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Abstract

Cross-country differences in agricultural productivity dwarf those in the aggregate. This pa-

per presents a theory in which low aggregate productivity distorts skill formation of farmers.

A model in the style of Lucas (1978) is extended to allow skill accumulation. Differences

in skill magnify the differences in agricultural productivity. The model is calibrated to the

U.S. to reproduce the size distribution of farms and the time allocation of farmers. Given

exogenous differences in total factor productivity (TFP), the model explains 45-50% of the

differences in agricultural output per worker. Moreover, differences in farmers’ skills account

for about 30% of the variation in agricultural productivity. The model also maps the latent

distribution of skill to a size distribution of farms, and is able to resemble salient features of

the cross-country distribution of farm size.

Keywords: Agricultural productivity, skill investment, farm size distribution, income

differences.

1. Introduction

Cross country differences in agricultural productivity are much larger than the differences

in aggregate income per worker. This feature is first noted in Kuznets (1971). For a larger
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set of countries, Caselli (2005) documents that between the 90th percentile country and the

10th percentile country of the world income distribution, the ratio of PPP output per worker

in agriculture exceeds a factor of 45, compared to 22 in GDP per worker and merely 5 in

non-agricultural output per worker. Given that agriculture typically employs most of the

labor force in low income countries, understanding why agriculture is so unproductive in

these countries is clearly of first order importance.

This paper presents a theory in which unmeasured skill of farmers plays an important role

in agricultural production. I construct a model featuring an agricultural sector displaying

decreasing returns to scale, and a non-agricultural sector displaying constant returns to scale.

Skill is modeled as the ability to manage a farm, in the style of Lucas (1978). Given the same

amount of input, a more skilled individual is able to produce more agricultural output. Hence

agricultural productivity critically depends on the skill component of individuals who choose

to become farmers and produce in agriculture. Such division of labor between occupations

arises endogenously in equilibrium. Moreover, it is shown to vary with the level of aggregate

productivity.

The model also features growth of skill in a life cycle set up. On the one hand, the

dynamics of skill bring about an addition margin through which TFP affects productivity in

agriculture. On the other hand, such specification accords well with micro farm level data

in the U.S.. While detailed description of the data is postponed until Section 2, the key

observation is that productivity of a US farm operator can grow as much as by a factor of 3

over her life cycle. This life-cycle feather is robust to different ways of measuring productivity.

In this paper, productivity growth is not viewed to be a mere byproduct of working and

aging. Instead, it is the result of explicit skill-enhancing investment committed earlier in a

farmer’s life. In fact, younger farm operators in the US tend to spend more time on non-farm

activities, relative to their older peers. Consistent with these empirical observations, a skill

accumulation technology is posited with time as an input. Individuals choose the profile of
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investment over their life cycle, in addition to their selection of occupations.

The key result is that economy with low TFP comprises of a large pool of low skill

farmers. In a high TFP economy, farmers are rare but possess high skill. This is true despite

the fact that economies differ only in their levels of TFP, which is sector-neutral. Moreover,

the differences in the skill composition of farmers arise from two distinct margins. Through

the extensive margin, the subsistence need of agricultural good dictates that more people,

even those with low skill, produce in agriculture. To the extent that a low-skill farmer can

be viewed as having a comparative advantage in non-agriculture, this margin is similar to

the “specialization” effect in Lagakos and Waugh (2010). The authors show that subsistence

need induces less specialization in low TFP countries, and offer a neat explanation of cross-

country productivity differences at the sector level. The intensive margin operates through

on-the-job skill investment. Farmers in a low TFP economy invest less in skill improvement

due to high financing cost - in the form of high equilibrium interest rate. In addition to a

larger pool of farmers, each farmer faces a flatter life-cycle skill profile in such an economy.

Skill accumulation hence offers an extra channel through which TFP affects the skill of

farmers (and consequently productivity in agriculture), and is a key innovation of this paper.

The intensive margin is particularly interesting. In a standard human capital model with

only time input in the human capital technology, it is generally the case that difference

in the level of TFP has no impact on the optimal allocation of time. Recent advances in

the literature stress the key role of goods input in the human capital technology. Excellent

examples along this line include Manuelli and Seshadri (2005), Cordoba and Ripoll (2007),

and Erosa, Koreshkova, and Restuccia (2010). In these papers, goods input contributes to

the differences in the “quality” of human capital. In the current paper, goods input is absent

in the skill accumulation technology. Nonetheless, optimal time investment varies with the

level of TFP. This is because low TFP is accompanied by high equilibrium interest rate,

which renders skill investment less profitable.
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When fed exogenously the level of TFP and land endowment, the model has predictions

about the allocation of labor across sectors, time allocation of farmers between investment

and production, and output per worker in agriculture and non-agriculture. In equilibrium,

the model also yields a non-degenerate size distribution of farms. This is particularly useful

because there is a unique mapping between the distribution of farmer’s skill and the size

distribution of farmers. Hence the model’s prediction about cross-country difference in skill

of farmers can be tested by investigating its implication about the size distribution of farms

across countries.

To be used to explain cross-country differences in agricultural productivity, the model is

calibrated to the US as a benchmark economy. In particular, model parameters are chosen

such that the model reproduces the size distribution of farms, time allocation of farmers, and

other macroeconomic statistics in the US. By varying country-specific TFP to reproduce PPP

output per worker in non-agriculture, the model is able to explain 45-50% of the variation in

agricultural output per worker across countries. While cross-country difference in agricultural

productivity is mostly a story of TFP difference - difference in TFP accounts for 50% of the

productivity difference - the importance of skill is too large to ignore. The difference in skill

of farmers is found to account for 27% of the difference in agricultural productivity. Further

decomposition reveals that most of the variation in skill stems from the extensive margin.

