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1. THE THEOREM

We are interested in the following pure-state control program (P):

Maximize Λ(x) ≡
∫ 1

0
(S(θ, u(θ))− x(θ)f(θ)) dθ

subject to x ∈ AC(Θ,R), ẋ(θ) = u(θ), x(θ) ≥ 0 for all θ ∈ Θ ≡ [0, 1].

The constraints require that the state variable x is a non-negative, absolutely con-
tinuous function, x ∈ AC(Θ,R). x is said admissible if it satisfies these constraints.
Note that the integrand L(θ, x, u) = (S(θ, u) − x)f(θ) is linear in x and that the
state constraint, x ≥ 0, is independent of θ. These two restrictions within the class of
state-constrained, non-smooth optimal control problems are the source of many sharp
results in the analysis that follows.
We assume that S(θ, ·) is an upper-semi continuous function bounded from above

and that f(θ) is a positive and bounded from above function so that F (θ) ≡
∫

[θ,θ]
f(θ)

is absolutely continuous. Without loss of generality, we normalize f such that F (1) =
1 and interpret F as a continuous probability distribution. Lastly, we assume that
S(·, ·) is L×B-measurable, where L denotes the set of Lebesgue measurable subsets of
Θ and B is the set of Borel measurable subsets of R. Importantly, we do not assume
a priori that S(θ, ·) is a continuous function. We present our main result for this class
of problems.

Theorem 1 x is a solution to program (P) if and only if x is admissible and there
exists a probability measure µ defined over the Borel subsets of Θ with an associated
adjoint function, M : Θ → [0, 1], defined by M(θ) = 0 and for θ > θ,

M(θ) ≡

∫

[θ,θ)

µ(ds),

such that the following two conditions are satisfied:

(1.1) supp {µ} ⊆ {θ | x(θ) = 0} ,

1We are especially thankful to John Birge for many helpful discussions.
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(1.2) ẋ(θ) ∈ argmax
v∈R

S(θ, v) + (F (θ)−M(θ))v, for a.e. θ ∈ Θ.

Furthermore, if

y(θ, σ) ≡ argmax
v∈R

S(θ, v) + (F (θ)− σ)v

is single-valued and continuous over the domain (θ, σ) ∈ Θ× [0, 1], then the solution
x to (P) is continuously differentiable.

Remarks:

• Theorem 1 is very similar to Theorem 1 in Jullien (2000). In both theorems, neces-
sary and sufficient conditions are stated in terms of a probability measure which serves
to express a “complementary slackness condition” (1.1) and an optimality condition
(1.2). Moreover, both theorems use a similar condition to establish the continuity of
ẋ(θ) in the solution to (P). Jullien’s Theorem, however, uses the stronger hypothesis
that S(·) is twice continuously differentiable. Our technical contribution is to weaken
these hypotheses to requirements of upper semi-continuity. This generalization al-
lows us to apply the necessary and sufficient conditions above to our class of common
agency games with upper-semi continuous contract menus.
• The condition that y(θ, σ) is single-valued and continuous is implied by the strict
concavity of S(θ, ·). It is also implied by the weaker condition in Jullien (2000,
Assumption 2) that S(θ, v)−(σ−F (θ))v is strictly quasi-concave in v for any σ ∈ [0, 1].
• The adjoint function M(θ). Note in particular that the function M is constructed
to be left-continuous rather than right-continuous.

