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This is a comment on Mitchell and Wallis (2011) which in turn is a critical reaction to Gneiting

et al. (2007). The comment discusses the notion of forecast calibration, the advantage of using scoring

rules, the “sharpness” principle and a general approach to testing calibration. The aim is to show

how a more general and explicitly stated framework can provide further insights into the theory and

practice of of probabilistic forecasting.

1 What is “forecast calibration”?

Both Gneiting et al. (2007) (hereafter GBR) and Mitchell and Wallis (2011) (hereafter MW) examine

various important aspects of calibration, but they do not propose a consistent framework and do not

give sufficiently universal definitions of “calibration” and the “ideal forecast”. This results in vague

argumentation which can lead to confusion. So I start by clearing up the notion of calibration.

The general idea is that a well-calibrated probabilistic forecast must coincide with a suitable con-

ditional distribution. The classical definition of calibration for dichotomous 0/1 outcomes requires

that among the cases in which a forecast places probability π on the event X = 1 this event must be

observed with probability π: P(X = 1|π) = π .1 In other words, predicted frequencies must coincide

with actual frequencies conditionally on the information contained in the forecast itself. More gener-

ally, let F be a probabilistic forecast of X stated in the form of a cumulative distribution function. It is

calibrated if

F(x) = G(x|F),

where G(x|F) is the conditional cumulative distribution function of X given F . I call this type of

forecast calibration auto-calibration.

Now suppose that forecasting is based on some available information Ω. Then F is a function of

Ω: F = F(·;Ω). Conditioning on Ω allows to strengthen the definition of calibration. The forecast

F = F(·;Ω) is calibrated with respect to Ω if2

F(x) = G(x|Ω).

Such a forecast can be called the ideal one (of all the forecasts based on Ω).

1E.g. Lichtenstein et al. (1982), p. 307: “Formally, a judge is calibrated if, over the long run, for all propositions

assigned a given probability, the proportion true equals the probability assigned.”
2A formal variant of this definition was proposed independently in Gneiting and Ranjan (2011). It is also similar to the

definition of interval forecast efficiency with respect to the information set in Christoffersen (1998).
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Obviously, if a forecast is calibrated with respect to Ω then it is auto-calibrated while the converse

is not true in general. The conditional cumulative distribution function G(x|Ω) need not coincide with

G(x|F), because a non-ideal forecast utilize available information only partially.

Note that these definitions of calibration are made in terms of theoretical moments. GBR give

their definitions of calibration in terms of empirical moments (for a potentially infinite sequence of

forecasts).

2 Can independence and uniformity of PIT values be called com-

plete calibration?

One point of MW’s criticism is that GBR are concerned with forecasting of white noise instead of

more relevant forecasting of dependent time series. However, what is really important is that GBR do

not pay due attention to the conditional nature of calibration.3 MW define “complete calibration” as

independence and uniformity of the probability integral transform (PIT) values of a time series. In-

deed, it is very true that the available history of a time series (including the PIT values) is an important

information for judging calibration of forecasts of this series, but in general this view is unnecessarily

narrow. The notion of forecast calibration is not about time series properties, it is about conditioning

on forecasting information.

We first need to connect the definition of calibration given above with PIT. If the conditional dis-

tribution of X given Ω is absolutely continuous then a probabilistic forecast F = F(·;Ω) is calibrated

with respect to Ω if and only if

P|Ω ∼U [0,1],

where P = F(X |Ω) is PIT of X based on the forecast F .

Now consider a sequence Ft(x) of probabilistic forecasts of a univariate time series Xt based on

its history Ωt−1 = X1, . . . ,Xt−1, t = 1,2, . . .. (For t = 1 the forecast is unconditional). Define the

corresponding PIT values as follows:

Pt = Ft(Xt).

This provides for each t a one-to-one transformation between P1, . . . ,Pt and Ωt = X1, . . . ,Xt whenever

all the distributions are absolutely continuous. The series of forecasts is well-calibrated if and only if

Pt |Ωt−1 ∼U [0,1]

or, equivalently,

Pt |P1, . . . ,Pt−1 ∼U [0,1].

MW concentrate on an equivalent property: the series of forecasts is well-calibrated if and only if

all Pt are distributed as U [0,1] and are jointly independent.4 The problem with the PIT-based definition

is that it is insufficiently generic; it does not generalize to other forecasting situations. Using MW’s

words, it is important “to pay attention to the information set on which a forecast is based, its content

and its timing”.

