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Abstract

Ever since the pioneering work of Cox, Ross and Rubinstein [8], tree models
have been popular among asset pricing methods. On the other hand, statistical
estimation of parameters of tree models has not been studied as much. In
this paper, we use K Means Clustering method to estimate the parameters
of multinomial trees. By the weak convergence property of multinomial trees
to continuous-time models, we show that this method can be in turn used to
estimate parameters in continuous time models, illustrated by an example of
jump-diffusion model.

1 Introduction

Since the seminal work by Black, Scholes and Merton on the geometrical Brownian
motion model, various continuous time models were introduced as alternatives of the
Black-Shcoles’ model, such as Lévy pure-jump models, stochastic volatility models,
and jump-diffusion models. These models were introduced to fix some unrealistic
properties of the Black-Scholes’ model, and have been successful in various degrees for
the application to derivative pricing and hedging. On the other hand, an important
practical problem about the estimation of parameters has not been addressed as
extensively. A few exceptions are Ait-Sahalia [1], Ait-Sahalia and Kimmel [2], and
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Bhar, Chiarella, and To [4]. The existing methods mostly use maximum likelihood
estimation and have turned out to be difficult to calculate and implement in jump
models: in most cases clever numerical procedures are required in both estimating
the likelihood function and finding the maximum.

Close relatives of these continuous time models in discrete time are multinomial
trees. It is known that certain multinomial trees converge to continuous time models
in distribution. Since the introduction of binomial trees as an approximation of
the geometrical Brownian motion by Cox, Ross and Rubinstein [8], it has been
popular in term structure modelling and other exotic derivative pricing. In fact,
the estimation of the volatility parameter used in the geometrical Brownian motion
model (σ) is fairly standard and is used for constructing the binomial tree (u =

eσ
√

∆t, d = e−σ
√

∆t).
In this paper, we apply a simple but powerful statistical method called K Means

Clustering to directly estimate the parameters in multinomial tree models. Then,
using the weak convergence properties, we suggest that this method can be used to
estimate parameters of continuous time models. The advantages of our approach in
estimating the parameters in jump models are that it is a statistically well-established
method and that it is easy to implement. We can avoid long numerical calculations,
and instead use typical statistical softwares such as SAS and SPSS.

The paper is organized as follows. In section 2, we introduce the main problem.
Section 3.1 explains the K Means Clustering Method. Section 3.2 explains how to
use K Means Clustering to estimate parameters in the multinomial trees. In section
3.3, we find the parameter estimation in jump diffusion models that are the weak
limits of the multinomial trees. We provide a couple of numerical examples in section
3.4. Section 4 concludes.

2 The Problem

Let us consider a multinomial tree with m time steps and k nodes at each time step.
Formally, Si denotes the price of the stock at time ti, i = 0, 1, ...,m. The evolution
of the stock prices process is

Si+1

Si

= ξ, i = 0, 1, ...,m − 1, (1)

where the multiplying factor ξ is a random variable that take different constant values
with different probabilities as long as there is no arbitrage in the model, i.e., ξ = ξj

with probability pj, j = 1, 2, ..., k.
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A natural question arising is how to estimate ξj coupled with pj, j = 1, 2, ...k.
Since the multinomial tree is just an approximate model of the reality, we understand
that statistically speaking, we observe the prices with some errors. In other words,
what we really observe can be formulated as

Si+1

Si

= ξ + ǫi, i = 0, 1, ...,m − 1. (2)

3 Main Result

3.1 K Means Clustering

When we have both input variables and output variables, we can build a model which
explains the effects of inputs on outputs. Such a case is called supervised learning.
On the other hand, if we have only outputs without inputs, then it becomes unsuper-
vised learning. K Means Clustering is a popular unsupervised learning algorithm for
finding clusters and cluster centers in a set of unlabeled data.1 Suppose we already
know that there are k different clusters, we use the following steps:

• Step 1 : Define k centers, one for each cluster.

