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Abstract

It was shown earlier that the class of algorithmically computable
simple games (i) includes the class of games that have finite carriers
and (ii) is included in the class of games that have finite winning coali-
tions. This paper characterizes computable games, strengthens the
earlier result that computable games violate anonymity, and gives ex-
amples showing that the above inclusions are strict. It also extends
Nakamura’s theorem about the nonemptyness of the core and shows
that computable games have a finite Nakamura number, implying that
the number of alternatives that the players can deal with rationally is
restricted.
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1 Introduction

We investigate algorithmic computability of a particular class of coalitional
games (cooperative games), called simple games (voting games). One can
think of simple games as representing voting methods; alternatively, as rep-
resenting “manuals” or “contracts.” We give a characterization of com-
putable simple games; it implies that a computable simple game uses infor-
mation about only finitely many players, but how much information it uses
depends on each coalition. We also apply the characterization to the the-
ory of the core. For the latter application, we extend Nakamura’s theorem
(1979) regarding the core of simple games to the framework where not all
subsets of players are deemed to be a coalition.

1.1 Computability analysis of social choice

Most of the paper (except the part on the theory of the core) can be viewed as
a contribution to the foundations of computability analysis of social choice,
which studies algorithmic properties of social decision-making. This liter-
ature includes Kelly (1988), Lewis (1988), Bartholdi et al. (1989a,b), and
Mihara (1997b, 1999, 2004), who study issues in social choice using recursion
theory (the theory of computability and complexity).1

The importance of computability in social choice theory would be unar-
guable. First, the use of the language by social choice theorists suggests the
importance. For example, Arrow defined a social welfare function to be a
“process or rule” which, for each profile of individual preferences, “states”
a corresponding social preference (Arrow, 1963, p. 23), and called the func-
tion a “procedure” (Arrow, 1963, p. 2). Indeed, he later wrote (Arrow,
1986, p. S398) in a slightly different context, “The next step in analysis, I
would conjecture, is a more consistent assumption of computability in the
formulation of economic hypotheses” (emphasis added). Second, there is a
normative reason. Algorithmic social choice rules specify the procedures in
such a way that the same results are obtained irrespective of who carries
out a computation, leaving no room for personal judgments. In this sense,
computability of social choice rules formalizes the notion of “due process.”2

1These works, which are mainly concerned with the complexity of rules or cooperative
games in themselves, can be distinguished from the closely related studies of the complexity
of solutions for cooperative games, such as Deng and Papadimitriou (1994) and Fang
et al. (2002); they are also distinguished from the studies, such as Takamiya and Tanaka
(2007), of the complexity of deciding whether a given cooperative game has a certain
property. (More generally, applications of recursion theory to economic theory and game
theory include Spear (1989), Canning (1992), Anderlini and Felli (1994), Anderlini and
Sabourian (1995), Prasad (1997), Richter and Wong (1999a,b), and Evans and Thomas
(2001). See also Lipman (1995) and Rubinstein (1998) for surveys of the literature on
bounded rationality in these areas.)

2Richter and Wong (1999a) give reasons for studying computability-based economic
theories from the viewpoints of bounded rationality, computational economics, and com-
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1.2 Simple games with countably many players

Simple games have been central to the study of social choice (e.g., Banks,
1995; Austen-Smith and Banks, 1999; Peleg, 2002). Simple games on an
algebra of coalitions of players assign either 0 or 1 to each coalition (member
of the algebra). In the setting of players who face a yes/no question, a
coalition intuitively describes those players who vote yes. A simple game is
characterized by its winning coalitions—those assigned the value 1. (The
other coalitions are losing.) Winning coalitions are understood to be those
coalitions whose unanimous votes are decisive.

When there are only finitely many players, we can construct a finite table
listing all winning coalitions. Computability is automatically satisfied, since
such a table gives an algorithm for computing the game. The same argument
does not hold when there are infinitely many players. Indeed, some simple
games are noncomputable, since there are uncountably many simple games
but only countably many computable ones (because each computable game
is associated with an algorithm).

Taking the “fixed population” approach,3 we consider a fixed infinite set
of players in this study of simple games. Roughly speaking, a simple game
is computable if there is a Turing program (finite algorithm) that can decide
from a description (by integer) of each coalition whether it is winning or los-
ing. To be more precise, we have to be more specific about what we mean
by a “description” of a coalition. This suggests the following: First, since
each member of a coalition should be describable in words (in English), it
is natural to assume that the set N of (the names of) players is countable,
say, N = N = {0, 1, 2, . . .}. Second, since one can describe only countably
many coalitions, we have to restrict coalitions. Finite or cofinite coalitions
can be described by listing their members or nonmembers completely. But
restricting coalitions to these excludes too many coalitions of interest—such
as the set of even numbers. A natural solution is to describe coalitions by
a Turing program that can decide for the name of each player whether she
is in the coalition. Since each Turing program has its code number (Gödel
number), the coalitions describable in this manner are describable by an in-
teger, as desired. Our notion of computability (δ-computability) focuses on

plexity analysis. These reasons partially apply to studying computable rules in social
choice.

3There are two typical approaches to introducing infinite population to a social choice
model. In the “variable population” approach, players are potentially infinite, but each
problem (or society) involves only finitely many players. Indeed, well-known schemes, such
as simple majority rule, unanimity rule, and the Condorcet and the Borda rules, are all
algorithms that apply to problems of any finite size. Kelly (1988) adopts this approach,
giving examples of noncomputable social choice rules. In the “fixed population” approach,
which we adopt, each problem involves the whole set of infinitely many players. This
approach dates back to Downs (1957), who consider continuous voter distributions. The
paper by Banks et al. (2006) is a recent example of this approach to political theory.
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this class of coalitions—recursive coalitions—as well as the method (char-
acteristic index) of describing them.

A fixed population of countably many players arises not only in vot-
ing but in other contexts, such as a special class of multi-criterion decision
making—depending on how we interpret a “player”:

Simulating future generations One may consider countably many play-
ers (people) extending into the indefinite future.

Uncertainty One may consider finitely many persons facing countably
many states of the world (Mihara, 1997b): each player can be in-
terpreted as a particular person in a particular state. The decision has
to be made before a state is realized and identified. (This idea is for-
malized by Gomberg et al. (2005), who introduce “n-period coalition
space,” where n is the number of persons.)

Team management Putting the right people (and equipment) in the right
places is basic to team management.4 To ensure “due process” (which
is sometimes called for), can a manager of a company write a “manual”
(computable simple game5) elaborating the conditions that a team
must meet?

Fix a particular task such as operating an exclusive agency of the
company.6 A team consists of members (people) and equipment. The
manager’s job is to organize or give a licence to a team that satisfac-
torily performs the task. Each member (or equipment) is described by
attributes such as skills, position, availability at a particular time and
place (in case of equipment such as a computer, the attributes may be
the kind of operating system, the combination of software that may
run at the same time, as well as hardware and network specifications).
Each such attribute can be thought of as a particular yes/no question,
and there are countably many such questions.7

4In line with much of cooperative game theory, we put aside the important problems
of economics of organization, such as coordinating the activities of the team members by
giving the right incentives.

5Like Anderlini and Felli (1994), who view contracts as algorithms, we view “manuals”
as algorithms. They derive contract incompleteness through computability analysis.

6Extension to finitely or countably many tasks is straightforward. Redefine a team as
consisting of members, equipment, and tasks. Then introduce a player for each task. Since
a task can be regarded as a negative input, it will be more natural to assign 0 to those
tasks undertaken and 1 to those not undertaken (think of the monotonicity condition).

7According to a certain approach (e.g., Gilboa, 1990) to modeling scientific inquiry, a
“state” is an infinite sequence of 0’s and 1’s (answers to countably many questions) and
a “theory” is a Turing program describing a state. This team management example is
inspired by this approach in philosophy of science. If we go beyond the realm of social
choice, we can indeed find many other interpretations having a structure similar to this
example, such as elaborating the conditions for a certain medicine to take the desired
effects and deciding whether a certain act is legal or not.
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Here, each player can be interpreted as a particular attribute of a
particular member (or equipment).8 In other words, each coalition is
identified with a 0-1 “matrix” of finitely many rows (each row specify-
ing a member) and countably many columns (each column specifying
a particular attribute).9

1.3 Overview of the results

Adopting the above notion of computability for simple games, Mihara (2004)
gives a sufficient condition and necessary conditions for computability. The
sufficient condition (Mihara, 2004, Proposition 5) is intuitively plausible:
simple games with a finite carrier (such games are in effect finite, ignoring
all except finitely many, fixed players’ votes) are computable. A necessary
condition (Mihara, 2004, Corollary 10) in the paper seems to exclude “nice”
(in the voting context) infinite games: computable simple games have both
finite winning coalitions and cofinite losing coalitions. He leaves open the
questions (i) whether there exists a computable simple game that has no
finite carrier and (ii) whether there exists a noncomputable simple game
that has both finite winning coalitions and cofinite losing coalitions. The
first of these questions is particularly important since if the answer were
no, then only the games that are in effect finite would be computable, a
rather uninteresting result. The answers to these questions (i) and (ii) are
affirmative. We construct examples in Section 6 to show their existence. The
construction of these examples depends in essential ways on Proposition 2
(which gives a necessary condition for a simple game to be computable) or
on the easier direction of Theorem 3 (which gives a sufficient condition).
In contrast, the results in Mihara (2004) are not useful enough for us to
construct such examples.

Theorem 3 gives a necessary and sufficient condition for simple games
to be computable. The condition roughly states that “finitely many, unnec-
essarily fixed players matter.”

To explain the condition, let us introduce the notion of a “determining
string.” Given a coalition S, its k-initial segment is the string of 0’s and
1’s of length k whose jth element (counting from zero) is 1 if j ∈ S and
is 0 if j /∈ S. For example, if S = {0, 2, 4}, its 0-initial segment, 1-initial

8From the viewpoint of “due process,” it would be reasonable to define a simple game
not for the set of (the names of) members but for the set of attributes. (This is particularly
important where games cannot meet anonymity.) Considering characteristic games for the
set of attributes (“skills”) can make it easy to express certain allocation problems and give
solutions to them (see Yokoo et al., 2005).