For example, independence and uniformity of a sequence of PIT values is not sufficient for cal-

ibration in the case when forecasts are based on information other than the history of Xt itself. In

3Clements and Taylor (2003), p. 446: “Evaluating probability forecasts by calibration ignores the conditional aspect”.
4Under assumption of calibration with respect to the past history what we have here is the Rosenblatt’s transformation

Pt = G(Xt |Ωt−1) (Rosenblatt (1952)).
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particular, consider predicting Xt from X1, . . . ,Xt−1 and the history of some other series Z1, . . . ,Zt−1.

Then calibration with respect to Ωt−1 = X1, . . . ,Xt−1,Z1, . . . ,Zt−1 is equivalent to

Pt |Ωt−1 ∼U [0,1],

where Pt = Ft(Xt). For a sequence of forecasts Ft these conditions imply uniformity and indepen-

dence of Pt , but in general uniformity and independence of Pt is a weaker condition. The fact is fully

recognized by MW, but they do not adjust their definition of “complete calibration” accordingly.

Another illustration of insufficiency of independence and uniformity of PIT values is the case of the

unfocused forecast in the AR(2) example below. In that example forecasting information set includes

not only the previous history of the series, but also random noise. Therefore there is no one-to-one

correspondence between the previous history and the previous PIT values.

Further, independence of PIT values is not necessary for calibration in a situation of multi-step

forecasting. An h-step-ahead forecast of Xt would be based only on X1, . . .Xt−h and the PIT series

corresponding to the ideal forecast would in general be dependent.

3 Testing vs. scoring rules

Suppose that we need to choose between several probabilistic forecasts. When can we state that one

forecast is better than another? This is a situation of decision making under risk. Let u(x,a) be a

utility function depending on an outcome x and an action a. Suppose a(F) is the best action given a

probabilistic forecast F , that is,

a(F) ∈ argmax
a

E[u(X ,a)] for X ∼ F .

One can say that F1 is (non-strictly) better than F2 if it provides at least as large expected utility:

Eu(X ,a(F1))≥ Eu(X ,a(F2)).

This is closely connected with the notion of a proper scoring rule (see Gneiting and Raftery (2007)

for a comprehensive review). Define a scoring rule S as the utility of outcome x under action a(F):

S(F,x) = u(x,a(F)).

This utility-based scoring rule would be a proper one since

S(F1,F1) = E[u(X ,a(F1)]≥ E[u(X ,a(F2)] = S(F2,F1) for X ∼ F1.

Here

S(F2,F1) = E[S(F2,X)] for X ∼ F1

is the expected score of forecast F2 under the assumption that X is distributed as F1.

Because of the link with utility maximization it is logical to base the theory of evaluating proba-

bilistic forecasts on proper scoring rules. Then the choice between competing probabilistic forecasts

is made on the basis of their expected scores. Expected scores can be estimated by the corresponding

empirical average scores. Thus, one can simply select the forecast with the highest average score ac-

cording to a suitable proper scoring rule. For a fixed set of forecasting methods there is no convincing

reason to apply statistical testing.
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MW argue that non-ideal forecasts can be distinguished from the ideal one by means of testing

forecasting models against each other by equal predictive accuracy tests. However, proper scoring

rules are no less suitable for the task of detecting the ideal forecast. It can be shown that the well-

calibrated forecast is characterized by the maximal expected score for any proper scoring rule.5 In-

deed, suppose that G = G(·|Ω) is such a forecast and F is some other forecast based on Ω. Then

E[S(G,X)|Ω] = S(G,G)≥ S(F,G) = E[S(F,X)|Ω]

and

E[S(G,X)]≥ E[S(F,X)].

Moreover, under appropriate additional conditions the inequality is strict here if the scoring rule S is

strictly proper. This gives a reason for calling a forecast coinciding with the conditional distribution

G(·|Ω) ideal.

The usefulness of using scoring rules for detecting the ideal forecast is illustrated by Table IV in

MW’s paper. They use the logarithmic scoring rule S(F,x) = log f (x), where f (x) = F ′(x) is the prob-

ability density function corresponding to the c.d.f. F . The logarithmic rule is known to be (strictly)

proper. See also Table 5 in GBR’s paper which compare the average values of the logarithmic score

and the continuous ranked probability score (another useful strictly proper scoring rule) of competing

forecasts.

Scoring rules are straightforward and easy to deal with. Testing of one forecasting method against

another is a less trivial operation while rarely providing much beyond the comparison of average

scores. (An example of an understandable use is testing whether the average score of the best method

is significantly greater than average scores of rival methods).

