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Abstract

     Extreme returns in stock returns need to be captured for a successful risk management function to estimate unexpected loss in 

portfolio. Traditional value-at-risk models based on parametric models are not able to capture the extremes in emerging markets 

where high volatility and nonlinear behaviors in returns are observed. The Extreme Value Theory (EVT) with conditional quantile 

proposed by McNeil and Frey (2000) is based on the central limit theorem applied to the extremes rater than mean of the return 

distribution. It limits the distribution of extreme returns always has the same form without relying on the distribution of the parent 

variable. This paper uses 8 filtered EVT models created with conditional quantile to estimate value-at-risk for the Istanbul Stock 

Exchange (ISE). The performances of the filtered expected shortfall models are compared to those of GARCH, GARCH with 

student-t distribution, GARCH with skewed student-t distribution and FIGARCH by using alternative back-testing algorithms, 

namely, Kupiec test (1995), Christoffersen test (1998), Lopez test (1999), RMSE (70 days) h-step ahead forecasting RMSE (70 

days), number of exception and h-step ahead number of exception. The test results show that the filtered expected shortfall has 

better performance on capturing fat-tails in the stock returns than parametric value-at-risk models do. Besides increase in 

conditional quantile decreases h-step ahead number of exceptions and this shows that filtered expected shortfall with higher 

conditional quantile such as 40 days should be used for forward looking forecasting.

JEL classification: G0, C52, C32, C22

Keywords: Value at-Risk, Filtered Expected shortfall, Extreme value theory, emerging markets 

1. Introduction

   Estimating loss of financial investments has become the 

crucial task in the market risk management in the current 

global economy. The importance of that task is more critical in 

the emerging financial markets where fluctuations in the 

volume of hot money from international portfolio investments 

and hedge funds, unstable regulatory and political 

environment, and lack of informational efficiency create high 

volatility and extremes in the returns. 

    Complex and volatile market conditions in the emerging 

markets require dynamic and flexible econometric models 

being able to capture the extremes in the changes in the 

financial variables. In this research paper, we use filtered

(conditional quantile) expected shortfall as filtered extreme 

value approach for value-at-risk estimation to capture the 

extremes in the returns. Extreme value theory (EVT) follows 

the central limit theorem in mathematics arguing that if the 

sum of the variables has a finite variance, then it follows 

Gaussian distribution. The EVT focuses on the extremes rater 

than mean. The distribution of extreme returns is limited into 

having the same form without relying on the distribution of the 

parent variable.

    There are some important reasons to choose EVT against the 

parametric volatility models. Firstly, the return of distributions 

is heavy-tailed and asymmetric in most of the financial time 

series. EVT which approximates the tail areas asymptotically 

might be more powerful than imposing an explicit functional 

form. What is more, extremes in the returns might be caused 

by mechanisms that are structurally different from the usual 

dynamics of financial markets. For example, extremes might 

be the result of a major default or a speculative bubble. In 

those extreme conditions, the distributional characteristics of 

the financial time series might shift and requires separating tail 

estimation from estimation of the rest of the distribution 

(Neftci, 2000).

    EVT has been used in financial risk estimation in recent 

years. The originality of our paper is that we use conditional 

quantile expected shortfall with different lags and compare 

them to find the optimal model capturing the extremes. As 

another original work, we also apply h-step-ahead root mean 

square error and number of exceptions to measure 

performance of the filtered expected shortfall. The 

performance of the model is also empirically compared with 

those of the parametric models with Kupiec(1995), 

Lopez(1999) and Christoffersen (1998) back-test algorithm. 

    We use the time series of daily returns of the Istanbul Stock 

Index-100 (ISE-100) from 02.01.2002 to 18.04.2007 for our 

empirical research. As an emerging market with dramatic 

macroeconomic and regulatory changes in recent years, the 

ISE-100 gives us an opportunity to work with a high volatile 

and heavy tailed data set. The back-test results show that the 

filtered expected shortfall has superior performance in 



estimating the extremes and presents a new, dynamic and flexible perspective in value-at-risk estimation.   