9Since different questions may be interrelated, some “matrix” may not make much
sense. One might thus want to restrict admissible “matrices.” This point is not crucial to
our discussion, provided that there are infinitely many admissible “matrices” consisting
of infinitely many 0’s and infinitely many 1’s (in such cases characteristic indices are the
only reasonable way of naming coalitions).
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segment, . . . , 8-initial segment, . . . are, respectively, the empty string, the
string 1, the string 10, the string 101, the string 1010, the string 10101, the
string 101010, the string 1010100, the string 10101000, . . . . We say that a
(finite) string τ is winning determining if any coalition G extending τ (i.e., τ
is an initial segment of G) is winning. We define losing determining strings
similarly.

The necessary and sufficient condition for computability according to
Theorem 3 is the following: there are computably listable sets T0 of losing
determining strings and T1 of winning determining strings such that any
coalition has an initial segment in one of these sets. In the above example,
the condition implies that at least one string from among the empty string,
1, 10, . . . , 10101000, . . . is in T0 or in T1—say, 1010 is in T1. Then any
coalition of which 0 and 2 are members but 1 or 3 is not, is winning. In
this sense, one can determine whether a coalition is winning or losing by
examining only finitely many players’ membership. In general, however, one
cannot do so by picking finitely many players before a coalition is given.

Theorem 3 has an interesting implication for the nature of “manuals”
or “contracts,” if we regard them as being composed of computable sim-
ple games (e.g., the team management example in Section 1.2). Consider
how many “criteria” (players; e.g., member-attribute pairs) are needed for
a “manual” to determine whether a given “situation” (coalition; e.g., team)
is “acceptable” (winning; e.g., satisfactorily performs a given task). While
increasingly complex situations may require increasingly many criteria, no
situation (however complex) requires infinitely many criteria. The condi-
tions (such as “infinitely many of the prime-numbered criteria must be met”)
based on infinitely many criteria are ruled out.

The proof of Theorem 3 uses the recursion theorem. It involves much
more intricate arguments of recursion theory than those in Mihara (2004)
giving only a partial characterization of the computable games.10

A natural characterization result might relate computability to well-
known properties of simple games, such as monotonicity, properness, strong-
ness, and nonweakness. Unfortunately, we are not likely to obtain such a
result: as we clarify in a companion paper (Kumabe and Mihara, 2006),
computability is “unrelated to” the four properties just mentioned.

The earlier results (Mihara, 2004) are easily obtained from Theorem 3.
For example, if a computable game has a winning coalition, then, an initial
segment of that coalition is winning determining, implying that (Propo-
sition 7) the game has a finite winning coalition and a cofinite winning
coalition. We give simple proofs to some of these results in Section 4.
In particular, Proposition 10 strengthens the earlier result (Mihara, 2004,
Corollary 12) that computable games violate anonymity.11

10Theorem 3 can also be derived from results in Kreisel et al. (1959) and Cĕıtin (1959).
See Remark 1.

11Detailed studies of anonymous rules based on infinite simple games include Mihara
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1.4 Application to the theory of the core

Most cooperative game theorists are more interested in the properties of a
solution (or value) for games than in the properties of a game itself. In
this sense, Section 5 deals with more interesting applications of Theorem 3.
(Most of the section is of independent interest, and can be read without a
knowledge of recursion theory.)

Theorem 14 is our main contribution to the study of acyclic preference
aggregation rules in the spirit of Nakamura’s theorem (1979) on the core of
simple games.12

Combining a simple game with a set of alternatives and a profile of
individual preferences, we define a simple game with (ordinal) preferences.
Nakamura’s theorem (1979) gives a necessary and sufficient condition for
a simple game with preferences to have a nonempty core for all profiles:
the number of alternatives is below a certain number, called the Nakamura
number of the simple game. We extend (Theorem 14) Nakamura’s theorem
to the framework where simple games are defined on an arbitrary algebra
of coalitions (so that not all subsets of players are coalitions). It turns out
that our proof for the generalized result is more elementary than Nakamura’s
original proof; the latter is more complex than need be.

Since computable (nonweak) simple games have a finite winning coali-
tion, we can easily prove that they have a finite Nakamura number (Corol-
lary 13). Theorem 14 in turn implies (Corollary 15) that if a game is com-
putable, the number of alternatives that the set of players can deal with
rationally is restricted by this number. We conclude Section 5 with Propo-
sition 16, which suggests the fundamental difficulty of obtaining computable
aggregation rules in Arrow’s setting (1963), even after relaxing the transi-
tivity requirement for (weak) social preferences.13

2 Framework

2.1 Simple games

Let N = N = {0, 1, 2, . . .} be a countable set of (the names of) players. Any
recursive (algorithmically decidable) subset of N is called a (recursive)

(1997a), Fey (2004), and Gomberg et al. (2005).
12Banks (1995), Truchon (1995), and Andjiga and Mbih (2000) are recent contributions

to this literature. (Earlier papers on acyclic rules can be found in Truchon (1995) and
Austen-Smith and Banks (1999).) Most works in this literature (including those just
mentioned) consider finite sets of players. Nakamura (1979) considers arbitrary (possibly
infinite) sets of players and the algebra of all subsets of players. In contrast, we consider
arbitrary sets of players and arbitrary algebras of coalitions.

13Mihara (1997b, 1999) studies computable aggregation rules without relaxing the tran-
sitivity requirement; these papers build on Armstrong (1980, 1985), who generalizes Kir-
man and Sondermann (1972).
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coalition.
Intuitively, a simple game describes in a crude manner the power dis-

tribution among observable (or describable) subsets of players. Since the
cognitive ability of a human (or machine) is limited, it is not natural to
assume that all subsets of players are observable when there are infinitely
many players. We therefore assume that only recursive subsets are observ-
able. This is a natural assumption in the present context, where algorithmic
properties of simple games are investigated. According to Church’s thesis
(see Soare, 1987; Odifreddi, 1992), the recursive coalitions are the sets of
players for which there is an algorithm that can decide for the name of each
player whether she is in the set.14 Note that the class REC of recursive
coalitions forms a Boolean algebra; that is, it includes N and is closed
under union, intersection, and complementation. (We assume that observ-
able coalitions are recursive, not just r.e. (recursively enumerable). Mihara
(2004, Remarks 1 and 16) gives three reasons: nonrecursive r.e. sets are ob-
servable in a very limited sense; the r.e. sets do not form a Boolean algebra;
no satisfactory notion of computability can be defined if a simple game is
defined on the domain of all r.e. sets.)

Formally, a (simple) game is a collection ω ⊆ REC of (recursive) coali-
tions. We will be explicit when we require that N ∈ ω. The coalitions in ω
are said to be winning. The coalitions not in ω are said to be losing. One
can regard a simple game as a function from REC to {0, 1}, assigning the
value 1 or 0 to each coalition, depending on whether it is winning or losing.

We introduce from the theory of cooperative games a few basic notions
of simple games (Peleg, 2002; Weber, 1994).15 A simple game ω is said to
be monotonic if for all coalitions S and T , the conditions S ∈ ω and T ⊇ S
imply T ∈ ω. ω is proper if for all recursive coalitions S, S ∈ ω implies
Sc := N \S /∈ ω. ω is strong if for all coalitions S, S /∈ ω implies Sc ∈ ω. ω
is weak if ω = ∅ or the intersection

∩

ω =
∩

S∈ω S of the winning coalitions
is nonempty. The members of

∩

ω are called veto players; they are the
players that belong to all winning coalitions. (The set

∩

ω of veto players
may or may not be observable.) ω is dictatorial if there exists some i0
(called a dictator) in N such that ω = {S ∈ REC : i0 ∈ S }. Note that a

14Soare (1987) and Odifreddi (1992) give a more precise definition of recursive sets as
well as detailed discussion of recursion theory. Mihara (1997b, 1999) contain short reviews
of recursion theory.

15The desirability of these properties depends, of course, on the context. Consider the
team management example in Section 1.2, for example. Monotonicity makes sense, but
may be too optimistic (adding a member may turn an acceptable team into an unaccept-
able one). Properness may be irrelevant or even undesirable (ensuring that a given task
can be performed by two non-overlapping teams may be important from the viewpoint
of reliability). This observation does not diminish the contribution of the main theorem
(Theorem 3), which does not refer to these properties. In fact, one can show (Kumabe and
Mihara, 2006) that computability is “unrelated to” monotonicity, properness, strongness,
and weakness.

8



dictator is a veto player, but a veto player is not necessarily a dictator.
We say that a simple game ω is finitely anonymous if for any finite

permutation π : N → N (which permutes only finitely many players) and
for any coalition S, we have S ∈ ω ⇐⇒ π(S) ∈ ω. In particular, finitely
anonymous games treat any two coalitions with the same finite number
of players equally. Finite anonymity is a notion much weaker than the
version of anonymity that allows any (measurable) permutation π : N → N .
For example, free ultrafilters (nondictatorial ultrafilters) defined below are
finitely anonymous.

A carrier of a simple game ω is a coalition S ⊂ N such that

T ∈ ω ⇐⇒ S ∩ T ∈ ω

for all coalitions T . We observe that if S is a carrier, then so is any coalition
S′ ⊇ S.

Finally, we introduce a few notions from the theory of Boolean alge-
bras (Koppelberg, 1989); they can be regarded as properties of simple games.
A monotonic simple game ω satisfying N ∈ ω and ∅ /∈ ω is called a prefilter
if it has the finite intersection property: if ω′ ⊆ ω is finite, then

∩

ω′ 6= ∅.
Intuitively, a prefilter consists of “large” coalitions. A prefilter is free if
and only if it is nonweak (i.e., it has no veto players). A free prefilter does
not contain any finite coalitions (Lemma 11). A prefilter ω is a filter if it
is closed with respect to finite intersection: if S, S′ ∈ ω, then S ∩ S′ ∈ ω.
The principal filter generated by S is ω = {T ∈ REC : S ⊆ T}. It is
a typical example of a filter that is not free; it has a carrier, namely, S. A
filter is a principal filter if it is the principal filter generated by some S.
A filter ω is called an ultrafilter if it is a strong simple game. If ω is an
ultrafilter, then S ∪ S′ ∈ ω implies that S ∈ ω or S′ ∈ ω. An ultrafilter is
free if and only if it is not dictatorial.

