
Munich Personal RePEc Archive

On amending the sufficient conditions for

Nash implementation

Wu, Haoyang

5 April 2011

Online at https://mpra.ub.uni-muenchen.de/33102/

MPRA Paper No. 33102, posted 01 Sep 2011 12:53 UTC

On amending the sufficient conditions for

Nash implementation

Haoyang Wu ∗

Abstract

The Maskin’s theorem on Nash implementation is a fundamental work in the theory
of mechanism design. A recent work [Wu, Quantum mechanism helps agents combat
“bad” social choice rules. Intl. J. of Quantum Information 9 (2011) 615-623] shows
that when an additional condition is satisfied, the Maskin’s theorem will not hold
if agents use quantum strategies. Although quantum mechanisms are theoretically
feasible, they are not applicable immediately due to the restriction of current exper-
imental technologies. In this paper, we will go beyond the obstacle of how to realize
quantum mechanisms, and propose an algorithmic mechanism which amends the
sufficient conditions of the Maskin’s theorem immediately just in the macro world
(i.e., computer or Internet world).

Key words: Algorithmic mechanism; Mechanism design; Nash implementation.

1 Introduction

Nash implementation is the cornerstone of the mechanism design theory. The
Maskin’s theorem describes the sufficient conditions for Nash implementation
(i.e., monotonicity and no-veto power) when the number of agents are at least
three [1]. Since a social choice rule (SCR) is specified by a designer, a desired
outcome for the designer may not be the most favorite one for the agents (See
Example 1 of Ref. [2]).

According to the Maskin’s theorem, given an SCR that is monotonic and
satisfies no-veto, it is impossible for the agents to fight the designer even if
all agents dislike the SCR. However, in 2011, Wu [2] generalized the theory

∗ Wan-Dou-Miao Research Lab, Suite 1002, 790 WuYi Road, Shanghai, 200051,
China.

Email address: hywch@mail.xjtu.edu.cn, Tel: 86-18621753457 (Haoyang
Wu).

of mechanism design to a quantum domain and proposed that by virtue of
quantum strategies, agents who satisfied a certain condition could combat
Pareto-inefficient SCRs instead of being restricted by the Maskin’s theorem.
For n agents, the time and space complexity of the quantum mechanism are
O(n). Therefore the quantum mechanism is theoretically feasible.

Despite these interesting results, there exists an obstacle for agents to use the
quantum mechanism immediately: It needs a quantum equipment to work,
but so far the experimental technologies for quantum information are not
commercially available [3]. As a result, the quantum mechanism may be viewed
only as a “toy”. In this paper, we will go beyond this obstacle and propose
an algorithmic mechanism which amends the sufficient conditions for Nash
implementation just in the macro world (The main result is Proposition 1 in
Section 4.4). The rest of the paper is organized as follows: Section 2 recalls
preliminaries of classical and quantum mechanisms published in Refs. [4,2]
respectively; Section 3 discuss the justification of quantum mechanism. Section
4 is the main part of this paper, where we will propose an algorithmic version
of quantum mechanism. Section 5 draws conclusions.

2 Preliminaries

2.1 The classical theory of mechanism design [4]

Let N = {1, · · · , n} be a finite set of agents with n ≥ 2, A = {a1, · · · , ak} be a
finite set of social outcomes. Let Ti be the finite set of agent i’s types, and the
private information possessed by agent i is denoted as ti ∈ Ti. We refer to a
profile of types t = (t1, · · · , tn) as a state. Let T =

∏
i∈N Ti be the set of states.

At state t ∈ T , each agent i ∈ N is assumed to have a complete and transitive
preference relation ºt

i over the set A. We denote by ºt= (ºt
1, · · · ,ºt

n) the
profile of preferences in state t, and denote by ≻t

i the strict preference part
of ºt

i. Fix a state t, we refer to the collection E =< N, A, (ºt
i)i∈N > as an

environment. Let ε be the class of possible environments. A social choice rule
(SCR) F is a mapping F : ε → 2A\{∅}. A mechanism Γ = ((Mi)i∈N , g)
describes a message or strategy set Mi for agent i, and an outcome function
g :

∏
i∈N Mi → A. Mi is unlimited except that if a mechanism is direct,

Mi = Ti.