While farmer do differ in their accumulation of skill, the difference is quantitatively small.

Consistent with the prediction that farmers possess low skill in low TFP countries, the

model predicts that farms are much smaller in size in those countries. This prediction is

well supported by data on the size distribution of farms across countries. In the data, the

correlation between PPP output per worker in agriculture and mean farm size is 0.45. In

the model, it is 0.6. The model also successfully captures the fact that farms in low income

countries are predominantly small. For the poorest 5% countries, for example, the share

of farms with less than 5 hectares of land is 89% in the data. The model predicts a share
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of 87%, which is almost identical to that in the data. For some individual countries, the

endogenous size distribution of farms almost perfectly matches their empirical counterpart.

On the prediction of cross-country size distribution of farms, this paper is related to

Adamopoulos and Restuccia (2011). Both papers use a span-of-control framework to pro-

duce a nondegenrate size distribution and aim at explaining international productivity

difference in agriculture. However, there are subtle yet important differences. Firstly,

Adamopoulos and Restuccia (2011) offers an alternative, and interesting, application of the

span-of-control framework. In particular, they do not consider the division of heterogeneous

family members into different occupations. Such specification allows them to isolate the ef-

fect of idiosyncratic policy distortions on total output in agriculture. As a result, the origins

of productivity differences are not the same in these two papers. In their paper, productivity

is low in agriculture because the most productive farms are not operating at the optimal

scale, due to distortions. In the current paper, low productivity is due to a large share of

unproductive farmers who do not invest to enhance their skill. All farmers, productive or

not, are producing at their optimal scale. Secondly, these two papers also differ in their

implications of the farm size distribution. In Adamopoulos and Restuccia (2011), the size

distribution of farms is used to infer the distribution of idiosyncratic policy distortions. In

this paper, the size distribution is a mapping from the distribution of farmer’s skill. Hence

the difference in the size distribution of farms reveals information about the difference in the

skill composition of farmers.

This paper fits into an expanding literature that emphasizes the key role of agricul-

ture in understanding cross-country productivity differences. Within development account-

ing frameworks, researchers found that including an agriculture sector yields different im-

plications about cross-country difference in TFP than those from the one-sector models.

Cordoba and Ripoll (2005), Chanda and Dalgaard (2008), Vollrath (2009) are excellent ex-

amples along this line. Others attempt to quantify the effect of various distortions on sec-
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tor productivity in general equilibrium models. Gollin, Parente, and Rogerson (2004) show

that in a model with home production, investment distortions reduce measured productiv-

ity much more in agriculture, relative to non-agriculture. Restuccia, Yang, and Zhu (2008)

argue convincingly that barriers to intermediate inputs in agriculture can substantially re-

duce productivity. High transportation cost is shown to adversely impact productivity in

Adamopoulos (2006) and Gollin and Rogerson (2010). Instead of modeling specific distor-

tions, this paper considers the effect of low aggregate TFP on agricultural productivity in a

model of heterogenous producers. In modeling unmeasured skill in agricultural production,

this paper also relates to Assuncao and Ghatak (2003). However, they mainly focus on the

inverse correlation between farm size and land productivity.

The remaining of the paper is organized as follows. Section 2 presents a set of facts

that motivate this paper. Section 3 describes the economic environment. Section 4 defines

a competitive equilibrium, elaborates on equilibrium conditions, and proves some results.

Section 5 presents the calibration strategies and the main results. Section 6 concludes. All

proofs are relegated to the Appendix.

2. Facts

The main source of data is Census of Agriculture of various years in the US. The unit

of observation is the average of all farms under the management of operators in a particular

age group. First, I show that there is substantial productivity variation across operators of

different ages. Two measures of productivity are constructed, and presented in Table 1. In

both measures, the productivity of the youngest operator is normalized to unity. Measure

I is output (net of government transfer) per operator. With measure I, older farmers are

significantly more productive than their younger peers - the productivity gap is as large

as a factor of 3 between operators aged 35-44 and those under 25. While it is true that

older farmers tend to have more resources under their management, it turns out that ob-
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served productivity difference can not be completely accounted for by differences in factors

of production. I consider four factors of production: intermediate inputs, land, capital, and

hired labor. Intermediate inputs include feed, seed, chemical and fertilizers. Capital in-

cludes machinery, equipments, and buildings.2 The elasticities of each factor of production

are calculated from Table 5 and 6 in Herrendorf and Valentinyi (2008). Then productivity

is computed as a residual and reported as Measure II in the last row of Table 1.3 Operators

aged 35-44 remain 35% more productive than those under 25. In summary, both measures

of productivity suggest substantially variation across operators of different ages.

Age < 25 25− 34 35-44 45-54 55-64
Measure I 1 2.02 3.00 2.88 1.96
Measure II 1 1.24 1.35 1.28 0.87

Table 1: Productivity By Age of Operator: US (2007)

Perhaps not surprising, older farmers also operate a larger farm. The average size of

farms under the management of operators under 25 is 324 acres, which is about 1/3 the

mean size of farms managed by operators aged 35-44. If one computes output per worker

by size of a farm, it is likely that a larger farm will have higher measured productivity than

a smaller one. In fact, this observation has been highlighted in Adamopoulos and Restuccia

(2011) for the US, and in Cornia (1985) for a larger set of developing countries.

It is also possible that the observed cross-section productivity differences reflect differ-

ences in education attainment of operators. Unfortunately, education attainment is not

reported in the census of agriculture. Instead, I offer indirect evidence suggesting that ed-

ucation attainment is not likely to be the story behind these productivity differences. I

compute operator’s productivity using measure I with data from 1997 and 2002 census of

2Census reports value of land and buildings. I assume an equal split between land and buildings. The
results change minimally with different shares.

