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Abstract

This paper studies the weak convergence of the sequential empirical pro-
cess K̂n of the estimated residuals in ARMA(p,q) models when the errors are
independent and identically distributed. It is shown that, under some mild
conditions, K̂n converges weakly to a Kiefer process. The weak convergence is
discussed for both finite and infinite variance time series models. An application
to a change-point problem is considered.
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1 Introduction, Notations, and Main Results

Empirical processes based on estimated residuals have been studied by many authors

for a variety of models. Koul (1969,1984), Mukantseva (1977), Loynes (1980), and

Miller (1989), for example, examined the residual empirical processes for various linear

regression models. Boldin (1982, 1989), Koul and Levental (1989), Koul (1991) and

Kreiss (1991) investigated their weak convergence for some ARMA(p,q) models. The

literature to date has focused largely on goodness-of-fit testing. Recently, Koul (1991)

demonstrated that the weak convergence result can have many important applications

in robust estimation. This paper extends the above literature by considering the

sequential empirical process of residuals and its weak convergence for ARMA models

with an aim to test for and to identify an unknown change point.

Consider the following ARMA(p,q) time series model:

Xt = ρ1Xt−1 + . . . + ρpXt−p + ǫt + θ1ǫt−1 + . . . + θqǫt−q(1)

where {ǫt} are independent and identically distributed (i.i.d.) according to a distribu-

tion function F on the real line R. Assume that Xt is strictly stationary and invertible

[Brockwell and Davis (1987)]. In the ARMA(1,1) case, stationarity and invertibility

restrict |ρ1| < 1 and |θ1| < 1.

Given n + p observations, X−p+1, X−p+2, . . . , X0, X1, . . . , Xn, one can calculate n

residuals via the recursion:

ǫ̂t = Xt − ρ̂1Xt−1 − . . . ρ̂pXt−p − θ̂1ǫ̂t−1 − . . . − θ̂q ǫ̂t−q, t = 1, 2, . . . , n(2)

where (ρ̂1, . . . , ρ̂p) and (θ̂1, . . . , θ̂q) are the estimators for (ρ1, . . . , ρp) and (θ1, . . . , θq)

respectively. Let I(A) be the indicator function of the event A. Define the empirical

distribution function (e.d.f.) constructed from the first [ns] residuals:

F̂[ns](x) =
1

[ns]

[ns]
∑

t=1

I(ǫ̂t ≤ x), 0 < s ≤ 1, x ∈ R(3)

with F̂[ns](·) = 0 for s = 0. When s = 1, the usual empirical process of residuals F̂n(x)

is obtained. The purpose of this paper is to study the weak convergence of the process
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K̂n(s, x) defined as follows:

K̂n(s, x) = [ns]n−1/2(F̂[ns](x) − F (x)) = n−1/2
[ns]
∑

t=1

{I(ǫ̂t ≤ x) − F (x)},(4)

for 0 ≤ s ≤ 1 and x ∈ R. The process Kn given by

Kn(s, x) = n−1/2
[ns]
∑

t=1

{I(ǫt ≤ x) − F (x)}

is called the sequential empirical process (s.e.p.), see Shorack and Wellner [(1986), p.

131]. Thus K̂n may be called the sequential empirical process of residuals. Our main

results are presented in the following two theorems.

Theorem 1 Assume that the following conditions hold:

(a.1) The ǫi are i.i.d. with zero mean, finite variance, and d.f. F.

(a.2) F admits a uniformly continuous density function f , f > 0 a.e.

(a.3)
√

n(ρ̂i − ρi) = Op(1) and
√

n(θ̂j − θj) = Op(1) i = 1, . . . , p j = 1, . . . , q.

Then

sup
s∈[0,1],x∈R

|K̂n(s, x) − Kn(s, x)| = op(1).

The proof of Theorem 1 is given in Section 3. From the results of Bickel and Wichura

(1971), Kn(·, ·) converges weakly to a Kiefer process K(·, F (·)), a two-parameter

Gaussian process with zero mean and covariance function cov(K(s1, t1), K(s2, t2)) =

(s1 ∧ s2)(t1 ∧ t2 − t1t2). Theorem 1 implies that K̂n also converges weakly to a Kiefer

process. An application to a change point problem is discussed in the next section.