2. Literature Review

    Estimation value-at-risk has become crucial task of risk 

management functions of the banks and financial institutions 

since the Basle Committee stated that banks should be able to 

cover losses on their trading portfolios over a ten-day horizon, 

99 percent of the time. However, classical value-at-risk models 

focus on the whole empirical distribution of the returns rather 

than that of extreme returns. On the other hand, managing 

extreme risk requires estimation of quantiles that usually are 

not directly captured from the time series data. 

    The distinguishing characteristic of EVT is to quantify the 

stochastic behavior of a process at unusually levels. Especially 

in bear markets, fat-tails are usually observed. Poon et al. 

(2004) show that extreme value dependence is usually stronger 

in bear markets (left tails) than in bull markets (right tails). 

Longin (2000), McNeil and Frey (2000), and Bali (2003)

empirically show that the traditional parametric value-at-risk 

models with normal density fail to estimate loss during 

financial crises. 

    In general, EVT has been seen as an alternative to GARCH 

models. EVT with conditional quantile is constructed by 

McNeil and Frey (2000) under the assumption that the tail of 

the conditional distribution of the GARCH is approximated by 

a heavy-tailed distribution. They underline the conditional 

quantile problem and apply EVT to the conditional return 

distribution by using a two-stage method, which combines 

GARCH model with EVT in applying the residuals from the 

GARCH process.

    In the literature, EVT is compared to GARCH based 

parametric value-at-risk estimation models. Yamai and 

Yossiba (2005) find out the empirical fact that value-at-risk 

models do not give the proper risk estimation in volatile market 

conditions while the EVT has more successful prediction 

performance. Kuester et al. (2005). Acerbi (2002), Inui and 

Kijima (2005) and Martins and Yao (2006) also empirically 

show that EVT has superior in risk estimation with financial 

time series. By using more than 30 years of the daily return 

data on the NASDAQ Composite Index, Kuester et al. (2005)

compare the out-of-sample performance of value-at-risk 

models and extreme value theory. They state that a hybrid 

method, combining a heavy-tailed GARCH filter with an 

extreme value theory-based approach, performs best overall. 

    Extremes in returns are observed in time series data from 

hedge funds and emerging markets where high volatility and 

unstable money flows occurs. In the literature, we point out 

that the empirical evidence on the EVT is generally based on 

the data from hedge funds and emerging financial markets. 

Amin and Kat (2003) empirically show that while hedge funds 

combine well with stocks and bonds in the mean-variance 

framework, this is no longer the case when skewness is 

considered. By using hedge funds data, Liang and Park (2007)

empirically show that EVT is able to foresight the fat-tails in 

returns especially in high volatility in negative direction. Blum 

et al. 2003), Lhabitant (2003) and Gupta and Liang (2005)

also proof that the EVT works with hedge fund indices.

    Empirical evidence from the emerging markets is also in 

favor of the EVT. Kalyvas et al. (2007) present evidence from 

three former emerging and currently transition countries along 

with two EU member countries of South and Eastern Europe 

using historical simulation, conditional historical simulation, 

EVT, and Conditional EVT. They show that Hungary exhibits 

higher risk under extreme conditions indicating that its market 

is much more vulnerable than all other markets under study.

    Assaf (2006) use the EVT to examine four emerging 

financial markets belonging to the MENA region, namely 

Egypt, Jordan, Morocco and Turkey. He focuses on the tails of 

the unconditional distribution of returns in each market and 

provides estimates of their tail index behavior. The empirical 

evidence shows that the returns have significantly fatter tails 

than the normal distribution and therefore introduce the 

extreme value theory. Tolikas and Brown (2006) use EVT to 

examine the asymptotic distribution of the lower tail for daily 

returns in the Athens Stock Exchange over the period 1986 to 

2001. They show that the parameters of this distribution 

appear to vary with a tendency to become less fat tailed over 

time. A more comprehensive literature review on the EVT 

with methodological concerns can be followed in the works of 

Embrechts et al. (1997), Focardi and Fabozzi (2003, 2004).

    With Turkish data, Cifter et al. (2007) use as conditional 

quantile expected shortfall and generalized pareto distribution 

for interest rates and they find that conditional extreme value 

theory (EVT) improves forecasting. Gencay et al. (2003), 

Gencay and Selcuk (2004), Altay and Kucukozmen (2006)

and Eksi et al. (2006) use EVT with unconditional quantile 

EVT to estimate fat-tails in the stock returns in Turkey and 

they find that EVT performs better than the classical value-at-

risk models.

