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Abstract Following from Tarbush (2011a), we explore the implications of
using two different definitions of informativeness over kens; one that ranks
objective, and the other subjective information. With the first, we create
a new semantic operation that allows us to derive agreement theorems
even when decision functions are based on interactive information (for any
r ≥ 0). Effectively, this operation, unlike information cell union captures
the notion of an agent becoming “more ignorant” for all modal depths.
Using the definition that ranks subjective information however, we show
an impossibility result: In generic models, agreement theorems using the
standard Sure-Thing Principle do not hold when decision functions depend
on interactive information (when r > 0).
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information, epistemic logic.
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1 Introduction

Bacharach (1985) proved an agreement theorem showing that if the agents of like-
minded agents are common knowledge, then their actions must be the same. This
result is proven with general decision functions, Di : F → A, that map from a
field F of subsets of Ω into an arbitrary set A of actions. To derive the result, it is
assumed that agents have the same decision function (termed “like-mindedness”),
and that the decision functions satisfy what we call the Disjoint Sure-Thing Prin-
ciple (DSTP ): ∀E ∈ E , if Di(E) = x then Di(∪E∈EE) = x, where E is a set of
disjoint events. The idea is that if one decides to perform action x in each case
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when one is more informed (when E and when F ), then one must also decide to
perform action x when one is more ignorant (when E ∪ F ). Moses and Nachum
(1990) show that taking the union of information cells is conceptually problematic
because it does not adequately capture the notion of being “more ignorant”.
Tarbush (2011a) shows that the union of information cells does capture the notion
of being “more ignorant”, but only for non-interactive information (see Lemma
6), and thus proposes a solution to the conceptual problem by providing explicit
accounts of the information that each agent has at each state, and then truncat-
ing the information so that decisions only depend on non-interactive information.
Effectively, the paper preserves a similar semantic operation to cell union and by-
passes the problem by focussing on the non-problematic information that remains
after the operation.
In that paper, it is not shown however, that truncating the information is necessary
to obtain the agreement result, only that it is sufficient - given that the semantic
operation is cell union. This leaves open the possibility that agreement results
hold for non-truncated, that is, interactive information, if an operation other than
cell union is used - which is what we explore here.
So, in this paper, we define a new operation (called private ignorance) that allows
us to talk about agents becoming “more ignorant” even when considering interac-
tive information. The upshot is that Bacharach’s result does hold, but requires
a different operation from cell union; and indeed, any paper that resorts to cell
union to capture more ignorance in an interactive agent setting should really be
using the operation proposed here.

Note that all the notation and definitions referred to in the rest of this paper
are drawn from Tarbush (2011a).

To carry out the analysis regarding interactive information, we need to be care-
ful how we rank information at the interactive level: In Tarbush (2011a) a notion
of informativeness was defined in order to rank kens, both for a single agent, and
across agents. Here, we show that we can define at least two different versions of
this ranking; and which one we decide to use has far-reaching implications for the
results we eventually obtain.

The following is the definition of informativeness given in Tarbush (2011a):

Definition 1 (Informativeness). Create an order �⊆ Vi × Vj for all i, j ∈ N . We
say that the ken νi is more informative than the ken µj, denoted νi � µj, if and
only if whenever i knows that ψ then j either also knows that ψ or does not know
whether ψ, and whenever i does not know whether ψ, then j also does not know
whether ψ. Formally,
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• If νn
i ψn = �iψn then (µn

jψn = �jψn or µn
jψn = �̇jψn),

• If νn
i ψn = �̂iψn then (µn

jψn = �̂jψn or µn
jψn = �̇jψn), and

• If νn
i ψn = �̇iψn then (µn

jψn = �̇jψn).

Finally, note that νi ∼ µj denotes νi � µj and µj � νi; which is interpreted as νi
and µj carrying the same information, but seen from the perspectives of agents i

and j respectively.

This means that if the nth entry of νi is �i�jp, and νi ∼ µj then the nth

entry of µj is �j�jp. This notion, in a sense, captures a comparison about what
information the agents objectively have about the world: Here, we are asking what
each of the agents know about j’s knowledge about p.