2. PROOF OF NECESSITY

We prove necessity by specializing Theorem 3 from Vinter and Zheng (1998), ex-
ploiting fact that our integrand in Λ is a linear function of x and that the state
constraint x(θ) ≥ 0 is linear and independent of θ.
Preliminaries for Non-Smooth Analysis. We first introduce some additional
notation. We draw heavily from Vinter and Zheng (1998) in the following presenta-
tion.1

Take a closed set A ⊆ R
k and a point x ∈ A. A vector p ∈ R

k is a limiting normal
to A at x if there exists a sequence (xi, pi) → (x, p) and a K ≥ 0 such that for each i

in the sequence pi · |xi − x| ≤ K|xi − x|2. The cone of limiting normal vectors to A at
x is denoted NA(x). Given a lower semi-continuous function g : Rk → R∪{+∞} and
a point x ∈ R

k such that g(x) < +∞, the limiting subdifferential of g at x is defined
as

∂g(x) ≡ {ξ | (ξ,−1) ∈ Nepi{g}(x, g(x))},

where epi{g} is the epigraph of the function g defined as

epi{g} ≡ {(x, α) ∈ R
k × R |α ≥ g(x)}.

1 A complete treatment can be found in the monograph of Vinter (2000). Theorem 3 from Vinter
and Zheng (1998) appears as Theorem 10.2.1 in Vinter (2000).
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The asymptotic limiting subdifferential of g at x, written ∂∞g(x), is defined as

∂∞g(x) ≡ {ξ | (ξ, 0) ∈ Nepi{g}(x, g(x))}.

Two results from nonsmooth analysis (e.g., Vinter (2000), Propositions 4.3.3 and
4.3.4) that we use are (1) ∂∞g(x) = {0} if g is Lipschitz continuous and (2) for any
x such that g(x) is finite,

Nepi{g}(x, g(x)) = {(ξd,−ξ) | ξ > 0 d ∈ ∂g(x)} ∪ {∂∞g(x)× {0}}.

We denote the Euclidean norm in R
k by | · |, and denote the norm on the space of

absolutely continuous functions by

||x|| ≡ |x(θ)|+

∫

Θ

|ẋ(θ)|dθ.

A local maximizer of Λ(x) is a feasible arc, x, which maximizes Λ(x) over all feasible
arcs x ∈ AC(Θ,R+) within an ε neighborhood of x,

||x− x|| ≤ ε.

A local minimizer is defined analogously.

For completeness, we reproduce here Theorem 3 of Vinter and Zheng (1998) which
provides necessary conditions for solutions to the following minimization program:

(P ′) : Minimize J(x) ≡
∫ θ

θ
L(θ, x(θ), ẋ(θ))dθ

subject to x ∈ AC(Θ,R) and h(θ, x(θ)) ≤ 0 for all θ ∈ Θ ≡ [θ, θ].2

Theorem 2 (Vinter and Zheng (1998), Theorem 3) Let x be a AC local minimizer
for (P ′) such that J(x) < +∞. Assume that the following hypotheses are satisfied:
H1. L(·, x, ·) is L×B measureable for each x and L(θ, ·, ·) is lower semi-continuous

for a.e. θ ∈ Θ.
H2. For every K > 0 there exists δ > 0 and k ∈ L1 such that

|L(θ, x′, v)− L(θ, x, v)| ≤ k(θ)|x′ − x|, L(θ, x(θ), v) ≥ −k(θ)

for a.e. θ ∈ Θ, for all x, x′ ∈ x(θ) + δB and v ∈ ẋ(θ) +KB, where B is a unit
Euclidean ball.

H3. h is upper semi-continuous near (θ, x(θ)) for all θ ∈ Θ, and there exists a
constant kh such that

|h(θ, x′)− h(θ, x)| ≤ kh|x
′ − x|

for all θ ∈ Θ and all x′, x ∈ x(θ) + δB.
Then there exist an arc p ∈ AC, a constant λ ≥ 0, a non-negative measure µ on the
Borel subsets of Θ and a µ-integrable function γ : Θ → R, such that

2 We specialize their theorem to our present problem in which the range of x(θ) is one-dimensional
and there is no endpoint cost function.
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(i). λ + maxθ∈Θ |p(θ)| +
∫

Θ
µ(ds) = K > 0 (where K is an arbitrary normalization

constant),3

(ii).