Remarks: Assumption (a.1) is conventional for time series models. Assumption

(a.2) is also made in Koul (1991) and is weaker than that of Boldin (1982) and Kreiss

(1991). Assumption (a.3) holds with the usual estimation procedures such as the

conditional least squares under (a.1).

The result of Theorem 1 holds for infinite variance ARMA models as well. We

have

Theorem 2 Assume that the following conditions hold:

(b.1) The ǫi are i.i.d., with d.f. F belonging to the domain of attraction of a stable
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law with an index α (0 < α < 2).

(b.2) The d.f. F admits a bounded derivative f , f > 0 a.e.

(b.3) nγ(ρ̂i − ρi) = op(1), and nγ(θ̂j − θj) = op(1),

where γ = (1/2)I(α > 1) + (1/α − 1/4)I(α < 1).

Then

sup
s∈[0,1],x∈R

|K̂n(s, x) − Kn(s, x)| = op(1).

Under assumption (b.1), the estimated parameters have a faster than root n rate

of convergence. Kanter and Hannan (1977) showed that, for autoregressive models,

nγ(ρ̂i − ρi) → 0, a.s. for any γ < 1/α, where the ρ̂i are the least squares estimates.

Bhansali (1988) obtained analogous results for moving average models. Using this fact

as assumed in (b.3), one can prove Theorem 2 in a much similar way to the proof of

Theorem 1. Details can be found in Bai (1991b). Note that the uniform continuity in

(a.2) is weakened to boundedness in this case.

2 An application to a change-point problem

Let Z1, Z2, · · · , Z[nτ ], Z[nτ ]+1, · · · , Zn be n random variables. Suppose that the first

[nτ ] r.v.’s are i.i.d. with d.f. F1 and the last n − [nτ ] are i.i.d. with d.f. F2, where

τ ∈ (0, 1) unknown. The objective is to test the null hypothesis (H0) that F1 =

F2. Nonparametric tests used by Picard (1985) and Carlstein (1988) are based on

sequential e.d.f.’s. Let F[ns] and F ∗
n−[ns] be the e.d.f.’s constructed from the first [ns]

and the last n − [ns] observations respectively. Consider the process

Tn(s, x) =
√

n
[ns]

n

(

1 − [ns]

n

)

(

F[ns](x) − F ∗
n−[ns](x)

)

and the test statistic Mn = sups∈[0,1],x∈R |Tn(s, x)|. One rejects H0 when Mn is too

large. This test has many desirable properties as discussed in Carlstein (1988).

The result of Theorem 1 allows one to test whether there is a distributional change

in the innovations ǫt. Since the ǫt are unobservable, it is natural to use the estimated
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residuals instead. Define

T̂n(s, x) =
√

n
[ns]

n

(

1 − [ns]

n

)

(

F̂[ns](x) − F̂ ∗
n−[ns](x)

)

(5)

where F̂[ns] and F̂ ∗
n−[ns] are e.d.f.’s based on the residuals. Define M̂n correspond-

ingly. Note that, Tn and T̂n can be written as Tn(s, x) = Kn(s, x) − n−1[ns]Kn(1, x)

and T̂n(s, x) = K̂n(s, x) − n−1[ns]K̂n(1, x) respectively. Thus Theorem 1 implies

that Tn and T̂n has the same limiting null distribution. Furthermore, from Bickel

and Wichura (1971), Tn(·, ·) and hence T̂n(·, ·) converge weakly under the null hy-

pothesis to a Gaussian process B(·, F (·)) with zero mean and covariance function

EB(s, u)B(t, v) = (s∧t−st)(u∧v−uv), where F denotes F1 = F2. Accordingly, M̂n
d→

sup0≤s≤1 sup0≤t≤1 |B(s, t)| whose d.f. is tabulated in Picard (1985). Needless to say,

many other tests based on T̂n(s, x), such as the Cramer-von Mises type, have the same

limiting distributions as those based on Tn(s, x).