Contrast this with the alternative definition of informativeness given below.

Definition 2 (Informativeness∗). Create an order �∗⊆ Vi × Vj for all i, j ∈ N ,
defined by:

• If νn
i ψn = �iψn then (µ

σ(n)
j ψσ(n) = �jψσ(n) or µ

σ(n)
j ψσ(n) = �̇jψσ(n)),

• If νn
i ψn = �̂iψn then (µ

σ(n)
j ψσ(n) = �̂jψσ(n) or µ

σ(n)
j ψσ(n) = �̇jψσ(n)), and

• If νn
i ψn = �̇iψn then (µ

σ(n)
j ψσ(n) = �̇jψσ(n)).

This definition is applicable if there are only two agents in the model. σ is a
bijection. If ψn is an atomic formula, σ maps n into itself. On the other hand, if
ψn has modal depth one or greater, then ψσ(n) is identical to ψn except that all
the i and j indices are switched.

Now, this means that if the nth entry of νi is �i�jp, and νi ∼
∗ µj then the

σ(n)th entry of µj is �j�ip. This notion captures a comparison about the sub-
jective states of minds of the agents: Here, for example, we are saying that i

knows that j knows that p, and we say that j is in a “similar” state of mind if
we can simply switch their indices around - that is, if they can somehow stand
in each other’s shoes, in which case we would say that j knows that i knows that p.

Note that both orderings are identical over atomic propositions, so all results
in Tarbush (2011a) that imposed r = 0 are unchanged by our choice of definition
for informativeness. Also, regardless of which definition of informativeness we use,
our definition of the infimum of kens is unchanged, since it is only applicable to
the kens of a single agent. The infimum of νi and µi, denoted inf{νi, µi}, is the
most informative ken that is less informative than νi and µi.
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Lemma 1. For any νi, µi ∈ Vi, inf{νi, µi} exists in Vi and is characterised by:

inf{νi, µi}
nψn = �iψn iff (νn

i ψn = µn
i ψn = �iψn)

inf{νi, µi}
nψn = �̂iψn iff (νn

i ψn = µn
i ψn = �̂iψn)

inf{νi, µi}
nψn = �̇iψn iff (νn

i ψn �= µn
i ψn or νn

i ψn = µn
i ψn = �̇iψn)

In this paper, we show that with the ordering �, all the previous results found
in Tarbush (2011a) and Tarbush (2011b) still hold. In fact, they can be extended:
Unlike the cell merge and sink merge operations defined in Tarbush (2011a), in
section 2, we show that there is an operation that recovers the infimum of kens in
a component for all agents and for all r ≥ 0, and this allows us to derive agreement
theorems that hold for all r ≥ 0 - in contrast with our previous results that only
held for r = 0.
However, if we had used the ordering �∗ then many of the results in Tarbush
(2011a) and Tarbush (2011b) would only hold for r = 0. In particular, the results
would all be unchanged in Tarbush (2011a), but Proposition 3 would only hold for
r = 0. Furthermore, in Tarbush (2011b), Lemmas 2 and 5, and therefore all the
theorems in that paper, would only hold for r = 0.
In fact, with �∗, we demonstrate a rather stark result in section 3: In generic
models, agreement theorems (using the standard versions of the Sure-Thing Prin-
ciple) do not hold when decisions are based on interactive information (that is,
when r > 0).

2 New operation: Private ignorance

Definition 3 (Private ignorance). Consider any model M = �Ω, Ri,V�. Now
create a new model M+ = �Q,Zi, T �, where:

Q = Ω ∪ {sω|ω ∈ ΩG(ω) and if ω� ∈ ΩG(ω) then sω = sω�} (1)

Zi = Ri ∪ {(sω, ω
�)|ω� is in an equivalence class for i in component ΩG(ω)} (2)

T = V (3)

This means that M+ is the same model as M except that for every component
ΩG(ω), there is one extra state, sω, and for each agent, there are arrows pointing
from sω to every other state that is in an equivalence class for that agent within
that component. The valuation maps for the atomic propositions are identical in
both models, and the atomic propositions that are true at sω itself are irrelevant
since sω does not point to itself.
We will show below that the ken of every agent at the state sω is the infimum of
all the kens at all other states in the component ΩG(ω), for all r ≥ 0.
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Proposition 1. For all i ∈ G, M+, sω |= inf{νi|ω
� ∈ ΩG(ω) & ω� |= νi} (for any

r ≥ 0).