2.2 An indicator for simple games

To define the notions of computability for simple games, we introduce below
two indicators for them. In order to do that, we first represent each recur-
sive coalition by a characteristic index (∆0-index). Here, a number e is a
characteristic index for a coalition S if ϕe (the partial function computed
by the Turing program with code number e) is the characteristic function
for S. Intuitively, a characteristic index for a coalition describes the coalition
by a Turing program that can decide its membership. The indicator then
assigns the value 0 or 1 to each number representing a coalition, depending
on whether the coalition is winning or losing. When a number does not
represent a recursive coalition, the value is undefined.

Given a simple game ω, its δ-indicator is the partial function δω on N
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defined by

δω(e) =







1 if e is a characteristic index for a recursive set in ω,
0 if e is a characteristic index for a recursive set not in ω,
↑ if e is not a characteristic index for any recursive set.

(1)
Note that δω is well-defined since each e ∈ N can be a characteristic index
for at most one set.

2.3 The computability notion

We now introduce the notion of δ-computable simple games. We start by
giving a scenario or intuition underlying the notion of δ-computability. A
number (characteristic index) representing a coalition (equivalently, a Tur-
ing program that can decide the membership of a coalition) is presented by
an inquirer to the aggregator (planner), who will compute whether the coali-
tion is winning or not. Though there is no effective (algorithmic) procedure
to decide whether a number given by the inquirer is legitimate (i.e., rep-
resents some recursive coalition), a human can often check manually (non-
algorithmically) if such a number is a legitimate representation. We assume
that the inquirer gives the aggregator only those indices that he has checked
and proved its legitimacy. This assumption is justified if we assume that the
aggregator always demands such proofs. The aggregator, however, cannot
know a priori which indices will possibly be presented to her. (There are, of
course, indices unlikely to be used by humans. But the aggregator cannot
a priori rule out some of the indices.) So, the aggregator should be ready
to compute whenever a legitimate representation is presented to her.16 This
intuition justifies the following condition of computability.17

δ-computability δω has an extension to a partial recursive function.

Instead of, say, δ-computability, one might want to require the indica-
tor δω itself (or its extension that gives a number different from 0 or 1 when-
ever δω(e) is undefined) to be partial recursive (Mihara, 2004, Appendix A).
Such a condition cannot be satisfied, however, since the domain of δω is not
r.e. (Mihara, 1997b, Lemma 2).

16An alternative notion of computability might use a “multiple-choice format,” in which
the aggregator gives possible indices that the inquirer can choose from. Unfortunately,
such a “multiple-choice format” would not work as one might wish (Kumabe and Mihara,
2007, Appendix A.1).

17Mihara (2004) also proposes a stronger condition, σ-computability. We discard that
condition since it is too strong a notion of computability (Proposition 3 of that paper; for
example, even dictatorial games are not σ-computable).
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3 A Characterization Result

3.1 Determining strings

The next lemma states that for any coalition S of a δ-computable simple
game, there is a cutting number k such that any finite coalition G having
the same k-players as S (that is, G and S are equal if players i ≥ k are
ignored) is winning (losing) if S is winning (losing). Note that if k is such a
cutting number, then so is any k′ greater than k.

Notation. We identify a natural number k with the finite set {0, 1, 2, . . . , k−
1}, which is an initial segment of N. Given a coalition S ⊆ N , we write
S ∩ k to represent the coalition {i ∈ S : i < k} consisting of the mem-
bers of S whose name is less than k. We call S ∩ k the k-initial seg-
ment of S, and view it either as a subset of N or as the string S[k] of
length k of 0’s and 1’s (representing the restriction of its characteristic
function to {0, 1, 2, . . . , k − 1}). For example, if S = {0, 2, 4}, we have
S[7] = 1010100 = ϕe(0)ϕe(1) · · ·ϕe(6), where e is a characteristic index
for S. Note that if G is a coalition and G ∩ k = S ∩ k (that is, G and S are
equal if players i ≥ k are ignored), the characteristic function of G extends
the k-initial segment (viewed as a string of 0’s and 1’s) of S.

Lemma 1 Let ω be a δ-computable simple game. If S ∈ ω, then there is an
initial segment k ≥ 0 of N such that for any finite G ∈ REC, if G∩k = S∩k,
then G ∈ ω. Similarly, if S /∈ ω, then there is an initial segment k ≥ 0 of N

such that for any finite G ∈ REC, if G ∩ k = S ∩ k, then G /∈ ω.

Proof. Let S ∈ ω and assume for a contradiction that there is no such
initial segment k. Then, for each initial segment k of N, there is a finite
coalition Gk such that Gk ∩ k = S ∩ k and Gk /∈ ω. Note that we can find
such Gk recursively (algorithmically) in k since it is finite.

Let K be a nonrecursive r.e. set such as { e : e ∈ We }. Since K is r.e.,
there is a recursive set R ⊆ N × N such that e ∈ K ⇔ ∃zR(e, z). Define
g(e, u) = µy ≤ u R(e, y) (i.e., the least y ≤ u such that R(e, y)) if such y
exists, and g(e, u) = 0 otherwise. Then g is recursive.

Using the Parameter Theorem, define a recursive function f by18

ϕf(e)(u) = 1 if ¬∃z ≤ u R(e, z) and u ∈ S,

18Intuitively, given e, we define ϕf(e)(u) at each step u as follows: Let u′ := µy R(e, y) if
e ∈ K; u′ := +∞ otherwise. Try to find z ≤ u such that R(e, z). If u is small (i.e., u < u′),
there is no such z (the first and the second cases); for those u, ϕf(e) takes the same value
as the characteristic function for S. If u is large enough (i.e., u ≥ u′ = g(e, u), which is
true only if e ∈ K), there is such z (the third and the fourth cases); for those u, ϕf(e)

takes the same value as the characteristic function for a certain losing coalition Gk defined
above (namely, k = u′). Note that the construction of Gk ensures that the characteristic
functions for S and for Gk take the same values for small u as well.
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ϕf(e)(u) = 0 if ¬∃z ≤ u R(e, z) and u 6∈ S,

ϕf(e)(u) = 1 if ∃z ≤ u R(e, z) and u ∈ Gg(e,u), and

ϕf(e)(u) = 0 otherwise.

Now, on the one hand, e ∈ K implies that f(e) is a characteristic index
for Gu′ /∈ ω for some u′. (Details: Given e ∈ K, let u′ = µy R(e, y), which is
well-defined since ∃zR(e, z). Then ϕf(e)(u) = 1 iff (i) u < u′ and u ∈ S [that
is, u < u′ and u ∈ Gu′ ] or (ii) u ≥ u′ and [since g(e, u) = u′ in this case]
u ∈ Gg(e,u) = Gu′ . Thus ϕf(e)(u) = 1 iff u ∈ Gu′ .) Hence δω(f(e)) = 0. On
the other hand, e /∈ K implies that f(e) is a characteristic index for S ∈ ω.
Hence δω(f(e)) = 1.

Since δω has an extension to a p.r. function (because ω is δ-computable),
the last paragraph implies that K is recursive. This is a contradiction.

To prove the last half of the lemma, note that the set-theoretic difference
ω̂ = REC − ω is also a δ-computable simple game. Let S /∈ ω. Then the
first half applies to ω̂ and S ∈ ω̂. Since G ∈ ω̂ iff G /∈ ω, the desired result
follows.

In fact, the coalition G in Lemma 1 need not be finite. Before stat-
ing an extension (Proposition 2) of Lemma 1, we introduce the notion of
determining strings:

Definition 1. Consider a simple game. A string τ (of 0’s and 1’s) of
length k ≥ 0 is said to be determining if either any coalition G ∈ REC
extending τ (in the sense that τ is an initial segment of G, i.e., G∩k = τ) is
winning or any coalition G ∈ REC extending τ is losing. A string τ is said
to be determining for finite coalitions if either any finite coalition G
extending τ is winning or any finite coalition G extending τ is losing. A
string is nondetermining if it is not determining.

Proposition 2 below states that for δ-computable simple games, (the
characteristic function for) every coalition S has an initial segment S ∩ k
that is determining. (The number k − 1 may be greater than the greatest
element, if any, of S):

Proposition 2 Suppose that a δ-computable simple game is given. (i) If
a coalition S is winning, then there is an initial segment k ≥ 0 of N such
that for any (finite or infinite) coalition G, if G ∩ k = S ∩ k, then G is
winning. (ii) If S is losing, then there is an initial segment k ≥ 0 of N such
that for any coalition G, if G ∩ k = S ∩ k, then G is losing. (iii) If S ∩ k is
an initial segment that is determining for finite coalitions, then S ∩ k is an
initial segment that is determining.

Proof. It suffices to prove (i). As a byproduct, we obtain (iii).

12



Suppose S ∈ ω, where ω is a δ-computable simple game. Then by the
first half of Lemma 1, there is k ≥ 0 such that (a) for any finite G′, if
G′ ∩ k = S ∩ k, then G′ ∈ ω.

To obtain a contradiction, suppose that there is G /∈ ω such that (b) G∩
k = S ∩ k. By the last half of Lemma 1, there is k′ ≥ 0 such that (c) for
any finite G′, if G′ ∩ k′ = G ∩ k′, then G′ /∈ ω. Without loss of generality,
assume k′ ≥ k.

Consider G′ = G ∩ k′, which is finite. Then, on the one hand, since
G′ ∩ k′ = G ∩ k′, we get G′ /∈ ω by (c). On the other hand, since k′ ≥ k, we
get G′ ∩ k = G∩ k = S ∩ k (the last equality by (b)). Then (a) implies that
G′ ∈ ω. This is a contradiction.

3.2 Characterization of computable games

The next theorem characterizes δ-computable simple games in terms of sets
of determining strings. Roughly speaking, finitely many players determine
whether a coalition is winning or losing. Though we cannot tell in advance
which finite set of players determines that, we can list such sets in an effective
manner.

Note that T0 ∪ T1 in the theorem does not necessarily contain all deter-
mining strings. (The =⇒ direction can actually be strengthened: we can
find recursive, not just r.e., sets T0 and T1 satisfying the conditions. We do
not prove the strengthened result, since we will not use it.)

Theorem 3 A simple game ω is δ-computable if and only if there are an r.e.
set T0 of losing determining strings and an r.e. set T1 of winning determining
strings such that (the characteristic function for) any coalition has an initial
segment in T0 or in T1.