3 Proofs

We prove Theorem 1 for the case of p=1 and q=1. The proof for general p and

q and the proof of Theorem 2 are similar and can be found in Bai (1991b). The

proof extends some ideas of Koul and Levental (1989). Omit the subscripts on the

parameters and rewrite the ARMA(1,1) as ǫt = Xt − ρXt−1 − θǫt−1 and the residuals

as ǫ̂t = Xt − ρ̂Xt−1 − θ̂ǫ̂t−1. Subtract the first equation from the second on both sides

to obtain

ǫ̂t − ǫt = −θ̂(ǫ̂t−1 − ǫt−1) − (ρ̂ − ρ)Xt−1 − (θ̂ − θ)ǫt−1.(6)

By repeated substitution and making use of ǫ̂0 = 0, we have

ǫ̂t − ǫt = (−1)t−1θ̂tǫ0 − (ρ̂ − ρ)
t−1
∑

j=0

(−1)j θ̂jXt−1−j − (θ̂ − θ)
t−1
∑

j=0

(−1)j θ̂jǫt−1−j.(7)

Denote φ̂ = (−θ̂,
√

n(ρ̂ − ρ),
√

n(θ̂ − θ)) and φ = (u, v, w) ∈ R3. Define

Λφt = utǫ0 + n−1/2



v
t−1
∑

j=0

ujXt−1−j + w
t−1
∑

j=0

ujǫt−1−j



 = utǫ0 + n−1/2ξφt.(8)
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It follows from (7)-(8) and its definition that F̂[ns](x) can be written as

F̂[ns](x) =
1

[ns]

[ns]
∑

t=1

I(ǫt ≤ x + Λφ̂t),(9)

where Λφ̂t is Λφt with φ replaced by φ̂. Thus

K̂n(s, x) − Kn(s, x) = n−1/2
[ns]
∑

t=1

{I(ǫt ≤ x + Λφ̂t) − I(ǫt ≤ x)},(10)

To study the process K̂n(s, x) − Kn(s, x), it suffices to study the auxiliary process

Gn(s, x, φ) = n−1/2
[ns]
∑

t=1

{I(ǫt ≤ x + Λφt) − I(ǫt ≤ x)}.(11)

Since |θ| < 1, there is θ̄ > 0 such that |θ| < θ̄ < 1. Define Db = [−θ̄, θ̄] × [−b, b]2

for b > 0. In view of assumption (a.4), Theorem 1 is implied by the following

sup
φ∈Db

sup
s∈[0,1],x∈R

|Gn(s, x, φ)| = op(1) for every b > 0.(12)

Next, define

Zn(s, x, φ) = n−1/2
[ns]
∑

t=1

{I(ǫt ≤ x + Λφt) − F (x + Λφt) − I(ǫt ≤ x) + F (x)},

Hn(s, x, φ) = n−1/2
[ns]
∑

t=1

{F (x + Λφt) − F (x)}.

Then it is easy to see that |Gn(s, x, φ)| ≤ |Zn(s, x, φ)| + |Hn(s, x, φ)|. Therefore, to

prove Theorem 1, it suffices to prove the following two propositions:

Proposition 1 Under the assumptions of Theorem 1 , we have

sup
φ∈Db

sup
s∈[0,1],x∈R

|Zn(s, x, φ)| = op(1), for every b > 0.(13)

Proposition 2 If the assumptions in Theorem 1 hold, then

sup
φ∈Db

sup
s∈[0,1],x∈R

|Hn(s, x, φ)| = op(1), for every b > 0.(14)
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Proof of Proposition 1. Let ηt = C
∑t−1

j=0 τ j(|Xt−1−j|+ |ǫt−1−j|) for some C > 0 and

τ ∈ (0, 1). Define for every λ ∈ R

Z̃n(s, x, φ, λ) = n−1/2
[ns]
∑

t=1

{I(ǫt ≤ x + Γt(φ, λ)) − F (x + Γt(φ, λ)) − I(ǫt ≤ x) + F (x)},

where Γt(φ, λ) = utǫ0 +λtθ̄t−1|ǫ0|+n−1/2ξφt +λn−1/2ηt. Since Γt(φ, 0) = Λφt, it follows

that Z̃n(s, x, φ, 0) = Zn(s, x, φ). As in Koul (1991), we shall argue that Proposition 1

is a consequence of the following:

sup
s∈[0,1],x∈R

Z̃n(s, x, φ, λ) = op(1) for every given φ and λ.(15)

For any δ > 0, due to its compactness, the set Db can be partitioned into a finite

number of subsets such that the diameter of each subset is not greater than δ. Denote

these subsets by ∆1, ∆2, · · · , ∆m(δ). Fix r and consider ∆r. Pick φr = (ur, vr, wr) ∈ ∆r.