An SCR F satisfies no-veto if, whenever a ºt
i b for all b ∈ A and for all

agents i but perhaps one j, then a ∈ F (E). An SCR F is monotonic if
for every pair of environments E and E ′, and for every a ∈ F (E), when-
ever a ºt

i b implies that a ºt′

i b, there holds a ∈ F (E ′). We assume that
there is complete information among the agents, i.e., the true state t is com-

2

mon knowledge among them. Given a mechanism Γ = ((Mi)i∈N , g) played in
state t, a Nash equilibrium of Γ in state t is a strategy profile m∗ such that:
∀i ∈ N, g(m∗(t)) ºt

i g(mi,m
∗
−i(t)),∀mi ∈ Mi. Let N (Γ, t) denote the set of

Nash equilibria of the game induced by Γ in state t, and g(N (Γ, t)) denote
the corresponding set of Nash equilibrium outcomes. An SCR F is Nash im-
plementable if there exists a mechanism Γ = ((Mi)i∈N , g) such that for every
t ∈ T , g(N (Γ, t)) = F (t).

Maskin [1] provided an almost complete characterization of SCRs that were
Nash implementable. The main results of Ref. [1] are two theorems: 1) (Neces-
sity) If an SCR is Nash implementable, then it is monotonic. 2) (Sufficiency)
Let n ≥ 3, if an SCR is monotonic and satisfies no-veto, then it is Nash im-
plementable. In order to facilitate the following investigation, we briefly recall
the Maskin’s mechanism published in Ref. [4] as follows:

Consider the following mechanism Γ = ((Mi)i∈N , g), where agent i’s message
set is Mi = A × T × Z+, where Z+ is the set of non-negative integers. A
typical message sent by agent i is described as mi = (ai, ti, zi). The outcome
function g is defined in the following three rules: (1) If for every agent i ∈ N ,
mi = (a, t, 0) and a ∈ F (t), then g(m) = a. (2) If (n − 1) agents i 6= j send
mi = (a, t, 0) and a ∈ F (t), but agent j sends mj = (aj, tj, zj) 6= (a, t, 0),
then g(m) = a if aj ≻t

j a, and g(m) = aj otherwise. (3) In all other cases,
g(m) = a′, where a′ is the outcome chosen by the agent with the lowest index
among those who announce the highest integer.

2.2 Quantum mechanisms [2]

In 2011, Wu [2] combined the theory of mechanism design with quantum me-
chanics and found that when an additional condition was satisfied, monotonic-
ity and no-veto are not sufficient conditions for Nash implementation in the
context of a quantum domain. Following Section 4 in Ref. [2], two-parameter
quantum strategies are drawn from the set:

ω̂(θ, φ) ≡

eiφ cos(θ/2) i sin(θ/2)

i sin(θ/2) e−iφ cos(θ/2)

 , (1)

Ω̂ ≡ {ω̂(θ, φ) : θ ∈ [0, π], φ ∈ [0, π/2]}, Ĵ ≡ cos(γ/2)Î⊗n + i sin(γ/2)σ̂x
⊗n

(where γ ∈ [0, π/2] is an entanglement measure, σx is Pauli matrix), Î ≡
ω̂(0, 0), D̂n ≡ ω̂(π, π/n), Ĉn ≡ ω̂(0, π/n).

According to the last paragraph of page 392 in Ref. [4], here we also assume
there is complete information among agents. Put differently, there is no private
information for any agent. Without loss of generality, we assume that:

3

����������	�
	�����������������	�����
����������	�����
�����������

�������������������������	������		��	�����	�����
�����������������

�	������������
��	��������������������

�ψ

��

��
��

�ψ

... ...

������

������

������

�

+
��

�
��
�	

��
�
��
��
���
��

��

�
�ω

�
�ω

�ω�

�������

...
 	
���	�

�!�"

�

�

�ψ #ψ

�������

������

1) Each agent i has a quantum coin i (qubit) and a classical card i. The basis
vectors |C〉 = (1, 0)T , |D〉 = (0, 1)T of a quantum coin denote head up and
tail up respectively.
2) Each agent i independently performs a local unitary operation on his/her
own quantum coin. The set of agent i’s operation is Ω̂i = Ω̂. A strategic
operation chosen by agent i is denoted as ω̂i ∈ Ω̂i. If ω̂i = Î, then ω̂i(|C〉) =
|C〉, ω̂i(|D〉) = |D〉; If ω̂i = D̂n, then ω̂i(|C〉) = |D〉, ω̂i(|D〉) = |C〉. Î denotes
“Not flip”, D̂n denotes “Flip”.
3) The two sides of a card are denoted as Side 0 and Side 1. The message
written on the Side 0 (or Side 1) of card i is denoted as card(i, 0) (or card(i, 1)).
A typical card written by agent i is described as ci = (card(i, 0), card(i, 1)).
The set of ci is denoted as Ci.
4) There is a device that can measure the state of n coins and send messages
to the designer.