3. Methodology

3.a. Filtered Extreme Value Theory

    Value-at-risk reflects the change in a portfolio with a 

confidence level on a time period. In this description, Pt, 

masures changes in the market value of P portfolio on t time 

period with  probability (Dowd, 2004): 

P [ P t  RMD ] =                            (1) 

    In the equation, since F (P) is a distribution fuction of 

changes in the portfolio value,  it is possible to create an 

equation like (RMD) = F
-1

 (). Obviously, F
-1

 is the reverse of 

the distribution function.        From that perspective, estimated 

value-at-risk will depend on the distribution of F function. 

Risk for one day should be equal to RMD ((1- )%). When we 

include the time as a variable in the equation, for T time 

period, risk is equal to TD- RMD ((1- )%). 



    Semi-parametric models, like EVT, aim at estimating the 

returns that being not within the confidence level () but 

extremes and fat-tails.  

    EVT employes the generalized pareto distribution with 

tresholds. In the perspective of generalized pareto distribution, 

for pre-defined  and , the following equation holds. 

Fu =  P [ X –u  y\X > u]                            (2)

    = GPD, (y)

          

    For negative returns, under the assumptions that x = u+y, the 

tail estimation can be received with the Equation (3). 

F(x) = 1- (N
u
/n)((1+(x-u)/ )

-1   
                         (3)

    In the equation, n is the total data set, N
u
 is the violations 

(extremes) above u. For pre-defined q> F(u) distribution, 

value-at-risk for one day, RMD (q%), is calculated with the 

Equation (4).

RMD = u+(/) [((n/N
u
)(1-q))


-1]                        (4)      

    In the Equation (4), by defining u with either constant or 

conditional quantile, GPD with constant or conditional quantile 

is obtained. From similar perspective, Artzner et al. (1999)

evaluate expected shortfall as an alternative for value-at-risk. 

In expected shortfall, the expected value of the portfolio return 

is taken into consideration if there is violiation. Expected 

shortfall can be constructed with the following equation (Gilli 

ve Kellezi, 2000). 

ESp = E [ X \ X > RMDp]                                    (5)

    The second nomination on the right side of the equation is 

the mean of the violation distribution of FRMDp(y) on the RMDp

treshold. For GPD, we can express the mean violation function 

with  < 1 parameters as in the Equation (6). 

e(u) = E (X-u \ X > u)                                      (6)  

       =  (σ+u) /(1-)       

σ+u >0                      

    From that point of view, the expected shortfall is 

ESp = RMDp+                                     (7) 

((σ+)(RMDp – u))/(1-)    

ESp = RMDp (1-) +                       (8)

((σ-u)/1-)

                         

    If X  is GPD; then for all r < 1/  integer, (r), the first 

moment of each r exists.  

    In this research paper, 8 different filtered expected shortfall 

estimation with 2, 3, 4, 5, 10, 15, 20 and 40 days rolling 

quantile are estimated. The rolling quantile days are randomly 

selected and maximum rolling is estimated as 40 days since 

conditional EVT approximate to unconditional EVT more than 

40 days rolling. 

    We use parametric models like Garch, Garch-t, Garch-

Skewed Student-t and Figarch for performance comparison of 

the filtered expected shortfall. The methodologies for GARCH 

models are not examined here, but detailed examinations can 

be found in Chung (1999), Baillie et al.(1996), Davidson 

(2002) and Laurent and Peters (2002).  

3.b. Methodologies Of Alternative Back-Tests

    Alternative back-testing algorithms are employed to 

compare the performance of the models. Kupiec test (1995), 

Christoffersen test (1998), Lopez test (1999), RMSE (70 days) 

and h-step ahead forecasting RMSE (70 days), number of 

exceptions and h-step ahead number of exceptions are used as 

the back-tests. 

3.b.1. Kupiec Test

    Kupiec test (1995) defines the failure ratio ( f ) as the 

excess values from VaR (x) to the total observations (T). 