Of course, statistical testing is not something redundant in the context of probabilistic forecasting.

Most important, various kinds of diagnostic tests can help to develop a forecasting method which is

well enough calibrated by showing directions in which methods can be improved. However, discover-

ing mis-calibration by diagnostic testing is not always a straightforward task. The following example

is somewhat artificial and is not related to real forecasting problems, but it is suggestive.

Consider a series Xt ∼ N(0,1), t = 1,2, . . .. To obtain Xt from Xt−1 (1) transform Xt to U [0,1],
(2) transform U [0,1] to U [0,1] by a highly nonlinear “tangling” transformation, (3) transform U [0,1]
back to N(0,1), and finally (4) add an independent normal error and scale to unit variance. For

example,

µt = Φ
−1({K |2Φ(Xt−1)−1|})

√

1−λ ,

Xt |X1, . . . ,Xt−1 ∼ N(µt ,λ ).

Here Φ(·) is the standard normal c.d.f., {·} is the fractional part function, K is a large enough integer

and λ ∈ (0,1). One can see that Xt is a white noise series and is exactly distributed as N(0,1) for each

t whenever X1 ∼ N(0,1) (though it is dependent and thus could not be strictly called a Gaussian white

noise series). For large values of K ordinary PIT-based tests would not detect any dependence. Con-

sequently, on the basis of PIT one would choose N(0,1) as a good forecasting distribution. However,

N(µt ,λ ) is a dramatically better forecasting distribution for a small λ .

It can be concluded from the example that sometimes the direction of mis-calibration is not ob-

vious. Popular PIT-based diagnostic tests can fail to detect departures from perfect calibration. At

the same time comparison of forecasts by their average scores with proper scoring rules is feasible

5Diebold et al. (1998), p. 866: “. . . If a forecast coincides with the true data generating process, then it will be preferred

by all forecast users, regardless of loss function.” See also Granger and Pesaran (2000).
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and works as expected irrespective of the kind of mis-calibration. (A reservation, however, should

be made here. If there exists an alternative forecasting method then it can be utilized for the task of

testing calibration. Such a test is discussed below.)

Actually MW’s paper is not an exception in its attention to statistical testing of forecasting models.

A “test-test-test” bias is typical for econometric forecasting literature in general. Cf. Corradi and

Swanson (2006) which is a survey of density forecast evaluation almost entirely devoted to various

test procedures.

4 Maximizing sharpness subject to calibration

MW are critical of the conjecture that the problem of finding a good forecast can be viewed as the

problem of maximizing sharpness subject to calibration which was stated by GBR. However, it can

be shown that the conjecture is actually true provided that a vague “calibration” notion is replaced by

auto-calibration introduced above.

If F is an auto-calibrated forecast (calibrated with respect to itself), that is, F = G(·|F) and S is

some scoring rule then

E[S(F,X)|F ] = S(F,F).

Taking unconditional expectations of both sides gives

E[S(F,X)] = E[S(F,F)].

For a proper scoring rule S(F,F) can be viewed as a measure of sharpness6 of a probabilistic forecast

F . Hence the expected score for an auto-calibrated forecast equals its expected sharpness. This means

that auto-calibrated forecasts can be compared on the basis of the levels of their expected sharpness.

The ideal forecast is the sharpest of all auto-calibrated forecasts, because it is characterized by the

maximal expected score.

This fact is seen from the classical partitioning of the Brier score for dichotomous outcomes into

the sum of sharpness and calibration (“validity”) terms developed in Sanders (1963). For an auto-

calibrated forecast the calibration term is zero. Thus, maximizing the expected sharpness among auto-

calibrated forecasts is equivalent to maximizing the expected score of a proper scoring rule. Bröcker

(2009) extended the decomposition to the case of an arbitrary discrete distribution and an arbitrary

proper scoring rule. It can further be shown that the same decomposition holds even more generally

and applies also to continuous distributions.

Given some proper scoring rule S define the divergence7 between distributions F1 and F2 as

d(F2,F1) = S(F1,F1)−S(F2,F1)

and denote GF = G(·|F). Then for the expected score we have E[S(F,X)] = E[E[S(F,X)|F ]] =
E[S(F,GF)] which can be decomposed as follows:

E[S(F,X)] = E[S(GF ,GF)]−E[d(F,GF)].