A quantum mechanism ΓQ = ((Ŝi)i∈N , Ĝ) describes a strategy set Ŝi = Ω̂i×Ci

for each agent i and an outcome function Ĝ : ⊗i∈N Ω̂i ×
∏

i∈N Ci → A. We use
Ŝ−i to express ⊗j 6=iΩ̂j ×

∏
j 6=i Cj, and thus, a strategy profile is ŝ = (ŝi, ŝ−i),

where ŝi ∈ Ŝi and ŝ−i ∈ Ŝ−i. The strategic behavior of each agent i is to
strategically choose ω̂i, card(i, 0) and card(i, 1).

A Nash equilibrium of a quantum mechanism ΓQ played in state t is a strat-
egy profile ŝ∗ = (ŝ∗1, · · · , ŝ∗n) such that for any agent i ∈ N and ŝi ∈ Ŝi,
Ĝ(ŝ∗1, · · · , ŝ∗n) ºt

i Ĝ(ŝi, ŝ
∗
−i). The setup of a quantum mechanism ΓQ = ((Ŝi)i∈N , Ĝ)

is depicted in Fig. 1. The working steps of the quantum mechanism ΓQ are
given as follows (with slight differences from Ref. [2]):
Step 1: The state of every quantum coin is set as |C〉. The initial state of the
n quantum coins is |ψ0〉 = |C · · ·CC〉︸ ︷︷ ︸

n

.

Step 2: Given a state t, if two following conditions are satisfied, goto Step 4:
1) There exists t̂ ∈ T , t̂ 6= t such that â ºt

i a (where â ∈ F (t̂), a ∈ F (t)) for

4

every i ∈ N , and â ≻t
j a for at least one j ∈ N ;

2) If there exists t̂′ ∈ T , t̂′ 6= t̂ that satisfies the former condition, then â ºt
i â′

(where â ∈ F (t̂), â′ ∈ F (t̂′)) for every i ∈ N , and â ≻t
j â′ for at least one

j ∈ N .
Step 3: Each agent i sets ci = ((ai, ti, zi), (ai, ti, zi)) (where ai ∈ A, ti ∈ T ,
zi ∈ Z+), ω̂i = Î. Goto Step 7.
Step 4: Each agent i sets ci = ((â, t̂, 0), (ai, ti, zi)). Let n quantum coins be
entangled by Ĵ . |ψ1〉 = Ĵ |C · · ·CC〉.
Step 5: Each agent i independently performs a local unitary operation ω̂i on
his/her own quantum coin. |ψ2〉 = [ω̂1 ⊗ · · · ⊗ ω̂n]Ĵ |C · · ·CC〉.
Step 6: Let n quantum coins be disentangled by Ĵ+. |ψ3〉 = Ĵ+[ω̂1 ⊗ · · · ⊗
ω̂n]Ĵ |C · · ·CC〉.
Step 7: The device measures the state of n quantum coins and sends card(i, 0)
(or card(i, 1)) as a message mi to the designer if the state of quantum coin i
is |C〉 (or |D〉).
Step 8: The designer receives the overall message m = (m1, · · · ,mn) and let
the final outcome be g(m) using rules (1)-(3) of the Maskin’s mechanism.
END.

3 Discussions on quantum mechanism

The quantum mechanism revises common understanding on Nash implemen-
tation. Some reader may doubt its justification. In this section, we will discuss
some possible doubts.

Q1: In the traditional Maskin’s mechanism, there is no correlation among
agents, and each agent submits his message to the designer directly; whereas
in the quantum mechanism, there is an entangled state acting as a correlation
among agents, and the message of each agent is decided by the outcomes of
measurements on the quantum state. It looks that the quantum mechanism
is a new one and has no implication to the traditional theory of mechanism
design.
A1: The Maskin’s mechanism is an abstract mechanism. People seldom con-
sider how the designer actually obtains messages from agents. Generally speak-
ing, there are two distinct manners:
(1) The designer communicates with agents directly : For example, if each agent
tells his message to the designer orally (or writes his message on a card and
submits it to the designer by hand), then it requires too much to hope the
designer be willing to obtain messages from an additional assumed device.
Thus, for this case the quantum mechanism is not justified.
(2) The designer communicates with agents by using some channels : For ex-
ample, each agent sends his message to the designer by using a communication
channel (like computer networks, or Internet). As for this case, in the following

