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Abstract

In this paper we prove that (I) ine¢cient natural level of output (Friedman (1968)), (II)

central bank�s desire to stabilize output around a level that is higher than the ine¢cient

natural level of output, (III) long-run Phillips curve trade-o¤, and (IV) in�ation persistence

result in optimal positive long-run in�ation. The combination of (I), (II), and (III) makes

positive in�ation forever in principles desirable as it would result in positive output gap

forever. Optimal positive steady-state in�ation obtains if and only if there is a long-

run incentive for positive in�ation. In�ation persistence, de�ned as costly, in terms of

output, disin�ation, generates a long-run incentive for positive in�ation. Optimal positive

steady-state in�ation obtains in the basic neo-Wicksellian model (Woodford (2003)) with

in�ation persistence due to backward-looking rule-of-thumb behaviour by price setters.

Optimal positive long-run in�ation also obtains in what we refer to as the nonmicrofounded

model. Prescinding from hyperin�ation, the formula for steady-state in�ation is capable

of providing a positive theory of in�ation.
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This result poses the challenge for future researchers of �nding a theoretical

explanation for the optimality of positive in�ation targets. Schmitt-Grohé and

Uribe (2005, p. 52)

1 Introduction

In this paper we prove that (I) ine¢cient natural level of output (Friedman (1968)), (II)

central bank�s desire to stabilize output around a level that is higher than the ine¢cient

natural level of output, (III) long-run Phillips curve trade-o¤, and (IV) in�ation persistence

result in optimal positive long-run in�ation1.

The combination of (I) and (II) implies that discretionary conduct of monetary policy produces

the well-known in�ation bias stressed by Kidland and Prescott (1977) and Barro and Gordon

(1983).

The focus of this paper lies in deriving the long-run in�ation target under the optimal commit-

ment policy. The problem of what constitutes optimal in�ation in the long-run is not trivial

as monetary policy cannot simultaneously eliminate equilibrium distortions and distortions

resulting from staggered price setting. With this respect, �scal policy should not be assumed

to fully o¤set equilibrium distortions: �scal policy can either partially o¤set or exacerbate

equilibrium distortions.

Allowing for equilibrium distortions in an economy characterized by (I) central bank�s desire

to stabilize output around a level that is higher than the ine¢cient natural level of output (by

the steady-state e¢ciency gap, x�) and (II) long-run Phillips curve trade-o¤ makes positive

in�ation forever in principles desirable as it would result in positive output gap forever. Opti-

mal positive steady-state in�ation obtains if and only if there is long-run incentive for positive

in�ation. In�ation persistence, de�ned as costly, in terms of output, disin�ation, generates a

long-run incentive for positive in�ation.

This paper owes a lot to the landmark work by Woodford (2003) and it can be interpreted as

a natural extension of that contribution to the case of in�ation persistence due to backward-

looking rule-of-thumb behaviour by price setters, speci�ed either à la Galì and Gertler (1999)

or à la Steinsson (2003).

Optimal positive steady-state in�ation breaks the surprising robustness of the optimality of a

monetary policy that aims at complete price stability as it obtains in what Woodford (2003)

labels the basic neo-Wicksellian model.

1Long-run in�ation and steady-state in�ation are used interchangeably.
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Optimal positive long-run in�ation target also obtains in what we refer to as the nonmicro-

founded model.

Indeed, the optimal positive steady-state in�ation that obtains in the nonmicrofounded model

nests the one in the basic neo-Wicksellian model with in�ation persistence due to backward-

looking rule-of-thumb behaviour a là Galì-Gertler (1999) by price setters. The intuition for

this is neat: microfounding in�ation persistence a là Galì-Gertler (1999) does not a¤ect the

steady-state in�ation under the optimal commitment policy.

Additionally, the nonmicrofounded model has by assumption the appealing property that the

hybrid Phillips curve coe¢cients on future expected in�ation and lagged in�ation add up to

one. In the basic neo-Wicksellian model with in�ation persistence due to backward-looking

rule-of-thumb behaviour by price setters, speci�ed either à la Galì and Gertler (1999) or à la

Steinsson (2003), the hybrid Phillips curve coe¢cients on future expected in�ation and lagged

in�ation add up to one only in the limiting cases of (I) absence of in�ation persistence or (II)

absence of long-run Phillips curve trade o¤; namely zero optimal steady-state in�ation.

On one hand, the nonmicrofounded model is not a Barro-Gordon (1983) model2: it could

alternatively be de�ned as the purely forward-looking basic neo-Wicksellian model with non-

microfounded in�ation persistence.

On the other hand, the nonmicrofounded model is a Barro-Gordon (1983) model where (I) the

hybrid New Keynesian Phillips Curve (Roberts (1995)) replaces the Lucas-type aggregate

supply function3 and (II) central bank desires to stabilize output around a level that is higher

than the natural rate of output.

Optimal positive long-run in�ation target does not obtain in the basic neo-Wicksellian model

with in�ation persistence due to backward-looking price indexation (pioneered by Christiano,

Eichenbaum and Evans (2005)) because backward-looking price indexation does not introduce

any in�ation persistence. Disin�ation under backward-looking price indexation is costless as

in the purely forward-looking basic neo-Wicksellian model.

Prescinding from hyperin�ation, which is a phenomenon that can arise when the central bank�s

policy instrument is the nominal quantity of money, the formula for steady-state in�ation is

capable of providing a positive theory of in�ation.

Section 2 lays out the models. Section 3 studies the long-run in�ation target under the optimal

commitment policy. Section 4 concludes. Appendix A reports the proof of propositions (1)

and (2). Appendix B shows that a linear approximation to the production function su¢ces

for a correct second-order approximation to the period utility of the representative household.

2See Walsh (2003, Ch. 8) for an excellent survey of the literature based on the Barro-Gordon (1983) model.
3Aggregate-supply relation and hybrid Phillips curve are used interchangeably.
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2 The Models

The New Keynesian model considered here is the basic neo-Wicksellian model in Woodford

(2003). It shares Woodford�s notation4, assumptions, and general formalism. It integrates it

with the derivation of the hybrid Phillips curve and the central bank�s objective in the case

of backward-looking rule-of-thumb behaviour by price setters, speci�ed either à la Galì and

Gertler (1999) or à la Steinsson (2003). We only present the hybrid Phillips curves and the

central bank�s objectives that obtain under rule-of-thumb behaviour by price setters5. We

remind the reader of the details of the economy considered and of the assumptions made.

The demand side of the economy (i.e. expectational IS equation) is not reported here, it is

the same as in Woodford (2003, 1:12, p. 246).

Proposition 1 Consider a cashless economy with no endogenous capital accumulation, �ex-

ible wages, and speci�c labour markets (i.e. yeoman farmers). The producer�s pro�t function

is linearly homogeneous in its �rst three arguments (i.e. good�s price, industry�s price, and

aggregate price level) and, for any value of the industry price and the aggregate price level,

sinlge-peaked for some positive value of the good�s price. Suppose that a fraction 0 < � < 1

of industries� prices remain �xed each period, with each price having a constant probability of

being reset at any given period, as in Calvo (1983). Suppose also that a fraction 0 � ! < 1

of the 1 � � industries� prices that are revised at any given period are reset according to

backward-looking rule-of-thumb behaviour, as in Steinsson (2003). Suppose furthermore that

pro�ts are discounted according to the stochastic discount factor that equals on average �, with

0 � � � 1. Then the aggregate in�ation rate, �t, and the aggregate output gap, xt, in any

period t must satisfy an aggregate-supply relation of the form

�t = �f�Et�t+1 + �b�t�1 + �1xt + �2xt�1 (1)

4This is precisely true for all variables and structural parameters but two. First, we denote with ! the

degree of rule-of-thumb behaviour by price setters rather than the elasticity of real marginal cost with respect

to own output, which we denote with $. Second, to avoid confusion with the Lagrangian multiplier associated

with the period t hybrid Phillips Curve, 't, we denote with % the parameter vector that indexes aspects of

policy (i.e. monetary policy) that determine steady-state values of in�ation and output gap, � and x.
5The hybrid Phillips curve and the central bank�s objective in the case of rule-of-thumb behaviour a là

Steinsson (2003) correct the ones reported in Steinsson (2003). The hybrid Phillips curve and the central

bank�s objective in the case of rule-of-thumb behaviour a là Galì and Gertler (1999) coincide (up to x�) with

the ones reported in Amato and Laubach (2003).