For all φ = (u, v, w) ∈ ∆r, we will find an upper and a lower bound for Λφt in terms of

Λφrt and random variables not varying with φ and r. To this end, use the inequality

|uj − u′j| ≤ |u − u′|jθ̄j−1 for all j ≥ 0, if u, u′ ∈ [−θ̄, θ̄],(16)

to obtain |utǫ0 − ut
rǫ0| ≤ δtθ̄t−1|ǫ0| and for Zt = Xt and ǫt to obtain

|w
t−1
∑

j=0

ujZt−1−j − wr

t−1
∑

j=0

uj
rZt−1−j| ≤ δ{

t−1
∑

j=0

(θ̄j + bjθ̄j−1)|Zt−1−j|}.

Choose τ ∈ (0, 1) and C large enough to assure θ̄j + bjθ̄j−1 < Cτ j. Thus

|Λφt − Λφrt| ≤ δtθ̄t−1|ǫ0| + δn−1/2ηt, for all φ ∈ ∆r.(17)

By the monotonicity of the indicator function and inequality (17), we have

Zn(s, x, φ) ≤ Z̃n(s, x, φr, δ) + n−1/2
[ns]
∑

t=1

{F (x + Γt(φr, δ)) − F (x + Λφt)}

and a reverse inequality with δ replaced by −δ, for all φ ∈ ∆r. But

n−1/2

∣

∣

∣

∣

∣

∣

[ns]
∑

t=1

{F (x + Γt(φr,±δ)) − F (x + Λφt)}
∣

∣

∣

∣

∣

∣

≤ n−1/2
n
∑

t=1

|F (x + Γt(φr,±δ)) − F (x + Λφt)|

≤ 2δ‖f‖n−1/2
n
∑

t=1

(tθ̄t−1|ǫ0| + n−1/2ηt) = δOp(1), by Lemma 1 below
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where the Op(1) is uniform for all s ∈ [0, 1], all x ∈ R, and all φ ∈ Db. Therefore,

sup
φ∈Db

sup
s∈[0,1],x∈R

|Zn(s, x, φ)| ≤ max
r≤m(δ)

sup
s∈[0,1],x∈R

|Z̃n(s, x, φr, δ)|

+ max
r≤m(δ)

sup
s∈[0,1],x∈R

|Z̃n(s, x, φr,−δ)| + δOp(1).

The term δOp(1) can be made arbitrarily small in probability by choosing a small

enough δ. Once δ is fixed, the first two terms on the right are op(1) due to (15), thus

leading to Proposition 1.

To prove (15), we need the following two lemmas.

Lemma 1 Under the assumption (a.1), for every given φ = (u, v, w) ∈ Db and every

λ ∈ R, we have

(a) n−1/2∑n
t=1(|utǫ0| + tθ̄t−1|λǫ0|) = op(1).

(b) n−1/2 max1≤t≤n(|ξφt| + |ληt|) = op(1),

(c) n−1∑n
t=1(|ξφt| + |ληt|) = Op(1),

Proof. The proofs of (a) and (c) are trivial since |u|, θ̄, and τ all are in (0, 1). Thus

consider (b). From its definition, |ξφt| ≤ b(1 − |u|)−1 max0≤j≤n−1(|Xj| + |ǫj|) for all

t ≤ n and similarly |ηt| ≤ C(1 − τ)−1 max0≤j≤n−1(|Xj| + |ǫj|) for all t ≤ n. Now

(b) follows from the fact that n−1/2 max1≤j≤n |Zj| = op(1) for arbitrary identically

distributed r.v.′s {Zj} with finite variance [see Chung (1968), p. 93]. ✷

Lemma 2 For every d ∈ (0, 1/2), every φ = (u, v, w) ∈ Db and every λ ∈ R,

sup
(x,y)∈Bn,d

n−1/2
n
∑

t=1

|F (y + Γt(φ, λ)) − F (x + Γt(φ, λ))| = op(1)

where Bn,d = {(x, y) ∈ R × R; |F (x) − F (y)| ≤ n−1/2−d}.