5

we will claim that the quantum mechanism is justified.
It should be emphasized that the quantum mechanism does not mean the
agents have the designer to design a new mechanism to attain Pareto superior
outcomes. Indeed, from the viewpoint of the designer, the interface between
agents and the designer in the quantum mechanism is the same as that in
the Maskin’s mechanism: the designer still announces the same three rules
as defined in the Maskin’s mechanism, then receives messages from the same
channels as before, and at last assigns the outcome to agents.
Consequently, when the designer communicates with agents by using some
channels, the designer cannot discriminate whether the underlying principle
of agents’ actions is quantum mechanical or classical. It’s true that the en-
tangled state acts as a correlation among agents. However, this correlation
is unobservable to the designer, and henceforth the designer cannot prevent
agents from using such correlation.
From the viewpoint of agents, in the quantum mechanism agents can be viewed
as participating the traditional Maskin’s mechanism with a richer strategy
space, which results in a Pareto-efficient outcome if an additional condition is
satisfied (see Section 4, Ref. [2] for details).
To sum up, when the designer communicates with agents by some channels
(like computer networks or Internet), agents are free to construct the setup
of the quantum mechanism in order to obtain better outcome. In this case,
the quantum mechanism has direct implications to the theory of mechanism
design.

Q2: The quantum mechanism seems to be a realization of a binding contract,
which makes no sense in the non-cooperative framework.
A2: First, let us recall the notion of self-enforcing agreement given by Telser
[6]: “In a self-enforcing agreement each party decides unilaterally whether he
is better off continuing or stopping his relation with the other parties. He stops
if and only if the current gain from stopping exceeds the expected present value
of his gains from continuing.”
Now let us consider whether the quantum mechanism is a binding contract
among agents or not. Note that there is no third-party outsider apart from the
agents and the designer. When we say these agents themselves sign a binding
contract, indeed we has implicitly assumed that there exists at least one agent
that has power to enforce the contract, to determine whether there has been
violations, and to impose penalties. However, as we have seen from the defini-
tion of the environment E =< N, A, (ºt

i)i∈N >, each agent i is only assumed
to have a complete and transitive preference relation ºt

i over the outcome set
A. It is unreasonable to assume that there exists some super agent to be able
to enforce a binding contract. Put differently, it is not justified to say that
the agents are able to sign a binding contract under the framework of Nash
implementation.
As shown in Ref. [2], the quantum mechanism leads to a novel Nash equilib-
rium corresponding to a Pareto-efficient outcome when an additional condition

6

is satisfied. Therefore, given the non-binding quantum mechanism, each agent
will unilaterally find that he will be better off if he continues participating the
quantum mechanism and keeps his relation with the other agents.
To sum up, the quantum mechanism is a non-binding and self-enforcing agree-
ment (rather than a binding contract) among the agents.

4 Main results

This section is the main part of this paper. As we have known, the experimen-
tal technology for quantum information is still in its infancy. In order to let
agents benefit from quantum mechanism in the macro world, in this section
we will first give mathematical representations of quantum states. Then, we
will propose an algorithmic version of quantum mechanism which amends the
sufficient conditions for Nash implementation immediately in the computer
(or Internet) world.

4.1 Matrix representations of quantum states

In quantum mechanics, a quantum state can be described as a vector. For a
two-level system, there are two basis vectors: (1, 0)T and (0, 1)T . The matrix
representations of quantum states |ψ0〉, |ψ1〉, |ψ2〉 and |ψ3〉 are given as follows.

|C〉 =

1

0

 , Î =

1 0

0 1

 , σ̂x =

0 1

1 0

 , |ψ0〉 = |C · · ·CC〉︸ ︷︷ ︸

n

=

1

0

· · ·
0

2n×1

(2)

7

Ĵ = cos(γ/2)Î⊗n + i sin(γ/2)σ̂⊗n
x (3)

=

cos(γ/2) i sin(γ/2)

· · · · · ·
cos(γ/2) i sin(γ/2)

i sin(γ/2) cos(γ/2)

· · · · · ·
i sin(γ/2) cos(γ/2)

2n×2n

(4)

For γ = π/2,

Ĵπ/2 =
1√
2

1 i

· · · · · ·
1 i

i 1

· · · · · ·
i 1

2n×2n

(5)

|ψ1〉 = Ĵ |C · · ·CC〉︸ ︷︷ ︸
n

=

cos(γ/2)

0

· · ·
0

i sin(γ/2)

2n×1

(6)

Following formula (1), we define:

ω̂1 =

eiφ1 cos(θ1/2) i sin(θ1/2)

i sin(θ1/2) e−iφ1 cos(θ1/2)

 , · · · , ω̂n =

eiφn cos(θn/2) i sin(θn/2)

i sin(θn/2) e−iφn cos(θn/2)

 ,

(7)

The dimension of ω̂1 ⊗ · · · ⊗ ω̂n is 2n × 2n. Since only two values in |ψ1〉 are
non-zero, it is not necessary to calculate the whole 2n × 2n matrix to obtain
|ψ2〉. Indeed, we only need to calculate the leftmost and rightmost column of
ω̂1 ⊗ · · · ⊗ ω̂n to derive |ψ2〉 = [ω̂1 ⊗ · · · ⊗ ω̂n]Ĵ |C · · ·CC〉︸ ︷︷ ︸

n

.