Remark 1. We can derive Theorem 3 from a result in Kreisel et al.
(1959) and Cĕıtin (1959). In the working paper (Kumabe and Mihara, 2007,
Appendix A.2), following the terminology of Odifreddi (1992), we outline
such a proof, which is based on a topological argument. In this paper, we
give a different, more self-contained proof. The fact that the proof uses the
recursion theorem should also be of some interest. ‖

Proof. (⇐=). We give an algorithm that can decide for each coalition
whether it is winning or not: Given is a characteristic index e of a coali-
tion S. Generate the elements of T0 and T1; we can do that effectively since
these sets are r.e. Wait until an initial segment of S is generated. (Since a
characteristic index is given, we can decide whether a string generated is an
initial segment of S.) If the initial segment is in T0, then S is losing; if it is
in T1, then S is winning.
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(=⇒). Suppose ω is δ-computable. Let δ′ be a p.r. extension of δω; such
a δ′ exists since ω is δ-computable.

Overview. From Proposition 2, our goal is to effectively enumerate a
determining initial segment S ∩ k of each losing coalition S in T0 and that
of each winning coalition in T1.

We will define a certain recursive function y(e) in Step 1. In Step 2,
we will first define the sets Ti, where i ∈ {0, 1}, as the collection of certain
strings (of 0’s and 1’s) of length k(e) (to be defined) for those e ∈ N satisfying
δ′(y(e)) = i. In particular, T0 ∪ T1 includes, for each characteristic index e,
the k(e)-initial segment of the recursive coalition indexed by e. We will then
show that T0 and T1 satisfy the conditions stated.

We use the following notation. We write ϕe,s(x) = y if x, y, e < s and y
is the output of ϕe(x) in less than s steps of the eth Turing program (Soare,
1987, p. 16). In particular, if eth Turing program does not give an output
for x in ≤ s steps, then ϕe,s(x) is undefined. We fix a Turing program for δ′

and denote by δ′s(y) the computation of δ′(y) up to step s of the program.

Step 1. Defining a recursive function y(e).
We define a recursive function f(e, y) in Step 1.1. In Step 1.2, we apply

a variant of the Recursion Theorem to f(e, y) and obtain y(e).

Step 1.1. Defining a recursive function f(e, y). Define an r.e. set Q0 ⊆ N

by y ∈ Q0 iff there exists s such that δ′s(y) = 0 or δ′s(y) = 1. Define a p.r.
function

s0(y) = µs[δ′s(y) ∈ {0, 1}],

which converges for y ∈ Q0.
Fix a recursive set F of characteristic indices for finite sets such that

each finite set has at least one characteristic index in F. (An example of
F is the set consisting of the code numbers (Gödel numbers) of the Turing
programs of a particular form.) For s ∈ N, let Fs = F ∩ s be the finite set
of numbers e < s in F.

Define a set Q1 ⊆ N × N by (e, y) ∈ Q1 iff (i) y ∈ Q0 and (ii) there
exist s′ ≥ s0 := s0(y) and e′ ∈ Fs′ such that (ii.a) δ′s′(e

′) = 1 − δ′s0
(y) and

that (ii.b) ϕe′,s′ is an extension of ϕe,s0−1.
19 Note that if (e, y) ∈ Q1, then

s0 = s0(y) is defined and δ′s0
(y) ∈ {0, 1}. We can easily check that Q1 is r.e.

Given (e, y) ∈ Q1, let s1 be the least s′ ≥ s0 such that conditions (ii.a) and
(ii.b) hold for some e′ ∈ Fs′ . Let e0 be the least e′ ∈ Fs′ such that conditions
(ii.a) and (ii.b) hold for s′ = s1. We can view e0 as a p.r. function e0(e, y),
which converges for (e, y) ∈ Q1.

19Condition (ii.b), written ϕe′,s′ ⊇ ϕe,s0−1, means that if ϕe,s0−1(z) = u, then
ϕe′,s′(z) = u. In particular, if ϕe,s0−1(z) is undefined, then ϕe′,s′(z) can take any value
or no value. It is possible that ϕe,s0−1 is undefined (has a “hole”) for z but defined for
some z′ > z.
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Define a partial function ψ by

ψ(e, y, z) =







ϕe0(z) if y ∈ Q0 and (e, y) ∈ Q1,
ϕe,s0−1(z) if y ∈ Q0 and (e, y) /∈ Q1,
ϕe(z) if y /∈ Q0.

Lemma 4 ψ is p.r.

Proof. We show there is a sequence of p.r. functions ψs such that ψ =
∪

s ψs. We then apply the Graph Theorem to conclude ψ is p.r.

For each s ∈ N, define a recursive set Qs
0 ⊆ N by y ∈ Qs

0 iff there
exists s′ ≤ s such that δ′s′(y) = 0 or δ′s′(y) = 1. We have y ∈ Q0 iff y ∈ Qs

0

for some s. Note that if y ∈ Qs
0, then s ≥ s0 = s0(y).

For each s ∈ N, define a recursive set Qs
1 ⊆ N × N by (e, y) ∈ Qs

1

iff (i) y ∈ Qs
0 and (ii) there exist s′ such that s0 := s0(y) ≤ s′ ≤ s and

e′ ∈ Fs′ such that (ii.a) δ′s′(e
′) = 1 − δ′s0

(y) and that (ii.b) ϕe′,s′ is an
extension of ϕe,s0−1. (Conditions (ii.a) and (ii.b) are the same as those in
the definition of Q1.) We have (e, y) ∈ Q1 iff (e, y) ∈ Qs

1 for some s. Note
that if (e, y) ∈ Qs

1, then s0 ≤ s1 ≤ s.
For each s ∈ N, define a p.r. function ψs by

ψs(e, y, z) =







ϕe0,s(z) if y ∈ Qs
0 and (e, y) ∈ Qs

1,
ϕe,s0−1(z) if y ∈ Qs

0 and (e, y) /∈ Qs
1,

ϕe,s(z) if y /∈ Qs
0.

We claim that
∪

s ψs is a partial function (i.e.,
∪

s ψs(e, y, z) does not
take more than one value) and that ψ =

∪

s ψs:

• Suppose y /∈ Q0. Then y /∈ Qs
0 for any s. So, for all s, ψs(e, y, z) =

ϕe,s(z). Hence
∪

s ψs(e, y, z) = ϕe(z) = ψ(e, y, z) as desired.

• Suppose (y ∈ Q0 and) (e, y) ∈ Q1. Then s0, s1, and e0 are defined
and s1 ≥ s0. If s < s0, then since y /∈ Qs

0, we have ψs(e, y, z) =
ϕe,s(z). If s0 ≤ s < s1, then since y ∈ Qs

0 and (e, y) /∈ Qs
1, we have

ψs(e, y, z) = ϕe,s0−1(z). If s1 ≤ s, then since y ∈ Qs
0 and (e, y) ∈ Qs

1,
we have ψs(e, y, z) = ϕe0,s(z). Hence

∪

s ψs(e, y, z) = ϕe,s0−1(z) ∪
(
∪

s≥s1
ϕe0,s(z)). The definition of s1 implies that when s1 ≤ s,

ϕe,s0−1 ⊆ ϕe0,s1 ⊆ ϕe0,s. Thus
∪

s ψs(e, y, z) =
∪

s≥s1
ϕe0,s(z) =

ϕe0(z) = ψ(e, y, z) as desired.

• Suppose y ∈ Q0 and (e, y) /∈ Q1. Then s0 is defined. If s < s0,
then since y /∈ Qs

0, we have ψs(e, y, z) = ϕe,s(z). If s0 ≤ s, then
since y ∈ Qs

0 and (e, y) /∈ Qs
1, we have ψs(e, y, z) = ϕe,s0−1(z). Hence

∪

s ψs(e, y, z) = ϕe,s0−1(z) = ψ(e, y, z) as desired.
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Define a partial function ψ̂ by ψ̂(s, e, y, z) = ψs(e, y, z). Then from the
construction of ψs, ψ̂ is p.r. by Church’s Thesis. By the Graph Theorem,
the graph of ψ̂ is r.e.

We claim that ψ =
∪

s ψs is p.r. By the Graph Theorem it suffices to
show that its graph is r.e. We have (e, y, z, u) ∈ ψ ⇐⇒ ∃s (e, y, z, u) ∈
ψs ⇐⇒ ∃s (s, e, y, z, u) ∈ ψ̂. Since the graph of ψ̂ is r.e., it follows that the
graph of ψ is r.e. ‖

Since ψ is p.r., there is a recursive function f(e, y) such that ϕf(e,y)(z) =
ψ(e, y, z) by the Parameter Theorem.

Step 1.2. Applying the Recursion Theorem to obtain y(e). Since f(e, y)
is recursive, by the Recursion Theorem with Parameters (Soare, 1987, p. 37)
there is a recursive function y(e) such that ϕy(e) = ϕf(e,y(e)). So, we have
ϕy(e)(z) = ψ(e, y(e), z).

We claim that y = y(e) cannot meet the first case (y ∈ Q0 and (e, y) ∈
Q1) in the definition of ψ. Suppose y(e) ∈ Q0 and (e, y(e)) ∈ Q1. Since
ϕy(e)(z) = ψ(e, y(e), z), by the definition of ψ we have on the one hand
ϕy(e) = ϕe0 . By (ii.a) of the definition of Q1 and by the definition of e0, we
have on the other hand δ′(e0) = 1 − δ′(y(e)) 6= δ′(y(e)). This contradicts
the fact that δ′ extends the δ-indicator δω.

Therefore, we can express ϕy(e)(z) = ψ(e, y(e), z) as follows:20

ϕy(e)(z) =

{

ϕe,s0−1(z) if y(e) ∈ Q0 ((e, y(e)) /∈ Q1 implied),
ϕe(z) if y(e) /∈ Q0.

(2)

Step 2 Defining T0 and T1 and verifying the conditions.
For i ∈ {0, 1}, let Ti be the collection of all the strings τ of length k(e) :=

s0 − 1 (where s0 = s0(y(e))) that extends ϕe,s0−1 for all those e such that
δ′(y(e)) = i. (Note that δ′(y(e)) ∈ {0, 1} iff y(e) ∈ Q0.) We show T0 and T1

satisfy the conditions.