3Solow residual of operator i is computed as yi

k
α
k

i
·x

αx

i
·ℓ

α
ℓ

i
·h

α
h

i

, where y is output per operator. Factors of

production j = k, x, ℓ, h are capital, intermediate, land and labor. αj are the respective elasticity.

7



agriculture. The results are reported in Table 2. For the moment, assume that in 1997 the

productivity difference between operators aged 25-34 and those aged 35-44 are driven solely

by education attainment. Then in the 2007 cross section, one should expect to observe the

same order of difference in productivity between operators aged 35-44 and those aged 45-54,

because education attainment is fixed over time. However, We donnot observe that. Similar

calculations for other age groups deliver similar results. Although this calculation is simple

in nature, and in particular ignores the entry of farmer (who might have different education

than the incumbents) over time, it does suggest that the difference in level of education is

not likely to account for, at least not completely, the difference in productivity.

Age < 25 25− 34 35-44 45-54 55-64
2007 1 2.02 3.00 2.88 1.96
2002 1 2.04 2.39 2.52 1.86
1997 1 1.66 2.18 2.19 1.54

Table 2: Productivity by Age of Operator: US (Various Census Years)

International data on productivity by the age of farm operators is limited, especially

for developing countries. Here I present summarized information for one country, Nepal,

that has available data in a similar format as that in the US. Instead of measuring output,

census of agriculture in Nepal (2001-2002) reports average holding size by age of holders,

which I take as a proxy for productivity. In Table 3 I report the mean farm size relative

to that of holders aged less than 25, in both Nepal and the US. The key message to take

away is that productivity growth over farmer’s life cycle is less pronounced in Nepal than in

the US. Between operators aged under 25 and those aged 35-44, the gap in productivity is

around a fact of 1.2 in Nepal, compared to 2.7 in the US.4 This observation is closely related

to the findings in Hsieh and Klenow (2011). The authors find that in the cross-section of

manufacturing plants, surviving plants grow faster in the US, compared to those in Mexico

4Mean farm size data by age is also available from Sri Lanka, though the division of age group is not the
same as in Nepal and the US. Between age 15 and 49, mean farm size barely changes in Sri Lanka.
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and India. As a result, the life-cycle profile of employment appears flatter in Mexico and

India.

Holding Size < 25 25− 34 35-44 45-54 55-64
US 1 1.77 2.65 2.81 2.27
Nepal 1 1.05 1.2 1.46 1.59

Table 3: Holding Size by Age of Holder: Nepal and US

3. Model

3.1. Environment

Each period a continuum (of measure one) of individuals are born, and live for T periods.

Individuals of the same cohort form a household, with all decisions made by a hypothetical

household head. Two goods are produced each period. One is labeled agricultural good,

denoted by ca. The other is labeled non-agricultural good, denoted by cn. The representative

household derives utility from consumption of two goods according to

U(ca, cn) = η · log(ca − ā) + (1− η) · log(cn)

Parameter ā is the subsistence in agricultural consumption. ā > 0 implies an income elas-

ticity of agricultural consumption less than unity.

Each member is endowed with one unit of physical time. The fixed stock of land, denoted

by L̄, is equally owned by households. There is no population growth or lifetime uncertainty.

Total measure of population at any point in time is T.

3.2. Skill Accumulation

When born, individuals within a household draw independently their skill type, z ∈ ℜ+,

from a known, time invariant distribution G(z). Throughout the paper, an individual with

initial draw z is referred to as type z. While skill type is exogenously drawn, the level of
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skill can grow over time. And the growth of skill requires investment of time according to

the following technology

zt+1 = zt + zt · s
θ
t , st ∈ [0, 1] (1)

where st is the fraction of time committed to skill enhancing activities. It is not diffi-

cult to map Equation (1) to farming in the real world. To improve skill, a farmer has

to spend time on various tasks including, but not limited to, experimenting with differ-

ent seeds/crops/fertilizers, updating on the most recent available technologies, learning new

equipments etc. While other skill-enhancing tasks may require input other than time - e.g.,

purchasing a new computer, such possibilities are ruled out here for several reasons. First,

it allows for closed-form solutions and clearer expositions. Second, data on time allocations

of farm operators are available to discipline relevant parameters. Lastly, data on resources

investment by farm operators in skill accumulation are limited, if available at all.

3.3. Technology and Household Optimization

Conditional on skill type, the household head decides whether a member should be a

worker or a farmer. This division of labor is assumed to be fixed over one’s life. This re-

striction is innocuous in a steady state. All workers, regardless of skill type, supply labor

inelastically and earn a common wage. A farmer produces agricultural goods using a tech-

nology displaying decreasing returns to scale, and retains profit as rent. The technology is

standard Cobb-Douglas

ya = A · (z(1 − s))1−γ
(
hα
a · ℓ1−α

)γ

where {ha, ℓ} denote labor and land. Note that the amount of skill used in production is

a product of skill level z and time allocated to production (1-s). Finally, A represents the
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level of total factor productivity in this economy.

There are competitive rental markets of labor and land at prices w and q, and farm

output are sold in competitive markets at price p. All prices are expressed relative to the

price of nonagricultural output. In a given period, a farmer with skill level z who works

(1− s) hours rents labor and land to maximize profit

max
{ha,ℓ}

p · ya − w · ha − q · ℓ

For later reference, denote ha(z, s), ℓ(z, s) the optimal demand of labor and land. The

profit, denoted by π(z, s), is retained by the farmer as rent. It is straightforward to show

that profit is linear in the skill input, i.e.,

π(z, s) = z(1 − s) · (1− γ) · (p · A)
1

1−γ

(

γ
(α

w

)α
(
1− α

q

)1−α
) γ

1−γ

Let Yt denote household income in period t, given the division of labor and the allocation

of time between skill accumulation and production. The household head then solves the

standard consumption-saving problem to maximized discounted utility

max
{cat,cnt}

:
T∑

t=1

βtU(cat, cnt)

s.t : ptcat + cnt + at+1 = atRt + Yt

where Rt denotes the return on asset holdings at.
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3.4. Non-agriculture

There is a representative firm that produces non-agricultural output with a linear tech-

nology Yn = A ·Hn. In this technology, Hn denotes labor hours and does not embed skills.5

The representative firm solves

max
{Hn}

A ·Hn − w ·Hn

4. Equilibrium

This economy admits a stationary equilibrium, in which prices and the division of labor

are constant over time. A formal definition is given below.