8

�������

�
�
�����

�
	

���

�

	
�
����
�

...

��

��

��

	�
�����

���...

���

���

�

��
��

��
��

�� φθ

����

����

� ��

�
��

�
��

φθ

����

����

� ��

�
��

�
��

φθ

�������

�������

�����������������
�����������
��������
���������������������

Ĵ+ =

cos(γ/2) −i sin(γ/2)

· · · · · ·
cos(γ/2) −i sin(γ/2)

−i sin(γ/2) cos(γ/2)

· · · · · ·
−i sin(γ/2) cos(γ/2)

2n×2n

(8)

|ψ3〉 = Ĵ+|ψ2〉 (9)

4.2 A simulating algorithm

Based on the aforementioned matrix representations of quantum states, in the
following we will propose a simulating algorithm that simulates the quantum
operations and measurements in Steps 4-7 of the quantum mechanism given
in Section 2.2. Since the entanglement measurement γ is just a control factor,
γ can be simply set as its maximum π/2. For n agents, the inputs and outputs
of the simulating algorithm are illustrated in Fig. 2. The Matlab program is
given in Fig. 3(a)-(d).

Inputs:
1) θi, φi, i = 1, · · · , n: the parameters of agent i’s local operation ω̂i, θi ∈
[0, π], φi ∈ [0, π/2].
2) card(i, 0), card(i, 1), i = 1, · · · , n: the information written on the two sides
of agent i’s card, where card(i, 0) = (ai, ti, zi) ∈ A × T × Z+, card(i, 1) =
(a′

i, t
′
i, z

′
i) ∈ A × T × Z+.

9

Outputs:
mi, i = 1, · · · , n: the agent i’s message that is sent to the designer, mi ∈
A × T × Z+.

Procedures of the simulating algorithm:
Step 1: Reading two parameters θi and φi from each agent i ∈ N (See Fig.
3(a)).
Step 2: Computing the leftmost and rightmost columns of ω̂1 ⊗ ω̂2 ⊗ · · · ⊗ ω̂n

(See Fig. 3(b)).
Step 3: Computing the vector representation of |ψ2〉 = [ω̂1⊗· · ·⊗ω̂n]Ĵπ/2|C · · ·CC〉.
Step 4: Computing the vector representation of |ψ3〉 = Ĵ+

π/2
|ψ2〉.

Step 5: Computing the probability distribution 〈ψ3|ψ3〉 (See Fig. 3(c)).
Step 6: Randomly choosing a “collapsed” state from the set of all 2n possible
states {|C · · ·CC〉, · · · , |D · · ·DD〉} according to the probability distribution
〈ψ3|ψ3〉.
Step 7: For each i ∈ N , the algorithm sends card(i, 0) (or card(i, 1)) as a
message mi to the designer if the i-th basis vector of the “collapsed” state is
|C〉 (or |D〉) (See Fig. 3(d)).

Remark 1: In Step 6, the possible states {|C · · ·CC〉, · · · , |D · · ·DD〉} are
simply mathematical notions, not physical entities.

Remark 2: Although the time and space complexity of the simulating algo-
rithm are exponential, i.e., O(2n), it works well when the number of agents is
not very large (e.g., less than 20). For example, the runtime of the simulating
algorithm is about 0.5s for 15 agents, and about 12s for 20 agents (MATLAB
7.1, CPU: Intel (R) 2GHz, RAM: 3GB).

4.3 An algorithmic version of the quantum mechanism

In the quantum mechanism ΓQ = ((Ŝi)i∈N , Ĝ), the key parts are quantum
operations and measurements, which are restricted by current experimental
technologies. In Section 4.2, these parts are replaced by a simulating algo-
rithm which can be easily run in a computer. Consequently, the quantum
mechanism ΓQ = ((Ŝi)i∈N , Ĝ) shall be updated to an algorithmic mechanism
Γ̃ = ((S̃i)i∈N , G̃), which describes a strategy set S̃i = [0, π] × [0, π/2] × Ci for
each agent i and an outcome function G̃ : [0, π]n×[0, π/2]n×∏

i∈N Ci → A. We
use S̃−i to express [0, π]n−1× [0, π/2]n−1×∏

j 6=i Cj, and thus, a strategy profile

is s̃ = (s̃i, s̃−i), where s̃i = (θi, φi, ci) ∈ S̃i and s̃−i = (θ−i, φ−i, c−i) ∈ S̃−i.
A Nash equilibrium of an algorithmic mechanism Γ̃ played in state t is a
strategy profile s̃∗ = (s̃∗1, · · · , s̃∗n) such that for any agent i ∈ N , s̃i ∈ S̃i,
G̃(s̃∗1, · · · , s̃∗n) ºt

i G̃(s̃i, s̃
∗
−i).