ṗ(θ) ∈ co

{

η | (η, p(θ) +

∫

[θ,θ)

γ(s)µ(ds),−λ)

∈ Nepi{L(θ,·,·)}(x(θ), ẋ(θ), L(θ, x(θ), ẋ(θ)))

}

a.e.,

(iii).

p(θ) = p(θ)−

∫

Θ

γ(s)µ(ds) = 0,

(iv).

(

p(θ) +

∫

[θ,θ)

γ(s)µ(ds)

)

· ẋ(θ)− λL(θ, x(θ), ẋ(θ))

≥

(

p(θ) +

∫

[θ,θ)

γ(s)µ(ds)

)

· v − λL(θ, x(θ), v)

for all v ∈ R a.e.,
(v). γ(θ) ∈ ∂>

x h(θ, x(θ)) µ-a.e. and supp{µ} ⊆ {t |h(θ, x(θ)) = 0}, where

∂>
x h(θ, x) ≡ co{lim

i
ξi | ∃ti → t, xi → x such that

h(θ, xi) > 0 and ξi ∈ ∂xh(ti, xi) for all i}.

We apply this result to our setting by substituting xf(θ) − S(θ, v) in program
(P) in place of L(θ, x, v) and thereby converting the maximization functional Λ in
program (P) to the minimization functional J in program (P ′). We complete the
transformation by requiring that h(θ, x) = −x, and that L(θ, x, v) is a linear function
of x for any (θ, v).
First, we verify that hypotheses H1-H3 are satisfied for our program (P). Because

S(θ, ·) is upper semi-continuous and B-measurable, and because L(θ, x, v) is linear in
x, H1 is satisfied. H2 requires that L(θ, ·, v) is Lipschitz continuous, which is trivial
given that L is linear in x with coefficient f(θ). Because the transformed program has
h(θ, x) = −x, h is a continuous linear functional of x and thus H3 is also satisfied.
Next, we specialize the conclusions of Vinter and Zheng (1998) by making use of

the additional restrictions on L(·) and h(·). We present this in the following Lemma.

Lemma 1 Suppose that L(θ, x, v) is a linear function of x and that h(θ, x) = −x.
Then the conclusions (i)-(v) of Theorem 2 imply
(a). λ+maxθ∈Θ |p(θ)|+

∫

Θ
µ(ds) = K > 0,

(b). ṗ(θ) = λf(θ) a.e.,
(c). p(θ) = p(θ) +

∫

Θ
γ(s)µ(ds) = 0

3We choose to state the Theorem using K > 0 as an arbitrary normalization rather than K = 1,
which is the normalization chosen in Vinter and Zheng (1998). Later, by setting K = 3, we will
succeed in normalizing µ to a probability measure which is a more familiar object.
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(d). ẋ(θ) ∈ argmaxv∈R

(

p(θ) +
∫

[θ,θ)
γ(s)µ(ds)

)

· v + λS(θ, v), a.e.,

(e). γ(θ) = −1 µ-a.e. and supp{µ} ⊆ {t |h(θ, x(θ)) = 0}.

Proof of Lemma 1: Implications (i) and (a) are identical. Implication (ii) re-
quires almost everywhere that

ṗ(θ) ∈ co

{

η |

(

η, p(θ) +

∫

[S,t)

γ(s)µ(ds),−λ

)

∈ Nepi(L(θ,·,·))

(

x, ẋ, L(θ, x, ẋ)
)

}

.

Because L(θ, x(θ), ẋ(θ)) = f(θ)x(θ)− S(θ, ẋ(θ)) is finite, the limiting normal cone in
the above expression can be written as

Nepi(L(θ,·,·))

(

x, ẋ, L
)

=
{

(ξd1, ξd2,−ξ) | ξ > 0, (d1, d2) ∈ ∂
(

f(θ) · x(θ)− S(θ, ẋ(θ))
)}

⋃

{

∂∞
(

f(θ) · x(θ)− S(θ, ẋ(θ))
)

× {0}
}

.