4



with

� = �+ ! � (1� �)!�;�f =
�

�
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�
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(1� !)��� (1� �)��!�
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If ! = 0, (1) and (2) collapse to Woodford (2003, 2:12 and 2:13, p. 187). If the fraction

0 � ! < 1 of the 1 � � industries� prices that are revised at any given period are reset

according to backward-looking rule-of-thumb behaviour, as in Galì-Gertler (1999) (i.e. � = 0),

(1), standing (2), collapses to

�t = �f�Et�t+1 + �b�t�1 + �1xt (3)

Proposition 2 Consider a cashless economy with �exible wages, Calvo pricing, and backward-

looking rule-of-thumb behaviour a là Steinsson (2003) by price setters. The discounted sum of

utility of the representative household can be approximated to second-order by

1X

t=0

�tUt = �


1X

t=0

�t
h
�2t + �1(xt � x

�)2 + �2 [�t � (�t�1 + (1� �)�xt�1)]
2
i

(4)

+t:i:p+O

�


�y;e�; %;�1=2�1
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�

The de�nition of � in (2) holds. The constant 
 is given by 
 = Y euc(��1 + $)�=2�. The
steady-state e¢ciency gap x� is given by x� � log(Y

�
=Y ) = �y=($+�

�1). The relative weight

on output �uctuations is given by �1 = �=�. The relative weight on [�t � (�t�1 + (1� �)�xt�1)]
2

is given by �2 = != [(1� !)�]. If ! = 0, (4) collapses to Woodford (2003, 2:21 and 2:22, p.

400). In the presence of backward-looking rule-of-thumb behaviour a là Galì-Gertler (1999) by

price setters, (4) collapses to

1X

t=0

�tUt = �


1X

t=0

�t
�
�2t + �1(xt � x

�)2 + �2(�t � �t�1)
2
�

(5)

+t:i:p+O

�


�y;e�; %;�1=2�1




3
�

Interestingly, in the presence of rule-of thumb behaviour by price setters, the utility-based

central bank�s loss functions (5) and (4) can now be seen as penalizing variations in in�ation as

well as variations in the di¤erence between general in�ation and rule-of-thumb price increases.

Following the theoretical literature on optimal monetary policy, we later assume that the

central bank�s policy instrument is the short-term nominal interest rate. The assumption

re�ects the actual practice of monetary policy by large central banks such as the European
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Central Bank, the Federal Reserve, and the Bank of England. In the microfounded model,

the combination of (I) cashless economy (i.e. there are no costs associated with varying the

nominal interest rate) and (II) central�s bank control of the nominal interest rate implies

that the expectational IS equation imposes no real constraint on the central bank. Given

the central bank�s optimal choices for in�ation and output gap, the expectational IS equation

simply determines the path of nominal interest rate necessary to achieve the optimal path for

the output gap6. As a consequence, it is more convenient to treat output gap as if it were the

central bank�s policy instrument. Accordingly, the nonmicrofounded model is given by the

hybrid Phillips curve

�t = (1� ")�Et�t+1 + "�t�1 + knxt (6)

and the ad-hoc monetary policy objective

1X

t=0

�t
�
�2t + �n(xt � x

�)2
�

(7)

In (6), " is a measure of the degree of in�ation persistence in the economy. (6) is the NKPC

which, in order to capture the in�ation persistence found in the data, has been augmented

with lagged in�ation. Accordingly, (7) closely resembles the monetary policy objective that

would obtain in the purely forward-looking basic neo-Wicksellian model. Yet, (7) is not, as in

Woodford (2003, p. 400), a second-order approximation to the discounted sum of utility of

the representative household. In the nonmicrofounded model, both the hybrid Phillips curve

and the central bank�s objective are assumed rather than being derived from �rst principles

as we want the parameters in (6) and (7) not to be microfounded.

A few observations are necessary before proceeding.

Output gap, xt, is the deviation of output, Yt, from what Friedman (1968) labels the natural

level of output, Y nt .

In the basic neo-Wicksellian model, the natural level of output is the equilibrium level of output

in the absence of nominal rigidity (i.e. sticky prices). The steady-state level of output is the

equilibrium level of output that obtains in the absence of exogenous real shocks (i.e. exogenous

shocks to technology, to government purchases, to household�s impatience to consume, and

to the household�s willingness to supply labour). The natural steady-state level of output,

Y , is the equilibrium level of output that obtains (I) in the absence of nominal rigidity and

(II) in the absence of exogenous real shocks. The natural level of output is ine¢ciently low

6Given positive in�ation (hence positive output gap), the zero lower bound on nominal interest rate is not

a matter of concern.
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due to equilibrium distortion (i.e. monopolistic competition). On one hand, �uctuations in

the natural rate of output (due to the exogenous real disturbances) equal �uctuations in the

e¢cient level of output, Y �t . Hence, optimal monetary policy should not react to any of the

exogenous real shocks. On the other hand, the e¢cient steady-state level of output, Y
�
, is

higher than the natural steady-state level of output, Y . The wedge between the e¢cient level

of output and the natural level of output is thus constant over time. We refer to the constant

over time wedge as the steady-state e¢ciency gap, x� � log(Y
�
=Y ).

In the nonmicrofounded model, the natural level of output is the linear trend in output.

Moreover, the two models di¤er in terms of structural parameters. The structural parameters

in the nonmicrofounded model are �ve: (I) the steady-state e¢ciency gap, x�, (II) the discount

factor, �, (III) the degree of in�ation persistence, ", (IV) the output gap coe¢cient, �n, and

(V) the relative weight on output �uctuations, �n. In the basic neo-Wicksellian model with

in�ation persistence due to backward-looking rule-of-thumb behaviour by price setters a là

Galì-Gertler (1999), the structural parameters are seven: (I) the parameter that summarizes

the distortion in the natural steady-state level of output due to monopolistic competition, �y,

(II) the discount factor, �, (III) the degree of backward-looking rule-of-thumb behaviour by

price setters, !, (IV) the degree of nominal rigidity, �, (V) the elasticity of real marginal cost

with respect to own output, $, (VI) the intertemporal elasticity of substitution of aggregate

expenditure, �7, and (VII) the elasticity of substitution between any two goods, �. In the

basic neo-Wicksellian model with in�ation persistence due to backward-looking rule-of-thumb

behaviour by price setters a là Steinsson (2003), the structural parameters are eight: �y, �,

!, �, $, �, �, and (VIII) the degree of indexation to past output gap by backward-looking

rule-of-thumb price setters, �.

We can now de�ne in�ation persistence.

Proposition 3 In�ation persistence is costly, in terms of output, disin�ation.

The aggregate-supply relations (3), (1), and (6) exhibit in�ation persistence.

3 The Optimal Long-Run In�ation

In this section, we prove that (I) ine¢cient natural level of output (Friedman (1968)), (II)

central bank�s desire to stabilize output around a level that is higher than the ine¢cient

7Alternatively, standing the de�nition of �, the sixth structural parameter can be de�ned as the elastiticy

of real marginal cost with respect to aggregate ouput, ��1.
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natural level of output, (III) long-run Phillips curve trade-o¤, and (IV) in�ation persistence

result in positive long-run in�ation target under the optimal commitment policy.

Optimal positive long-run in�ation target obtains in both the basic neo-Wicksellian model

with in�ation persistence due to backward-looking rule-of-thumb behaviour by price setters

and in the nonmicrofounded model.

Indeed, the optimal positive steady-state in�ation that obtains in the nonmicrofounded model

nests the one in the basic neo-Wicksellian model with in�ation persistence due to backward-

looking rule-of-thumb behaviour a là Galì-Gertler (1999) by price setters. The intuition for

this is neat: microfounding in�ation persistence a là Galì-Gertler (1999) does not a¤ect the

steady-state in�ation under the optimal commitment policy.

Additionally, the nonmicrofounded model has by assumption the appealing property that the

hybrid Phillips curve coe¢cients on future expected in�ation and lagged in�ation add up to

one. In the basic neo-Wicksellian model with in�ation persistence due to backward-looking

rule-of-thumb behaviour by price setters, speci�ed either à la Galì and Gertler (1999) or à la

Steinsson (2003), the hybrid Phillips curve coe¢cients on future expected in�ation and lagged

in�ation add up to one only in the limiting cases of (I) absence of in�ation persistence (i.e.

! = 0) or (II) absence of long-run Phillips curve trade o¤ (i.e. � = 1); namely zero optimal

steady-state in�ation.

The analysis is conducted in a purely deterministic setting, certainty equivalence guarantees

that the results obtained hold in the presence of random disturbances.

Under the optimal commitment policy, the central bank chooses paths for in�ation and output

gap to minimize the future discounted sum of losses from date 0 (i.e. when the policy is

implemented) onward subject to the constraint that the paths must satisfy the aggregate

supply relation each period.

In the nonmicrofounded model, we simply assume both the hybrid Phillips curve and the

central bank�s objective. In the basic neo-Wicksellian model with in�ation persistence due to

backward-looking rule-of-thumb behaviour by price setters, the hybrid Phillips curve (namely

a log-linear approximation to the model structural equations) su¢ces for a correct linear

approximation to the optimal commitment policy only in the case of small equilibrium dis-

tortions (i.e. x� is small enough). Given the assumed deterministic setting, the solution for

the optimal paths of in�ation and output is accurate up to a residual that is only of second-

order. This is enough for a characterization of the �rst-order consequences of allowing for the

empirically realistic case of equilibrium distortions (i.e. for ine¢ciency of the natural rate of

output).