The proof of this lemma is analogous to that of Lemma 2.1 of Koul (1991) and is thus

omitted. However, the use of n−1/2−d−grid instead of Koul’s n−1/2 is similar to Boldin

(1982).
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We are now in the position to prove (15). Let N(n) be an integer such that

N(n) = [n1/2+d] + 1 where d is as in Lemma 2. Following the idea of Boldin (1982),

we divide the real line into N(n) parts by points −∞ = x0 < x1 < · · · < xN(n) = ∞
with F (xi) = iN(n)−1. Write Γt for Γt(φ, λ). When xr < x < xr+1, since I(ǫt ≤ x)

and F (x) are nondecreasing, we have

Z̃n(s, x, φ, λ) ≤ Z̃n(s, xr+1, φ, λ) + n−1/2∑[ns]
t=1{F (xr+1 + Γt) − F (x + Γt)}

+ n−1/2∑[ns]
t=1{I(ǫt ≤ xr+1) − F (xr+1) − I(ǫt ≤ x) + F (x)}

and a reverse inequality with xr+1 replaced by xr. Therefore,

sup
s,x

|Z̃n(s, x, φ, λ)| ≤ max
r

sup
s

|Z̃n(s, xr, φ, λ)|

+ max
r

sup
s

n−1/2|
[ns]
∑

t=1

{F (xr+1 + Γt) − F (xr + Γt)}|(18)

+ sup
s,|g−h|≤N(n)−1

n−1/2|
[ns]
∑

t=1

{I(ǫt ≤ F−1(g)) − g − I(ǫt ≤ F−1(h)) + h}|.(19)

That expression (19) is op(1) follows from the tightness of sequential empirical pro-

cesses based on i.i.d. random variables and N(n)−1 = o(1) [Bickel and Wichura

(1971)]. Convergence to zero in probability for (18) follows from Lemma 2,

max
r

sup
s

n−1/2|
[ns]
∑

t=1

{F (xr+1 + Γt) − F (xr + Γt)}|

≤ max
r

n−1/2
n
∑

t=1

|F (xr+1 + Γt) − F (xr + Γt)| = op(1),

because (xr, xr+1) ∈ Bn,d. It remains to show

max
1≤r≤N(n)

max
1≤j≤n

|Z̃n(j/n, xr, φ, λ)| = op(1).(20)

Notice that

P (max
r

max
j

|Z̃n(j/n, xr, φ, λ)| > ǫ) ≤ N(n) max
r

P (max
j

|Z̃n(j/n, xr, φ, λ)| > ǫ).(21)

We shall bound the probability in the right hand side above. Let

dnt = I(ǫt ≤ x + Γt) − F (x + Γt) − I(ǫ ≤ x) + F (x), 1 ≤ t ≤ n;
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Snk =
k
∑

t=1

dnt, Fk = σ − field{ǫi, i ≤ k}, 1 ≤ k ≤ n.

By construction, {(Snj,Fj); 1 ≤ j ≤ n} is a martingale array and

Z̃n(j/n, x, φ, λ) = n−1/2Snj.

Therefore by the Doob inequality,

P ( max
1≤j≤n

|Z̃n(j/n, x, φ, λ)| > ǫ) ≤ ǫ−4n−2E(S4
nn).