Using the fact that L(·) is additively separable in x and ẋ, a basic chain rule for lower
semi-continuous functions (RW, Proposition 10.5) yields

∂
(

f(θ)x(θ)− S(θ, ẋ(θ))
)

= ∂ (f(θ)x(θ))× ∂
(

−S(θ, ẋ(θ))
)

=
{

f(θ)× ∂
(

−S(θ, ẋ(θ))
)}

,

and

∂∞
(

f(θ)x(θ)− S(θ, ẋ(θ))
)

⊆ ∂∞ (f(θ)x(θ))× ∂∞
(

−S(θ, ẋ(θ))
)

=
{

{0} × ∂∞
(

−S(θ, ẋ(θ))
)}

,

where the last equality uses the fact that a linear function is Lipschitz continuous and
hence ∂∞(f(θ)x(θ)) = {0}. Substituting these subdifferentials into the expression for
the limiting normal cone, we have a simple inclusion:

Nepi(L(θ,·,·))

(

x, ẋ, L
)

⊆
{

(ξf(θ), ξd2,−ξ) | ξ > 0, d2 ∈ ∂
(

−S(θ, ẋ(θ))
)}

⋃

{

{0} × ∂∞
(

−S(θ, ẋ(θ))
)

× {0}
}

.

This simplifies yet again to the inclusion

Nepi(L(θ,·,·))

(

x, ẋ, L
)

⊆
{

(ξf(θ), ξd2,−ξ) | ξ ≥ 0, d2 ∈ ∂
(

−S(θ, ẋ(θ))
)

∪ ∂∞
(

−S(θ, ẋ(θ))
)}

.

The key point to note is that any vector in the limiting normal cone must point in the
same direction in the (x, L) plane, regardless of d2. Returning to implication (ii), we
see that any point η in the given convex hull must satisfy (η, ·,−λ) = (ξf(θ), ·,−ξ)
for some ξ ≥ 0, and hence the convex hull reduces to {λf(θ)}. We conclude that im-
plication (ii) simplifies to implication (b) given that L(·) is both additively separable
and linear in x.
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Implication (iii) is identical to implication (c).

Using the transformation L(θ, x, v) = xf(θ) − S(θ, v), implication (iv) simpli-
fies to implication (d). Lastly, the fact that h(θ, x) = −x yields ∂xh(θ, x(θ)) =
∂>
x h(θ, x(θ)) = {−1}. Thus, implication (v) simplifies to γ(θ) = −1 µ-a.e. and

supp{µ} ⊆ {t | x(θ) = 0}. This is implication (e). Q.E.D.

An immediate inspection of conditions (a)-(e) suggest further simplifications by
combining these conditions. Conditions (b) and (c) jointly yield

p(θ) = λF (θ).

Because p(θ) = λ and γ(θ) = −1 a.e. with respect to µ, condition (c) also implies

∫

Θ

µ(ds) = λ.

Because we also have maxθ∈Θ |p(θ)| = λ, condition (a) implies λ > 0 and in particular
λ = K

3
. Because the choice of K is arbitrary, we choose K = 3 as a normalization,

yielding λ = 1 and
∫

Θ
µ(ds) = 1. Thus, the normalization makes µ a probability

measure on Θ. Defining M(θ) =
∫

[θ,θ)
µ(ds), the implication in (d) is therefore

ẋ(θ) ∈ argmax
v∈R

S(θ, v) +
(

F (θ)−M(θ)
)

v, a.e.,

which is condition (1.2) of Theorem 1. Lastly, the implication of (e) delivers the
complementary slackness condition (1.1). We have therefore proven the necessity of
the conditions in Theorem 1.

3. PROOF OF SUFFICIENCY

Sufficiency is proven by generalizing Arrow’s Sufficiency Theorem to non-smooth
optimal control problems and specializing the theorem to the case in which the objec-
tive integrand is a linear function of x. We adapt the argument of Arrow’s Sufficiency
Theorem using the basic approach of Seierstad and Sydsaeter (1987) but relaxing
their continuity and smoothness assumptions. The regularity of the optimal solution
follows from arguments involving the necessary conditions.