Precisely, we analytically derive the unique long-run in�ation targets that, following Woodford
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(1999), are optimal from a timeless perspective, �.

A constant in�ation target � is optimal from a timeless perspective if the prob-

lem of minimising the discounted sum of losses subject to the constraint that the

bounded sequences, f�t; xtg
1
t=0, satisfy the aggregate supply curve for each t � 0,

and the additional constraint that �0 = �, has a solution in which �t = � for all

t. Woodford (2003, p. 475).

The two commitment policies in the literature di¤er as the requirement that �0 = � un-

der timeless-perspective is replaced by the initial condition '�1 = 0 (i.e. no ful�lment of

expectations existing prior to the policy implementation) in the case of zero-optimal com-

mitment policy. The two commitment policies in the literature thus share the same target8.

Accordingly, we also assume that both in�ation and output gap in the period before policy

is implemented (i.e. date �1) are at their values of zero (i.e. the optimal paths for in�ation

and output gap are �at at their respective long-run optimal targets). As long as in�ation

at date �1 is nonzero (and/or output gap at date �1 is nonzero under Steinsson�s rule-of-

thumb), in�ation persistence implies that the optimal commitment policy, either zero-optimal

or timeless-perspective, involves transition paths for in�ation and the output gap to their

respective long-run targets.

Moreover, in the case of larger equilibrium distortion and in the context of a purely-forward

looking cashless economy, Benigno and Woodford (2005) show that the central bank�s welfare

criterion must also include transitory quadratic terms. However, these extra terms do not

a¤ect the characterization of optimal policy from a timeless perspective. Insofar as this result

extends to the case of an economy with in�ation persistence (which needs to be veri�ed),

optimal long-run in�ation would not be a¤ected.

We consider �rst the case of in�ation persistence due to backward-looking rule-of-thumb

behaviour by price setters a là Steinsson (2003). A central bank acting under commitment

faces the problem of choosing bounded deterministic paths for in�ation and the output gap,

f�t; xtg
1
t=0, to minimise (4) subject to the constraint that the sequences must satisfy (1) each

period. We form the following Lagrangian.

L =

1X

t=0

�t

(
1
2�

2
t +

�1
2 (xt � x

�)2 + �2
2 [�t � (�t�1 + (1� �)�xt�1)]

2

+'t
�
�t � �f��t+1 � �b�t�1 � �1xt � �2xt�1

�
)

(8)

8There is a unique optimal long-run in�ation target. Hence, we can refer to it as the optimal long-run

in�ation (i.e. optimal steady-state in�ation).
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where (and henceforth) 't is the Lagrangian multiplier associated with the period t hybrid

Phillips Curve. Di¤erentiating with respect to �t and xt, we get the two �rst-order conditions

(
�t + 't + �2 [�t � (�t�1 + (1� �)�xt�1)]

��f't�1 � ��b't+1 � ��2 [�t+1 � (�t + (1� �)�xt)]

)
= 0 (9)

�1(xt � x
�)� ��2(1� �)� [�t+1 � (�t + (1� �)�xt)]� �1't � ��2't+1 = 0 (10)

for each t � 0.

Proposition 4 Consider a cashless economy with �exible wages, Calvo pricing, backward-

looking rule-of-thumb behaviour a là Steinsson (2003) by price setters, and no real distur-

bances. Assume that the initial price dispersion of prices ��1 � var
�
log�1(I)

	
is small,

initial in�ation is zero ��1 = 0, initial output gap is zero x�1 = 0, and equilibrium distor-

tions (measured by �y) are small as well, so that an an approximation to the welfare of the

representative household of the form (4) is possible, with the steady-state e¢ciency gap, x�,

a small parameter (x� = O(k�yk)). Then, at least among in�ation paths in which in�ation

remains forever in a certain interval around zero, there is a unique policy that is optimal from

a timeless perspective. Under this policy, the positive optimal long-run in�ation is given by

� =

8
>>>>><
>>>>>:

(1� �)(1� �)���1! [(1� !)��+ (1� �)(1� ��)!�](
(1� !)(1� �)(��1 � �)(1� �)2�!�+

�
(1� !)��+ (1� �)2�!�

�
[(1� !)��+ (1� �)(1� ��)!�]

)x�

9
>>>>>=
>>>>>;

(c)

+O(



�1=2�1 ;�y





2
)

Optimal steady-state in�ation is zero (I) in the absence of in�ation persistence (i.e. ! = 0)

or (II) in the absence of long-run Phillips curve trade o¤ (i.e. � = 1).

Proof. Condition (9) has a solution with in�ation constant over time only if the Lagrange

multiplier is also constant over time. Substituting a constant value for the Lagrange multiplier

in (9) and (10), the two conditions can be simultaneously satis�ed only if

� =

(
f(�1 + ��2) [(1� �)(1� �)��2]g

+
�
(1� �f � ��b)

�
�1 � ��2(1� �)

2�2
�	
)

(�2 + ��3)
x+

(1� �f � ��b)�1

(�2 + ��3)
(11)

The hybrid Phillips curve (1) implies an upward-sloping relation

x =
(1� ��f � �b)

(�2 + �3)
� (12)
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between long-run in�ation and long-run output gap. Combining (18) and (19) yields the

optimal steady-state in�ation

� =
(1� �f � ��b)(�2 + �3)�1

(�2 + ��3)(�2 + �3)

+(1� �f� � �b)

( �
(1� �f � ��b)

�
�1 � ��2(1� �)

2�2
�	

�f(�2 + ��3) [(1� �)(1� �)��2]g

)
x� (13)

The sign of the relationship is more easily determined by substituting for all the parameters

in (13) in terms of structural parameters (keeping � implicit)

� =
(1� �)(1� �)���1! [(1� !)��+ (1� �)(1� ��)!�](

(1� !)(1� �)(��1 � �)(1� �)2�!�+
�
(1� !)��+ (1� �)2�!�

�
[(1� !)��+ (1� �)(1� ��)!�]

)x� (14)

which is (c). Given (I) k > 0 and (II) the rigour of mathematics (i.e. � = 1 is outside the

range for � as it would imply dividing by zero in deriving (1)), optimal long-run in�ation is

always positive and collapses to zero in the case of (I) absence of in�ation persistence (i.e.

! = 0) or (II) absence of long-run Phillips curve trade o¤ (i.e. � = 1).

We now turn to the case of in�ation persistence due to backward-looking rule-of-thumb behav-

iour by price setters a là Galì and Gertler (1999). What constitutes optimal long-run in�ation

is implied by setting � = 0 in (c), here we prefer to derive it so to stress that microfounding

in�ation persistence a là Galì and Gertler (1999) does not a¤ect the optimal steady-state

in�ation. A central bank acting under commitment faces the problem of choosing bounded

deterministic paths for in�ation and the output gap, f�t; xtg
1
t=0, to minimise (5) subject to the

constraint that the sequences must satisfy (3) each period. We form the following Lagrangian.

L =
1X

t=0

�t

(
1
2

�
�2t + �1(xt � x

�)2 + �2(��t)
2
�

+'t
�
�t � �f��t+1 � �b�t�1 � �1xt

�
)

(15)

Di¤erentiating with respect to �t and xt, we get the two �rst-order conditions

�t + �2(�t � �t�1)� ��2(�t+1 � �t) + 't � �f't�1 � ��b't+1 = 0 (16)

�1(xt � x
�)� �1't = 0 (17)

for each t � 0.

Proposition 5 Consider a cashless economy with �exible wages, Calvo pricing, backward-

looking rule-of-thumb behaviour a là Galì and Gertler (1999) by price setters, and no real

11



disturbances. Assume that the initial price dispersion of prices ��1 � var
�
log�1(I)

	
is small,

initial in�ation is zero ��1 = 0, and equilibrium distortions (measured by �y) are small as

well, so that an an approximation to the welfare of the representative household of the form

(5) is possible, with the steady-state e¢ciency gap, x�, a small parameter (x� = O(k�yk)).

Then, at least among in�ation paths in which in�ation remains forever in a certain interval

around zero, there is a unique policy that is optimal from a timeless perspective. Under this

policy, the positive optimal long-run in�ation is given by

� =
(1� �)(1� �)!�

(1� !)���+ (1� �)(1� �)2!
x� +O(




�1=2�1 ;�y




2
) (b)

Optimal steady-state in�ation is zero (I) in the absence of in�ation persistence (i.e. ! = 0)

or (II) in the absence of long-run Phillips curve trade o¤ (i.e. � = 1).