A stationary competitive equilibrium is a collection of prices (w, p, q, R), consumption

and investment allocations (cat, cnt, st, at)
T
t=1, factor demand ha(z, s), ℓ(z, s), Hn such that:

(1) given prices, (cat, cnt, st, at)
T

t=1 solve household maximization problem; (2) given prices,

ha(z, s), ℓ(z, s) solve farmer’s profit maximization, and Hn solve non-agricultural firm’s profit

maximization; (3) prices are competitive; (4) all markets clear.

In equilibrium, workers work full time because the return to skill investment is zero. The

discounted lifetime income of a worker is simply Yw =
∑T

t=1{w ·R1−t}. Since farmer’s rent is

strictly increasing in skill input, it is always profitable for a farmer to spend positive amount

of time on skill accumulation. Moreover, the optimal time investment is independent of

farmers’ skill type. Lemma 1 states this result formally.

Lemma 1. Optimal time investment is independent of initial skill draw

Lemma 1 implies a common slope of skill profile for all farmers, and the level is determined

5Alternatively, the technology can be specified as y = A
∫

i
zidGi to incorporate skill. In this case, the

simple mapping between TFP in the model and non-agricultural output per worker in the data is lost.
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by the initial draw. It is convenient to define variable xt as follows

xt =







1, t = 1

xt−1 · (1 + sθt−1), t = 2, ..., T

{xt}
T
t=1 summarize the level of skill at time t relative to the initial draw. Clearly, {xt} is

independent of skill type. This allows a simple expression of lifetime discounted income of a

type z farmer

Yf(z) = π(z) ·

T∑

t=1

{xt · (1− st) · R
1−t}

Note that Yf(z) is linear and strictly increasing in skill type z. Recall that discounted lifetime

income of a worker (Yw) is independent of skill type z. This leads to Lemma 2.

Lemma 2. There exists a cut-off level of skill type, z̄, such that household members with
skill type z < z̄ become workers, and household members with skill type z > z̄ become farmers.

The most able members will manage farms and utilize their skills. The less able members

will supply inelastically one unit of labor to the market, and forgo their endowed skills. The

marginal farmer, whose skill type is z̄, is indifferent between two occupations. Income of a

household consists of labor income, farm profit, and rental income from land. The present

value of household income is simply

Y = G(z̄) · Yw +

∫

z̄

Yf(z)dG(z) + q · L̄/T ·
T∑

t=1

R1−t

To solve the model, I begin by solving for prices (p, q). Equation (2) below states the

indifference condition for the marginal farmer. Equation (3) below states the land market
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clearing condition, which utilizes the fact that land demand is linear in skill input.

π(z̄) ·
T∑

t=1

{xt · (1− st) ·R
1−t} =

T∑

t=1

{w ·R1−t} (2)

∫

z̄

ℓ(z)dG(z) ·

T∑

t=1

{xt · (1− st)} = L̄ (3)

Dividing (2) by (3) yields an expression for the rental price of land

q =

[ ∑T

t=1{xt · (1− st)}
∑T

t=1{xt · (1− st) · R1−t}

]

·




γ · (1− α) ·

(
∑T

t=1{w · R1−t}
)

(1− γ) · L̄



 ·

∫

z̄
zdG(z)

z̄
(4)

Substituting (4) into (3) yields the relative price of agricultural good

p =

[ ∑T

t=1{w · R1−t}

z̄ · (1− γ) ·
∑T

t=1{xt · (1− st) · R1−t}

]1−γ

·

(

γ
(α

w

)α
(
1− α

q

)1−α
)−γ

·
1

A
(5)

Note the relative price of agricultural good is strictly decreasing in TFP. Agricultural good

is more expensive relative to non-agricultural good in countries with low productivity. Solv-

ing for optimal consumption bundles and aggregating over generations yields the aggregate

demand of two consumption goods

Ca =

T∑

t=1

cat =

[
T∑

t=1

(βR)t−1

]

·

[

Y − p · ā
∑T

t=1R
1−t

∑T

t=1 β
t−1

]

·
η

p
+ T · ā (6)

Cn =

T∑

t=1

cnt =

[
T∑

t=1

(βR)t−1

]

·

[

Y − p · ā
∑T

t=1 R
1−t

∑T

t=1 β
t−1

]

· (1− η) (7)

In each household, the measure of workers is G(z̄). Given constant prices, the division

of labor does not change across cohorts. Hence the total measure of worker in the economy

is simply T ·G(z̄). The measure of workers demanded in agricultural production is obtained
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by first integrating over farmers within a household, and then summing over generations

Ha =

[
T∑

t=1

xt(1− st)

]

·

∫

z̄

ha(z)dG(z)

Similarly, aggregate agricultural output is given by

Ya =

[
T∑

t=1

xt(1− st)

]

·

∫

z̄

ya(z)dG(z)

Imposing labor market clearing, the measure of workers in the nonagricultural sector is

Hn = T ·G(z̄)−Ha. The output in the nonagricultural sector is Yn = A ·Hn. Goods market

clearing conditions require Ca = Ya, Cn = Yn. Loan market clears by Walras’ law.