Proof. This holds for S5 or KD45. Consider agent i, and any formula ψ of some
modal depth r ≥ 0. If ψ is true in every one of i’s information cells (or sinks) in
the component ΩG(ω), then clearly, sω |= �iψ. If ψ is true at some states and false
in others in the component, then sω |= �̇iψ. That is, whenever i knows that ψ in
the component, this information is preserved in sω; and in all other cases - when
i does not know whether ψ or has contradictory information about ψ in different
information cells (or sinks) in the component, then i does not know whether ψ at
the state s. This is precisely the characterisation of the infimum, and holds for
any r.

The above suggests that in order to derive his agreement theorem, Bacharach
(1985) should have used this operation (private ignorance) rather than the union
of information cells.

Consider the following characterisation of a class of models, which we denote
by M:

• If the modal operator of the nth entry of every ken of some agent i is �i,
then the modal operator of the nth entry of every ken of all other agents j

is also �j (within the same component).

• If the modal operator of the nth entry of every ken of some agent i is �̂i,
then the modal operator of the nth entry of every ken of all other agents j

is also �̂j (within the same component).

• If the modal operators of the nth entry of different kens of some agent i are
different, or if the modal operator of the nth entry of every ken of the agent
is �̇i, then either the modal operators of the nth entry of different kens are
also different for all other agents j, or, the modal operator of the nth entry
of every ken of all other agents j is �̇j (within the same component).

Proposition 2. M+, sω |= inf{νi|ω
� ∈ ΩG(ω) & ω� |= νi}∧inf{νj|ω

� ∈ ΩG(ω) & ω� |=
νj} and inf{νi|ω

� ∈ ΩG(ω) & ω� |= νi} ∼ inf{νj|ω
� ∈ ΩG(ω) & ω� |= νj} if and only

if M ∈ M.

Proof. Suppose M+, sω |= inf{νi|ω
� ∈ ΩG(ω) & ω� |= νi}∧inf{νj|ω

� ∈ ΩG(ω) & ω� |=
νj} and inf{νi|ω

� ∈ ΩG(ω) & ω� |= νi} ∼ inf{νj|ω
� ∈ ΩG(ω) & ω� |= νj}.

Now, suppose the modal operator of the nth entry of every ken of some agent i

is �i within component ΩG(ω). Then, the modal operator of the nth entry of i’s
ken at state sω is also �i. If it is not the case that the modal operator of the nth
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entry of every ken of all other agents j is also �j within that component, then the
modal operator of the nth entry of some agent j’s ken at state sω is not �j; thus
contradicting our initial assumption that all agents have the “same” ken at state
sω. Proceed similarly for the other cases.
The other direction is trivial.

One can easily verify that all S5 models are in fact models in the class M.
Therefore, we can use the above proposition instead of Lemma 6 in Tarbush (2011a)
to derive Theorems 1 and 2 in that paper; but now they would hold for all r ≥ 0,
as stated below.

Theorem 1. Consider Ψr
0 for any r ≥ 0, the agents are like-minded, and the

system is S5. Let G = {i, j} ⊆ N .
If either, NDSTP holds; or, DSTP holds and the language is rich in every com-
ponent, then |= CG(d

x
i ∧ d

y
j ) → (x = y).

Proof. See proof of Theorems 1 and 2 in Tarbush (2011a) but replace Lemma 6
with Proposition 2 here.

Interestingly, even when heterogeneity holds (defined in Tarbush (2011a)),
KD45 models are not models in the class M. However, KD45 models that satisfy
the following “strong heterogeneity” assumption are in the M class; and therefore
agreement theorems hold for such models as well. Strong heterogeneity can be
expressed as: In any component ΩG(ω), if there is a state ω� ∈ ΩG(ω) such that
ω� |= νi and νn

i ψn, then there is a state ω�� ∈ ΩG(ω) such that ω�� |= µj and µn
jψn,

where νn
i = µn

j . That is, if some agent has some information about some formula
at some state of a component, there there is some state in the component in which
the other agent has that same information about that formula.