10

Working steps of the algorithmic mechanism Γ̃:

Step 1: Given an SCR F and a state t, if two following conditions are satisfied,
goto Step 3:
1) There exists t̂ ∈ T , t̂ 6= t such that â ºt

i a (where â ∈ F (t̂), a ∈ F (t)) for
every i ∈ N , and â ≻t

j a for at least one j ∈ N ;

2) If there exists t̂′ ∈ T , t̂′ 6= t̂ that satisfies the former condition, then â ºt
i â′

(where â ∈ F (t̂), â′ ∈ F (t̂′)) for every i ∈ N , and â ≻t
j â′ for at least one

j ∈ N .
Step 2: Each agent i sets card(i, 0) = (ai, ti, zi), and sends card(i, 0) as the
message mi to the designer. Goto Step 5.
Step 3: Each agent i sets card(i, 0) = (â, t̂, 0) and card(i, 1) = (ai, ti, zi), then
submits θi, φi, card(i, 0) and card(i, 1) to the simulating algorithm.
Step 4: The simulating algorithm runs in a computer and outputs messages
m1, · · · ,mn to the designer.
Step 5: The designer receives the overall message m = (m1, · · · ,mn) and let
the final outcome be g(m) using rules (1)-(3) of the Maskin’s mechanism.
END.

4.4 Amending sufficient conditions for Nash implementation

As shown in Ref. [2], in the quantum world the sufficient conditions for Nash
implementation are amended by virtue of a quantum mechanism. This re-
sult looks irrelevant to the macro world because currently the experimental
technologies are not commercially available, and people usually feel quantum
mechanics is far from macro disciplines such as economics. Here we will show
that by using the aforementioned algorithmic mechanism, the sufficient condi-
tions for Nash implementation can be amended immediately just in the macro
world.

Following Ref. [2], given n (n ≥ 3) agents, let us consider the payoff to the
n-th agent. We denote by $C···CC the payoff when all agents submit θ = φ =
0 in Step 3 of Γ̃ (the “collapsed” state chosen in Step 6 of the simulating
algorithm is |C · · ·CC〉). We denote by $C···CD the payoff when the first n− 1
agents choose θ = φ = 0 and the n-th agent chooses θn = π, φn = π/n (the
corresponding “collapsed” state is |C · · ·CD〉). Note that here |C · · ·CC〉 and
|C · · ·CD〉 are simply mathematical notions. $D···DD and $D···DC are defined
similarly.

Now we define condition λπ/2 as follows:
1) λ

π/2

1 : Given an SCR F and a state t, there exists t̂ ∈ T , t̂ 6= t such that
â ºt

i a (where â ∈ F (t̂), a ∈ F (t)) for every i ∈ N , â ≻t
j a for at least one

j ∈ N , and the number of agents that encounter a preference change around

11

â in going from state t̂ to t is at least two. Denote by l the number of these
agents. Without loss of generality, let these l agents be the last l agents among
n agents.
2) λ

π/2

2 : If there exists t̂′ ∈ T , t̂′ 6= t̂ that satisfies λ
π/2

1 , then â ºt
i â′ (where

â ∈ F (t̂), â′ ∈ F (t̂′)) for every i ∈ N , and â ≻t
j â′ for at least one j ∈ N .

3) λ
π/2

3 : Consider the payoff to the n-th agent, $C···CC > $D···DD, i.e., he/she
prefers the payoff of a certain outcome (generated by rule 1 of the Maskin’s
mechanism) to the payoff of an uncertain outcome (generated by rule 3 of the
Maskin’s mechanism).

4) λ
π/2

4 : Consider the payoff to the n-th agent, $C···CC > $C···CD cos2(π/l) +
$D···DC sin2(π/l).

Proposition 1: For n ≥ 3, given a state t and an SCR F that is monotonic
and satisfies no-veto:
1) If condition λπ/2 is satisfied, then F is not Nash implementable.
2) If condition λπ/2 is not satisfied (or put differently, condition no-λπ/2 is
satisfied), then F is Nash implementable. Thus, the sufficient conditions for
Nash implementation are amended as monotonicity, no-veto and no-λπ/2.