Finally nonagricultural firm’s optimization implies w = A. Hence the two goods market

clearing conditions constitute two equations with two unknowns (z̄, R) that can be solved

numerically. Once the cut-off skill and interest rates are known, rest of the equilibrium

variables can be recovered easily. Proposition 1 states an important result.

Proposition 1. Economy with lower TFP has a lower cut-off skill level, and a higher in-
terest rate.

Proposition 1 implies that low aggregate productivity adversely impacts the productivity

of farmers through both the extensive margin and the intensive margin. On the one hand,

due to subsistence, low TFP necessitates a larger pool of farmers. Moreover, the selection of

farmers implies that more entrance is associated with a decline in the average productivity

of farmers. On the other hand, financing skill investment is more costly in a low TFP

economy. High interest rate renders increase in future income less attractive. As a result,

the skill profile is less steep. Both margins lead to lower average productivity of farmers,

which translates into lower measured labor productivity and smaller scale in agriculture.
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5. Quantitative Analysis

5.1. Calibration

In this section the model is parameterized to answer quantitative questions. Individuals

are born at the age of 25 and live for 5 periods. Each period corresponds to 10 years.

Some model parameters are either standard or can be inferred without solving the model.

Assuming an annual discount rate of 0.96, I set β = (0.96)10. For the US, TFP is normalized

to be 1.6 The endowment of land is approximated by the arable land (in hectares) per

worker. To pin down parameters in the agricultural technology, I turn to value added data

in agriculture. Over the period 1980-1999, the average share of agricultural output accruing

to farm operators is 40%, implying γ = 0.6. Given this value, parameter α is chosen such

that labor share (αγ) is consistent with the ones estimated in Hayami and Ruttan (1970).

This paper is certainly not the first one to estimate the span-of-control parameter. How-

ever, existing works either focus on the aggregate economy as in Guner, Ventura, and Yi

(2008) and Restuccia and Rogerson (2008) or the manufacturing sector as in Atkeson and Kehoe

(2005) and Gollin (2008). The value of the span-of-control parameters from these studies

range from 0.8 to 0.9. To my best knowledge, there is no consensus on the range of this

parameter in the agricultural sector. A value of 0.6 for agriculture is nevertheless a conser-

vative choice as a higher γ tends to strengthen the quantitative results. Section 5.3 provides

more detailed discussion about the choice of this parameter.

Exogenous skill type distribution is assumed to take a log-normal form with mean µ and

standard deviation σ. Given values of (β,A, γ, α), the remaining six parameters (ā, η, µ, σ, θ)

are chosen simultaneously to match moments of the US economy in 1985. From the World

Development Indicator, agriculture employs 3% of the labor force. Following the strategies in

6In a strict sense, this normalization is not free because of the subsistence term in the utility function.
However, the model is homogenous with respect to (ā, A). Hence, as long as ā is chosen correspondingly, the
model predictions does not change with different values of A for the US.
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Restuccia, Yang, and Zhu (2008) , η is chosen to target a long run agricultural employment

share of 0.5%. This corresponds to the asymptotic agricultural employment share when the

subsistence consumption share of income is effectively zero. Parameter θ governs the time

allocation between skill accumulation and production. Direct observation on the time split

between these two activities are not available. However, the model implies that farmers

of generation i spend (1 − si) fraction of labor hours producing in their farms. Hence the

cross-section distribution of hours supplied by operators of different ages is simply given by

1−si∑T
i=1

1−si
. Census of agriculture reports working days of farmers in 5 different age groups:

25-34, 35-44, 45-54, 55-64, 65+, which allows me to calculate the distribution of hours in the

data. I choose θ to best match the empirical distribution. Finally, the model is calibrated to

reproduce the observed size distribution of farms in the US. Figure B.4 plots the calibrated

size distribution against data. In addition, as depicted in Figure B.5, the model also implies

a land distribution that fits the data very well, even though it is not targeted. These figures

are presented in Appendix B. Table 4 offers a summary of parameter values and how they

are selected.

Parameter Description Value Source
A TFP 1 Normalization
T Life cycle 5 Model period = 10 years. Born 25, die 75
β Discount (0.96)10 Common value
L̄ Land endowment 1.62 Arable land per worker
γ Span-of-control 0.6 Income share of farm operator
α Labor share, agriculture 0.8 Hayami and Ruttan (1970)
η Expenditure share, agriculture 0.01 Restuccia, Yang, and Zhu (2008)
ā Subsistence 0.2 Share of labor in agriculture
θ Time elasticity in skill accumulation 0.33 Hour distribution of farmers
µ Skill distribution, mean −2.45 Size distribution of farms
σ Skill distribution, stdev 4.16 Size distribution of farms

Table 4: Parameter Description, Value, and Source of Identification

5.2. Results

Our sample consists of 50 countries with complete information on sector output per

worker, sector labor share, land endowment, and size distribution of farms. The first three
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are directly available from Restuccia, Yang, and Zhu (2008). The last is compiled from the

World Census of Agriculture, a database maintained by the Food and Agriculture Orga-

nization. These two sets of data, however, are not directly comparable because of time

period differences. The data in Restuccia, Yang, and Zhu (2008) pertain to the year 1985.

World Census of Agriculture is a collection of national agriculture censuses administered

independently in each member country - possibly in different years. Most of the countries

indeed have their censuses conducted around 1990, and hence can serve as good proxies. It

is unlikely that the composition of farms will undergo drastic changes over a period of five

years.

