Monte Carlo comparsion of LS and ML estimators, σuv 6= 0

The results are based on 500 simulations. Each estimation approach takes three columns. The first column reports the estimator for the first

simulated data set. The second and third column show the average and standard deviation of the 500 repetitions. For the aggregated data OLS

estimator, only Eq. (1) is estimated. For the Dagenais and minimum MSE estimator, Eq. (2) is regressed identically, so the numbers are the same.

The estimated σuv is obtained from the identity: V ar (βvt,i + ut,i) = β2σ2
v + σ2

u + 2βσuv , where V ar (βvt,i + ut,i) is estimated from the regression

of {yt,i} on {zt,i,wt,i}, σ
2
v is estimated from regressing {xt} on {zt,wt}, and σ2

u from regressing {yt} on {xt,wt}. In the current setting with

σuv = 0.1, only the Dagenais and ML estimators are consistent.
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OLS Dagenais Minimum MSE ML

True 1st mean std 1st mean std 1st mean std 1st mean std

β 1 1.034 1.001 0.105 1.001 0.997 0.084 1.015 0.997 0.076 0.985 0.997 0.081

δ1 2 1.972 2.001 0.130 1.994 2.000 0.093 1.980 2.000 0.086 2.012 2.002 0.090

δ2 3 2.853 3.003 0.128 2.957 3.005 0.093 2.943 3.005 0.086 2.960 3.006 0.090

δ3 4 4.030 4.002 0.137 3.931 4.006 0.093 3.917 4.006 0.087 3.975 4.006 0.091

σ2
u 0.5 0.468 0.495 0.041 0.468 0.495 0.041 0.468 0.495 0.041 0.486 0.499 0.025

α1 0.5 0.490 0.503 0.037 0.490 0.503 0.037 0.498 0.503 0.035

γ1 1 1.011 1.003 0.037 1.011 1.003 0.037 1.009 1.002 0.034

γ2 1 1.017 0.999 0.037 1.017 0.999 0.037 1.031 0.998 0.034

γ3 1 1.068 0.997 0.038 1.068 0.997 0.038 1.041 0.997 0.035

σ2
v 0.1 0.103 0.099 0.008 0.103 0.099 0.008 0.104 0.099 0.008

σuv 0 0.025 0.004 0.022 0.023 0.004 0.021 0.017 0.002 0.014

Table 2: Monte Carlo comparsion of LS and ML estimators, σuv = 0

The results are based on 500 simulations. Each estimation approach takes three columns. The first column reports the estimator for the first

simulated data set. The second and third column show the average and standard deviation of the 500 repetitions. For the aggregated data OLS

estimator, only Eq. (1) is estimated. For the Dagenais and minimum MSE estimator, Eq. (2) is regressed identically, so the numbers are the same.

The estimated σuv is obtained from the identity: V ar (βvt,i + ut,i) = β2σ2
v + σ2

u + 2βσuv , where V ar (βvt,i + ut,i) is estimated from the regression

of {yt,i} on {zt,i,wt,i}, σ
2
v is estimated from regressing {xt} on {zt,wt}, and σ2

u from regressing {yt} on {xt,wt}. In the current setting with

σuv = 0, all estimators are consistent.
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When the likelihood is not separable, we compare the performance of the

Newton-type numerical ML and Bayesian estimator using the Gibbs sampler.

We consider a model without separability by adding one covariate in zt,i.

xt,i = (zt,i,wt,i) · (1, 1, 1, 1, 1)′ + vt,i. Other settings remain the same.

Though the traditional and Bayesian inference differ fundamentally on the

parameter uncertainty, both of the them fully use the sampling information.

If the priors are rather diffuse, Bayesian inference should also rely on the full-

information likelihood function, and thus in large samples the posterior mean

(or mode) should be close to the ML estimator and the posterior standard

deviation close to the ML standard error. Here the major concern is to

determine which numerical procedure can lead to ideal results in terms of

speed and stability.