• Step 2 : Each point is assigned to the cluster with the smallest distance.

• Step 3 : Once all points are assigned, recalculate the cluster centers.

We repeat Steps 1 to 3 until no more changes are done. In other words centers do
not move any more. Detailed explanations of K Means Clustering Method and its
implementation are given in standard textbooks such as Hastie et al. [11].

3.2 Application to the Multinomial Tree

Recall that we observe

Si+1

Si

= ξ + ǫi, , i = 0, 1, ...,m − 1, (3)

where ξ = ξj with probability pj, and j = 1, 2, ..., k.

1There are other possible clustering methods such as Learning Vector Quantization and Gaussian
Mixtures, and all of them, including K Means Clustering, have advantages and shortfalls. Interested
readers may consult Hastie et al. [11].
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We consider the data set composed of
{

Si+1

Si
, i = 0, 1, 2, ...m − 1

}

. Then estimat-

ing ξj, j = 1, 2, ..., k is equivalent to finding k centers in K Means Clustering. Of
course, a reasonable choice of initial centers is important. After finding the k cen-
ters, and assigning xj number of points to the center ξj, we can estimate pj with
sample proportions p̂j =

xj

m
.

3.3 Weak Convergence and Parameter Estimation in a Con-

tinuous Time Jump-Diffusion Model

For the simplest case, the convergence of Binomial approximation to the Black-
Scholes model is studied by a classical work of Cox, Ross and Rubinstein [8]. There
are other possible multinomial approximations derived from the PDE approach as
shown in Heston and Zhou [12]. However, parameter estimation is fairly standard in
this case and we will apply the K Means Clustering Method to a more interesting
case of a simple jump-diffusion process.

A jump-diffusion model can be approximated by multinomial trees in a few differ-
ent ways. One natural approach is through the PDE method explained in Chapters
2 and 3 of Prigent [15] and Chapter 3 of Clewlow and Strickland [6]. There exist
extensive studies on numerical methods for the implementation of PDEs for option
pricing such as the Finite Difference Method. In this section, we will adopt a tri-
nomial tree from a direct approximation approach suggested by Nieuwenhuis and
Vellekoop [14]. Let Wt be a standard Brownian motion, and Nt a Poisson process
with constant intensity λ. The stock price process follows the stochastic differential
equation

dSt = St(µdt + σdWt + αdNt). (4)

Suppose µ ∈ R, σ > 0, α ∈ R, λ > 0, and these are the parameters we are interested in

estimating. On a finite-time interval [0, T ], define a stochastic processes Xn
t =

(

τn
t

W n
t

Nn
t

)

such that

Xn
t =

(

0
0
0

)

on t ∈
[

0, 1
n

)

; Xn
t =

nT
∑

k=1

ηn
k 1[T n

k
,T )(t) on t ∈

[

1
n
, T

]

, (5)
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where T n
k = k

n
, k = 1, 2, ..., nT , and

ηn
k =































( 1

n
1√
n

0

)

with probability 1
2
(1 − λ

n
);

( 1

n

−
1√
n

0

)

with probability 1
2
(1 − λ

n
);

( 1

n

0
1

)

with probability λ
n
.

(6)

Then, Xn
t converges weakly to

(

t
Wt

Nt

)

on [0, T ] as n goes to ∞. Let us define

Sn
t = S0 exp

{

(µ − σ2

2
)τn

t + σW n
t + ln(1 + α)Nn

t

}

= S0 exp

{

(

µ−
σ2

2
σ

ln(1+α)

)
′

Xn
t

}

.