Countries differ in their Total Factor Productivity (A) and land endowment (L̄), and

are otherwise identical. The central question of interest is to quantitatively assess how

differences in aggregate productivity (and endowment) affects the skill of farmers, and con-

sequently agricultural productivity. This inquire falls along the line with those in Gollin

(2008) and Lagakos and Waugh (2010). The former asks how aggregate productivity affects

the composition of labor across countries, and the latter explores how differences in aggregate

efficiency can translated in to asymmetric differences in sector labor productivity. Countries

are assume to face the same distribution of skill types ex-ante. Finally, utilizing the linear

technology in non-agriculture, TFP of country i can be inferred as

Ai =
ynlni

ynlnus

where ynlni is PPP non-agricultural GDP per worker of country i.

How does the model perform in explaining cross-country variation in agricultural produc-

tivity? Two statistics are constructed to help answer this question. The first one, following

Caselli (2005), computes the ratio of log-variance of model generated productivity series to

that of the data. This ratio is 0.45, suggesting that the model explains about 45% of the
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variation in agricultural output per worker across 50 countries. The second one is the R2

statistics of OLS regression of model series on data. A very similar value (0.49) is obtained.

Figure 1 plots model agricultural productivity against that in the data, both re-scaled such

that productivity in the US is equal to unity. A visual outlier is Nepal, for which the model

over-predicts its agricultural productivity by a lot. The reason is that Nepal, despite a very

high employment share in agriculture, has a very productive non-agricultural sector. This

maps into high TFP, and leads to a counterfactually high productivity in agriculture.
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Figure 1: Agricultural Productivity: Model and Data

Low agricultural productivity is mainly due to low total factor productivity, as opposed

to deficiency in land endowment. Consider, for concreteness, the poorest country in the

sample (Burkina Faso). Compared to the US, Burkina Faso is 4.8 times less productive

overall and has 2.6 times less land per worker. Imagine that Burkina Faso has the US

land endowment, but its own TFP. This can not help Burkina Faso catch up with US in

agricultural productivity - the gap shrinks from a factor 28 to 22. If, however, Burkina

Faso has the US level of TFP and its own land endowment, its productivity in agriculture

is increased big time - the gap shrinks to merely a factor of 1.2. Productivity differences

across countries is mainly a story of TFP differences. This is true not only at the aggregate

level as highlighted in Prescott (1998), Hall and Jones (1999) and Caselli (2005), but also in
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agriculture.7

It is worth pointing out that countries in the sample do not differ a lot in terms of PPP

output per worker in non-agriculture. Between US and the least productive country, the gap

does not exceed a factor of 6. As a result, countries are not assumed to differ a lot in terms of

aggregate TFP in the quantitative analysis. Hence, the much larger productivity differences

in agriculture generated from the model are not manufactured exogenously, but rather reflect

the mechanisms highlighted in the paper, namely, low TFP produces a large pool of unskill

farmers, which produce on small scale and low efficiency. For a clearer exposition, first note

that total output in agriculture can be written as

Ya = A ·

(
T∑

t=1

xt(1− st) ·

∫

ā

zdG(z)

)1−γ

·
(
Hα

a · L̄1−α
)γ

(8)

Let M denote the measure of farmers, then output per worker is simply yala = Ya

M+Ha
.

Substituting equation (8) into this expression and rearranging terms yields the following

expression of agricultural productivity

yala = A
︸︷︷︸

TFP

·

(
T∑

t=1

xt(1− st)

)1−γ

︸ ︷︷ ︸

Intensive Margin

· (E(z|z > z̄))1−γ

︸ ︷︷ ︸

Extensive Margin

·
(
L̄
)(1−α)γ

︸ ︷︷ ︸

Land Per Worker

·
(Ha)

αγ ·M−γ

1 +Ha/M
︸ ︷︷ ︸

Labor Composition

·T γ−1 (9)

Equation (9) offers a nice decomposition of output per worker in agriculture. First of all,

Low TFP and poor land endowment decreases agricultural productivity directly. Moreover,

TFP also affects the skill profile of farmers, and does to through two distinct margins. The

term E(z|z > z̄) is the average skill type of farmers, and captures the extensive margin.

As more and more farmers produce in agriculture, the average skill is driven down because

7Using measures at the sector level, Caselli (2005) concludes TFP is more important in agriculture than
in the aggregate.
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the marginal farmer is less and less productive. The term
∑T

t=1 xt(1− st) summaries the

steepness of the skill profile, and captures the intensive margin. By proposition 1, both

terms increase with aggregate productivity, and leverages the impact of TFP on agricultural

productivity. To quantify the contribution of each component, consider again the comparison

between Burkina Faso and the US. The last column of Table 5 reports how each component

contributes to the agricultural productivity differences between these two countries.

United States Burkina Faso
Variable Contribution (%)
TFP 1 0.21 47.4
Extensive Margin 4.59 0.61 24.3
Intensive Margin 16.9 12.9 3.3
Land Per Worker 1.62 0.74 2.8
Labor Composition 0.18 0.11 22.2
Agricultural Productivity 109 4 100

Table 5: Decomposition of Agricultural Output per Worker

Between these US and Burkina Faso, differences in TFP explain about 50% of the differ-

ences in agricultural output per worker. Differences in farmer’s skill, extensive margin and

intensive margin combined, explains about 30% of the differences in agricultural productiv-

ity. Most of the variation in farmer’s skill comes through the extensive margin. Exogenous

differences in land endowment accounts for less than 3% of the differences in agricultural

productivity. The results also suggest that these two countries differ substantially in the

composition of agricultural workers. In addition to operating with a bigger plot of land,

each farm in high TFP countries employs more worker. This appears consistent with the

observation the majority of farms in poor countries are small family farms, with limited

input of hired labor.

Given its latent nature, differences in farming skill are unobservable to an economist.