Intuition There is an important distinction in terms of the interpretation of
agreement theorems when using private ignorance instead of cell union as our
semantic operation. With cell union (or cell merge), the agent becomes more ig-
norant about the state of the world, but the other agent realises that the first
one became more ignorant. With private ignorance however, the agent becomes
secretly more ignorant (at the state s): He/she becomes more ignorant about the
state of the world, but the other agent does not notice anything change (as far as
the first agent is concerned). This is as if the agent is performing (privately - in
his/her mind) a thought experiment whereby he/she considers what he/she would
do if he/she were more ignorant, while, as fas as he/she can tell, the other agent
remains just as informed as he/she currently is.1

1It is also interesting to understand what “ignorance” means here. Suppose that agent i has
�ip at the current state, but there is another state in a cell that is at one step j-arrow away in
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In terms of our understanding of the mechanism that drives the agreement results,
this is what we believe is the correct interpretation when private ignorance is our
semantic operation: Consider agents i and j involved in an agreement problem and
i performs action x while j performs action y. The actions are common knowledge,
and we can simply see that as j truthfully telling i what action she performed.
When i learns this, he, is some sense, privately introspects: “Agent j has the same
objective as me, so would have performed action x if she had received the same
information as me. But she performed y, so she must have received information
different from mine. Her action therefore puts some of my information into ques-
tion. What action would I perform if I ignored all such pieces of information
(essentially, put a �̇ in front of all such formulas)?”. Effectively, agent i comes
to the conclusion that he would perform action, say z, if he could only rely on
that core information that is not put into question by j’s action. Agent i is going
through this thought experiment privately, and so from i’s point of view, there is
no reason why anything should change epistemically for agent j at that stage. The
main lemma then shows that when j also performs this private thought experi-
ment, she arrives at the same core information as i, and therefore also performs
action z.2

This interpretation is also a little different from say Bayesian updating where
the agent is somehow thought as making her information finer with each update.
Rather here, each agent becomes more doubtful, considering more things are un-
certain, and it is the decision that is based on this information that matters for
the agreement.
We can also apply this interpretation to the mechanism underlying No Trade The-
orems: Suppose there is a seller and a buyer of an object. When the seller indicates
that he wants to sell the object, the buyer - who highly valued the object - privately
becomes more doubtful, thinking to herself “He would not sell it to me if it really
were as valuable as I think it is”. Again, this is a private thought process, and
so from the buyer’s point of view, it should in no way affect the seller’s epistemic
state; the buyer is privately thinking about what she would do if she were more
ignorant. Similarly, when the buyer indicates that she want to buy the object, the
seller privately become more doubtful, thinking to himself “She would not buy it
from me if it really were as invaluable as I think it is”. The answer to what to do
given this more doubtful state of information is to not buy and to not sell. There
is no trade.

which �̂ip. This means that agent i starts to doubt p in the infimum (in which we would have
�̇ip), because agent j thinks it is plausible that agent i had received information �̂ip.

2By the Sure-Thing Principle, we guarantee that z is in fact equal to y and to x, and therefore
that x equals y.
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3 Impossibility in generic models

Consider the following characterisation of a class of two agent models, which we
denote by M

∗:

• If the modal operator of the nth entry of every ken of some agent i is �i,
then the modal operator of the σ(n)th entry of every ken of agent j is also
�j (within the same component).

• If the modal operator of the nth entry of every ken of some agent i is �̂i,
then the modal operator of the σ(n)th entry of every ken of agent j is also
�̂j (within the same component).

• If the modal operators of the nth entry of different kens of some agent i are
different, or if the modal operator of the nth entry of every ken of the agent
is �̇i, then either the modal operators of the σ(n)th entry of different kens
are also different for agent j, or, the modal operator of the σ(n)th entry of
every ken of agent j is �̇j (within the same component).