Step 2.1. T0 and T1 are r.e. This is obvious since s0, δ′, and y are p.r.
(In other words, for each e, first find whether δ′(y(e)) ∈ {0, 1}. If not, we
do not enumerate any segment in T0 or T1. If δ′(y(e)) = i ∈ {0, 1}, then
we have corresponding strings whose length is effectively obtained. So we
enumerate them in Ti. This procedure ensures that T0 and T1 are r.e.)

20Roughly speaking, the first case in the definition of ψ corresponds to the existence
of an index e′ for a finite set extending ϕe,s0−1 such that δ′(e′) is different from δ′(y(e)).
Observe that y(e) is defined so that this case (as just shown) as well as the third case
(Step 2.3 below) in the definition of ψ will not occur in (2) if e is a characteristic index.
It follows that if e is a characteristic index, then all finite coalitions extending ϕe,s0−1

have the same winning/losing status (the δ′-value of their indices is the same as δ′(y(e))).
Thus ϕe,s0−1 is like a determining string—except that it may fail to be a string because
of “holes” as discussed in footnote 19.
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Step 2.2. T0 and T1 consist of determining strings. We show that T0

consists of losing determining strings. We can show that T1 consists of
winning determining strings in a similar way.

Suppose δ′(y(e)) = 0. Then y(e) ∈ Q0. Let s0 = s0(y(e)) and k(e) =
s0 − 1. Since (e, y(e)) /∈ Q1 by (2), there is no e′ ∈ F such that δ′(e′) = 1 −
δ′(y(e)) = 1 and that ϕe′ is an extension of ϕe,s0−1. (Note that δ′(e′) ∈ {0, 1}
if e′ ∈ F.) Hence any finite coalition that extends ϕe,s0−1 is losing.

Therefore, all strings τ in T0 (i.e., all the finite strings of length k(e) that
extend ϕe,s0−1 for some e such that δ′(y(e)) = 0) are losing determining
for finite coalitions. By Proposition 2 (iii), all strings τ in T0 are losing
determining strings.

Step 2.3. Any coalition has an initial segment in T0 ∪ T1. Let S be
a coalition, which is recursive. Pick a characteristic index e for S. We
first show that δ′(y(e)) ∈ {0, 1} (i.e., y(e) ∈ Q0). Suppose y(e) /∈ Q0. By
(2), we have ϕy(e) = ϕe. So y(e) is a characteristic index for S. Hence
δ′(y(e)) ∈ {0, 1}. That is, y(e) ∈ Q0, which is a contradiction.

By the definitions of T0 and T1, since δ′(y(e)) ∈ {0, 1}, all the strings of
length k(e) = s0−1 extending ϕe,s0−1 are in T0∪T1. In particular, since the
k(e)-initial segment S ∩ k(e) of the characteristic function ϕe for S extends
ϕe,s0−1, the initial segment S ∩ k(e) is in T0 ∪ T1.

4 Applications: Finite Carriers, Finite Winning
Coalitions, Prefilters, and Nonanonymity

Theorem 3 is a powerful theorem. We can obtain as its corollaries some of
the results in Mihara (2004).

4.1 Finite carriers

The following proposition asserts that games that are essentially finite satisfy
δ-computability, as might be expected. We give here a proof that uses the
characterization theorem.

Proposition 5 (Mihara (2004, Proposition 5)) Suppose that a simple
game ω has a finite carrier. Then ω is δ-computable.

Proof. Suppose that ω has a finite carrier S. Let k = max S + 1 (we let
k = 0 if S = ∅). Let

T1 = {τ : τ is a string of length k and τ ∈ ω}

(where τ ∈ ω means that the set {i < k : τ(i) = 1} represented by τ , viewed
as a characteristic function, is in ω) and T0 = {τ : τ is a string of length k and τ /∈ ω}.
We verify the conditions of Theorem 3.
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Since T0 and T1 are finite, they are r.e. Since T0 ∪ T1 consists of all
strings of length k, any coalition has an initial segment in it.

We show that T1 consists of winning determining strings. (We can show
that T0 consists of losing determining strings in a similar way.) Suppose
G ∩ k = τ ∈ T1. It suffices to show that G ∈ ω. By the definition of
T1, we have τ ∈ ω. This implies τ ∩ S ∈ ω since S is a carrier. Since
τ ∩ S = (G∩ k)∩ S = G∩ (k ∩ S) = G∩ S, it follows that G∩ S ∈ ω. Since
S is a carrier, we get G ∈ ω.

In particular, if a simple game ω is dictatorial, then ω is δ-computable.
Indeed, the coalition consisting of the dictator is a finite carrier for the
dictatorial game ω.

4.2 Finite winning coalitions

Note in Proposition 5 that if a game has a finite carrier S and N is winning,
then there exists a finite winning coalition, namely S = N ∩S. When there
does not exist a finite winning coalition, it is a corollary of the following
negative result—itself a corollary of Theorem 3—-that the computability
condition is violated.

Proposition 6 (Mihara (2004, Proposition 6)) Suppose that a simple
game ω has an infinite winning coalition S ∈ ω such that for each k ∈ N,
its k-initial segment S ∩ k is losing. Then ω is not δ-computable.

Proof. Suppose that ω is δ-computable. Since S is winning, by Lemma 1
(or by Proposition 2 or by Theorem 3) there is some k ∈ N such that
G = S∩k is winning. This contradicts the assumption of the proposition.

Theorem 3 immediately gives the following extension of Corollary 7 of
Mihara (2004). It gives a useful criterion for checking computability of
simple games. Here, a cofinite set is the complement of a finite set.

Proposition 7 Suppose that a δ-computable simple game has a winning
coalition. Then, it has both finite winning coalitions and cofinite winning
coalitions.

We also prove a result that is close to Proposition 6.

Proposition 8 (Mihara (2004, Proposition 8)) Suppose that ∅ /∈ ω.
Suppose that the simple game ω has an infinite coalition S ∈ ω such that for
each k ∈ N, its difference S \ k = { s ∈ S : s ≥ k } from the initial segment
is winning. Then ω is not δ-computable.
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Proof. Suppose ω is δ-computable. Since ∅ /∈ ω, there is a losing deter-
mining string τ = 00 · · · 0 of length k by Theorem 3. By assumption, S \ k
is winning. But (S \ k) ∩ k = τ and that τ is a losing determining string
imply that S \ k is losing, which is a contradiction.

Again, the following proposition gives a useful criterion for checking
computability of simple games.

Proposition 9 Suppose that a δ-computable simple game has a losing coali-
tion. Then, it has both finite losing coalitions and cofinite losing coalitions.

4.3 Prefilters, filters, and ultrafilters

From the propositions in Section 4.2, examples of a noncomputable simple
game are easy to come by.

Example 1. For any q satisfying 0 < q ≤ ∞, let ω be the q-complement
rule defined as follows: S ∈ ω if and only if #(N \ S) < q. For example, if
q = 1, then the q-complement rule is the unanimous game, consisting of N
alone. If q = ∞, then the game consists of cofinite coalitions (the comple-
ments of finite coalitions). Proposition 7 implies that q-complement rules
are not δ-computable, since they have no finite winning coalitions. Any q-
complement rule is a prefilter and it is a monotonic, proper, nonstrong, and
anonymous simple game. If q > 1, it is nonweak, but any finite intersection
of winning coalitions is nonempty (i.e., has an infinite Nakamura number,
to be defined in Section 5). Note that if 1 < q < ∞, then the q-complement
rule is not a filter since it is not closed with respect to finite intersection. ‖

Example 1 gives examples of a prefilter that is not a filter. It also gives
two examples of a filter that is not an ultrafilter: the unanimous game is a
principal filter and the game consisting of all cofinite coalitions is a nonprin-
cipal filter. Mihara (2001) gives a constructive example of an ultrafilter.

Some prefilters are computable, but that is true only if they have a veto
player: according to Proposition 16 below, if a prefilter is δ-computable,
then it is weak.

If ω is a filter, then it is δ-computable if and only if it is has a finite
carrier (Mihara, 2004, Corollary 11). In particular, the principal filter ω =
{T ∈ REC : S ⊆ T} generated by S has a carrier, namely, S. So, if S is
finite, the principal filter is computable. If S is infinite, it is noncomputable,
since it does not have a finite winning coalition. For example, the principal
filter generated by S = 2N := {0, 2, 4, . . .} is a monotonic, proper, nonstrong,
weak, and noncomputable simple game.

If ω is a nonprincipal ultrafilter, it is not δ-computable by Proposition 7,
since it has no finite winning coalitions (or no cofinite losing coalitions). It
is a monotonic, proper, strong, and nonweak noncomputable simple game.
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In fact, an ultrafilter is δ-computable if and only if it is dictatorial (Mihara,
1997b, Lemma 4).

4.4 Nonanonymity

As an application of the characterization result in Section 3, we show that δ-
computable simple games violate finite anonymity, a weak notion of anonymity.
Proposition 10 below strengthens an earlier result (Mihara, 2004, Corol-
lary 12) about computable games. The latter result assumes proper, mono-
tonic, δ-computable simple games, instead of just δ-computable simple games.

Proposition 10 Suppose that N ∈ ω and ∅ /∈ ω. If the simple game ω is
δ-computable, then it is not finitely anonymous.

Proof. Let ω be a finitely anonymous δ-computable simple game such
that N ∈ ω and ∅ /∈ ω. Since N ∈ ω, there is an initial segment k :=
{0, 1, . . . , k − 1} = 11 · · · 1 (string of 1’s of length k), by Lemma 1 (or by
Proposition 2 or by Theorem 3). Since ∅ /∈ ω, there is a losing determining
string τ = 00 · · · 0 of length k′ by Theorem 3. Then the concatenation τ ∗k =
00 · · · 011 · · · 1 of τ and k, viewed as a set, has the same number of elements
as k. Since coalitions τ ∗ k and k are finite and have the same number of
elements, they should be treated equally by the finitely anonymous ω. But
τ ∗ k is losing and k is winning.

5 The Number of Alternatives and the Core

In this section, we apply Theorem 3 to a social choice problem. We show
(Corollary 15) that computability of a simple game entails a restriction
on the number of alternatives that the set of players (with the coalition
structure described by the simple game) can deal with rationally.