Instead of trying to construct reasonable measures of farming skill from the data, a different

route is taken here. In the model, there is a unique mapping between the equilibrium
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distribution of skills and the size distribution of farms. Although the former is not observable,

the latter is. Moreover, more skilled farmers operate a bigger farm, other things equal. Hence,

two observations should follow if farmers in poor countries indeed have lower skill. First,

mean farm size should be smaller in poor countries. Indeed, it is. A typical farm in Burkina

Faso is only 1/20 the size of a typical farm in the US. Figure 2 plots mean farm size in the

model and in the data. The model successfully reproduces the positive correlation between

output per worker in agriculture and mean farm size. In the Appendix, the size distributions

of some selected countries are plotted against their empirical counterparts. Although the

model is not expected to replicate the empirical distribution exactly, it does reproduce one

salient feature of the data, namely, the size distribution of farms in low income countries

is more skewed to the left. This comes from the fact the there is a larger share of low

skill farmers in these countries. The discrepancy between the model distribution and the

empirical distribution - the part that a model of skill investment is unable to explain - might

imply farm level distortions that are prevalent in developing countries8 and highlighted in

Adamopoulos and Restuccia (2011).
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Figure 2: Mean Farm Size: Model and Data

8For example, restriction on land holding, or subsidy to small farmers.
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Agriculture, despite its low productivity, absorbs most of the labor force in poor nations.

The model performs less well explaining this stylized fact. Figure 3 plots the share of

agricultural labor in the model and in the data. For low income countries, the model generally

predicts a smaller agricultural labor share than in the data. This is not surprising given that

the model is a highly stylized one. It is not at all difficult to list features that can generate

a larger share of agricultural labor if included in the model. Among other things, barriers

to sectoral labor movements are particularly important to the question posted here. Such

barriers are prevalent in developing nations as evidenced by substantial disparities in rural-

urban earnings. One famous example is theHukou system in China that imposes institutional

restrictions on immigration from rural villages to urban cities. However, accurate measures

of such distortions might be difficult, if at all possible, to obtain for a large set of countries,

making the quantitative analysis less rewarding.
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Figure 3: Share of Worker in Agriculture: Model and Data

Agriculture’s share of total output declines as income rises - a macroeconomic implication

of Engel’s Law. The model predicts agricultural output to be 10% of the aggregate output

in the top quintile countries, and 70% in the bottom quintile countries. In the data, the

value is 3% and 30%, respectively. One possible explanation is that the model over-predicts

the relative price of agricultural output, resulting in a higher agriculture share of GDP
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when measured at domestic prices. Using ICP data from the World Bank, I compute the

relative price between “agricultural consumption” and “nonagricultural consumption” for all

available countries.9 The relative price in 2005 is around 4 times higher in the 10th percentile

country, compared to the 90th percentile country. In the model, this relative price ratio is

2.8, which is roughly in line with the data.

5.3. Discussion

The model presented in the current paper is a stylized one. In this economy, farm-

ing is the job with the highest return. This is at clear odds with the data, even in the

most agriculture-advanced countries like the US. However, the focus of this paper is the

cross-country comparison of agricultural productivity. It intends to provide an explanation

of why one country is less productive in agriculture relative to another country. In this

respect, missing the level of agricultural productivity does not invalidate the comparison

across countries.

The key contribution is to present a framework that embeds skill accumulation in a span-

of-control model framework. One the one hand, this specification allows a mapping from

the equilibrium distribution of skills to the observable size distribution of farms, making

model predictions verifiable. On the other hand, while skill investment is not essential

to this mapping in the sense that a non-degenerate size distribution aries even without

skill investment, it is critical to the identification of the underlying skill distribution in the

benchmark economy. A model without skill investment fails to reproduce the farm size

distribution of the US, at least within the family of log-normal skill distributions. A similar

finding is reported in Bhattacharya (2009), who shows that skill accumulation is critical to

quantitatively explain cross-country variation in firm size distribution and income.

9“Agricultural consumption” is defined as food, non-alcoholic beverage, alcoholic beverage and tobacco.
“Nonagricultural consumption” is defined as the rest of individual consumptions plus capital consumption.
A similar calculation is done also in Lagakos and Waugh (2010)
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The span-of-control parameter is key to the quantitative results. A higher value of γ

implies sharper differences in the division of labor in response to given differences in aggregate

productivity. As discussed before, existing estimates of this parameter for the manufacturing

sector or the aggregate economy are typically in the ballpark of 0.8. In this respect, the

preferred value of 0.6 is a conservative choice. To illustrate this, the model is re-calibrated

under the case of γ = 0.8. Then I ask again how much of the differences in agricultural

productivity between the US and Burkina Faso can be accounted for by the model, given

exogenous TFP and land endowment. The results are summarized in Table 6.

United States Burkina Faso Gap
γ = 0.6 109 4 27
γ = 0.8 15.7 0.49 31
Data 19930 128 155

Table 6: Agricultural Productivity Differences Under Different γ

The model is able to explain 15% more of the differences in agricultural productivity

between US and Burkina Faso when a larger γ is chosen. However, the relative contribution

of exogenous and endogenous variables remains more or less the same. With γ = 0.8, TFP

accounts for 45% of the differences in agricultural productivity, followed by land endowment

per farmer (28%). The role of farmer’s skill, however, is reduced. This is not surprising

given that the elasticities of both the extensive margin and intensive margin from equation

(9) is 1− γ. As a result, a larger γ naturally weakens the importance of skill. Nevertheless,

differences in farmer’s skill still account for 13% of the differences in output per worker in

agriculture.

Restuccia, Yang, and Zhu (2008) explore the impact of intermediate input distortions on

agricultural productivity through the intensive margin. However, there is evidence suggesting

that the extensive margin might also be important. Evenson and Gollin (2003) document a

substantial lag in the adoption of modern variety in Sub-Saharan Africa during the 1960s
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and 1970s. There are two ways skill might affect the use of modern inputs. Through

the extensive margin, low skill might impede the farmer’s learning of the new variety, and

delays the decision of adoption. Through intensive margin, low skill farmers might use

modern variety to a less extent if skill is complementary to modern varieties. Quantitative

explorations from these angles are left for future work.