Proof : 1) Given a state t and an SCR F , since condition λ
π/2

1 and λ
π/2

2 are
satisfied, then the two conditions in Step 1 of Γ̃ are also satisfied. Hence, the
mechanism Γ̃ enters Step 3, i.e., each agent i sets ci = (card(i, 0), card(i, 1)) =
((â, t̂, 0), (ai, ti, zi)), then submits θi, φi, card(i, 0) and card(i, 1) to the algo-
rithm. Let c = (c1, · · · , cn).

Since condition λ
π/2

3 and λ
π/2

4 are satisfied, then according to Proposition 2
in Ref. [2], if the n agents choose s̃∗ = (θ∗, φ∗, c), where θ∗ = (0, · · · , 0︸ ︷︷ ︸

n

),

φ∗ = (0, · · · , 0︸ ︷︷ ︸
n−l

, π/l, · · · , π/l︸ ︷︷ ︸
l

), then s̃∗ ∈ N (Γ̃, t). In Step 6 of the simulating

algorithm, the chosen “collapsed” state is |C · · ·CC〉. Hence, in Step 7 of the
simulating algorithm, mi = card(i, 0) = (â, t̂, 0) for each agent i ∈ N . Finally,
in Step 5 of Γ̃, G̃(s̃∗) = g(m) = â /∈ F (t). Hence, F is not Nash implementable.

2) If condition λπ/2 is not satisfied, then no matter whether Γ̃ enters Step 2 or
Step 3, the aforementioned novel Nash equilibrium which yields the Pareto-
efficient outcome â will no longer exist. Hence, N (Γ̃, t) = N (Γ, t) for every
t ∈ T , where Γ is the traditional Maskin’s mechanism. Since the SCR F is
monotonic and satisfies no-veto, then it is Nash implementable. ¤

12

4.5 Discussions

Remark 3: Just like what we have seen in the quantum mechanism, the algo-
rithmic mechanism does not mean that the agents have the designer to design
a new mechanism to attain a Pareto superior outcome. From the designer’s
perspective, there is no difference between the algorithmic mechanism and the
traditional Maskin’s mechanism. As a comparison, the strategy space of each
agent has been enlarged in the algorithmic mechanism.

Remark 4: See Fig. 3(b) and Fig. 3(c), the introduction of complex numbers
is a novel idea to the theory of mechanism design. To the best of our knowl-
edge, up to now there is no similar work before. Indeed, this introduction
is indispensable for the amendment of sufficient conditions of the Maskin’s
theorem, because only by using complex numbers can quantum properties be
simulated in a computer.

Remark 5: Although the algorithmic mechanism uses complex numbers in
the simulating algorithm, it is a completely classical mechanism that can be
run in a computer. In addition, condition λπ/2 is also a classical condition.
Therefore, the sufficient conditions for Nash implementation are amended im-
mediately in the classical macro world (Note: here the phrase “macro world”
only stands for the computer or Internet world, where the algorithmic mech-
anism is meaningful).

Remark 6: The problem of Nash implementation requires complete informa-
tion among all agents. In the last paragraph of Page 392, Ref. [4], Serrano
wrote: “We assume that there is complete information among the agents...
This assumption is especially justified when the implementation problem con-
cerns a small number of agents that hold good information about one another”.
Hence, the fact that the algorithmic mechanism is suitable for small-scale cases
(e.g., less than 20 agents) is acceptable for Nash implementation.

5 Conclusions

In this paper, we go beyond the obstacle of how to realize the quantum mech-
anism, and propose an algorithmic mechanism which amends the sufficient
conditions for Nash implementation in the computer (or Internet) world. Also
in this paper, we discuss some possible criticisms on the quantum mechanism.

Since its beginning, the theory of mechanism design is always viewed as an
important branch of microeconomics. People seldom consider its relationship
with quantum mechanics. The two disciplines, mechanism design and quan-

13

tum mechanics, were not connected until the theory of mechanism design was
generalized to the quantum domain in 2011 [2]. Since the Maskin’s mechanism
has been widely applied to many disciplines, there are many works to do in
the future to generalize the algorithmic mechanism further.

References

[1] E. Maskin, Nash equilibrium and welfare optimality, Rev. Econom. Stud. 66

(1999) 23-38.

[2] H. Wu, Quantum mechanism helps agents combat “bad” social choice rules.
International Journal of Quantum Information 9 (2011) 615-623.
http://arxiv.org/abs/1002.4294

[3] T.D. Ladd, F. Jelezko, R. Laflamme, Y. Nakamura, C. Monroe and J.L. O’Brien,
Quantum computers, Nature, 464 (2010) 45-53.

[4] R. Serrano, The theory of implementation of social choice rules, SIAM Review

46 (2004) 377-414.