When we nominate the pre-defined VaR with α, likelihood 
ratio statistics with Chi-square distribution for the Kupiec test 

can be given in Equation (9) (Kupiec, 1995). 

  xTx ffLR )1(log2                           (9)

      
xTx  )1(log 

                           

3.b.2. Christoffersen Test

    According to Christoffersen test (Christoffersen, 1998), the 

probability of failure rate in the value-at-risk estimation is the 

important point for back-testing. To conduct the test, one 

should firstly define ))(Pr( 
tt VaRyp   and test 

 pH :0  against  pH :1 . 

    The condition of  )((1 VaRyt   has a binomial 

likelihood and can be given in Equation (10).

10 )()1()(
nn

pppL                    (10)

where  


T

Rt tt VaRyn ))((10  and 

 


T

Rt tt VaRyn ))((11  (Saltoglu, 2003).

    Under the null hypothesis, it 

becomes 10)1()(
nn

L   . The likelihood ratio test 

statistics can be given in Equation (11). 
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))(/))((2
^








d

pLLInLR
                (11)

            

3.b.3. Lopez Test

    Lopez (1999) performs the back-test in three steps. In the 

first step, the proper distribution of returns and statistics model 

is chosen. Secondly, from the model created in the first step, by 

using historical losses/gains, VaR and VaR(α) are constructed 
and Li, a mean for losses/gains is obtained. In the last step, the 

process described above is repeated in many times, for 

example, 10.000 times to reach an estimated value for a mean 

of loss distribution, Li=1
i=10,000

.   

    Lopez (1999) defines the violation function, L (VaRt(α), 
xt;t+1) that can be given in Equation (12). 

for (1 + (xt;t+1 − V aRt(α))                        (12)

if xt;t+1< −V aRt (α) 1

if xt;t+1 > −V aRt (α) 0

    By using that methodology, back-test is conducted with 

Equation (13)

L = 1/T


T

t 1

L (V ar (α), xt;t+1)                        (13)

3.c. H-Step Ahead RMSE and Number of Exceptions

    The root mean squared error (RMSE) is a scaled dependent 

comparison algorithm for forecasts. The smaller its values, the 

more accurate are the forecasts. The test value is calculated as 

the deviation of the h-step ahead forecasts of a variable, 

E(yt+h), from its observed time path, yt+h . The RMSE of E(yt+h) 

equals to the square root of the Equation (14).

1/(T2-T1-h+1)                                  (14)




1

1

T

hTt

(E(yt+h)- yt+h )
2                                                                                

          

    In the function, T1+h is the beginning of the testing sample, 

while T2 is the end of the testing sample.

    H-step ahead number of exceptions is calculated with the 

same methodology but where RMSE is replaced with number 

of exceptions. H-step ahead number of exceptions is more 

sensitive measure of forecasting rather than h-step ahead 

RMSE as considers tail loss directly. 

3.d. Diebold And Marino Test Of Forecast Accuracy

    Diebold and Marino (1995) developed the forecast 

comparison between a benchmark and selected models based 

on forecast errors. The main advantage of this statistic is that 

there is not any assumption on the distribution of forecast 

errors.

    Define 
2

1,1
ˆ tu  and 

2

1,2
ˆ tu  as two forecast errors and estimate 

2

1,2

2

1,11
ˆˆ   ttt uud  and   


t t MSEMSEdPd 211

1

where MSE represents mean squared errors of forecasting 

models. 

    Diebold-Mariano test for equal MSE is defined as in 

Equation 15. 

 





t t ddP

d
DM

2

1

2 )(

             (14)

4. Data And Empirical Results

4.a. Data

     Istanbul Stock Exchange Rate (ISE-100 Index) is received 

from Bloomberg. Our dataset covers 1325 daily observations 

where 610 observations includes negative returns from 

02.01.2002 to 18.04.2007. We constituted the series in log-

differenced level. Figure 1 shows ISE Index in log-differenced 

series where Figure 2 shows negative and positive returns 

separately. By performing Augmented Dickey–Fuller (Dickey 

and Fuller, 1981) and Phillips-Peron test (Phillips and Peron, 

1988) we found that ISE Index is stationary at log differenced 

level as shown in Table 1. 

    Main Statistical Properties of the log-differenced index is 

shown in Table 1. Although 
2 normality test and Jargue-

besa stat indicates that index is normally distributed kurtosis 

and skewness values shows that distribution is skewed and 

heavy-tailed. As a result filtered extreme value theory like 

filtered expected shortfall may capture tail loss better compare 

to Garch and alternative Garch models. 