6For a proper scoring rule S(F,F) is a convex function of F . Thus, according to DeGroot (1962) a concave function

−S(F,F) can be viewed as a measure of uncertainty of a probability distribution F . For the logarithmic scoring rule

−S(F,F) is the familiar Shannon’s entropy measure.
7The divergence d(F2,F1) is non-negative as long as S is proper and it is zero when the two distributions coincide. For

the logarithmic scoring rule d is the Kullback–Leibler divergence.
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The first term can be interpreted as the expected sharpness of GF , which is the “recalibrated” version

of forecast F , while the second term relates to the divergence between F and GF (that is, it is a measure

of mis-calibration of F with respect to information contained in itself).

Although the sharpness conjecture proves to be correct, MW are right in pointing out that the cri-

terion of sharpness per se seems somewhat excessive. First, obviously a proper scoring rule already

combines sharpness and calibration in a balanced manner. Second, the principle of maximizing sharp-

ness subject to calibration is difficult to apply in practice, because achieving perfect auto-calibration

of a forecast can prove to be very difficult. However, the sharpness principle provides a useful insight

into the essence of probabilistic forecasting.

5 A broader approach to calibration testing

MW rightly note that calibration can be evaluated by testing orthogonality conditions analogous to

those known from the theory of point forecasting. It is important that their idea can be further gener-

alized, which allows to design various kinds of diagnostic tests for forecast calibration. Many of the

tests and criteria of calibration/efficiency developed in the literature can be shown to fall within this

approach.

Consider a function r = r(x,F) of an outcome x and a c.d.f. F . Define

ρ = ρ(F) = E[r(X ,F)] for X ∼ F.

Auto-calibration of a probabilistic forecast F is equivalent to

E[(r(X ,F)−ρ(F))] = 0

for any r. That is, ρ must be an unbiased point forecast for r. The perfect calibration of F with respect

to Ω is a stronger property and requires conditional unbiasedness:

E[(r(X ,F)−ρ(F))|Ω] = 0.

This conditional unbiasedness is equivalent to the following unconditional orthogonality:

E[(r(X ,F)−ρ(F))q(Ω)] = 0

for any q which is a function of available information Ω. That is, ρ must be an unbiased point forecast

for r and the forecast error must be uncorrelated with any function q of the available information Ω.

Example 1. For absolutely continuous case when

r = 1{F(x)≤ p}, ρ = p (1)

for p ∈ [0,1], we obtain an extended version of the “probabilistic calibration” of GBR. The orthogo-

nality condition E[(r− p)q] = 0 for each p ∈ [0,1] and any function q = q(Ω) is another equivalent

characterization of the perfect calibration with respect to Ω. Note that unlike the formulation by

GBR this one does not make direct use of the ideal forecast G(·;Ω) and thus is more suitable for the

construction of tests.

Example 2. Similarly, the “marginal calibration” of GBR corresponds to

r = 1{x ≤ x0}, ρ = F(x0).
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Example 3. “Tests of efficiency” proposed by MW are also a special case of this approach with

r = Φ
−1(F(x)) and ρ = 0.

More generally, consider a function m = m(x,Ω) depending on an outcome x and forecasting

information Ω. Define

µ = µ(Ω) = E[m(X ,Ω)] for X ∼ F = F(·;Ω).

Calibration of F with respect to Ω is equivalent to the following moment condition:

E[(m(X ,Ω)−µ(Ω))] = 0

for any m.

Example 4. One more example parallels equal predictive accuracy tests based on the difference

of the logarithmic scores (or Kullback–Leibler information criterion, KLIC) discussed by MW (see

Amisano and Giacomini (2007)). The idea is to test calibration of one forecasting method against

another one. Suppose that we want to test whether F1 = F1(·;Ω) is well-calibrated and F2 = F2(·;Ω)
is an alternative forecast. Let m = S(F2,X)− S(F1,X) for some proper scoring rule S. For a forecast

F1 which is calibrated with respect to Ω

µ = E[m|Ω] = S(F2,F1)−S(F1,F1).

So we can test calibration of F1 by testing that

E[(S(F2,X)−S(F1,X))− (S(F2,F1)−S(F1,F1))] = 0. (2)

Below we call this moment condition relative forecast calibration (RFC). A test based on it would

have power against an alternative that F2 is calibrated with respect to Ω, because then

E[m−µ] = E[(S(F2,F2)−S(F1,F2)]+E[(S(F1,F1)−S(F2,F1)]> 0,

if the scoring rule is strictly proper.