We specify the prior as ψ ∼ N (0, 100 · I9), Σ−1
∼ Wishart (I2, 1), which

contains little information compared with the likelihood. The Gibbs sampler

is run for 20000 draws with the first half of draws burned in. The convergence

and mixing diagnostics reveal that the chain has converged. We treat the

posterior mean as the Bayesian point estimator.

We first generate a simulated dataset and set the initial values by adding

a N (0, 1) disturbance on each true parameter value. If Σ is not positive

definite, another disturbance draw is taken. Then the generated data and

initial values are applied to both ML and the Gibbs sampler. Finally, the

process is repeated for 500 times.

As is known, numerical ML can be sensitive to the initial values. In the

500 repetitions of simulated datasets, the numerical ML crashes 14 times

and yields another 8 estimates departing far from the true values. Since
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Numeric ML Bayesian

True 1st mean std 1st mean std

β 1 1.023 1.008 0.060 1.025 1.004 0.024

δ1 2 1.964 1.993 0.075 1.963 1.998 0.042

δ2 3 2.997 2.995 0.081 2.997 2.997 0.045

δ3 4 3.973 3.991 0.077 3.971 3.995 0.041

σ2
u 0.5 0.493 0.506 0.067 0.495 0.500 0.021

α1 1 1.013 0.997 0.041 1.013 0.999 0.026

α2 1 0.999 0.995 0.040 0.998 0.997 0.025

γ1 1 0.978 1.000 0.030 0.977 0.999 0.025

γ2 1 0.987 0.999 0.038 0.985 1.000 0.026

γ3 1 0.968 1.001 0.039 0.967 1.001 0.028

σ2
v 0.1 0.095 0.101 0.017 0.099 0.104 0.007

σuv 0.1 0.099 0.096 0.039 0.097 0.098 0.008

Table 3: Monte Carlo comparison of ML and Bayesian estimators

The results are based on 500 simulated data sets. The summary statistics are

calculated with the apparent outliers (β̂ < 0 or β̂ > 2) removed. Each estimation

approach takes three columns. The first column reports the estimator

corresponding to the first simulated data set. The second column shows the

average of the 500 repetitions. The third column lists the standard deviation of

the 500 repetitions.
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Figure 1: Histogram of β̂ in 500 repetitions. The upper left panel shows the ML estimation,

and the upper right panel is the Bayesian estimation. The bottom left histogram truncate

β̂ to (0.93, 1.07) for ML, and bottom right for Bayesian estimator.
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the estimator standard deviation is no more than 0.1 and the true value

of β is one, we define abnormality to be β̂ ≤ 0 or β̂ ≥ 2. To visualize the

departing pattern of abnormal estimators, Figure 1 presents the histogram of

β̂ in the 500 repetitions. In the case of crash, β̂ = 0 is assigned for histogram

presentation purpose. Compared with the numerical ML, the Gibbs sampler

is more stable. It does not crash, and only yields negative β̂ twice. The

abnormal estimators in the Gibbs sampler are close to each other. It is likely

the chain gets stuck in a local high density region and cannot transverse to

the region where the true parameters are located.

With the abnormal estimators removed, the summary statistics are pre-

sented in Tables 3. The average of the ML and Bayesian estimates are rea-

sonably close to each other. Estimates of β̂ average 1.008 for ML and 1.004

for Bayesian. But the standard deviation of the ML estimates is 0.060, larger

than that of the Bayesian 0.024. Though the role of the prior distribution

and finite draws of the Gibbs sampler may partially explain the smaller vari-

ance of the estimator, we do not believe it is the main reason. The numerical

issues should be taken into account. With obvious outliers removed, all of the

Bayesian estimates lie in (0.93, 1.07) which is about plus/minus 3 standard

deviations of the average point estimator. However, we observe several ML

estimates with values such as 0.88, 1.22, 1.67. It is not clear it is caused by

non-convergence of the optimizer or just caused by the sampling variation.