Proof. Condition (16) has a solution with in�ation constant over time only if the Lagrange

multiplier is also constant over time. Substituting a constant value for the Lagrange multiplier

in (16) and (17), the two conditions can be simultaneously satis�ed only if

� = �
(1� �f � ��b)�1

�1
(x� x�) (18)

The hybrid Phillips curve (3) implies an upward-sloping relation

x =
(1� ��f � �b)

�1
� (19)

between long-run in�ation and long-run output gap. Combining (18) and (19) yields the

optimal long-run in�ation target

� =
(1� �f � ��b)�1�1

�21 + (1� �f � ��b)(1� ��f � �b)�1
x� (20)

The sign of the relationship is more easily determined by substituting for all the parameters

in (20) in terms of structural parameters (keeping � implicit). Here, rather than simply

substituting, we can double-check the result obtained. Combining (17) and (16), optimal

paths for in�ation and output gap satisfy

2
664

�t

+ !
�(1�!)(�t � �t�1)

� �!
�(1�!)(�t+1 � �t)

3
775 =

1

(1� !)��

2
664

�(xt�1 � x
�)

+!�(xt+1 � x
�)

��(xt � x
�)

3
775 (21)

Solving analytically for the optimal paths for in�ation and output gap would require combining

(21) with (3) and solve the resulting di¤erence equation. Here we are content with deriving

12



the optimal long-run in�ation. The hybrid Phillips Curve(3) can be rewritten in terms of

structural parameters as

xt =
1

�
(�t � ��t+1)�

!�

(1� !)�
(�t+1 � �t) +

!

(1� !)��
(�t � �t�1) (22)

where the equivalence �t+1 � !�t+1 � (1 � !)�t+1 is used to obtain a term in the rate of

in�ation acceleration at date t+ 1. Combining (21) and (22) yields

2
664

�t+

�2(�t � �t�1)�

��2(�t+1 � �t)

3
775 =

1

(1� !)��

8
>>>>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>>>>:

�

2
664

�t�1
� � �

��t

� !�
(1�!)�(�t � �t�1)

+ !
(1�!)��(�t�1 � �t�2)� x

�
t�1

3
775

+�!

2
664

�t+1
� � �

��t+2

� !�
(1�!)�(�t+2 � �t+1)

+ !
(1�!)��(�t+1 � �t)� x

�
t+1

3
775

��

2
664

�t
� �

�
��t+1

� !�
(1�!)�(�t+1 � �t)

+ !
(1�!)��(�t � �t�1)� x

�
t

3
775

9
>>>>>>>>>>>>>>>>>>>=
>>>>>>>>>>>>>>>>>>>;

In the steady-state all the terms in the rate of in�ation acceleration drop out. Optimal

long-run in�ation is then given by

� =
!(1� �)(1� �)�

(1� !)���+ !(1� �)(1� �)2
x� (23)

which is (b) (i.e. (20) in terms of structural parameters, (c) under � = 0). Given (I) k > 0

and (II) the rigour of mathematics (i.e. � = 1 is outside the range for � as it would imply

dividing by zero in deriving (3)), optimal long-run in�ation is always positive and collapses to

zero in the case of (I) absence of in�ation persistence (i.e. ! = 0) or (II) absence of long-run

Phillips curve trade o¤ (i.e. � = 1).

We now turn to the nonmicrofounded model. A central bank acting under commitment

faces the problem of choosing bounded deterministic paths for in�ation and the output gap,

f�t; xtg
1
t=0, to minimise (7) subject to the constraint that the sequences must satisfy (6) each

period. We form the following Lagrangian.

L =
1X

t=0

�t

(
1
2

�
�2t + �n(xt � x

�)2
�

+'t [�t � (1� ")��t+1 � "�t�1 � knxt]

)
(24)

Di¤erentiating with respect to �t and xt, we get the two �rst-order conditions

�t + 't � (1� ")'t�1 � �"'t+1 = 0 (25)

13



�n(xt � x
�)� �n't = 0 (26)

for each t � 0.

Proposition 6 Consider the nonmicrofounded model (i.e. (6) and (7)).Then, at least among

in�ation paths in which in�ation remains forever in a certain interval around zero, there is

a unique policy that is optimal from a timeless perspective. Under this policy, the positive

optimal long-run in�ation is given by

� =
(1� �)"�n�n

�2n + (1� ")(1� �)
2"�n

x� (a)

Optimal steady-state in�ation is zero (I) in the absence of in�ation persistence (i.e. " = 0)

or (II) in the absence of long-run Phillips curve trade o¤ (i.e. � = 1).

Proof. Condition (25) has a solution with in�ation constant over time only if the Lagrange

multiplier is also constant over time. Substituting a constant value for the Lagrange multiplier

in (25) and (26), the two conditions can be simultaneously satis�ed only if

� = �
(1� �)"�n

�n
(x� x�) (27)

The hybrid Phillips curve (6) implies an upward-sloping relation

x =
(1� �)(1� ")

�n
� (28)

between long-run in�ation and long-run output gap. Combining (27) and (28) yields the

optimal long-run in�ation target

� =
(1� �)"�n�n

�2n + (1� ")(1� �)
2"�n

x� (29)

which is (a). We can double-check the result obtained. Combining (25) and (26), optimal

paths for in�ation and output gap satisfy

�t =
�n
�n

2
664

(1� ")(xt�1 � x
�)

+�"(xt+1 � x
�)

�(xt � x
�)

3
775 (30)

Solving analytically for the optimal paths for in�ation and output gap would require combining

(30) with (6) and solve the resulting di¤erence equation. Here we are content with deriving

the optimal long-run in�ation target. The hybrid Phillips Curve (6) can be rewritten in terms

of structural parameters as

xt =
(1� ")

�n
(�t � ��t+1) +

"

�n
(�t � �t�1) (31)
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where the equivalence �t � "�t � (1 � ")�t is used to obtain a term in the rate of in�ation

acceleration at date t� 1. Combining (30) and (31) yields

�t =
�n
�n

8
>>><
>>>:

(1� ")
h
(1�")
�n

(�t�1 � ��t) +
"
�n
(�t�1 � �t�2)� x

�
i

+�"
h
(1�")
�n

(�t+1 � ��t+2) +
"
�n
(�t+1 � �t)� x

�
i

�
h
(1�")
�n

(�t � ��t+1) +
"
�n
(�t � �t�1)� x

�
i

9
>>>=
>>>;

In the steady-state all the terms in the rate of in�ation acceleration drop out. The optimal

long-run in�ation is then con�rmed to be given by (a). Given (I) �n > 0 and (II) �n > 09,

optimal long-run in�ation is always positive and collapses to zero in the case of (I) absence

of in�ation persistence (i.e. " = 0) or (II) absence of long-run Phillips curve trade o¤ (i.e.

� = 1).

Comparing the optimal plan �rst-order condition for output gap, we note that if (I) �n = �1

and (II) �n = �1, then (17) and (26) coincide. Comparing the optimal plan �rst-order

condition for in�ation, we note that if (I) (1 � ") = �f and (II) " = �b, then (16) and (25)

coincide up to the terms in the rate of in�ation acceleration. Comparing the hybrid Phillips

curves, we note that if (I) �n = �1 and (II) " = 0, then (22) and (31) coincide up to the terms

in the rate of in�ation acceleration.

The terms in the rate of in�ation acceleration do not matter for the determination of optimal

long-run in�ation. The conditions that guarantee that the optimal positive steady-state in-

�ation that obtains in the nonmicrofounded model nests the one in the basic neo-Wicksellian

model with in�ation persistence due to backward-looking rule-of-thumb behaviour by price

setters a là Galì-Gertler (1999) are thus (I) �n = �1, (II) �n = �1, and (III) (1� ") = �f and

" = �b () �f + �b = 1. Under these generic conditions (20) is easily seen to coincide with

(a).

Condition (III) is then satis�ed for !�(1��) = 0, namely the sum of the coe¢cients on future

expected in�ation and lagged in�ation in the hybrid Phillips curve implied by backward-

looking rule-of-thumb behaviour by price setters, speci�ed either à la Galì and Gertler (1999)

or à la Steinsson (2003), is generally greater than one. Given the rigour of mathematics

(i.e. � = 0 is outside the range for �), the coe¢cients on future expected in�ation and

lagged in�ation add up to one only in the limiting cases of (I) absence of in�ation persistence

(i.e. ! = 0) or (II) absence of long-run Phillips curve trade o¤ (i.e. � = 1), namely zero

9Note that in the nonmicrofounded model the relative weight on output �uctuations, �n, is not a function

of the output gap coe¢cient, �n. Conversely, in all the basic neo-Wicksellian models, the relative weight on

output �uctuations is a positive function of the output gap coe¢cient that obtains in the purely forward-looking

basic neo-Wicksellian model, �. The optimality of positive long-run in�ation in the nonmicrofounded model is

thus conditional on the central bank caring about output �uctuations.
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optimal steady-state in�ation. Conversely, the nonmicrofounded model has by assumption

the appealing property that the hybrid Phillips curve coe¢cients on future expected in�ation

and lagged in�ation add up to one.