Then Sn
t also converges weakly to St as n goes to ∞. Therefore, the three branches

of the corresponding trinomial tree should be

• exp
{

(µ − σ2

2
) 1

n
+ σ

√

n

}

with probability 1
2
(1 − λ

n
),

• exp
{

(µ − σ2

2
) 1

n
− σ

√

n

}

with probability 1
2
(1 − λ

n
),

• exp
{

(µ − σ2

2
) 1

n
+ ln(1 + α)

}

with probability λ
n

By the K Means Clustering Method introduced in Sections 3.1 and 3.2, we can
estimate u, m, d as the centers ξ1, ξ2, ξ3, along with probabilities p1, p2, p3 for pu, pm, pd

from the data set
{

Si+1

Si
, i = 0, 1, 2, ...nT − 1

}

. After ordering ξ1, ξ2, ξ3 from high to

low, we assign them to u, m, d. From these six statistics ξ1, ξ2, ξ3, pu, pm, pd, we need
to back out the parameters for the continuous time model µ, σ, α, λ.

For this purpose, we need to decide which two branches correspond to the Brown-
ian motion and which branch corresponds to the jump among u, m, d. It is important
to notice that the probabilities associated to the Brownian movements is symmetric
with 1

2
(1 − λ

n
). Therefore, in the numerical example we show below, we will choose

the two closest probabilities for the Brownian part. In this way, we let the market
data tell us whether it is a positive jump or negative one and what the associated in-
tensity is. For illustration purpose, suppose the estimators pm, pd are closer in value,
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then we assign

u = exp
{

(µ − σ2

2
) 1

n
+ ln(1 + α)

}

, pu = λ
n
; (7)

m = exp
{

(µ − σ2

2
) 1

n
+ σ

√

n

}

, pm = 1
2
(1 − λ

n
); (8)

d = exp
{

(µ − σ2

2
) 1

n
− σ

√

n

}

, pd = 1
2
(1 − λ

n
). (9)

From the three equations involving u, m, d in (7)-(9), we can solve for µ, σ, α:

µ =
n

2
ln(md) +

n

8

(

ln
m

d

)2

, (10)

σ =

√
n

2
ln

m

d
, (11)

α =
u√
md

− 1. (12)

The estimation of λ is not so straightforward and we will apply the Maximum
Likelihood Method. Let Xu, Xm, Xd be numbers of ups, middles, and downs respec-
tively. Then (Xu, Xm, Xd) follows the trinomial distribution with density function

P (Xu = xu, Xm = xm, Xd = xd) =
(

nT

xu xm xd

) (

λ
n

)xu
(

1
2
(1 − λ

n
)
)xm

(

1
2
(1 − λ

n
)
)xd

,

where xu + xm + xd = nT . We obtain the maximum likelihood estimator of λ by
finding maximum of the likelihood function L(λ) = P (Xu = xu, Xm = xm, Xd = xd):

λ̂ =
xu

T
.

Note that pu = xu

nT
and this is exactly

λ̂ = npu = n(1 − pm − pd),

by checking the three equations involving λ from (7)-(9).

To achieve higher precision, we can allow different jump sizes where the stock
price process is driven by a compound Poisson process and can be represented as

dSt = St(µdt + σdWt +
k

∑

i=1

αidNi,t), (13)

where each Ni,t is a standard Poisson process with constant intensity λi for i =

1, ..., k. The total intensity of the compound Poisson process is λ =
∑k

i=1 λi. The
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corresponding multinomial tree will have k + 2 branches in each time step, and we

can still define Xn
t =





τn
t

W n
t

Nn
1,t
...

Nn
k,t



 with (5), and the expanded

ηn
j =



























































1

n
1√
n

0
...
0



 with probability 1
2
(1 − λ

n
),





1

n

−
1√
n

0
...
0



 with probability 1
2
(1 − λ

n
),





1

n

0
...
1
...
0



 with probability qiλ

n
, i = 1, 2, ..., k,

(14)

where 1 is placed at (i + 2)th component, and qi = λi

λ
. Then the resulting discrete

process

Sn
t = S0 exp

{

(µ − σ2

2
)τn

t + σW n
t +

k
∑

i=1

log(1 + αi)N
n
i,t

}

converges weakly to the continuous version (13), and the corresponding branches in
the k + 2-multinomial tree are

• exp
{

(µ − σ2

2
) 1

n
+ σ

√

n

}

with probability 1
2
(1 − λ

n
),

• exp
{

(µ − σ2

2
) 1

n
− σ

√

n

}

with probability 1
2
(1 − λ

n
),

• exp
{

(µ − σ2

2
) 1

n
+ ln(1 + αi)

}

with probability qiλ

n
, i = 1, 2, ...,m.