For the case of the logarithmic score and two normal forecasting distributions, N(α1,σ
2
1 ) and

N(α2,σ
2
2 ), the moment condition reduces to

E

[ 1

2σ2
2

(

σ2
1 +(α1 −α2)

2 − (X −α2)
2
)

−
1

2σ2
1

(

σ2
1 − (X −α1)

2
)

]

= 0.

A pair of reciprocal RFC-based tests (F1 against F2 and F2 against F1) can help to judge possible

gains from combining two forecasts.

6 Example: Forecasting an autoregressive process

To illustrate the ideas I first adopt the simulation example from MW’s paper which relates to forecast-

ing of AR(2) series Yt = φ1Yt−1 + φ2Yt−2 + εt with independent Gaussian disturbances εt ∼ N(0,1).
Table 1 lists six forecasting models to be compared. The actual data-generating process is represented

by the ideal forecast. In this example there is no need to estimate parameters as they are known. I

consider only the Case (2) with φ1 = 0.15, φ2 = 0.2. The length of the series is T = 150 if not specified

otherwise.

I underline only two major aspects. First, I want to demonstrate using this setting that concentrat-

ing only on the unconditional uniformity of the PIT values and time-series properties is an unnecessary
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Table 1: Definition of six forecasts of AR(2)

Ideal N(φ1Yt−1 +φ2Yt−2,1)
Climt N(0,σ2

Y )
AR1 N(ρ1Yt−1,σ

2
1 )

AR2 N(ρ2Yt−2,σ
2
2 )

Combo 0.5N(ρ1Yt−1,σ
2
1 )+0.5N(ρ2Yt−2,σ

2
2 )

Unfocus 0.5N(φ1Yt−1 +φ2Yt−2,1)+0.5N(φ1Yt−1 +φ2Yt−2 + τt ,1),
where τt =−1 or 1 with equal probabilities

Note: ρ1 = φ1/(1− φ2), ρ2 = φ1ρ1 + φ2, σ2
Y = 1/(1− φ1ρ1 − φ2ρ2), σ2

1 =

(1−ρ2
1 )σ

2
Y , σ2

2 = (1−ρ2
2 )σ

2
Y .

narrowing of the opportunities for calibration testing. More general moment conditions can be fruit-

fully utilized. Second, I want to illustrate separation of model selection from diagnostic testing as

opposed to mixing them in pairwise equal predictive ability tests.

Consider the unfocused forecast. Unconditionally it is probabilistically calibrated which leads to

uniformity of PIT (cf. Table II of MW). Also the PIT series are serially independent (cf. Table III of

MW). However, it is not auto-calibrated, which can be easily detected using a test of orthogonality

between the inverse normal transformation of PIT zt = Φ
−1(Ft(yt)) (which should be unconditionally

distributed as N(0,1) under auto-calibration) and the mean of the forecasting distribution. It is labeled

“z×mean test” in Table 2. For an auto-calibrated forecast we have E[mean(Ft)zt ] = 0. The table shows

that this condition is rejected in almost 100% of experiments in the case of the unfocused forecast.

Here and below I use the usual t-ratios based on heteroskedasticity and autocorrelation consistent

(HAC) standard errors for testing moment conditions. The results confirms also that the combined

forecast (“Combo”) which is a weighted combination of AR1 and AR2 is not auto-calibrated (although

the rejection rate is not very large), while for other forecasts there are no signs of mis-calibration

(indeed, ideal, AR1 and AR2 forecasts are all auto-calibrated).

The row labeled “% best” shows the percent of experiments in which the corresponding model

had the highest average logarithmic score. The ideal forecast was the best with probability of about

2/3. This moderately large value is explained by small values of the two autoregression coefficients

(φ1 = 0.15, φ2 = 0.2), which makes the true data generating process rather close to AR1, AR2 and

Combo alternatives in terms of the expected logarithmic score for relatively short series (T = 150).

With T = 1500 the ideal forecast dominates the other ones (see row labeled “% best, 1500”). One can

see that the average score is a sensible criterion for model selection which behaves in a predictable

way. Testing is not really needed for the task of model selection. Of course, a test of whether the

chosen model has significantly higher average score than the competitors in the spirit of White (2000)

or Hansen (2005) can be useful.

To test calibration of the forecasting models against each other I employ a relative forecast cali-

bration test based on the RFC property discussed above. The test is designed as one-sided to increase

its power, because the test statistic is expected to be positive in situations when the alternative forecast

can potentially be used to improve the forecast tested for calibration. Notable are the results of AR1 vs.