6. Conclusion

Productivity differences in agriculture are larger than those in the aggregate, and much

larger than the differences in non-agriculture. This paper develops a stylized model to

quantify the role of unmeasured skill of farmer’s in agricultural production. It is shown that

in an economy with low TFP (albeit sector-neutral) , skill formation of farmers is distorted.

Low TFP economy is populated with a large pool of farmers with low skill, and the opposite

is true in a high TFP economy. Differences in farmer’s skill magnify the differences in

agricultural productivity.

The agricultural sector characterized in this paper is “poor but efficient”, as articulated

in Schultz (1964). Nonetheless, various distortions geared specifically towards agriculture

are also important. Distortions such as barriers to sectoral labor movements, and im-

plicit government taxation on agriculture as discussed in Krueger, Schiff, and Valdes (1988)

and Anderson (2009), might be key to understand the coexistence of a large labor force

and low productivity in agriculture in poor nations. Farm level distortions in the style of

Adamopoulos and Restuccia (2011) might be important as well for understanding the dom-

inance of small-scale production in agriculture of poor countries. While eliminating these

distortions is important for development in agriculture, public policies favoring better insti-

tutions, faster technology adoptions and more efficient markets are of first order importance

in improving overall living standards.
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Appendix A. Data Appendix

• World Census of Agriculture: This is an archive of national agriculture censuses

from a wide range of developing and developed countries. FAO processes these national

censuses and presents key summary statistics in a common, internationally comparable

format. The unit of observation in WCA is a holding - defined as “an economic unit

of agricultural production under single management comprising all livestock kept and

all land used wholly or partly for agricultural production purposes, without regard to

title, legal form, or size”. Throughout this paper, I view a holding as identical to a

farm. http://www.fao.org/economic/ess/ess-data/ess-wca

• World Development Indicator: Available on line through http://data.worldbank.org/indicator

• Factor Shares in U.S Farming: Data are from National Agriculture Statistics

Services administrated by the Department of Agriculture, and can be accessed through

http://www.ers.usda.gov/Data/FarmIncome/FinfidmuXls.htm .

• Working Days by Age of Farm Operator: Panel A reports the number of days

off the farm. There are 250 working days a year, and the midpoint of the interval is

used as the interval average.

Panel A
25-34 35-44 45-54 55-64 65+ Total

None 52,938 104,375 110,380 158,629 249,512 675,834
1-99 days 18,015 29,804 25,428 27,061 19,267 119,575
100-199 days 7,872 14,648 14,308 12,423 6,169 55,420
200 days + 10,028 15,565 14,681 11,082 5,087 56,443
Panel B
Work Days (1000s) 17875 33908 34478 46589 66975
% Days 0.09 0.17 0.17 0.23 0.34

Table A.7: Days off Farm by Age of Operator
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Appendix B. Model Appendix

Appendix B.1. Proofs

Proof of Lemma 1:

Recall that profit function is linear in skill, i.e.,

π(z) =z(1 − s) · (1− γ) · (P · A)
1

1−γ

(

γ
(α

w

)α
(
1− α

q

)1−α
) γ

1−γ

In a stationary equilibrium, the optimal sequence of skill investment is the solution to the

following problem

max
st

:

T∑

t=1

R1−t · zt · (1− st)

s.t : zt+1 = zt(1 + sθt )

The optimal path of investment can be solved using backward induction. Clearly, sT = 0.

The problem at period T-1 can be written as

max
sT−1

: zT−1(1− sT−1) + zT−1(1 + sθT−1) · R
−1

the optimal time is given by sT−1 =
(
θ
R

) 1

1−θ . Now define dT−1 = (1− sT−1) + (1 + sθT−1)/R,

the problem at period T-2 can be written as

max
sT−2

: zT−2(1− sT−2) + zT−2(1 + sθT−2) · dT−1 · R
−1
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The solution has a recursive structure

ST = 0

dT = 1

st−1 =

(
θ · dt
R

) 1

1−θ

dt−1 = (1− st−1) + (1 + sθt−1)/R

Proof of Proposition 1:

Consider two economies with Ar = g · Ap, g > 1, and assume the threshold level of skill and

interest rate are the same in these two economies. Equation (4) implies qr = g · qp because,

from Lemma 1, optimal time st depends only on interest rate. It follows from equation (5)

implies pr = pp, and from the definition of household income that Yr = g · Yp, i.e., household

income is proportional to TFP. Aggregate production of agricultural good is also proportional

to TFP. However, Equation (6) suggests that demand of agricultural consumption drops by

less than a factor of g in low TFP economy. Excess demand in agriculture pushes up the

price of agricultural consumption, and reduces the threshold level of skill in low efficiency

economy. This implies a higher labor share in agriculture, and a decline in the supply of

nonagricultural good. Interest rate must rise to offset the excess demand of non-agricultural

good.

Appendix B.2. Calibration

Age 25-34 35-44 45-54 55-64 65+
Data 0.09 0.17 0.17 0.23 0.34
Model 0.08 0.17 0.20 0.26 0.29

Table B.8: Time Share by Age of Operator: Model and Data
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Figure B.4: Calibrated Size Distribution
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Figure B.5: Implied Distribution of Land
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Appendix B.3. Size Distribution of Farms: Model and Data (selected low-income countries)
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Appendix B.4. Size Distribution of Farms: Model and Data (selected middle-income coun-

tries)
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Appendix B.5. Size Distribution of Farms: Model and Data (selected high-income countries)
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