Those values certainly exert a non-negligible impact on the calculation of

the sample mean and standard deviation of the estimators. If we truncate

the ML β̂ in the region (0.93, 1.07) as well, the mean is 1.003 with standard

deviation 0.025, which is closer to the inference under the Bayesian scheme.
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Although the numerical ML is not as stable as the Gibbs sampler, it does

run faster. The average ML estimation time for one set of simulated data

is about 1.04 seconds, while the 20000 draws with Gibbs sampler takes an

average of 37.9 seconds on an ordinary desktop computer ( 2.5GHz CPU /

3GB RAM / MATLAB 2009b). Nevertheless, the computation costs for both

methods are affordable.

7. Extensions

In an empirical context, the problems we have encountered might be more

complicated than the baseline ACD model. In this section, we outline several

extensions to the model and ways to handle them.

7.1. Aggregation of several variables

If more than one covariate is aggregated, the model can be extended as

yt,i = x1,t,iβ1 + ...xk,t,iβk +wt,iδ + ut,i

x1t,i = zt,iα1 +wt,iγ1+v1,t,i

...

xkt,i = zt,iαk +wt,iγk+vk,t,i

where x1,t =
∑n

i=1 x1,t,i, . . ., xk,t =
∑n

i=1 xk,t,i, (ut,i, v1,t,i, ..., vk,t,i) ∼ N (0,Σ).

For ML, we maximize the joint density of observable variables:

lnL (θ) =
T∑

t=1

ln f (yt,1, ..., yt,n, x1,t, ..., xk,t) .
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The likelihood function is separable in two cases.

The first case is that zt,i contains exactly k variables and no restrictions

are put on Σ. The likelihood can be factorized as

f (yt, x1,t, ..., xk,t) = f (yt) · f (x1,t |yt ) · ... · f (xk,t |yt, x1,t, ..., xk−1,t ) .

The analytic ML estimator is obtained from the following k regressions:

Regress yt,i on zt,i, wt,i.

Regress x1,t on zt, wt, yt.

Regress x2,t on zt, wt, yt, x1,t.

... ...

Regress xk,t on zt, wt, yt, x1,t,..., xk−1,t.

The second case is that zt,i contains J variables (J < k), and only J

variables may possibly be endogneity regressors in the main regression. In

that case, some of the covariance terms in Σ are restricted to zero. To be

exact, suppose we believe x1t,i is uncorrelated with ut,i, then the first row and

first column of Σ, except for the diagonal element, are restricted to zero. The

reparameterized estimator is obtained from the same regressions as above,

but zt,i and zt have reduced dimensions.

In words, separability requires that one instrument corresponds to one

potentially endogenous variable.

7.2. Unbalanced aggregation

In some applications, group sizes are not equal so that n needs to be

written as nt.
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Compared with the ML solutions outlined in Section 3, the separability

conditions do not change. The expression of f (yt) remains the same, so does

the first regression of yt,i on zt,i, wt,i. However, the variance of xt |yt changes:

f (xt |yt ) = φ (xt; zt ·D +wt · E+ yt · F, ntG) ,

where ntG = ntσ
2
v − nt (βσ

2
v + σuv)

2 (
β2σ2

v + σ2
u + 2βσuv

)−1
. Other compo-

nents remain the same as before. It implies that

max
D,E,F,G

T∑

t=1

ln f (xt |yt )

can be obtained by weighed least squares of xt on zt,wt, yt with the weights

proportional to nt.

Procedures of the Bayesian simulator are largely unchanged in the un-

balanced aggregation. Full posterior conditionals of ψ and Σ−1 remain the

same, and we use nt instead of n when groupwise taking draws of {xt,i}.

7.3. Partial aggregation

In applied problems, data aggregation may take on another degree of

complexity. For instance, in Example 2, suppose we do find county-level pet

population for some states, but not for the rest. How do we make the best

use of the incomplete county-level data instead of regressing merely with

aggregated state-level data?