For that purpose, we define the notion of a simple game with (ordinal)
preferences, a combination of a simple game and a set of alternatives and
individual preferences. After defining the core for simple games with pref-
erences, we extend (Theorem 14) Nakamura’s theorem (1979) about the
nonemptyness of the core: the core of a simple game with preferences is
always (i.e., for all profiles of preferences) nonempty if and only if the num-
ber of alternatives is finite and below a certain critical number, called the
Nakamura number of the simple game. We need to make this extension
since what we call a “simple game” is not generally what is called a “simple
game” in Nakamura (1979).

We show (Corollary 13) that the Nakamura number of a nonweak simple
game is finite if it is computable, though (Proposition 12) there is no upper
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bound for the set of the Nakamura numbers of such games.21 It follows from
Theorem 14 that (Corollary 15) in order for a set of alternatives to always
have a maximal element given a nonweak, computable game, the number
of alternatives must be restricted. In contrast, some noncomputable (and
nonweak) simple games do not have such a restriction (Proposition 16), and
in fact have some nice properties. These results have implications for social
choice theory; we suggest its connection with the study of Arrow’s Theorem
(1963).

5.1 Framework

Let N ′ be an arbitrary nonempty set of players and B ⊆ 2N ′

an arbitrary
Boolean algebra of subsets (called “coalitions” in this section) of N ′. A B-
simple game ω is a subcollection of B such that ∅ /∈ ω. The elements of
ω are said to be winning, and the other elements in B are losing, as before.
Our “simple game” is a B-simple game with N = N and B = REC, if it does
not contain ∅. Nakamura’s “simple game” (1979) is one with B = 2N ′

. The
properties (such as monotonicity and weakness, defined in Section 2.1) for
simple games are redefined for B-simple games in an obvious way.

Let X be a (finite or infinite) set of alternatives, with cardinal number
#X ≥ 2. Let A be the set of (strict) preferences, i.e., acyclic (for any
finite set {x1, x2, . . . , xm} ⊆ X, if x1 ≻ x2, . . . , xm−1 ≻ xm, then xm 6≻ x1;
in particular, ≻ is asymmetric and irreflexive) binary relations ≻ on X. (If
≻ is acyclic, we can show that the relation º, defined by x º y ⇔ y 6≻ x,
is complete, i.e., reflexive and total.) A (B-measurable) profile is a list
p = (≻p

i )i∈N ′ ∈ AN ′

of individual preferences ≻p

i such that { i ∈ N ′ :
x ≻p

i y } ∈ B for all x, y ∈ X. Denote by AN ′

B the set of all profiles.
A B-simple game with (ordinal) preferences is a list (ω,X,p) of a

B-simple game ω ⊆ B, a set X of alternatives, and a profile p = (≻p

i )i∈N ′ ∈
AN ′

B . Given the B-simple game with preferences, we define the dominance
relation ≻p

ω by x ≻p

ω y if and only if there is a winning coalition S ∈ ω such
that x ≻p

i y for all i ∈ S.22 The core C(ω,X,p) of the B-simple game with
preferences is the set of undominated alternatives:

C(ω,X,p) = {x ∈ X : 6 ∃y ∈ X such that y ≻p

ω x}.

A (preference) aggregation rule is a map ≻:p 7→≻p from profiles p
of preferences to binary relations (social preferences) ≻p on the set of al-
ternatives. For example, the mapping ≻ω from profiles p ∈ AN ′

B of acyclic
preferences to dominance relations ≻p

ω is an aggregation rule. We typically

21Kumabe and Mihara (in preparation) study the relations between the Nakamura num-
ber and computable simple games having various properties.

22In this definition, { i ∈ N ′ : x ≻p

i y } need not be winning since we do not assume ω

is monotonic. Andjiga and Mbih (2000) study Nakamura’s theorem, adopting the notion
of dominance that requires the above coalition to be winning.
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restrict individual and social preferences to those binary relations ≻ on X
that are asymmetric (i.e., complete º) and either (i) acyclic or (ii) transitive
(i.e., quasi-transitive º) or (iii) negatively transitive (i.e., transitive º). An
aggregation rule is often referred to as a social welfare function when indi-
vidual preferences and social preferences are restricted to the asymmetric,
negatively transitive relations.

5.2 Nakamura’s theorem and its consequences

Nakamura (1979) gives a necessary condition for a 2N ′

-simple game with
preferences to have a nonempty core for any profile p, which is also sufficient
if the set X of alternatives is finite. To state Nakamura’s theorem, we define
the Nakamura number ν(ω) of a B-simple game ω to be the size of the
smallest collection of winning coalitions having empty intersection

ν(ω) = min{#ω′ : ω′ ⊆ ω and
∩

ω′ = ∅}

if
∩

ω = ∅ (i.e., ω is nonweak); otherwise, set ν(ω) = #(2X) > #X.
The following useful lemma (Nakamura, 1979, Lemma 2.1) states that

the Nakamura number of a B-simple game cannot exceed the size of a win-
ning coalition by more than one.

Lemma 11 Let ω be a nonweak B-simple game. Then ν(ω) ≤ min{#S :
S ∈ ω} + 1.

Proof. Choose a coalition S ∈ ω such that #S = min{#S : S ∈ ω}.
Since

∩

ω = ∅, for each i ∈ S, there is some Si ∈ ω with i /∈ Si. So,
S ∩ (

∩

i∈S Si) = ∅. Therefore, ν(ω) ≤ #S + 1.

It is easy to prove (Nakamura, 1979, Corollary 2.2) that the Nakamura
number of a nonweak B-simple game is at most equal to the cardinal num-
ber #N of the set of players and that this maximum is attainable if B
contains all finite coalitions. In fact, one can easily construct a computable,
nonweak simple game with any given Nakamura number:

Proposition 12 For any integer k ≥ 2, there exists a δ-computable, non-
weak simple game ω with Nakamura number ν(ω) = k.

Proof. Given an integer k ≥ 2, let S = {0, 1, . . . , k − 1} be a carrier and
define T ∈ ω iff #(S ∩ T ) ≥ k − 1. Then ν(ω) = k.

Since computable, nonweak simple games have winning coalitions, it
has finite winning coalitions by Proposition 7. An immediate corollary of
Lemma 11 is the following:

Corollary 13 Let ω be a δ-computable, nonweak simple game. Then its
Nakamura number ν(ω) is finite.
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Nakamura (1979) proves the following theorem for B = 2N ′

:

Theorem 14 Let B be a Boolean algebra of sets of N ′. Suppose that ∅ /∈ ω
and ω 6= ∅. Then the core C(ω,X,p) of a B-simple game (ω,X,p) with
preferences is nonempty for all (measurable) profiles p ∈ AN ′

B if and only if
X is finite and #X < ν(ω).

Remark 2. At first glance, Nakamura’s proof (Nakamura, 1979, The-
orem 2.3) of the necessary condition #X < ν(ω), does not appear to gen-
eralize to an arbitrary Boolean algebra B: he constructs certain coalitions
from winning coalitions by taking possibly infinite unions and intersections,
as well as complements; a difficulty is that the resulting set of players may
not belong to the Boolean algebra B. However, it turns out that once we
make use of the other necessary condition (disregarded by Nakamura) that
X is finite, we only need to consider finite unions and intersections, and
his proof actually works. Since accessible proofs are readily available in the
literature (e.g., Austen-Smith and Banks, 1999, Theorem 3.2) for B = 2N ′

and finite sets N ′ of players, we choose to relegate the proof to the working
paper (Kumabe and Mihara, 2007, Appendix A.3). Unlike others’, our proof
treats the measurability condition (p ∈ AN ′

B ) particularly carefully. ‖

It follows from Theorem 14 that if a B-simple game ω is weak (and
satisfies ∅ /∈ ω and ω 6= ∅), then the core C(ω,X,p) is nonempty for all
profiles p ∈ AN ′

B if and only if X is finite. The more interesting case is where
ω is nonweak. Combined with Corollary 13, Theorem 14 has a consequence
for nonweak, computable simple games:

Corollary 15 Let ω be a δ-computable, nonweak simple game satisfying
∅ /∈ ω. Then there exists a finite number ν (the Nakamura number ν(ω))
such that the core C(ω,X,p) is nonempty for all profiles p ∈ AN

REC if and
only if #X < ν.

If we drop the computability condition, the above conclusion no longer
holds. An example of ω that has no such restriction on the size of the
set X of alternatives is a nonweak prefilter (e.g., the q-complement rule of
Example 1, for q > 1), which has an infinite Nakamura number.

In fact, we can say more, if we shift our attention from the core—the set
of undominated alternatives with respect to the dominance relation ≻p

ω—to
the dominance relation itself. (The proof of the following proposition is in
the working paper (Kumabe and Mihara, 2007, Appendix A.4).)

Proposition 16 Let ω be a nonweak simple game satisfying ∅ /∈ ω. (i) ω
cannot be a δ-computable prefilter. (ii) If ω is δ-computable; then ν(ω) is
finite, and ≻p

ω is acyclic for all p ∈ AN
REC if and only if #X < ν(ω). (iii) If ω

is a prefilter, then ≻p

ω is acyclic for all p ∈ AN
REC, regardless of the cardinal

number #X of X.
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We can strengthen the acyclicity of the dominance relation ≻p

ω in state-
ment (iii) of Proposition 16 by replacing the statement with one of the
following: (iv) if ω is a filter, then ≻p

ω is transitive for all p such that all
individuals have transitive preferences ≻p

i ; (v) if ω is an ultrafilter, then ≻p

ω

is asymmetric and negatively transitive for all p such that all individuals
have asymmetric, negatively transitive preferences ≻p

i . In fact, statements
(iii), (iv), and (v) each gives an aggregation rule ≻ω:p 7→≻p that satisfies
Arrow’s conditions of “Unanimity” and “Independence of irrelevant alter-
natives.” These results are immediate from the relevant definitions (Arm-
strong (1980, Proposition 3.2) gives a proof). According to Arrow’s Theorem
(1963), however, if the set N of players were replaced by a finite set, then
social welfare functions given by statement (v) would be dictatorial (and ω
would be weak).

In an attempt to escape from Arrow’s impossibility, many authors have
investigated the consequences of relaxing the rationality requirement (neg-
ative transitivity of ≻p

ω) for social preferences. In view of the close connec-
tion (Austen-Smith and Banks, 1999, Theorems 2.6 and 2.7) between the
rationality properties of an aggregation rule and preflters (also Kirman and
Sondermann, 1972; Armstrong, 1980, 1985), Proposition 16 has a significant
implication for this investigation.