Table 1

Unit Root Test and Main Statistical Properties

ISE 

Unit Root tests

ADF Test -36.5121*

P-P Test -36.5267*

Main Stats.

Asymptotic test:  (
2 ) 876.03 [0.0000]**

Normality test:   (
2 ) 399.71 [0.0000]**

Mean (  ) 0.00091553C

Std.Devn. ( ) 0.0212336

Skewness ( S )    -0.0707095

Kurtosis  (K) 6.98092

Minimum -0.133408 at obs. 289

Maximum 0.11794 at obs. 215

Jarque-Bera statistic 876.031
* Denotes statistical significance at the %5 level 

(at least). [] denotes t-value
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4.b. Empirical Results

    Filtered expected shortfall with conditional quantile of 

2,3,4,5,10,15,20 and 40 days rolling and volatility models as 

Garch(1,1), Garch(1,1)-student t, Garch(1,1)-skewed student t 

and Figarch(1,1) are estimated. Kupiec(1995), Lopez(1999)

and Christoffersen(1998) backtesting procedures and h-step 

ahead forecasting of RMSE and number of exceptions are 

applied  to compare predictive performance of the models. 

Back testing is done with 95% and 99 confidence interval and 

Basel requires using 99% confidence interval. 

    Table 2 reports Garch(1,1), Garch(1,1)-student t, 

Garch(1,1)-skewed student t and Figarch(1,1) estimates for ISE 

index. All the parameters of the Garch models are statistically 

significant and according to log-likelihood stat Garch(1,1) fits

better than the other Garch models. Table 3 reports filtered 

expected shortfall parameters as shape () and scale () 

parameters of lower and upper tail. In this paper we only 

estimate lower tail of value-at-risk estimation based on Garch 

and filtered expected shortfall models so only lower tail 

parameters are used to estimate filtered expected shortfall 

models
1
.

                                                
1 Value-at-risk results of upper tail estimation can be obtained from the 
authors.  

    Figure 3 and Figure 4 shows filtered expected shortfall and 

Garch models graphs. Aso reported in Table 4 Diebold-Mario 

test (Diebold and Mariano, 1995) shows that Garch-student t 

and Garch-skewed student-t are not statistically different from 

Garch with gaussian distribution where Figarch, filtered 

expected shortfall with 2, 3, 4 and 5 days conditional quantile 

are statistically different at 5% confidence interval and filtered 

expected shortfall with 10, 15, 20 and 40 days conditional 

quantile are statistically different from Garch model at 1% 

confidence interval. 

    The predictive performance of filtered expected shortfall 

and Garch models are reported in Table 5 and Table 6 with 

95% and 99% confidence interval. According to 95% 

confidence interval, filtered expected shortfall with 2 days 

conditional quantile is the best based on Lopez test, filtered 

expected shortfall with 15 and 40 days conditional quantile 

performs best based on Christoffersen and Kupiec tests. 

According to 99% confidence interval, filtered expected 

shortfall with 10 and 20 days conditional quantile performs 

best based on Lopez test, filtered expected shortfall with 2 

days conditional quantile performs best one based on 

Christoffersen test, filtered expected shortfall with 15 and 40 

days conditional quantile are the best ones based on Kupiec 

tests. Since 99% confidence interval is more significant and 



Basel requires using 99% confidence interval we also consider 

99% confidence interval for back testing results. According to 

all back testing procedures filtered expected shortfall models 

predictive performance is better than Garch models. There is 

not one filtered expected shortfall model that beats other ones 

based on Lopez, Christoffersen and Kupiec tests therefore we 

applied h-step ahead forecasting of RMSE and number of 

exceptions. Based on h-step ahead forecasting of RMSE 

Garch(1,1) is the best one
2
. Table 7 shows that based on h-step 

ahead forecasting of number of exceptions up to 70 days 

filtered expected shortfall with 40 days conditional quantile is 

the best one. We observed that increase in conditional quantile 

decreases h-step ahead forecasting of number of exceptions 

and this shows that filtered expected shortfall with 40 days 

conditional quantile should be used for forward looking 

forecasting such as more than one month forecasting.