Proposition 3. M+, sω |= inf{νi|ω
� ∈ ΩG(ω) & ω� |= νi}∧inf{νj|ω

� ∈ ΩG(ω) & ω� |=
νj} and inf{νi|ω

� ∈ ΩG(ω) & ω� |= νi} ∼∗ inf{νj|ω
� ∈ ΩG(ω) & ω� |= νj} if and

only if M ∈ M
∗.

Proof. Suppose M+, sω |= inf{νi|ω
� ∈ ΩG(ω) & ω� |= νi}∧inf{νj|ω

� ∈ ΩG(ω) & ω� |=
νj} and inf{νi|ω

� ∈ ΩG(ω) & ω� |= νi} ∼∗ inf{νj|ω
� ∈ ΩG(ω) & ω� |= νj}.

Now, suppose the modal operator of the nth entry of every ken of some agent i is
�i within component ΩG(ω). Then, the modal operator of the nth entry of i’s ken
at state sω is also �i. If it is not the case that the modal operator of the σ(n)th

entry of every ken of all other agents j is also �j within that component, then the
modal operator of the σ(n)th entry of some agent j’s ken at state s is not �j; thus
contradicting our initial assumption that all agents have the “same” ken at state
sω. Proceed similarly for the other cases.
The other direction is trivial.

The above proposition shows that in generic cases - that is, for any model M �∈
M

∗ -, the standard agreement theorems (using the assumptions of like-mindedness
and the Sure-Thing Principle) will generally not hold if decision functions depend
on interactive information (that is, when r > 0) - since Lemma 6 in Tarbush
(2011a) would no longer hold (with the ordering �∗).
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Figure 1: Impossibility with r > 0

3.1 Example

We consider a very simple example in which the agreement theorem cannot hold
for r > 0, which suggests that it does not hold in generic cases when decision
functions are allowed to depend on interactive information.

Model M in Figure 1 is again the coin in a box example, where ω |= h and
ω� |= t. Agent j does not know whether the coin is facing heads up or tails up,
but i does, and j knows that i knows. That is, at every state of M it is the case
that �j(�ih ∨�it) and �̂i(�jh ∨�jt).
It follows that at the state at which the infimum holds for each agent, we have
s |= �j(�ih ∨ �it) ∧ �̂i(�jh ∨ �jt). So clearly, it is not the case that inf{νi|ω ∈
Ω & ω |= νi} ∼∗ inf{νj|ω ∈ Ω & ω |= νj}. (Note, this shows that model M in
Figure 1 does not belong to the class M

∗).
The simplicity of this case illustrates how general this phenomenon is, and there-
fore that in general, agreement theorems do not hold when decision functions are
allowed to depend on interactive information (when r > 0).

In fact, it should be easy to see that unlike the class M, the class M
∗ is

actually very special: In order to construct a model in M
∗, one would effectively

need to create a “symmetric” model. That is, one in which, if (ω, ω�) ∈ Ri, then
(ω��, ω���) ∈ Rj where for all p ∈ P ∗, V(p, ω) = V(p, ω��) and V(p, ω�) = V(p, ω���).

3.2 Other implications of �∗

Note that Lemma 2 in Tarbush (2011b) does hold for r = 0 even with the ordering
�∗. However, it does not hold for all r ≥ 0. Indeed, it is possible that ω |=
�i�ip ∧ �̂j�jp and Ii(ω) ⊆ Ij(ω). Therefore, it is possible that Ii(ω) ⊆ Ij(ω),
ω |= νi ∧ µj without it being the case that νi �

∗ µj.
For the same reason, Lemma 5 in Tarbush (2011b) also fails for r > 0; and since
the theorems in the rest of the paper depend on these lemmas, those results also
do not hold for r > 0.
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Finally, the results in Tarbush (2011a) are largely unaffected since most already
impose the restriction r = 0. However, the proof of Proposition 3 in that paper
follows a similar logic to the proofs of Lemmas 2 and 5 in Tarbush (2011b); so
although Proposition 3 still does hold for r = 0, it fails for r > 0 if the ordering
�∗ were used.
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