Let x be any admissible arc: x ∈ AC(Θ,R) and x(θ) ≥ 0 for all θ ∈ Θ. Define

∆ =

∫

Θ

{(

S(θ, ẋ(θ))− x(θ)f(θ)
)

− (S(θ, ẋ(θ))− x(θ)f(θ))
}

dθ.

We will demonstrate that, under conditions (1.1) and (1.2) of Theorem 1, ∆ ≥ 0.
To this end, it is useful to define the Hamiltonian for program (P) usingM(θ)−F (θ)

as the adjoint equation which satisfies conditions(1.1) and (1.2):

H(θ, x, v) ≡ S(θ, v)− x · f(θ)− (M(θ)− F (θ)) · v.
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Note that M(θ) is defined for θ ∈ (θ, θ] and thus H(·) inherits the same domain.
Nonetheless, because µ is not part of expression of ∆ and F is absolutely continuous,
we can ignore the point θ in the integral and conclude that

∆ =

∫

(θ,θ]

(

H(θ, x(θ), ẋ(θ))−H(θ, x(θ), ẋ(θ))
)

dθ +

∫

Θ

(F (θ)−M(θ))
(

ẋ(θ)−ẋ(θ)
)

dθ.

Define the optimized Hamiltonian as

Ĥ(θ, x) ≡ sup
v∈R

H(θ, x, v).

Because M(θ) − F (θ) is bounded on (θ, θ] and S(θ, ·) is bounded from above by
assumption, we note that Ĥ(·) must be finite. Condition (1.2) implies that

Ĥ(θ, x(θ)) = H(θ, x(θ), ẋ(θ))

and for any admissible x ∈ AC(Θ;R+),

Ĥ(θ, x(θ)) ≥ H(θ, x(θ), ẋ(θ)).

Combining these facts, we obtain
H(θ, x(θ), ẋ(θ))−H(θ, x(θ), ẋ(θ)) ≥ Ĥ(θ, x(θ))− Ĥ(θ, x(θ))

= f(θ)(x(θ)− x(θ)).
The last statement relies fundamentally on the linearity of H(·) in x. Substituting
into the previous statement for ∆, we have

∆ ≥

∫

(θ,θ]

f(θ)(x(θ)− x(θ))dθ +

∫

Θ

(F (θ)−M(θ))
(

ẋ(θ)− ẋ(θ)
)

dθ

=

∫

Θ

(

f(θ)(x(θ)−x(θ))+F (θ)
(

ẋ(θ)−ẋ(θ)
))

dθ−

∫

(θ,θ]

M(θ)
(

ẋ(θ)−ẋ(θ)
)

dθ

=

∫

Θ

d

dθ
[F (θ)(x(θ)− x(θ))]dθ −

∫

(θ,θ]

M(θ)
(

ẋ(θ)− ẋ(θ)
)

dθ

= (x(1)− x(1))−

∫

(θ,θ]

M(θ)
(

ẋ(θ)− ẋ(θ)
)

dθ.

It follows that ∆ ≥ 0 if

(x(1)− x(1))−

∫

(θ,θ]

M(θ)
(

ẋ(θ)− ẋ(θ)
)

dθ ≥ 0.

If M were absolutely continuous, we would be able to integrate the second term by
parts and reach such a conclusion. Because M is possibly discontinuous, we must pro-
ceed more carefully. Note that M is non-decreasing on (θ, θ] with at most a countable
number of upward jump discontinuities. Furthermore, M is absolutely continuous
elsewhere, allowing us to integrate by parts between any pair of discontinuities. Also
note that at any such upward jump point, τ , M is left and right continuous with
M(τ) < M(τ+) and (by condition (1.1)) we have x(τ+) = 0.
Denote the set of jump discontinuities by {τ1, τ2, . . .}, a possibly infinite set. Let I

be the index set of τi. Between any two points τi and τi+1, we know
∫

(τi,τi+1]

M(θ)
(

ẋ(θ)− ẋ(θ)
)

dθ
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= M(θ)(x(θ)− x(θ))
∣

∣

τi+1

t=τ+
i

−

∫

(τi,τi+1)

(x(θ)− x(θ))µ(θ)dθ

= M(τi+1)(x(τi+1)− x(τi+1))−M(τ+i )(x(τi)− x(τi))

−

∫

(τi,τi+1)

(x(θ)− x(θ))µ(θ)dθ.