Christoffersen ve Diebold(2000) shows that volatility models 

such as Garch and other Garch models can be used for 

forecasting up to 15-20 days ahead for USA financial 

instruments and Çifter(2004) shows that volatility models can 

be used for forecasting up to 10-14 days ahead for Turkish 

interest rates.

     Figure 5 shows h-step ahead forecasting of number of 

exceptions and Figure 6 and Figure 7 shows h-step ahead 

forecasting of RMSE up to 70 steps. H-step ahead forecasting 

of number of exceptions shows that filtered expected shortfall 

from 15 days to 40 days conditional quantile beats all Garch 

and filtered expected shortfall less than 15 days conditional 

quantile. Diebold-Marino test of equal forecast 

accuracy(Diebold and Marino, 1995) is also applied to reveal 

statistical difference between filtered expected shortfall models 

and found that filtered expected shortfall models with less than 

10 days conditional quantile is not statistically different than 

with 2 days conditional quantile estimation (Table 8). Thus 

indicate that filtering less than 10 days conditional quantile 

may imitate Garch models. 

Table 2

Estimation Results from Volatility Models

Garch Garch-t

Garch-

Skew Figarch

 0.001**

(2.738)

0.001**

(3.395)

0.0014*

(2.912)

0.001**

(2.973)
 0.089**

(5.325)

0.084**

(4.500)

0.085**

(4.490)

0.204*

(2.853)

1 0.889**

(44.21)

0.886**

(37.29)

0.884**

(36.15)

0.600**

(6.051)

v -St. t - 8.125**

(5.314)

- -

 -Ske. - - -0.0606

(1.505)

-

v -Skew - - 8.215**

(5.266)

-

d - - - 0.5043

(6.022)

 +
1 0.97840 0.97146 0.96958 0.80434

Loglike 3321.90 3349.99 3351.13 3325.44

                                                
2 Based on standard RMSE(t+1) Garch(1,1) also the best one.  

Table 3 

Extreme Value Parameters 

Lower Tail Upper Tail

Models Shape 

(
Scale 

(
Shape

(
Scale 

(
Filtered ES - 2 Days  0,064 0,011 0,072 0,011

Filtered ES - 3 Days 0,081 0,011 0,115 0,010

Filtered ES - 4 Days 0,114 0,009 0,134 0,010

Filtered ES - 5 Days 0,034 0,011 0,187 0,008

Filtered ES - 10 Days 0,170 0,010 0,300 0,007

Filtered ES - 15 Days 0,131 0,011 0,238 0,009

Filtered ES - 20 Days 0,139 0,010 0,226 0,009

Filtered ES - 40 Days 0,184 0,009 0,348 0,008

Table 4

Comparing predictive accuracy with the Diebold–Mariano 

statistic
§

Models Ratio DM

Garch -

Garch-t 0.5092

Garch-Skew 0.5194

Figarch -0.09754*

Filtered ES - 2 Days 0.094686*

Filtered ES - 3 Days 0.148612*

Filtered ES - 4 Days 0.191513*

Filtered ES - 5 Days 0.185461*

Filtered ES - 10 Days 0.32498*

Filtered ES - 15 Days 0.047025**

Filtered ES - 20 Days 0.077021**

Filtered ES - 40 Days 0.085852**
§ Benchmark model is Garch(1,1) with gaussian distribution. 

Notes: * indicate significance  at the 5% confidence level and 

** stands for significance at the 1% level.

Table 5

Back testing (%95 confidence interval)

Models Lopez Christoffersen Kupiec

Garch 0.68934 0.00315 0.00249

Garch-t 1.00409 0.00025 0.00023

Garch-Skew 0.78774 0.00146 0.00120

Figarch 0.89262 0.00063 0.00054

Filtered ES - 2 Days 0,15879 0,17591 0,11457

Filtered ES - 3 Days 0,52972 0,00958 0,00766

Filtered ES - 4 Days 0,85641 0,00065 0,00061

Filtered ES - 5 Days 0,98265 0,00021 0,00022

Filtered ES - 10 Days 1,41345 0,00000 0,00000

Filtered ES - 15 Days 1,74404 0,00000 0,00000

Filtered ES - 20 Days 1,41345 0,00000 0,00000

Filtered ES - 40 Days 1,74404 0,00000 0,00000



Table 6

Back testing (%99 confidence interval)