Next, by the Rosenthal inequality [Hall and Heyde, (1980), p. 23],

E(S4
nn) ≤ CE{

n
∑

t=1

E(d2
nt|Ft−1)}2 + C

n
∑

t=1

E(d4
nt)

for some C < ∞. Because Γt is measurable with respect to Ft−1, we have E(d2
nt|Ft−1) ≤

|F (x + Γt) − F (x)| ≤ ‖f‖|Γt|, where ‖f‖ = supx |f(x)|. Therefore,

E{
n
∑

t=1

E(d2
nt|Ft−1)}2 ≤ ‖f‖2E{

n
∑

t=1

|Γt|}2 ≤ ‖f‖2n
n
∑

t=1

E(Γ2
t ),(22)

by the Cauchy-Schwarz inequality. From the definition of Γt,

|Γt| ≤ Mtθ̄t−1|ǫ0| + n−1/2{|ξφt| + |λ|ηt}, t ≥ 1, for some M < ∞.

Moreover, it is not difficult to show that, for some C < ∞ and for all t ≥ 1,

E(ξ2
φt) ≤ C and E(η2

t ) ≤ C.

Thus
∑n

t=1 E(Γ2
t ) = O(1) and by (22), E{∑n

t=1 E(d2
nt|Ft−1)}2 = O(n). Next, because

|dnt| ≤ 2,
∑n

t=1 E(d4
nt) ≤ 16n. Combining these results we obtain

n−2E(S4
nn) = O(n−1).

The above rate does not depend on x. Thus

N(n) max
r

P ( max
1≤j≤n

|Z̃n(j/n, xr, φ, λ)| > ǫ) ≤ ǫ−4n1/2+dO(n−1) = o(1)

for d ∈ (0, 1/2). The proof of (20) and thus Proposition 1 is now completed.
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Proof of Proposition 2. Let us first show

sup
s∈[0,1],x∈R

|Hn(s, x, φ)| = op(1) for every given φ.(23)

Apply the Mean Value Theorem twice to obtain

|Hn(s, x, φ)| = n−1/2|
[ns]
∑

t=1

{F (x + utǫ0 + n−1/2ξφt) − F (x)}|

≤ 1

n
|
[ns]
∑

t=1

f(γt)ξφt| + ‖f‖n−1/2
n
∑

t=1

|utǫ0|,

where γt is between x and x+n−1/2ξφt. The second term on the right is op(1) uniformly

in s and x by Lemma 1(a). Now maxi |γi − x| ≤ n−1/2 maxi |ξφi| = op(1) uniformly

in x by Lemma 1(b). Therefore by the uniform continuity, f(γi) = f(x) + ei with

maxi |ei| = op(1) uniformly in x. Thus

sup
s∈[0,1],x∈R

1

n
|
[ns]
∑

t=1

f(γt)ξφt| ≤ sup
s∈[0,1],x∈R



‖f‖ 1

n
|
[ns]
∑

t=1

ξφt| + max
i

|ei|
1

n

n
∑

t=1

|ξφt|




= sup
s∈[0,1]



‖f‖ 1

n
|
[ns]
∑

t=1

ξφt|


+ op(1)Op(1).

It remains to show sups n−1|∑[ns]
t=1 ξφt| = op(1). However, using an invariance principle

for linear processes [Billingsley (1968), p. 191], one can even obtain the stronger result

sups n−1|∑[ns]
t=1 ξφt| = Op(n

−1/2). Details can be found in Bai (1991a).

We next argue that (23) holds uniformly in φ ∈ Db. Partition Db as before and

consider φ ∈ ∆r. By the monotonicity of F and the inequality of (17)

Hn(s, x, φ) ≤ n−1/2
[ns]
∑

t=1

{F (x + Λφrt + δtθ̄t−1|ǫ0| + δn−1/2ηt) − F (x)}

≤ Hn(s, x, φr) + δ‖f‖(n−1/2
n
∑

t=1

tθ̄t−1|ǫ0| +
1

n

n
∑

t=1

ηt)

where the second inequality follows from the Mean Value Theorem. A reverse inequal-

ity holds when δ is replaced by −δ. Moreover, the last term in the above inequality is

δOp(1) by Lemma 1, therefore,

sup
s∈[0,1],x∈R

sup
φ∈Db

|Hn(s, x, φ)| ≤ max
r≤m(δ)

sup
s∈[0,1],x∈R

|Hn(s, x, φr)| + δOp(1),

which implies Proposition 2 in view of (23).
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