6 Examples

Propositions 5, 7, and 9 show that the class of computable games (i) includes
the class of games that have finite carriers and (ii) is included in the class of
games that have both finite winning coalitions and cofinite losing coalitions.
In this section, we construct examples showing that these inclusions are
strict.

We can find such examples without sacrificing the voting-theoretically
desirable properties of simple games. We pursue this task thoroughly in a
companion paper (Kumabe and Mihara, 2006). The noncomputable simple
game example in Section 6.1 that has both finite winning coalitions and
cofinite losing coalitions is a sample of that work. It is monotonic, proper,
strong, and nonweak. Examples of a computable simple game that is mono-
tonic, proper, strong, nonweak, and has no finite carrier is given in Kumabe
and Mihara (2006, in preparation).

6.1 A noncomputable game with finite winning coalitions

We exhibit here a noncomputable simple game that is monotonic, proper,
strong, nonweak, and have both finite winning coalitions and cofinite los-
ing coalitions. It shows in particular that the class of computable games
is strictly smaller than the class of games that have both finite winning
coalitions and cofinite losing coalitions. In this respect, the game is unlike
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nonweak prefilters (such as the q-complement rules in Example 1); those
examples do not have any finite winning coalitions. Furthermore, unlike
nonprincipal ultrafilters—which are also monotonic, proper, strong, and
nonweak noncomputable simple games—the game is nonweak in a stronger
sense: it violates the finite intersection property.

Let A = N \{0} = {1, 2, 3, . . .}. We define the simple game ω as follows:
Any coalition except Ac = {0} extending the string 1 of length 1 (i.e., any
coalition containing 0) is winning; any coalition except A extending the
string 0 is losing; A is winning and Ac is losing. In other words, for all
S ∈ REC,

S ∈ ω ⇐⇒ [S = A or (0 ∈ S & S 6= Ac)].

Remark 3. The reader familiar with the notion of repeated games (or
binary rooted trees) may find the following visualization helpful. Think
of the extensive form of an infinitely repeated game played by you, with
the stage game consisting of two moves 0 and 1. If you choose 1 in the
first stage, you will win unless you keep choosing 0 indefinitely thereafter;
if you choose 0 in the first stage, you will lose unless you keep choosing 1
indefinitely thereafter. Now, you “represent” a certain coalition and play 1
in stage i if i is in the coalition; you play 0 in that stage otherwise. Then
the coalition that you represent is winning if you win; it is losing if you lose.
‖

Lemma 17 ω is not δ-computable.

The following proof demonstrates the power of Theorem 3, although its
full force is not used (Proposition 2 suffices). Proposition 6, which appeared
earlier in Mihara (2004), does not have this power.

Proof. If ω is δ-computable, then by Theorem 3 (or by Proposition 2),
A has an initial segment A ∩ k that is a winning determining string. But
A ∩ k itself is not winning (though it extends the string trivially).

Lemma 18 ω has both finite winning coalitions and cofinite losing coali-
tions.

Proof. For instance, {0, 1} is finite and winning. N \{0, 1} = {2, 3, 4, . . .}
is cofinite and losing.

Lemma 19 ω is monotonic.
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Proof. Suppose S ∈ ω and S ( T . There are two possibilities. If S = A,
then T = N , and we have N ∈ ω by the definition of ω. Otherwise, S
contains 0 and some other number i. The same is true of T , implying that
T ∈ ω.

Lemma 20 ω is proper and strong.

Proof. It suffices to show that Sc ∈ ω ⇐⇒ S /∈ ω. From the definition
of ω, we have

S /∈ ω ⇐⇒ S 6= A & (0 /∈ S or S = Ac)

⇐⇒ Sc 6= Ac & (0 ∈ Sc or Sc = A)

⇐⇒ (0 ∈ Sc & Sc 6= Ac) or Sc = A

⇐⇒ Sc ∈ ω.

Lemma 21 ω is not a prefilter. In particular, it is not weak.

Proof. We show that the intersection of some finite family of winning
coalitions is empty. The coalitions {0, 1}, {0, 2}, and A form such a family.
(Incidentally, this shows that the Nakamura number of ω is three, since ω
is proper.)

6.2 A computable game without a finite carrier

We exhibit here a computable simple game that does not have a finite carrier.
It shows that the class of computable games is strictly larger than the class
of games that have finite carriers.

Our approach is to construct r.e. (in fact, recursive) sets T0 and T1 of
determining strings (of 0’s and 1’s) satisfying the conditions of Theorem 3
(the full force of the theorem is not needed; the easier direction suffices).
We first give a condition that any string in T0 ∪ T1 must satisfy. We then
specify each of T0 and T1, and construct the simple game by means of these
sets. We conclude that the game is computable by checking (Lemmas 22,
23, and 25) that T0 and T1 satisfy the conditions of the theorem. Finally,
we show (Lemma 26) that the game does not have a finite carrier.

Let {ks}
∞
s=0 be an effective listing (recursive enumeration) of the mem-

bers of the r.e. set {k : ϕk(k) ∈ {0, 1}}, where ϕk(·) is the kth p.r. function
of one variable. We can assume that all elements ks are distinct. (Such a
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listing {ks}
∞
s=0 exists by the Listing Theorem (Soare, 1987, Theorem II.1.8

and Exercise II.1.20).) Thus,

CRec ⊂ {k : ϕk(k) ∈ {0, 1}} = {k0, k1, k2, . . .},

where CRec is the set of characteristic indices for recursive sets.
Let l0 = k0 + 1, and for s > 0, let ls = max{ls−1, ks + 1}. We have

ls ≥ ls−1 (that is, {ls} is an nondecreasing sequence of numbers) and ls > ks

for each s. Note also that ls ≥ ls−1 > ks−1, and ls ≥ ls−2 > ks−2, etc. imply
that ls > ks, ks−1, ks−2, . . . .

For each s, let Fs be the set of strings α = α(0)α(1) · · ·α(ls − 1) (the *’s
denoting the concatenation are omitted) of length ls such that

α(ks) = ϕks
(ks) and for each s′ < s, α(ks′) = 1 − ϕks′

(ks′). (3)

Note that (3) imposes no constraints on α(ks′) for s′ > s and no constraints
on α(k) for k /∈ {k0, k1, k2, . . .}, while it imposes real constraints for s′ ≤ s,
since |α| = ls > ks′ for such s′. We observe that if α ∈ Fs ∩Fs′ , then s = s′.

Let F =
∪

s Fs. (F will be the union of T0 and T1 defined below.) We
claim that for any two distinct elements α and β in F we have neither α ⊆ β
(α is an initial segment of β) nor β ⊆ α (i.e., there is k < min{|α|, |β|} such
that α(k) 6= β(k)). To see this, let |α| ≤ |β|, without loss of generality. If
α and β have the same length, then the conclusion follows since otherwise
they become identical strings. If ls = |α| < |β| = ls′ , then s < s′ and by
(3), α(ks) = ϕks

(ks) on the one hand, but β(ks) = 1 − ϕks
(ks) on the other

hand. So α(ks) 6= β(ks).
The game ω will be constructed from the sets T0 and T1 of strings defined

as follows:

α ∈ T0 ⇐⇒ ∃s [α ∈ Fs and α(ks) = ϕks
(ks) = 0]

α ∈ T1 ⇐⇒ ∃s [α ∈ Fs and α(ks) = ϕks
(ks) = 1].

We observe that T0 ∪ T1 = F and T0 ∩ T1 = ∅.
Define ω by S ∈ ω if and only if S has an initial segment in T1. Lem-

mas 22, 23 and 25 establish computability of ω by way of Theorem 3.

Lemma 22 T0 and T1 are recursive.

Proof. We prove that T0 is recursive; the proof for T1 is similar. We give
an algorithm that can decide for each given string whether it is in T0 or not.

To decide whether a string σ is in T0, generate k0, k1, k2, . . . , compute
l0, l1, l2, . . . , and determine F0, F1, F2, . . . until we find the least s such
that ls ≥ |σ|. If ls > |σ|, then σ /∈ Fs. Since ls is nondecreasing in s and Fs

consists of strings of length ls, it follows that σ /∈ F , implying σ /∈ T0.
If ls = |σ|, then check whether σ ∈ Fs; this can be done since the values

of ϕks′
(ks′) for s′ ≤ s in (3) are available and Fs determined by time s. If
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σ /∈ Fs and ls+1 > ls, then σ /∈ T0 as before. Otherwise check whether
σ ∈ Fs+1. If σ /∈ Fs+1 and ls+2 > ls+1 = ls, then σ /∈ T0 as before.
Repeating this process, we either get σ ∈ Fs′ for some s′ or σ /∈ Fs′ for all
s′ ∈ {s′ : ls′ = ls}. In the latter case, we have σ /∈ T0. In the former case, if
σ(ks′) = ϕks′

(ks′) = 1, then σ ∈ T1 by the definition of T1; hence it is not in
T0. Otherwise σ(ks′) = ϕks′

(ks′) = 0, and we have σ ∈ T0.

Lemma 23 T1 consists only of winning determining strings for ω; T0 con-
sists only of losing determining strings for ω.

Proof. Let α ∈ T1. If a coalition S extends α, then by the definition
of ω, S is winning. This proves that α is a winning determining string.

Let α ∈ T0. Suppose a coalition S extends α ∈ T0 ⊂ T0 ∪ T1 = F . If
β ∈ F and β 6= α, we have, as shown before, α 6⊆ β and β 6⊆ α, which
implies that S does not extend β. So, in particular, S does not extend any
string in T1. It follows from the definition of ω that S is losing. This proves
that α is a losing determining string.

Lemma 24 For each s, any string α of length ls such that α(ks) = ϕks
(ks)

extends a string in
∪

t≤s Ft.

Proof. We proceed by induction on s. Let α be a string of length ls
such that α(ks) = ϕks

(ks). If s = 0, we have α ∈ F0; hence the lemma
holds for s = 0. Suppose the lemma holds for s′ < s. If for some s′ < s,
α(ks′) = ϕks′

(ks′), then by the induction hypothesis, the ls′-initial segment
α ∩ ls′ of α extends a string in

∪

t≤s′ Ft. So α extends a string in
∪

t≤s Ft.
Otherwise, we have for each s′ < s, α(ks′) = 1 − ϕks′

(ks′). Then by (3),
α ∈ Fs ⊂

∪

t≤s Ft.