The combination of (I) ine¢cient natural level of output, (II) central bank�s desire to stabilize

output around a level that is higher than the ine¢cient natural level of output, and (III)

long-run Phillips curve trade-o¤ makes positive in�ation forever in principles desirable as it

would result in positive output gap forever.

Positive in�ation forever obtains if and only if there is long-run incentive for positive in�ation,

namely the stimulative e¤ect of in�ation on output is not o¤set by the output cost of in�ation.

In�ation persistence, as de�ned above, brings about a long-run incentive for positive in�ation.

Indeed, optimal positive long-run in�ation does not obtain in the basic neo-Wicksellian model

with in�ation persistence due to backward-looking price indexation (pioneered by Christiano,

Eichenbaum and Evans (2005)) because backward-looking price indexation does not introduce

any in�ation persistence. Disin�ation under backward-looking price indexation is costless as

in the purely forward-looking basic neo-Wicksellian model.

The generality of in�ation persistence and positive optimal long-run in�ation can be corrob-

orated by looking at the optimal plan �rst-order condition for in�ation. Note that in all

models considered the optimal plan �rst-order condition for output gap determines a positive

relationship between the long-run value of the Lagrange multiplier, ', and the long-run value

of the output gap, x. Precisely, ' is found to be a positive function of the di¤erence between

long-run output gap and the steady-state e¢ciency gap, x�. Analysing the absence/presence

of long-run incentive for positive in�ation thus amounts to consider whether there is a long-

run relationship between in�ation and the Lagrange multiplier. If the stimulative e¤ect of

higher in�ation on output is greater than the output cost of higher in�ation, � would then

be negatively related to '. Hence, optimal long-run in�ation would be found to be a positive

function of the steady-state e¢ciency gap. In what follows, we are analysing the optimal

plan �rst-order condition for in�ation so to check whether the coe¢cients on the Lagrange

multipliers add up to zero.

In the purely forward-looking basic neo-Wicksellian model, the optimal plan implies that

in�ation evolves according to

�t + 't � 't�1 = 0 (32)

The increase in output in any period caused by higher in�ation in the same period, 't, is thus

o¤set by the cost of the reduction in output in the previous period as a result of expected

higher in�ation, 't�1. Hence, there is no long-run incentive for positive in�ation, the optimal

long-run in�ation is zero.
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The same conclusion holds in the basic neo-Wicksellian model with in�ation persistence due

to backward-looking price indexation. As in Woodford (2003), the conclusion can be reached

directly from the result for the Calvo pricesetting. Alternatively, the optimal plan implies

that in�ation evolves according to

(�t � 
�t�1)� �
(�t � 
�t�1) + 't � 't�1 + �
't � �
't+1 = 0 (33)

As in the purely-forward looking basic neo-Wicksellian model, the increase in output in any

period resulting from higher in�ation in the same period, 't, is o¤set by the cost of the

reduction in output in the previous period as a result of expected higher in�ation, 't�1.

Moreover, the additional increase in output in any period resulting from in�ation in the same

period, �
't, is also o¤set by the reduction in output in the subsequent period, �
't+1. Once

again, there is no long-run incentive for positive in�ation, the optimal long-run in�ation is

zero.

In the basic neo-Wicksellian model with in�ation persistence due to backward-looking rule-

of-thumb behaviour a là Galì-Gertler (2003), the optimal plan implies that in�ation evolves

according to (16). Substituting for �f and �b in terms of structural parameters yields

�t + �2(�t � �t�1)� ��2(�t+1 � �t) + 't �
�

�
't�1 �

�!

�
't+1 = 0 (34)

Higher in�ation in any period results in the usual output increase in the same period, 't,

and reduction in output in both the previous period as a result of expected higher in�ation,

(�=�)'t�1, and the subsequent period, (�!=�)'t�1. Recalling that � � �+! [1� �(1� �)] ;

the absolute value of the overall output cost of higher in�ation in any period is given by

�+ �!

�+ ! [1� �(1� �)]
(35)

Checking the relationship between the stimulative e¤ect of higher in�ation on output and the

output cost of higher in�ation thus amounts to solve the inequality

1 �
�+ �!

�+ ! [1� �(1� �)]
(36)

The solution is given by

!(1� �)(1� �) � 0 (37)

Note that (37) equally applies to the basic neo-Wicksellian model with in�ation persistence due

to backward-looking rule-of-thumb behaviour a là Steinsson (2003) as the Lagrange multipliers

enter the optimal plan �rst-order condition for in�ation in the same way. The stimulative
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e¤ect of higher in�ation is thus generally greater than the output cost of higher in�ation. Not

surprisingly, the stimulative e¤ect of higher in�ation equals the output cost of higher in�ation

(I) in the absence of in�ation persistence (i.e. ! = 0) or (II) in the absence of long-run

Phillips curve trade o¤ (i.e. � = 1). Otherwise, there exists a long-run incentive for positive

in�ation and the optimal long-run in�ation, �, is then found to be a positive function of the

steady-state e¢ciency gap, x�.

In the nonmicrofounded model, the optimal plan implies that in�ation evolves according to

(25) (reported here for convenience)

�t + 't � (1� ")'t�1 � �"'t+1 = 0

Higher in�ation in any period results in the usual output increase in the same period, 't,

and reduction in output in both the previous period as a result of expected higher in�ation,

(1� ")'t�1, and the subsequent period, �"'t+1. The absolute value of the overall output cost

of higher in�ation in any period is given by

1� "+ �" (38)

Checking the relationship between the stimulative e¤ect of higher in�ation on output and the

output cost of higher in�ation thus amounts to solve the inequality

1 � 1� "+ �" (39)

The solution is given by

"(1� �) � 0 (40)

The stimulative e¤ect of higher in�ation is thus generally greater than the output cost of

higher in�ation. Not surprisingly, the stimulative e¤ect of higher in�ation equals the output

cost of higher in�ation (I) in the absence of in�ation persistence (i.e. " = 0) or (II) in the

absence of long-run Phillips curve trade o¤ (i.e. � = 1). Otherwise, there exists a long-run

incentive for positive in�ation and the optimal long-run in�ation, �, is then found to be a

positive function of the steady-state e¢ciency gap, x�.

Without loss of generality, we consider the positive optimal long-run in�ation that obtains in

the nonmicrofounded model

� =
(1� �)"�n�n

�2n + (1� ")(1� �)
2"�n

x� �
�
(1� �)"�n�

�1
n + (1� ")�1(1� �)�1�n

�
x� (41)
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Optimal steady-state in�ation is a function of (I) the steady-state e¢ciency gap, x�, (II) the

discount factor, �, (III) the degree of in�ation persistence, ", (IV) the output gap coe¢cient,

�n, and (V) the relative weight on output �uctuations, �n. Long-run output gap is increasing

in long-run in�ation.

Proposition 7 Optimal steady-state in�ation is:

(I) increasing in x�, @�=@x� = (1� �)"�n�
�1
n + (1� ")�1(1� �)�1�n

(II) increasing in ", @�=@" =
�
(1� �)�n�

�1
n + (1� ")�2(1� �)�1�n

�
x�

(III) increasing in �n, @�=@x
� = (1� �)"��1n

if and only if �2n < (1� �)
2(1� ")"�n

(IV) decreasing in �n, @�=@" =
�
�(1� �)"�n�

�2
n + (1� ")�1(1� �)�1

�
x�

(V) decreasing in �, @�=@� =
�
�"�n�

�1
n + (1� ")�1(1� �)�2�n

�
x�

The discount factor, �, is set equal to 0:99, appropriate for interpreting t�(t�1) = 1 quarter.

The steady-state e¢ciency gap, x�, is set equal to 0:2 as in Woodford (2003): 0:2 is the value

implied by x� = �y=($+�
�1), under the assumption that (I) � = 7:88, (II) ��1 = 0:16, (III)

$ = 0:473, and (IV) equilibrium distortions are only due to monopolistic competition (i.e.

there are no distorting taxes). The degree of in�ation persistence, ", varies between 0:1 and

0:9. The output gap coe¢cient, �n, takes 5 values (0:01; 0:025; 0:05; 0:075; 0:1).The relative

weight on output �uctuations, �n, takes 5 values (0:01; 0:05; 0:1; 0:25; 0:5; 1).

Table 1 reports the annualized percentage in�ation rate10: it ranges between 0:0799% and

66:055%. Note that, given �n and �n, the annualized percentage in�ation rate is an arithmetic

progression.

4 Discussion and Conclusion

The features that deliver an endogenously optimal positive long-run in�ation are (I) ine¢cient

natural level of output, (II) central bank�s desire to stabilize output around a level that is higher

than the ine¢cient natural level of output, (III) long-run Phillips curve trade-o¤, and (IV)

in�ation persistence. In�ation persistence (i.e. costly, in terms of output, disin�ation) is what

brings about a long-run incentive for positive in�ation.