In general, the partial aggregation problem is raised as follows: suppose

group t has nt members, among which the first kt are observable and the rest

are missing. In addition, the aggregated value xt =
∑n

i=1 xt,i is known. The

data are generated according to Eq. (1) and (2).
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To address this problem, group t can be divided into kt+1 smaller groups.

The first kt groups are a singleton with known xt,i, and the last group con-

tains nt − kt members, whose latent values sum up to xt −
∑kt

i=1 xt,i. Then

the problem is equivalent to the unbalanced aggregation introduced in the

previous subsection, and both ML and Bayesian estimators can be imple-

mented.

8. Conclusions

Hsiao’s model offers a simple framework for addressing data aggregation

problems. This paper explores several estimation strategies for this model,

showing that the solutions do not always require numerical tools proposed

by Palm and Nijman (1982).

The first is a full-information ML estimation. We find that the likelihood

function has a separability property in two useful special cases. As long as

one instrument corresponds to one endogenous variable, the likelihood can

be maximized analytically, with the ML estimator obtained by two linear re-

gressions. For models without the separable likelihood, numerical procedures

can also be used, but initial values must be carefully chosen.

The second is the Bayesian simulator implemented by the Gibbs sampler,

the advantage of which is two-fold. First, it is more stable. Our Monte Carlo

study shows that the Bayesian estimator is less affected by the initial values.

Second, it is more flexible. It places no restrictions on the covariates in the

imputation regression, and the sampling procedure of latent disaggregated

covariates can be easily inserted into researchers’ models.
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The third is a class of LS estimators. The Dagenais two-step estimator

is primarily used for imputing missing data, but it is suitable for aggregated

covariate data as well. The minimum MSE estimator is based on the regres-

sion imputation, but also uses the aggregation constraint. In the absence

of correlation of disturbances among equations, the latter makes better use

of information and yields a more precise imputation. Otherwise, the latter

is inconsistent, but the former is still consistent. On top of that, the all-

aggregated-data OLS method offers the simplest way to estimate the model,

and is useful when the imputation is of poor quality. Though conceptually LS

is easier to implement than ML and the Gibbs sampler, it is not as efficient

in general and thus not recommended unless we cast doubt on the normality

assumption.

Appendix A. Proof of Proposition 1

Let xi = µi + εi, where εi ∼ N (0, σ2).

x =
∑n

i=1 µi + (ε1 + ...+ εn).

Note that (ε1, ..., εn) is n dimensional multivariate normal, and so are the

n mean-adjusted linear combinations (x1, ..., xn−1, x). Then


 x−n

x




∼ N




 µ−n

∑n

i=1 µi


 ,


 σ2In−1 σ2ιn−1

σ2ι′n−1 nσ2




 .

It follows that

x−n |x ∼ N

[
µ−n +

1

n

(
x−

n∑

i=1

µi

)
ιn−1, σ

2

(
In−1 −

1

n
ιn−1ι

′
n−1

)]
.
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Lastly, conditional on x−n, x, we have xn = x−∑n−1
i=1 xi.

Appendix B. Proof of Proposition 2

Plugging Eq. (2) into Eq. (1), we have


 yt,i

xt,i




∼ N






 zt,iαβ +wt,i (βγ + δ)

zt,iα+wt,iγ


 ,



(
β2σ2

v + σ2
u + 2βσuv

)
βσ2

v + σuv

βσ2
v + σuv σ2

v





 .

It follows that

xt,i |yt,i ∼ N
(
µt,i, σ

2
)
,

where

µt,i = zt,iα+wt,iγ+
βσ2

v + σuv

β2σ2
v + σ2

u + 2βσuv

[yt,i − zt,iαβ −wt,i (βγ + δ)] ,

σ2 = σ2
v −

(
βσ2

v + σuv

)2 (
β2σ2

v + σ2
u + 2βσuv

)−1
.