Lemma 25 Any coalition S ∈ REC has an initial segment in T0 or T1.

Proof. Suppose ϕk is the characteristic function for a recursive coali-
tion S. Then k ∈ {k0, k1, k2, . . .} since this set contains the set CRec of
characteristic indices. So k = ks for some s. Consider the initial segment
S ∩ ls. It extends a string in

∪

t≤s Ft by Lemma 24. The conclusion follows
since

∪

t≤s Ft ⊂ F = T0 ∪ T1.

Lemma 26 ω does not have a finite carrier.

Proof. We will construct a set A such that for infinitely many l, the
l-initial segment A ∩ l has an extension (as a string) that is winning and
for infinitely many l′, A ∩ l′ has an extension that is losing. This implies
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that A ∩ l is not a carrier of ω for any such l. So no subset of A ∩ l is a
carrier. Since there are arbitrarily large such l, this proves that ω has no
finite carrier.

Let A be a set such that for each kt, A(kt) = 1−ϕkt
(kt). For any s′ > 0

and i ∈ {0, 1}, there is an s > s′ such that ks > ls′ and ϕks
(ks) = i.

For a temporarily chosen s′, fix i and fix such s. Then choose the greatest
s′ satisfying these conditions. Since ls > ks > ls′ , there is a string α of
length ls extending (as a string) A ∩ ls′ such that α ∈ Fs. Since α(ks) =
ϕks

(ks) = i, we have α ∈ Ti.
There are infinitely many such s, so there are infinitely many such s′. It

follows that for infinitely many ls′ , the initial segment A ∩ ls′ is a substring
of some string α in T1 (by Lemma 23, α is winning in this case), and for
infinitely many ls′ , A ∩ ls′ is a substring of some (losing) string α in T0.
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A Not in the JME Version

This appendix collects details omitted from the version published in Journal
of Mathematical Economics.

A.1 Multiple-choice or essay: A remark on the notion of
computability

One might argue that the scenario preceding the definition of δ-computability
in Section 2.3 makes the aggregator’s task more difficult than need be. The
difficulty comes from the fact that, like an essay exam, there is too much
freedom on the side of the inquirer, the argument would go, in the sense
that each recursive coalition has infinitely many indices and that the index
presented may be an illegitimate one. An alternative notion of computabil-
ity that deals with these problems might use a “multiple-choice format,”
in which the aggregator gives possible indices that the inquirer can choose
from. Unfortunately, such a “multiple-choice format” would not work as one
might wish.

Indeed, we claim that there is no effective listing e0, e1, e2, . . . of char-
acteristic indices such that for each recursive coalition S there is at least one
ei that represents the coalition (i.e., ei is a characteristic index for S). To
prove this claim, suppose there is such a listing and let S be the set defined
by i ∈ S if and only if ϕei

(i) = 0. Then since ϕei
(i) ↓ for any i, we have S

recursive. On the other hand, the characteristic function for S is not equal
to any ϕei

. To see this, suppose that it is equal to ϕei
. Then, if i ∈ S, we

have ϕei
(i) = 1, the definition of S then implies i /∈ S, a contradiction; if

i /∈ S, we have a similar contradiction. The claim is thus proved.
Given this impossibility result, one might wish to relax the condition and

allow some ei in the listing to fail to be a characteristic index. Adopting a
notion of computability based on such a listing is a halfway solution, fitting
into neither the essay-exam scenario nor the multiple-choice alternative to
it.

A.2 Another proof of Theorem 3

We derive Theorem 3 from a result in Kreisel et al. (1959) and Cĕıtin (1959).
In this proof we largely follow the terminology of Odifreddi (1992, pages 186–
192 and 205–210), who gives a topological argument. In this proof only, a
string refers to a finite sequence σ = σ(0)σ(1) · · ·σ(k) of natural numbers
(not necessarily 0 or 1).

Let PR be the class of partial recursive (unary) functions and R the
class of recursive functions. An effective operation on R is a functional
(function) F :R → R such that for some partial recursive function ψ,

ϕe ∈ R =⇒ [ψ(e) ↓ and F (ϕe) = ϕψ(e)].
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We introduce a topology into the set of partial (unary) functions by
viewing it as a product space SN, with S = N ∪ {↑}, ↑ being a distin-
guished element for the undefined value. For a string σ, let Aσ = {f ∈ R :
if σ(x) ↓, then f(x) = σ(x)} be the set of recursive functions that extend σ.
These sets Aσ are the basic open sets. Let t be a recursive bijection between
the set N of natural numbers and the set of strings. We say a continuous
functional F :PR → PR is effectively continuous on R if F maps R to R
and for some recursive function ψ,

F−1(Aσ) = {f : f ∈ Aν for some ν ∈ {t(a) : a ∈ Wψ(t−1(σ))}} (4)

(requiring that the open sets F−1(Aσ) be obtained in a certain effective
way).

Kreisel et al. (1959) and Cĕıtin (1959) prove the theorem (Odifreddi,
1992, Theorem II.4.6) stating that the effective operations on R are exactly
the restrictions of the effectively continuous functionals on R.

In our context, suppose that ω is a δ-computable simple game. Let δ′

be a p.r. extension of δω. Further let δ′′ be such that δ′(x) ↑⇔ δ′′(x) ↑ and
δ′(x) = i ⇔ δ′′(x) = ei, where for each i ∈ N, ei is an index of the constant
(recursive) function whose value is always i. By the s-m-n theorem, define
a recursive function g such that ϕg(e)(x) is 1, 0, or undefined, depending
on whether ϕe(x) is positive, zero, or undefined. In particular, if e is a
characteristic index, then g(e) is a characteristic index and ϕg(e) = ϕe.
Define F on R by F (ϕe) = ϕδ′′(g(e)). Then F is an effective operation on R
(depending on whether g(e) is a characteristic index for a winning coalition
or a losing coalition, F (ϕe) = ϕe1 or F (ϕe) = ϕe0). By the theorem above,
F is effectively continuous on R so that for some recursive ψ, (4) holds.
Denote by Ai the set Aσ where σ = σ(0) = i. Since F maps any ϕe ∈ R into
constant functions ϕe1 ∈ A1 and ϕe0 ∈ A0, we have F−1({ϕei

}) = F−1(Ai)
for i ∈ {0, 1}. We therefore have ϕe in F−1(A1) or in F−1(A0), depending
on whether e is a characteristic index for a winning coalition or a losing
coalition. The =⇒ direction of Theorem 3 is obtained by letting Ti be the
r.e. set {t(a) : a ∈ Wψ(t−1(i))} restricted to the 0-1 strings.

A.3 Proof of Theorem 14 (Nakamura’s theorem)

(⇐=). Suppose that X is finite, #X < ν(ω), and C(ω,X,p) = ∅ for
some measurable profile p ∈ AN ′

B . Then follow the proof of Theorem 2.5 in
Nakamura (1979) to find a cycle with respect to ≻p

ω consisting of at most
#X alternatives.

(=⇒). Suppose C(ω,X,p) 6= ∅ for all p ∈ AN ′

B .
(i) To show that X is finite, suppose it is infinite. Then X contains a

countable subset X ′ = {x1, x2, x3, . . .} ⊆ X. Let p ∈ AN ′

be a profile such
that all players i ∈ N ′ have an identical preference ≻p

i (e.g., the transitive
closure of itself) satisfying xj+1 ≻p

i xj for all j ∈ {1, 2, . . .} and x1 ≻p

i y for
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all y ∈ X \ X ′. The measurability condition p ∈ AN ′

B is satisfied since for
all x, y ∈ X, we have { i ∈ N ′ : x ≻p

i y } = N ′ or ∅, both in B. Choose any
winning coalition S ∈ ω, which exists by assumption. Then all players in S
have the same preference ≻p

i , implying xj+1 ≻p

ω xj for all j and x1 ≻p

ω y for
all y ∈ X \ X ′. It follows that C(ω,X,p) = ∅; a contradiction.

(ii) To show that #X < ν(ω), suppose r := #X ≥ ν(ω). This excludes
the possibility that ω is weak or ν(ω) is infinite. We will construct a profile p
such that the dominance relation ≻p

ω has a cycle. By the definition of the
Nakamura number, there is a collection ω′ = {L1, . . . , Lr} ⊆ ω such that
∩

ω′ =
∩r

k=1 Lk = ∅. Define L0 = N ′ and for all k ∈ {1, . . . , r},

Dk = (L0 ∩ L1 ∩ · · · ∩ Lk−1) \ Lk.

Then {D1, . . . , Dr} is a family of (possibly empty) pairwise disjoint coalitions
in B such that Lk ⊆ Dc

k := N ′ \ Dk for all k and
∪r

k=1 Dk = N ′ (i ∈ N ′ is
in the first Dk such that i /∈ Lk).

Write X = {x1, . . . , xr} and x0 = xr. Fix the cycle

≻= {(xk, xk−1) : k ∈ {1, . . . , r}}.

Define p ∈ AN ′

as follows: for each k, all players i in Dk have the same
(acyclic) preference ≻p

i =≻ \{(xk, xk−1)}. Then for all (x, y) /∈≻, we have
{ i ∈ N ′ : x ≻p

i y } = ∅ ∈ B. On the other hand, for all (x, y) = (xk, xk−1) ∈
≻, we have { i ∈ N ′ : x ≻p

i y } = Dc
k ∈ B and Lk ⊆ Dc

k. Therefore, p ∈ AN ′

B

and ≻p

ω=≻, a cycle. It follows that C(ω,X,p) = ∅; a contradiction.

A.4 Proof of Proposition 16

(i) If ω is a nonweak prefilter, then it has an infinite Nakamura number. But
nonweak computable games have a finite Nakamura number by Corollary 13.

(ii) and (iii) are obvious from the following corollary (Nakamura, 1979,
Theorem 3.1) of Theorem 14: ≻p

ω is acyclic for all p ∈ AN ′

B if and only if
#X ′ < ν(ω) for all finite X ′ ⊆ X. (This corollary can also be obtained from
the well-known fact that ≻p

ω is acyclic if and only if the set C(ω,X ′,p) of
maximal elements with respect to ≻p

ω is nonempty for all finite subsets X ′

of X.)
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