The result dissipates doubts about the application of existing New Keynesian models to

policy advice and to empirical analysis thus providing a major input to our understanding

of how central banks and governments interact in the macroeconomic policy arena, using

their own policy instruments. Optimal positive steady-state in�ation obtains in both the

10 (4 � �) � 100
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nonmicrofounded model and in the basic neo-Wicksellian model with in�ation persistence

due to backward-looking rule-of-thumb behaviour by price setters. Optimal positive long-run

in�ation does not obtain in the basic neo-Wicksellian model with in�ation persistence due

to backward-looking price indexation because backward-looking price indexation does not

introduce any in�ation persistence.

The nonmicrofounded model has by assumption the appealing property that the hybrid

Phillips curve coe¢cients on future expected in�ation and lagged in�ation add up to one.

Indeed, this paper highlights the trickiness of microfounding in�ation persistence. Given that

the justi�cation for introducing lagged in�ation in the NKPC is mainly empirical, the result

questions the worthiness of microfounding in�ation persistence. Overall, what we prove here

is that in�ation persistence (i.e. costly, in terms of output, disin�ation) brings the short-run

in line with the long-run. Given a long-run Phillips curve trade-o¤, the dichotomy short-run

and long-run is at least weakened.

Prescinding from hyperin�ation, which is a phenomenon that can arise when the central

bank�s policy instrument is the nominal quantity of money, (41) is capable of providing a

positive theory of in�ation. Altissimo, Ehrmann and Smets (2006) combined with (41) is

capable of providing a monetary history of the Euro Area. Changes in the degree of in�ation

persistence can be explained along the line of Frankel and Froot (1990)11. Negative in�ation

is compatible with either a negative output gap coe¢cient, �n, or a negative relative weight

on output �uctuations, �n
12.

This paper relies on analytics only: positive (negative) in�ation is positive (negative) output

gap, namely output above (below) the natural level of output. In the �rst half of the twentieth

century, the annual in�ation rate in developed economies averaged only slightly above zero, in

the past 50 years in�ation has been the norm. 50 years of in�ation (i.e. 50 years of output in

excess of the natural level of output) can be argued to have substantially contributed towards

climate change. With this respect, Ascari and Ropele (2007) show that an ECB-like stability

oriented monetary policy (i.e. 2% target in�ation rate in the medium term) brings about a

substantial percentage loss in welfare with respect to a zero in�ation target policy. It su¢ces

for the central bank not to care about output �uctuations to reach zero in�ation. Arguably,

the most compelling task for central banks is to �x a time horizon (i.e. t� (t� 1)): optimal

monetary policy is such that in�ation between t and t� 1 averages zero.

Everything has been thought before, but the problem is to think of it again.

Goethe

11 I thank Patrizio Tirelli for bringing this paper to my attention.
12Note that also a discount factor greater than one, � > 1, delivers a negative steady-state in�ation.
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6 Tables

" 0:1 0:2 0:3 0:4 0:5 0:6 0:7 0:8 0:9

�n = 0:01;�n = 0:01 0:0799 0:1597 0:2395 0:3192 0:399 0:4789 0:5588 0:639 0:7194

�n = 0:01;�n = 0:025 0:032 0:064 0:096 0:128 0:1599 0:1919 0:2239 0:2559 0:288

�n = 0:01;�n = 0:05 0:016 0:032 0:048 0:064 0:08 0:096 0:112 0:128 0:144

�n = 0:01;�n = 0:075 0:0107 0:0213 0:032 0:0427 0:0533 0:064 0:0747 0:0853 0:096

�n = 0:01;�n = 0:1 0:008 0:016 0:024 0:032 0:04 0:048 0:056 0:064 0:072

�n = 0:05;�n = 0:01 0:3982 0:7937 1:1875 1:581 1:9753 2:3715 2:7709 3:1746 3:5839

�n = 0:05;�n = 0:025 0:1599 0:3196 0:4792 0:6388 0:7984 0:9582 1:1181 1:2784 1:439

�n = 0:05;�n = 0:05 0:08 0:1599 0:2399 0:3198 0:3998 0:4798 0:5598 0:6398 0:7199

�n = 0:05;�n = 0:075 0:0533 0:1067 0:16 0:2133 0:2666 0:3199 0:3733 0:4266 0:48

�n = 0:05;�n = 0:1 0:04 0:08 0:12 0:16 0:2 0:24 0:28 0:32 0:36

�n = 0:1;�n = 0:01 0:7929 1:5748 2:3506 3:125 3:9024 4:6875 5:4848 6:2992 7:1358

�n = 0:1;�n = 0:025 0:3195 0:6384 0:9568 1:2751 1:5936 1:9127 2:2325 2:5535 2:8759

�n = 0:1;�n = 0:05 0:1599 0:3198 0:4796 0:6394 0:7992 0:9591 1:1191 1:2792 1:4395

�n = 0:1;�n = 0:075 0:1066 0:2133 0:3199 0:4265 0:5331 0:6397 0:7464 0:8531 0:9598

�n = 0:1;�n = 0:1 0:08 0:16 0:2399 0:3199 0:3999 0:4799 0:5599 0:6399 0:7199

�n = 0:25;�n = 0:01 1:956 3:8462 5:7007 7:5472 9:4118 11:3208 13:3017 15:3846 17:6039

�n = 0:25;�n = 0:025 0:7971 1:5898 2:38 3:1696 3:9604 4:7544 5:5534 6:3593 7:1742

�n = 0:25;�n = 0:05 0:3996 0:7987 1:1975 1:5962 1:995 2:3943 2:7941 3:1949 3:5968

�n = 0:25;�n = 0:075 0:2666 0:533 0:7993 1:0655 1:3319 1:5983 1:8649 2:1318 2:399

�n = 0:25;�n = 0:1 0:2 0:3998 0:5997 0:7995 0:9994 1:1993 1:3993 1:5994 1:7996

�n = 0:5;�n = 0:01 3:8278 7:4074 10:8597 14:2857 17:7778 21:4286 25:3394 29:6296 34:4498

�n = 0:5;�n = 0:025 1:5886 3:1596 4:7207 6:2794 7:8431 9:4192 11:0149 12:6382 14:2971

�n = 0:5;�n = 0:05 0:7986 1:5949 2:39 3:1847 3:9801 4:7771 5:5766 6:3796 7:1871

�n = 0:5;�n = 0:075 0:5329 1:0652 1:597 2:1288 2:6608 3:1932 3:7264 4:2606 4:7962

�n = 0:5;�n = 0:1 0:3998 0:7994 1:1987 1:5981 1:9975 2:3971 2:7971 3:1974 3:5984

�n = 1;�n = 0:01 7:3394 13:7931 19:8347 25:8065 32 38:7097 46:2810 55:1724 66:055

�n = 1;�n = 0:025 3:1546 6:2402 9:2879 12:3267 15:3846 18:4900 21:6718 24:9610 28:3912

�n = 1;�n = 0:05 1:5943 3:1797 4:76 6:3391 7:9208 9:5087 11:1067 12:7186 14:3483

�n = 1;�n = 0:075 1:065 2:1273 3:1881 4:2485 5:3097 6:3728 7:4389 8:5091 9:5847

�n = 1;�n = 0:1 0:7993 1:5974 2:395 3:1923 3:99 4:7885 5:5883 6:3898 7:1935

Table 1: The Annualized Percentage In�ation Rate
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7 Appendix A

The structural parameters are de�ned in Section 2.

Proof of Proposition 1. We denote with pft and p
b
t the forward-looking reset price and

the rule-of-thumb backward-looking reset price respectively. The aggregate price level, Pt,

evolves according to

Pt =
n
(1� �)(p�t )

1�� + �P 1��t�1

o 1

1��
(42)

where p�t = (1 � !)pft + !p
b
t denotes the overall reset price at time t. Henceforth, we log-

linearise the structural equations around the natural steady-state level of output, Y . The

natural steady-state level of output is the equilibrium level of output that obtains (I) in

the absence of nominal rigidity (i.e. sticky prices) and (II) in the absence of exogenous real

shocks (i.e. e�t = 0 where the vector e�t includes exogenous shocks to technology, to government
purchases, to household�s impatience to consume, and to the household�s willingness to supply

labour). If e�t = 0 and Yt = Y at all times, (42) has a solution with zero in�ation at all times

(i.e. Pt = p�t = pft = pbt = Pt�1 = P at all times). In the case of small enough �uctuations

in e�t and Yt around 0 and Y respectively, the solution to the log-linear approximate model

is one in which any variable�s log-deviation from its natural steady-state value (for instance,

bPt � log(Pt=P )) remains always close to 013. (42) can be log-linearised as

bPt = (1� �)bp�t + � bPt�1 (43)

with

bp�t = (1� !)bpft + !bpbt (44)

Firms allowed to change their price at time t choose pft so to maximise expected future pro�ts

subject to the demand they face. The producer�s objective is given by

Et

1X

s=0

�sRt;t+s�(pt(i); p
I
t+s; Pt+s; Yt+s;

e�t+s) (45)