AR2 and AR2 vs. AR1. The tests would frequently suggest the usefulness of combining the two mod-

els. The test against the ideal forecast can be seen to have high power. It can be compared to the equal

predictive ability test based on the difference of the attained average scores ∆Lt = S(Gt ,yt)−S(Ft ,yt)
(labeled “∆L test vs. Ideal”). The later test is also implemented as one-sided to increase its power and

make it comparable with the RFC test. The comparison clearly favors the RFC test as an instrument
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Table 2: Statistics for six forecasts of AR(2)

Ideal Climt AR1 AR2 Combo Unfoc

z×mean test 4.5 — 4.5 4.3 17.4 99.8

Exp. log. score −1.418 −1.456 −1.438 −1.430 −1.425 −1.529

% best 66.5 1.2 6.8 12.2 13.2 0.1

% best, 1500 98.6 0.0 0.0 0.1 1.3 0.0

∆L test vs. Ideal — 45.7 32.5 25.4 16.9 90.9

RFC test vs. Ideal — 92.6 78.3 62.4 25.8 100.0

RFC test vs. Climt 5.5 — 4.9 5.0 0.7 100.0

RFC test vs. AR1 4.7 62.7 — 40.2 3.3 100.0

RFC test vs. AR2 3.4 86.6 58.6 — 9.4 100.0

RFC test vs. Combo 4.2 86.8 48.6 31.3 — 100.0

RFC test vs. Unfoc 3.9 37.0 17.8 9.9 6.0 —

Note: The table is based on 5000 simulations. The figures for the tests are percentages of

rejection at 5% asymptotic significance level using the standard normal quantiles. The test

statistics are t-ratios with Newey–West HAC standard errors and lag truncation 4. “% best,

1500” corresponds to 10 times longer series (T = 1500). The row labeled “Exp. log. score”

shows approximate expected logarithmic scores. S(F2,F1) functions for mixtures of nor-

mals needed for RFC statistics are computed by Monte Carlo with 100 simulations.

of identifying non-ideal forecasts.

7 Example: Forecasting a stock index

The second example is intended to show how the proposed framework can be utilized for the task

of evaluating forecasts of real-world time series. The data are daily close levels of Russian stock

market index (RTSI) and span the period from 1995-09-01 to 2011-06-08. The RTSI series is brought

to stationarity by computing its growth rates in percent yt = (logRT SIt − logRT SIt−1)× 100. This

provides a series of 3,928 observations. The forecasted variable is the growth rate 10 periods ahead.

Thus, at time t a forecast of yt+1 + · · ·+ yt+10 = (logRT SIt+10 − logRT SIt)× 100 is obtained. (The

ten-period horizon corresponds roughly to two weeks of physical time.) The following forecasts are

considered.8

1. The historical forecast based on the full history (“Hi-full”) uses previously observed 10-period

growth rates. The historical observations are resampled to obtain a sample of size 1000.

2. “Hi-200” is also a historical forecast, but uses only a rolling span of the 200 most recent obser-

vations and does not use resampling.

3. “ExpSm” forecast is based on exponential smoothing for volatility σ2
t = δy2

t−1 +(1− δ )σ2
t−1

with the decay factor δ = 0.95. The forecasting distribution is given by N(0,10ht) and is derived

from an assumption of a Gaussian random walk with the variance ht . The recursion for volatility

starts from the sample variance of the first 200 observations.

8The RTSI series exhibits significant first-order serial correlation, but its impact on 10-period-ahead forecasts is small

so I just ignore it.
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Table 3: Forecasts of RTSI

Hi-full Hi-200 ExpSm GARCH

CRPS −5.236 −5.232 −5.120 −5.092

Prob. calibr., 50% −0.013 −0.004 −0.088°°° 0.001

(0.020) (0.020) (0.021) (0.020)

C. prob. calibr., 50% 0.132°°° 0.042° −0.031 −0.003

(0.019) (0.017) (0.016) (0.017)

RFC test vs. Hi-full — 0.369°°° 0.273°°° 0.117°°

(0.089) (0.057) (0.038)

RFC test vs. Hi-200 0.376°°° — 0.353°°° 0.262°°°

(0.082) (0.089) (0.082)

RFC test vs. ExpSm 0.506°°° 0.579°°° — 0.166°°°

(0.063) (0.103) (0.049)

RFC test vs. GARCH 0.406°°° 0.544°°° 0.222°°° —

(0.049) (0.098) (0.049)

Note: Newey–West HAC standard errors with lag truncation 10 are shown in brackets. Statis-

tical significance at 5% (1%, 0.1%) level is shown by ° (°°, °°°). RFC tests are CRPS-based.