There are k + 2 equations that relate the k + 2 estimated centers ξi in the K Means
Clustering Method to solve for the k + 2 parameters µ, σ, α1, ..., αk. There are ad-
ditional k + 2 equations that relate estimated probabilities p1, .., pk+2 associated to
the centers ξi by pi = xi

nT
to estimate the k intensities λi through qi. Since the prob-

abilities pi sum up to 1, we have one more degree of freedom than the number of
variables we would like to solve. As in the trinomial model, the maximum likelihood
estimators of the intensities are

λ̂i =
xi

T
,

which turns out to be a feasible solution that satisfies all k + 2 constraints.
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node frequency (xi) estimated probability (pi) estimated center (ξi)
up 35 0.2846 1.0116
middle 79 0.6423 0.9986
down 9 0.0731 0.9825

Table 1: Trinomial approximation of IBM daily closing prices.

node frequency (xi) estimated probability (pi) estimated center (ξi)
up 42 0.3717 1.0152
middle 55 0.4472 0.9979
down 16 0.1301 0.9779

Table 2: Trinomial approximation of S&P 500 index weekly closing prices.

3.4 Examples

3.4.1 Trinomial Approximation of the IBM Daily Stock Price

In this subsection, we illustrate the K Means Clustering approximation method by
using the daily closing prices of the IBM stock from Oct 2, 2006 to March 31, 2007.
There were 124 trading days, so we observed 123 data points for St+1

St
. We use

trinomial tree as our approximation model. Table 1 shows the results for K Means
Clustering with three centers.

The corresponding parameters for the trinomial trees is u = 1.0116 with proba-
bility pu = 0.2846, m = 0.9986 with probability pm = 0.6423 and d = 0.9825 with
probability pd = 0.0731. Percentage-wise, the IBM stock moves up by 1.16% daily,
moves down by 0.14% or 1.75%.

3.4.2 Jump Diffusion Approximation of the S&P 500 Index

Next, we approximate the S&P500 index weekly closing data with jump-diffusion
model (4) and estimate its parameters through a trinomial tree parameter estimation
from K Means Clustering Method. We collected data form the first week of January
2005 to the last week of March 2007. There are 114 weeks in total, which gives 113
data points for St+1

St
. The time unit is a year, so n = 52. Table 2 shows the result

of K Means Clustering Method. Since the up and middle frequencies are closer than
the down frequency, we will assign the ‘down’ branch to the jump. The parameters
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for the jump diffusion model is thus estimated as

σ =

√
n

2
ln

u

m
= 0.0620,

µ =
n

2
ln(um) +

n

8

(

ln
u

m

)2

= 0.3395,

α =
d√
um

− 1 = −0.0284,

λ =
xd

T
= 7.3628. (15)

This implies a 2.84% downward jump of S&P with a frequency of about 7.36 times
per year, while the volatility coming from the Brownian motion is 6.2%.

4 Conclusion

We have studied how to estimate parameters in multinomial tree models using the K
Means Clustering Method. This is a simple, but powerful statistical method which
can be easily done by standard software such as SAS and SPSS. This method was
then applied to parameter estimation in continuous time jump-diffusion models as
explained in Section 3.3 and an example in Section 3.4.2. However, this methodology
can be applied more widely to other continuous time models that are weak limits
of multinomial trees. For stochastic volatility models the reader can consult Ait-
Sahalia and Kimmel [2] and Florescu and Viens [10] about their approximation by
multinomial models.
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