[5] J. Eisert, M. Wilkens and M. Lewenstein, Quantum games and quantum
strategies, Phys. Rev. Lett. 83 (1999) 3077-3080.

[6] L.G. Telser, A theory of self-enforcing agreements. Journal of Business 53

(1980) 27-44.

14

start_time = cputime

% n: the number of agents. In Example 1 of Ref. [2], there are 3 agents: Apple, Lily, Cindy
n=3;

% gamma: the coefficient of entanglement. Here we simply set gamma to its maximum .
gamma=pi/2;

% Defining the array of and .
theta=zeros(n,1);
phi=zeros(n,1);

% Reading Apple’s parameters. For example,
theta(1)=0;
phi(1)=pi/2;

% Reading Lily’s parameters. For example,
theta(2)=0;
phi(2)=pi/2;

% Reading Cindy’s parameters. For example,
theta(3)=0;
phi(3)=0;

���������
�� πωω == �

���������
�� πωω == �

��������
	 ωω == �

�
θ ��

�
���� �=φ

���	������������������������� ���
�

θ ��
�

���� �=φ

��π

���������	��
���

% Defining two 2*2 matrices
A=zeros(2,2);
B=zeros(2,2);

% In the beginning, A represents the local operation of agent 1. (See Eq 7)
A(1,1)=exp(i*phi(1))*cos(theta(1)/2);
A(1,2)=i*sin(theta(1)/2);
A(2,1)=A(1,2);
A(2,2)=exp(-i*phi(1))*cos(theta(1)/2);
row_A=2;

% Computing
for agent=2 : n

% B varies from to
B(1,1)=exp(i*phi(agent))*cos(theta(agent)/2);
B(1,2)=i*sin(theta(agent)/2);
B(2,1)=B(1,2);
B(2,2)=exp(-i*phi(agent))*cos(theta(agent)/2);

% Computing the leftmost and rightmost columns of C= A ⊗ B
C=zeros(row_A*2, 2);
for row=1 : row_A

C((row-1)*2+1, 1) = A(row,1) * B(1,1);
C((row-1)*2+2, 1) = A(row,1) * B(2,1);
C((row-1)*2+1, 2) = A(row,2) * B(1,2);
C((row-1)*2+2, 2) = A(row,2) * B(2,2);

end
A=C;
row_A = 2 * row_A;

end
% Now the matrix A contains the leftmost and rightmost columns of

�
�ω

�
ωωω ���

�� ⊗⊗⊗ �

�
ωωω ���

�� ⊗⊗⊗ �

�
ωωω ���

�� ⊗⊗⊗ �

�
�ω

�
ω�

15

���������	��
����������������������������������

% Computing
psi2=zeros(power(2,n),1);
for row=1 : power(2,n)

psi2(row)=A(row,1)*cos(gamma/2)+A(row,2)*i*sin(gamma/2);
end

% Computing
psi3=zeros(power(2,n),1);
for row=1 : power(2,n)

psi3(row)=cos(gamma/2)*psi2(row) - i*sin(gamma/2)*psi2(power(2,n)-row+1);
end

% Computing the probability distribution
distribution=psi3.*conj(psi3);
distribution=distribution./sum(distribution);

��
� ψψ += �

����
�

�� ������ ��� ωωωψ ⊗⊗⊗=

�� ψψ

�ψ �ψ �� ψψ

% Randomly choosing a “collapsed” state according to the probability distribution
random_number=rand;
temp=0;
for index=1: power(2,n)

temp = temp + distribution(index);
if temp >= random_number

break;
end

end

% indexstr: a binary representation of the index of the collapsed state
% ‘0’ stands for , ‘1’ stands for
indexstr=dec2bin(index-1);
sizeofindexstr=size(indexstr);

% Defining an array of messages for all agents
message=cell(n,1);

% For each agent , the algorithm generates the message
for index=1 : n - sizeofindexstr(2)

message{index,1}=strcat('card(',int2str(index),',0)');
end
for index=1 : sizeofindexstr(2)
 if indexstr(index)=='0' % Note: ‘0’ stands for

message{n-sizeofindexstr(2)+index,1}=strcat('card(',int2str(n-sizeofindexstr(2)+index),',0)');
else

message{n-sizeofindexstr(2)+index,1}=strcat('card(',int2str(n-sizeofindexstr(2)+index),',1)');
end

end

% The algorithm sends messages to the designer
for index=1:n

disp(message(index));
end

end_time = cputime;
runtime=end_time – start_time

�
��� ∈

�
��� ��� �� �

����	�	
���	��������	���	��������																								�
�
��� ��� �� �

� �

�

16