The producer�s nominal pro�t function, �, is linearly homogeneous in its �rst three arguments

(i.e. good�s price, pt(i), industry�s price, p
I
t , aggregate price level) and, for any value of the

industry price and the aggregate price level, single-peaked for some positive value of the good�s

13Henceforth, a variable�s log-deviation from its natural steady-state value, which is denoted with a bar, is

denoted with a hat.
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price14. Under the assumption that all �rms in a given industry change their prices at the

same time, the common forward-looking reset price, pft , is implicitly de�ned by the relation

Et

1X

s=0

�sRt;t+s�1(p
f
t ; p

f
t ; Pt+s; Yt+s;

e�t+s) = 0 (46)

The �rst-order condition for optimal pricing (by all the supplier of good i, which belongs to

industry I ), �1(p
f
t ; p

f
t ; Pt+s; Yt+s;

e�t+s) = 0, implicitly de�nes what Woodford (2003, p. 162)
labels the notional Short-Run Aggregate Supply curve. A log-linearisation to the SRAS is

given by

log(pft =Pt) = �xt (47)

where � is the elasticity of the notional SRAS curve and xt is the aggregate output gap (i.e.

xt � log(Yt=Y
n
t ) � bYt � bY nt ). Under the assumption of speci�c labour markets, � is given by

� =
(��1 +$)

(1 +$�)
> 0 (48)

Substituting (47) in (46) yields

Et

1X

s=0

�sRt;t+s

h
bpft � bPt+s � �xt+s

i
= 0 (49)

Supposing that pro�ts are discounted using a discount factor that equals on average � gives

bpft = (1� ��)Et
1X

s=0

(��)s
h
bPt+s + �xt+s

i
(50)

Quasi-di¤erencing (50) yields

bp�t = (1� ��)�xt + (1� ��) bPt + ��Etbp�t+1 (51)

Steinsson (2003) rule-of-thumb backward-looking reset price is given by

pbt = p
�
t�1

Pt�1
Pt�2

�
Yt�1
Y nt�1

��
(52)

Log-linearising yields

bpbt = bp�t�1 + �t�1 + �xt�1 (53)

14Given a constant returns to scale production function (i.e. yt(i) = Atht(i)), the nominal pro�t function is

given by

�(pt(i); p
I
t ; Pt; Yt;e�t) � pt(i)yt(i)� w

I
t ht(i) � pt(i)

�
pt(i)

Pt

���
Yt �

vh(
�
pIt=Pt

���
Yt=At); �t)

uc (Ct; �t)
Pt

�
pt(i)

Pt

���
Yt
At
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Rewriting (43) in terms of the aggregate in�ation rate, �t � log (Pt=Pt�1) � bPt � bPt�1, gives

�t =
1� �

�
(bp�t � bPt) (54)

Substituting (44) in (54) yields

�t =
1� �

�

h
(1� !)(bpft � bPt) + !(bpbt � bPt)

i
(55)

Using (43) to substitute for bp�t�1 in (53) and subtracting bPt from both sides, bpbt � bPt is given
by

bpbt � bPt =
1

1� �
�t�1 � �t + �xt�1 (56)

Rewriting (51) in terms of bpft � bPt yields

bpft � bPt = (1� ��)�xt + ��Et(bpft+1 � bPt) (57)

Using (53) at t+1 to substitute for bpbt+1 in (44) and subtracting bPt from both sides, gives

bp�t+1 � bPt = (1� !)(bpft+1 � bPt) + !(bp�t � bPt�1 + �xt�1) (58)

(43) implies

bp�t � bPt�1 =
1

1� �
�t (59)

Substituting (59) in (58), taking the expected value at t and solving for Et(bpft+1 � bPt) yields

Et(bpft+1 � bPt) =
1

(1� �)(1� !)
Et(�t+1 � !�t) (60)

Substituting (60) in (57) gives

bpft � bPt = (1� ��)�xt +
��

(1� �)(1� !)
Et(�t+1 � !�t)�

��!�

(1� !)
xt (61)

Substituting (56) and (61) in (55) yields

�t =
1� �

�

8
>><
>>:
!

0
BB@

1
1���t�1

��t

+�xt�1

1
CCA+ (1� !)

2
664

h
(1� ��)� � ��!�

(1�!)

i
xt

� !��
(1��)(1�!)�t

+ ��
(1��)(1�!)Et�t+1

3
775

9
>>=
>>;

(62)

Solving for in�ation, �t

�+ ��! + (1� �)!

�
�t =

8
<
:

��
� Et�t+1 +

!
��t�1 +

(1��)!�
� xt�1

+
h
(1��)(1�!)(1���)��(1��)��!�

�

i
xt

9
=
; (63)
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delivers the hybrid Phillips curve for price in�ation

�t = �f�Et�t+1 + �b�t�1 + �1xt + �2xt�1 (64)

where, given (48), the parameters are

(
� = �+ ! � (1� �)!�;�f =

�
� ;�b =

!
� ;�2 =

(1��)!�
�

�1 =
(1�!)���(1��)��!�

� ;� = (1��)(1���)(��1+$)
(1+$�)�

)
(65)

In the case of small enough �uctuations in the production of each good, byt(i) � log
�
yt(i)=Y

�
,

around the natural steady-state level of output, Y , small enough exogenous real shocks, and

small enough equilibrium distortions (i.e. a small enough value of �y), the period-utility of the

representative household can be approximated to second-order as in Woodford (2003, 2:13, p.

396)

Ut = �
Y euc
2

�
(��1 +$)(xt � x

�)2 + (1 +$�)�vari log pt(i)
�
+ t:i:p+O

�


�y;e�; %




3
�

(66)

euc is the marginal utility of aggregate expenditure evaluated at the natural steady-state level
of output (i.e. euc � euc(Y ; 0)). The steady-state e¢ciency gap, x� � log

�
Y
�
=Y
�
, is given by

x� � log(Y
�
=Y ) = �y=($ + �

�1). vari log pt(i) is a measure of the degree of price dispersion

across industries (i.e. goods). t:i:p collect terms that are independent of monetary policy

(i.e. irrelevant to the welfare ranking of alternative equilibria). The third-order residual

is function of (I) the parameter that summarizes the distortion in the natural steady-state

level of output due to monopolistic competition, �y, (II) the vector that includes all the real

exogenous disturbances, e�, and (III) the parameter vector that indexes aspects of policy (i.e.
monetary policy) that determine the long-run equilibrium values of the endogenous variables

(i.e. � and x) in the absence of real exogenous disturbances, %.

Proof of Proposition 2. Under Calvo (1983) staggered price setting and Steinsson (2003)

backward-looking rule-of-thumb behaviour, the distribution of prices at any period, fpt(i)g,

consists of (I) � times the distribution of prices in the previous period, fpt�1(i)g, (II) an atom

of size (1��)(1�!) at the forward-looking reset price, pft , and (III) an atom of size (1��)!

at the rule-of-thumb backward-looking reset price, pbt

fpt(i)g = � fpt�1(i)g+ (1� �)(1� !)p
f
t + (1� �)!p

b
t (67)

Let (I) �t � vari log pt(i) denote the degree of price dispersion and (II) P t � Ei flog pt(i)g.

Hence, P t � P t�1 = Ei
�
log fpt(i)g � P t�1

�
. Recalling log p�t = (1 � !) log pft + ! log p

b
t and

27



using (67), P t � P t�1 can be rewritten as

P t � P t�1 = Ei
�
log fpt(i)g � P t�1

�

= Ei

h
� flog pt�1(i)g+ (1� �)(1� !) log p

f
t + (1� �)! log p

b
t � P t�1

i

= Ei

"
�
�
flog pt�1(i)g � P t�1

�
+ (1� �)(1� !)(log pft � P t�1)

+(1� �)!(log pbt � P t�1)

#

=

2
64

0z }| {
�Ei

�
flog pt�1(i)g � P t�1

�
+ (1� �)(1� !)(log pft � P t�1)

+(1� �)!(log pbt � P t�1)

3
75

= (1� �)(log p�t � P t�1) (68)

Similarly, �t can be rewritten as

�t = vari
�
log fpt(i)g � P t�1

�

= Ei

n�
log fpt(i)g � P t�1

�2o
�
�
Ei log fpt(i)g � P t�1

�2

=

2
4 �Ei

n�
log fpt�1(i)g � P t�1

�2o
+ (1� �)(1� !)(log pft � P t�1)

2

+(1� �)!(log pbt � P t�1)
2 � (P t � P t�1)

2

3
5 (69)

P t is related to the Constant Elasticity of Substitution Dixit-Stiglitz (1967) price index

through the log-linear approximation

P t = logPt +O

�


�1=2�1 ;e�; %




2
�

(70)

the second-order residual follows from the fact that the equilibrium in�ation process (as the

equilibrium output process) satis�es a bound of second order O(



e�; %





2
) together with a

second-order bound on the initial (i.e. date �1, policy is implemented at date 0) degree of

price dispersion, ��1. Note that, as in Woodford (2003), ��1 is assumed to be of second

order (that is why it enters the second-order residual in (70) to the power of 1=2). It then

follows that this measure of price dispersion continues to be only of second order in the case

of �rst-order deviations of in�ation from zero. Recalling log pbt = log p
�
t�1 + �t�1 + �xt�1 and

using (70), log pbt � P t�1 is given by

log pbt � P t�1 = log p�t�1 + �t�1 + �xt�1 � P t�1

= log p�t�1 � P t�2 � (P t�1 � P t�2) + �t�1 + �xt�1

= log p�t�1 � P t�2 � �t�1 + �t�1 + �xt�1 +O

�


�1=2�1 ;e�; %




2
�

= log p�t�1 � P t�2 + �xt�1 +O

�


�1=2�1 ;e�; %




2
�

(71)
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Recalling log p�t = (1�!) log p
f
t +! log p

b
t , log p

b
t = log p

�
t�1+�t�1, and using (70), log p

f
t �P t�1

is given by

log pft � P t�1 =
1

1� !
log p�t �

!