Models Lopez Christoffersen Kupiec

Garch 0.32134 0.00080 0.99980

Garch-t 0.15609 0.01469 0.99601

Garch-Skew 0.25970 0.00226 0.99943

Figarch 0.20462 0.00595 0.99846

Filtered ES - 2 Days 0,66599 0,00000 0,99999

Filtered ES - 3 Days 0,23692 0,00396 0,99907

Filtered ES - 4 Days 0,08361 0,06909 0,98078

Filtered ES - 5 Days 0,04985 0,15074 0,95528

Filtered ES - 10 Days 0,00065 0,85707 0,68437

Filtered ES - 15 Days 0,01124 0,42083 0,32276

Filtered ES - 20 Days 0,00065 0,85707 0,68437

Filtered ES - 40 Days 0,01124 0,42083 0,32276

Table 7

H-Step Ahead Forecasting* 

No.of 

Exceptions

RMSE

Models t+1 Avrg. t+1 Avrg.

Garch 15 15.136 0.0373 0.0402

Garch-t 13 11.454 0.0405 0.0433

Garch-Skew 14 13.500 0.0383 0.0411

Figarch 14 13.257 0.0389 0.0419

Filtered ES - 2 Days 22 25.196 0.0449 0.0479

Filtered ES - 3 Days 16 17.575 0.0481 0.0515

Filtered ES - 4 Days 13 14.515 0.0501 0.0537

Filtered ES - 5 Days 12 13.712 0.0498 0.0533

Filtered ES - 10 Days 8 7.696 0.0586 0.0617

Filtered ES - 15 Days 5 5.7272 0.0602 0.0630

Filtered ES - 20 Days 8 6.500 0.06051 0.0633

Filtered ES - 40 Days 4 3.0151 0.0614 0.0640
*Average no. of exceptions and RMSE is estimated with 70 days step-ahead 

forecasting. 
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Table 8

Comparing predictive accuracy with the Diebold–Mariano statistic
§

Models Ratio DM

Filtered ES - 2 Days Rolling -

Filtered ES - 3 Days Rolling 1.2342

Filtered ES - 4 Days Rolling 0.612275

Filtered ES - 5 Days Rolling 0.627426

Filtered ES - 10 Days Rolling 0.323022*

Filtered ES - 15 Days Rolling 0.264849*

Filtered ES - 20 Days Rolling 0.309795*

Filtered ES - 40 Days Rolling 0.297323*
                     § Benchmark model is Filtered Expected shortfall with 2 days conditional quantile.
              Notes: * indicate significance at the 5% confidence level.

5. Conclusion

The dynamic and chaotic features of financial markets in 

emerging economies make successful financial forecasting 

almost impossible with parametric models. Observed extremes 

and fat-tails in returns need to be estimated with relatively 

more flexible models. Parametric models have certain strict 

assumptions on the distribution function of the returns. Those 

restrictions, either normality or asymmetric distributional ones, 

are not able to make statistically significant estimations.  

Extreme Value Theory, on the other hand, employs the central 

limit theorem for risk estimation. According to the theorem, if 

the sum of the variables has a finite variance, then it follows 

Gaussian distribution. The distribution of extremes in returns is 

limited into having the same form without relying on the 

distribution of the parent variable.

In this research paper, we write an algorithm with Matlab to 

conduct filtered EVT with different rolling quantile to estimate 

value-at-risk. By using daily returns of the Istanbul Stock 

Exchange National 100 Index, we estimate risk with filtered 

EVT. For comparison of the model performance, we also 

estimate value-at-risk with parametric models, namely, 

GARCH, GARCH with student-t distribution, GARCH with 

skewed student-t distribution and FIGARCH. The success of 

the estimation of the models are compared by using Kupiec test 

(1995), Christoffersen test (1998), Lopez test (1999), RMSE 

(70 days) and h-step ahead forecasting RMSE (70 days). The 

results of the back-tests show that the filtered EVT has better 

risk forecasting performance than parametric value-at-risk 

models. 

We think that financial forecasting especially in dynamic

markets needs flexible models. From that perspective, new 

semi-parametric models should be conducted in the future 

researches without ignoring the econometric methodological 

concerns. 
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