4. GARCH forecast is based on the standard GARCH(1,1)-t model (GARCH with t distribution)

with non-zero mean. The model is estimated recursively by the maximum likelihood method.

The forecasting distribution is represented by a sample of 1000 simulated future trajectories.

All the forecasts are produced recursively for the forecasting period staring from the 200-th ob-

servation. They are compared by their observed averages of the continuous ranked probability score

(CRPS). CRPS can be defined as

S(Ft ,yt) =
1

2
E|Y −Y ′|−E|Y − yt |.

for a pair of independent Y , Y ′ from the forecasting distribution Ft and can be calculated in O(N logN)
operations needed for sorting if Ft is represented by a sample of size N (Gneiting and Raftery (2007)).

One advantage of the CRPS over the logarithmic scoring rule is that it allows a forecast of a continuous

random variable to be a discrete distribution. This scoring rule is also appealing, because it can be

viewed as a generalization of the absolute distance loss which is a popular criterion for evaluation of

point forecast.

The following statistics are summarized in Table 3.

1. “CRPS” is the average CRPS.

2. “Prob. calibr., 50%” is an unconditional probabilistic calibration statistic based on (1) for

p = 0.5. This statistic relates to the location as measured by the median of the forecasting

distribution.

3. “C. prob. calibr., 50%” is a central unconditional probabilistic calibration statistic with

r = 1{F(y) ∈ [(1− p)/2,(1+ p)/2]} , ρ = p

for p = 0.5. This statistic relates to the coverage of the central 50% interval derived from the

forecasting distribution.
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Figure 1: Histograms of PIT values: (a) exponential smoothing; (b) GARCH

4. “RFC vs. 〈method〉” is a one-sided RFC test, the same as in previous example, but based on the

CRPS.

The selection of the calibration tests is somewhat arbitrary. The proposed framework allows to

design many different tests, including other kinds of probabilistic calibration tests. Such tests are

formal counterparts of visual inspection of PIT histograms, a method which is frequently employed

for evaluation of density forecasts.9

The example pertains to a typical practical situation when none of the compared forecasts can be

called “ideal”. All forecasts are not well-calibrated to different degrees (Table 3). For example “Hi-

full” while having (unconditionally) correct location (see “Prob. calibr., 50%”) notably lack sharpness

which is signaled by central probabilistic calibration: the actual values are too seldom found in the

tails. “ExpSm” rigidly assumes zero mean which is not corroborated by the observed data and the

probabilistic calibration test with p = 50% indicates a negative bias accordingly; note also the skew

of the histogram in Figure 1(a).

In general “GARCH” looks almost like a calibrated forecast if calibration is judged on the basis

of ordinary PIT-based criteria. The histogram of PIT values at Figure 1(b) is not perfectly flat, but its

unevenness is not very serious as confirmed by the two probabilistic calibration tests from Table 3.

Also there are no serious signs of autocorrelation after lag 10 in both zt = Φ
−1(Ft(yt)) and z′t =

Φ
−1(|2Ft(yt)− 1|) (calculated from the “folded” PIT values |2Ft(yt)− 1| and designed to capture

unaccounted volatility clustering). For example, the 11-th autocorrelation coefficient is 0.071 for zt

and −0.033 for z′t while asymptotic standard errors are 0.045 and 0.031 respectively.10

GARCH model is the leader in terms of the average CRPS level, followed closely by exponen-

tial smoothing. However, all of the methods in pairwise comparisons by means of RFC tests show

significant mis-calibration. For example, remarkably, GARCH is not able to encompass exponen-

tial smoothing, which can be considered as its “cheaper” substitute. The results show a potential for

improving the forecasts by combining them.

8 Conclusions

Probabilistic forecasting steadily gains popularity and the two papers, Mitchell and Wallis (2011),

Gneiting et al. (2007), make important contributions into this process. However, when discussing

statistical procedures related to forecast calibration it seems natural to rely on a generic definition. My

9The problem with the histograms is that they can be potentially deceptive without error bands which are robust to

heteroskedasticity and autocorrelation.
10The Bartlett’s approximation for the variance of r11 is used which assumes no autocorrelation after lag 10 and is given

by (1+2r2
1 + · · ·+2r2

10)/T , where rk is the k-th autocorrelation coefficient.
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comment provides such a definition of calibration and delineates a general framework for calibration

testing. The framework can facilitate construction of various diagnostic tests. An example of an

interesting new test derived from these principles is a relative forecast calibration (RFC) test.