1� !
(log p�t�1 + �t�1 + �xt�1)� P t�1

=
1

1� !
(log p�t � P t�1)�

!

1� !
(log p�t�1 + �t�1 � P t�1 + �xt�1)

=

2
64

1
1�! (log p

�
t � P t�1)�

!
1�! (log p

�
t�1 � P t�2)

� !�
1�!xt�1 +O

�


�1=2�1 ;e�; %




2
�

3
75 (72)

Using (70), (68) becomes

�t = (1� �)(log p
�
t � P t�1) +O

�


�1=2�1 ;e�; %




2
�

(73)

Accordingly, (71) and (72) become respectively

log pbt � P t�1 =
1

1� �
�t�1 + �xt�1 +O

�


�1=2�1 ;e�; %




2
�

(74)

log pft � P t�1 =

2
64

1
(1�!)(1��)�t �

!
(1�!)(1��)�t�1

� !�
(1�!)xt�1 +O

�


�1=2�1 ;e�; %




2
�
3
75 (75)

Substituting (70), (74), and (75) in (69) yields

�t =

2
66664

�Ei

n�
log fpt�1(i)g � P t�1

�2o
+ (1� �)!( 1

1���t�1 + �xt�1)
2 � �2t

+(1� �)(1� !)
h

1
(1�!)(1��)�t �

!
(1�!)(1��)�t�1 �

!�
(1�!)xt�1

i2

+O

�


�1=2�1 ;e�; %




3
�

3
77775

=

2
66664

�Ei

n�
log fpt�1(i)g � P t�1

�2o
+ !

1���
2
t�1 + (1� �)!�

2x2t�1 + 2!��t�1xt�1

��2t +
1

(1�!)(1��)�
2
t +

!2

(1�!)(1��)�
2
t�1 +

(1��)!2�2

(1�!) x2t�1

� 2!
(1�!)(1��)�t�t�1 �

2!�
(1�!)�txt�1 +

2!2�
(1�!)�t�1xt�1 +O

�


�1=2�1 ;e�; %




3
�

3
77775

=

2
64

!+(1�!)�
(1�!)(1��)�

2
t +

!
(1�!)(1��)�

2
t�1 �

2!
(1�!)(1��)�t�t�1 +

(1��)!�2

(1�!) x
2
t�1 �

2!�
(1�!)�txt�1

+ 2!�
(1�!)�t�1xt�1 + �Ei

n�
log fpt�1(i)g � P t�1

�2o
+O

�


�1=2�1 ;e�; %




3
�

3
75

=

2
6664

�
(1��)�

2
t +

!
(1�!)(1��)(�

2
t + �

2
t�1 � 2�t�t�1) +

(1��)!�2

(1�!) x
2
t�1

� 2!�
(1�!)(�txt�1 � �t�1xt�1) +

�t�1z }| {
�Ei

n�
log fpt�1(i)g � P t�1

�2o
+O

�


�1=2�1 ;e�; %




3
�

3
7775

= ��t�1+
�

(1� �)
�2t+

!

(1� !)(1� �)
[�t � �t�1 � (1� �)�xt�1]

2+O

�


�1=2�1 ;e�; %




3
�
(76)
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Integrating forward (76), starting from any small initial degree of price dispersion, ��1, the

degree of price dispersion in any period t � 0 is given by

�t =

8
>><
>>:

1P
s=0

�t�s
h

�
(1��)�

2
t +

!
(1�!)(1��) [�t � �t�1 � (1� �)�xt�1]

2
i

�t�1��1 +O

�


�1=2�1 ;e�; %




3
�

9
>>=
>>;

(77)

The term �t�1��1 is independent of monetary policy. Taking the discounted value of (77)

over all periods t � 0 gives

1X

t=0

�t�t =

8
>><
>>:

1
1���

1P
t=0
�t
h

�
(1��)�

2
t +

!
(1�!)(1��) [�t � �t�1 � (1� �)�xt�1]

2
i

+t:i:p+O

�


�1=2�1 ;e�; %




3
�

9
>>=
>>;

(78)

Taking the discounted value of (66) over all periods t � 0 yields

1X

t=0

�tUt =

8
>><
>>:

�Y euc
2

�
(��1 +$)

1P
t=0
�t(xt � x

�)2 + (1 +$�)�
1P
t=0
�t�t

�

+t:i:p+O

�


�y;e�; %




3
�

9
>>=
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(79)

Substituting (78) in (79) and normalizing on in�ation, the discounted sum of utility of the

representative household can be approximated to second-order by

1X

t=0

�tUt =

8
>>>><
>>>>:

�Y euc(��1+$)�
2�

1P
t=0
�t

"
�2t +

�
� (xt � x

�)2

+ !
(1�!)� [�t � �t�1 � (1� �)�xt�1]

#2

+t:i:p+O

�


�y;e�; %;�1=2�1
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(80)

where � is de�ned as in (65).

8 Appendix B

We pick on the �choice of variables� issue (Woodford (2003), p. 388). The scenario is the one

of small equilibrium distortions, namely

Uc(Y ; 0) = O (k�yk) (81)

What we show here is that, when (81) holds, a linear approximation to the production function

is indeed accurate for the purpose of policy analysis. Considering a �rst-order and not a

second order approximation to the production function does not alter the approximate welfare

measure (still given by (66)) but proves that in the presence of a not too ine¢cient natural
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steady-state level of output a linear approximation, when substituted into a second-order

approximation to expected utility, yields a correct approximate welfare measure.

The period utility of the representative household, as a function solely of all yt(i), is given by

Woodford (2003, 2:3, p. 392)15

Ut = eu(Yt;e�t)�
Z 1

0
ev(yt(i);e�t)di (82)

The �rst term in (82) can be approximated to second order (i.e. second-order Taylor expansion

taken around (Y ; 0)) by

eu(Yt;e�t) = u+ euc eYt + eu�e�t +
1

2
eucc eY 2t + euc� eYte�t +

1

2
e�
0

teu��e�t +O
�


�y;e�; %





3
�

(83)

Substituting eYt = Y bYt and dropping the terms that are higher than second order yields

eu(Yt;e�t) = u+ Y euc bYt + eu�e�t +
1

2
Y
2eucc bY 2t + Y euc�e�t bYt +

1

2
e�
0

teu��e�t +O
�


�y;e�; %
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�

(84)

Taking all the steps as in Woodford (2003, Appendix E:1), yields

eu(Yt;e�t) = Y euc
�
bYt �

1

2
��1 bY 2t + ��1gt bYt

�
+ t:i:p+O

�
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(85)

Using eYt = Y bYt, the second term in (82) can be approximated to second order by

ev(yt(i);e�t) = v + Y euc(1� �y)byt(i) + ev�e�t +
1

2
Y
2evyybyt(i)2 + Y evy�e�tbyt(i) (86)

+
1

2
e�
0

teu��e�t +O
�
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(86) delivers

Z 1

0
ev(yt(i);e�t)di = Y euc

�
(1� �y)bYt +

1

2
$bY 2t �$qt bYt +

1

2
(��1 +$)varibyt(i)

�
(87)

+t:i:p+O

�
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�

Combining (85) and (87) yields

15We do not digress, see Woodford (2003) for more details. Note that in what follows we maintain Woodford�s

notation. � subscript denotes partial derivatives of ev with respect to all exogenous disturbances in vector e�t.
Similarly, c subscript denotes partial derivatives of eu with respect to the aggregate level of production, Yt (i.e.
@eu=@Yt = @u=@Ct). All partial derivatives are evaluated at (Y ; 0).
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Ut = Y euc
�
�y bYt �

1

2
(��1 +$)bY 2t + ($qt + ��1gt)bYt �

1

2
(��1 +$)varibyt(i)

�
(88)
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which then delivers (66).
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