In the presence of the aggregation constraint, we apply Proposition 1. The

result follows.

An alternative proof proceeds by deriving the joint distribution of
(
y′
t,x

′
t,−n, xt

)′
,

which is a 2n dimensional linear combination of (vt,1, ..., vt,n, ut,1, ..., ut,n) and

thus still multivariate normal. Therefore, the conditional normal distribution

of xt,−n |yt, xt can be found after some algebra. The result is the same.
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Appendix C. Comparison of least squares estimators

First, we show that if σuv 6= 0, the minimum MSE estimator is inconsis-

tent. To see this, we only need to consider the simplest version of the model.

Let n = 2; α is a known scalar; regressors wt,i do not exist. The model

becomes:

yt,i = xt,iβ + ut,i,

xt,i = zt,iα + vt,i,

xt = xt,1 + xt,2.

For the minimum MSE estimator, the imputed value is

x̂t,i = zt,iα +
1

2
[xt − (zt,1α + zt,2α)]

= zt,iα +
1

2
(vt,1 + vt,2) .

In the second step, we regress

yt,i = x̂t,iβ + εt,i,

where εt,i = ut,i + β
[
vt,i − 1

2
(vt,1 + vt,2)

]
.

The endogenity of x̂t,i to εt,i does not come from the presence of vt,1, vt,2

in both expressions, but merely from the correlation between ut,i and vt,i. To

see this, define ξ0 = 1
2
(vt,1 + vt,2), and ξi = vt,i − 1

2
(vt,1 + vt,2), i = 1, 2. By

change of variable, the joint distribution of ξ0 and ξ1 is given by
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f (ξ0, ξ1) = φ
(
ξ0 + ξ1; 0, σ

2
v

)
· φ
(
ξ0 − ξ1; 0, σ

2
v

)
· |−2|

∝ exp
[
−σ−2

v

(
ξ20 + ξ21

)]
.

So ξ0 and ξ1 are independent and each distributed as N
(
0, 1

2
σ2
v

)
. Similarly,

ξ0 and ξ2 are independent.

However, as long as σuv 6= 0, we have cov (x̂t,i, εt,i) = 1
2
σuv, hence the

endogenous regressor and inconsistent estimator, no matter whether OLS or

GLS is used.

In fact, the OLS version of the estimator

β̂ =

(
T∑

t=1

n∑

i=1

x̂2
t,i

)−1( T∑

t=1

n∑

i=1

x̂t,iyt,i

)

p−→ β +
1

2
σuv

[
α2Qzz +

1

2
σ2
v

]−1

,

where Qzz = E
(
z2t,i
)
.

On the other hand, the Dagenais estimator is still consistent. The im-

puted value is x̃t,i = zt,iα. Then we regress

yt,i = x̃t,iβ + ε̃t,i,

where ε̃t,i = ut,i + βvt,i, so that cov (x̃t,i, ε̃t,i) = 0, even if σuv 6= 0.

The estimator
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β̂ =

(
T∑

t=1

n∑

i=1

x̃2
t,i

)−1( T∑

t=1

n∑

i=1

x̃t,iyt,i

)

= β +

[
T∑

t=1

n∑

i=1

(zt,iα)
2

]−1

·
[

T∑

t=1

n∑

i=1

zt,iα (ut,i + βvt,i)

]
,

so that β̂
p→ β and

√
nT
(
β̂ − β

)
d→ N

[
0,
(
α2Qzz

)−1 (
β2σ2

v + σ2
u + 2βσuv

)]
.

Clearly, the asymptotic variance of the Dagenais estimator is increasing

with σ2
v. For large enough σ2

v, it will exceed the variance of all-aggregated-

data estimator, which does not use imputation at all. Therefore, if impu-

tation is of poor quality, there is a possibility that the all-aggregated-data

estimator is preferred to the Dagenais estimator.
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