The second equality above uses the fact that x and x are continuous on Θ.
Define the size of the jump discontinuity at τ by d(τ) = M(τ+)−M(τ) > 0. Then

we may write

∫

(θ,θ]

M(θ)
(

ẋ(θ)− ẋ(θ)
)

dθ

=
∑

i∈I

M(τi+1)(x(τi+1)− x(τi+1))− (d(τi) +M(τi))(x(τi)− x(τi))

−

∫

(τi,τi+1)

(x(θ)− x(θ))µ(θ)dθ

= (x(1)− x(1))−
∑

i∈I

d(τi)(x(τi)− x(τi))−

∫

(τi,τi+1)

(x(θ)− x(θ))µ(θ)dθ.

By complementary slackness in condition (1.1), we know x(θ)µ(θ) = 0 and at any
jump point τ we must have x(τ) = 0. Thus,

∫

(θ,θ]

M(θ)
(

ẋ(θ)− ẋ(θ)
)

dθ = (x(1)− x(1))−
∑

i∈I

d(τi)x(τi)−

∫

(τi,τi+1)

x(θ)µ(θ)dθ.

We deduce

∆ ≥ (x(1)− x(1))−

∫

(θ,θ]

M(θ)
(

ẋ(θ)− ẋ(θ)
)

dθ

=
∑

i∈I

d(τi)x(τi) +

∫

(τi,τi+1)

x(θ)µ(θ)dθ.

Because x(θ) ≥ 0, µ is a non-negative measure, and jump discontinuities d(τi) are
positive, we conclude ∆ ≥ 0 as claimed. We have proven that conditions (1.1) and
(1.2) are sufficient for a solution.

Smoothness of the solution, x: We add the hypothesis that

y(θ, σ) ≡ argmax
v∈R

S(θ, v) + (F (θ)− σ)v

is single-valued and continuous for (θ, σ) ∈ Θ × [0, 1]. It follows that y(θ, σ) is non-
increasing in σ and from condition (1.2), that ẋ(θ) = q(θ,M(θ)) a.e.
Suppose to the contrary that ẋ is discontinuous at some point τ ∈ Θ. Initially,

suppose that Condition (1.2) is extended to hold for all θ ∈ Θ rather than for a.e.
θ ∈ (θ, θ]; call this Condition (1.2’). Condition (1.2’) and the additional hypothesis
that y(θ, σ) is continuous in (θ, σ) jointly imply that ẋ(θ) is discontinuous at τ only
if M is also discontinuous at τ . Any discontinuity in M , however, must be an up-
ward jump, d(τ) = M(τ+) − M(τ) > 0, implying that ẋ(θ) must jump downwards.
Complementary slackness (condition (1.1), however, imposes that x(τ) = 0, with the
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implication that a downward discontinuity at τ would violate the state constraint
x(θ) ≥ 0 in the neighborhood to the immediate right of τ . Hence, continuity must
hold for all points θ ∈ [θ, θ) under Condition (1.2’). Furthermore, because M is left
continuous at t = 1, no jump in ẋ(θ) is possible at this endpoint. We conclude that
Condition (1.2’) implies that ẋ(θ) is continuous for all θ ∈ Θ. The weaker Condi-
tion (1.2) allows ẋ(θ) to violate the maximization condition on sets of measure zero,
including at θ = θ. But such violations have no effect on the solution x which is
absolutely continuous. Thus, x is smooth as posited.
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