The current discussion accentuates several noteworthy points related to probabilistic forecasting.

• Uniformity and independence of PIT values as a condition of forecast calibration relates to an

unreasonably narrow class of forecasting situations when forecasts of a time series are based on

its own full history.

• When evaluating forecasts it is important to remember about possible goals of forecasting.

Maximizing expected score corresponding to some proper scoring rule can be considered as

a reduced representation of such goals.

• Statistical testing is not a substitute for using scoring rules when it is needed to select one

method from a fixed set of forecasting methods. Consequently, equal predictive ability tests can

be redundant in such a situation.

• Some types of mis-calibration cannot be detected by conventional PIT-based tests. In general

calibration tests should be based the relevant information set.

• “Maximizing sharpness subject to (auto-)calibration” is a legitimate principle of probabilistic

forecasting. However, its usefulness is limited, because in practice it is hard to achieve perfect

auto-calibration.

• RFC-type tests can be rather sensitive to mis-calibration, which suggests that this class of tests

is a natural replacement for equal predictive ability tests in the task of diagnosing imperfections

of forecasting methods.

References

Amisano, G. and Giacomini, R. (2007). Comparing density forecasts via weighted likelihood ratio

tests, Journal of Business and Economic Statistics 25(2): 177–190.

Bröcker, J. (2009). Reliability, sufficiency, and the decomposition of proper scores, Quarterly Journal

of the Royal Meteorological Society 135(643): 1512–1519.

Christoffersen, P. F. (1998). Evaluating interval forecasts, International Economic Review 39(4): 841–

862.

Clements, M. P. and Taylor, N. (2003). Evaluating interval forecasts of high-frequency financial data,

Journal of Applied Econometrics 18(4): 445–456.

Corradi, V. and Swanson, N. R. (2006). Predictive density evaluation, in C. W. J. Granger, G. Elliott

and A. Timmermann (eds), Handbook of Economic Forecasting, Vol. 1, North-Holland, Amsterdam,

chapter 5, pp. 197–286.

DeGroot, M. H. (1962). Uncertainty, information, and sequential experiments, The Annals of Mathe-

matical Statistics 33(2): 404–419.

Diebold, F. X., Gunther, T. A. and Tay, A. S. (1998). Evaluating density forecasts with applications to

financial risk management, International Economic Review 39(4): 863–883.

12



Gneiting, T., Balabdaoui, F. and Raftery, A. E. (2007). Probabilistic forecasts, calibration and sharp-

ness, Journal of the Royal Statistical Society: Series B 69: 243–268.

Gneiting, T. and Raftery, A. E. (2007). Strictly proper scoring rules, prediction, and estimation,

Journal of the American Statistical Association 102: 359–378.

Gneiting, T. and Ranjan, R. (2011). Combining predictive distributions, ArXiv preprint.

arXiv:1106.1638v1 [math.ST].

Granger, C. W. J. and Pesaran, M. H. (2000). A decision-theoretic approach to forecast evaluation,

in W.-S. Chan, W. K. Li and H. Tong (eds), Statistics and Finance: An Interface, Imperial College

Press.

Hansen, P. R. (2005). A test for superior predictive ability, Journal of Business & Economic Statistics

23(4): 365–380.

Lichtenstein, S., Fischhoff, B. and Phillips, L. D. (1982). Calibration of probabilities: The state of

the art to 1980, in D. Kahneman, P. Slovic and A. Tversky (eds), Judgment under Uncertainty:

Heuristics and Biases, Cambridge University Press, Cambridge, UK, pp. 306–334.

Mitchell, J. and Wallis, K. F. (2011). Evaluating density forecasts: Forecast combinations, model

mixtures, calibration and sharpness, Journal of Applied Econometrics, n/a: ??–?? forthcoming.

Rosenblatt, M. (1952). Remarks on a multivariate transformation, Annals of Mathematical Statistics

23: 470–472.

Sanders, F. (1963). On subjective probability forecasting, Journal of Applied Meteorology 2: 191–201.

White, H. (2000). A reality check for data snooping, Econometrica 68(5): 1097–1126.

13


	What is ``forecast calibration''?
	Can independence and uniformity of PIT values be called complete calibration?
	Testing vs. scoring rules
	Maximizing sharpness subject to calibration
	A broader approach to calibration testing
	Example: Forecasting an autoregressive process
	Example: Forecasting a stock index
	Conclusions

