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January 16, 2006

Kairat Mynbaev!, Aman Ullah?

Abstract

We derive the asymptotics of the OLS estimator for a purely autoregressive spatial
model. Only low-level conditions are used. As the sample size increases, the spatial
matrix is assumed to approach a square-integrable function on the square (0,1)2. The
asymptotic distribution is a ratio of two infinite linear combinations of x-square vari-
ables. The formula involves eigenvalues of an integral operator associated with the
function approached by the spatial matrices. Under the conditions imposed identifica-
tion conditions for the maximum likelihood method and methods of moments fail. A
remedial iterative procedure using the OLS estimator is proposed.

Keywords: spatial model, OLS estimator, asymptotic distribution, maximum likelihood,
method of moments
JEL codes: C13, C21

1 Introduction and Main Statements

We consider the model
Y, =pW,Y,+V, (1.1)

where Y,, is the observed n x 1 vector, p is the real parameter to be estimated, W, is a
predetermined n x n matrix, called a spatial matrix, and V,, is the error vector with zero
mean. Anselin (1988) classifies (1.1) as a first-order spatial autoregressive model. The
importance of (1.1) increases with the growth of the number of more complex models in
which the error itself is generated by a spatial model, such as

Y, =X, 0+ pW, Y, +V, (1.2)

where V,, = uM,V,, + U,.

Earlier development in testing and estimation of spatial autoregressive models has been
summarized in Anselin (1988), Cressie (1993) and Anselin and Bera (1998), among others.
Some of the recent references are Kelejian and Prucha (1999, 2002), Kelejian et al. (2004) and
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Lee (2001, 2002, 2003, 2004). It is widely recognized in the spatial econometrics literature
that the OLS estimator p of p is in general inconsistent, see, for instance, Section 6.1.1 in
Anselin (1988). Lee (2002) considers (1.2) and shows that, depending on the assumptions,
the OLS estimator can be consistent or can have an asymptotic bias. In the same paper
for model (1.1) he provides two examples of inconsistency. Kelejian and Prucha (1999) and
Lee (2001) have obtained asymptotic distributions of the ML estimator and the generalized
method of moments estimator.

The research in the above references has been moving towards relaxing the assumptions
and increasing generality. Along the way the conditions imposed and the results obtained
have become more complex. In this paper we move in the opposite direction: we look for sim-
pler conditions and results amenable to easy interpretation, perhaps by narrowing the area
of applicability. The highlights of the outcome are as follows. The asymptotic distribution of
the OLS estimator is a ratio of infinite linear combinations of y-square variables; none of the
existing sources captures this effect. No normalization is necessary to achieve convergence in
distribution. The denominator of the OLS estimator converges to a non-degenerate random
variable.

We assume i.i.d. errors and use only low-level conditions. The class of matrices corre-
sponds to the case when a particular economic unit is influenced by many others, so that
the interaction between units is stronger than in other researches.® Our formula may not be
applicable to another practically interesting situation when an economic agent is influenced
by a limited number of others, even as n — co. Because of the convergence in probability of
the denominator and numerator of the formula, it can be used for approximate calculations
by truncating the sums.

Intuitively, our result is explained as follows. Assuming that W, is symmetric with
eigenvalues A1, ..., \np and Vj, is distributed as N(0,021), it is easy to calculate the finite-
sample deviation from the true value

n 2 )\ni
. D ie1 Vi T—phn:
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Whether this ratio-of-quadratic-forms structure will be preserved in the limit, depends on
the assumptions. If the weights of v;’s tend to zero, normality may appear in the limit.
Under our conditions they do not.

Since there is asymptotic bias, we attempt to find alternative estimators. This problem
has been tackled by Kelejian and Prucha (1999) and Lee (2001), by using the maximum
likelihood method and method of moments. They have provided conditions for asymptotic
normality and unbiasedness of these estimators. In particular, Lee (2001) imposes the re-
quirement that a certain limit exist and be different from zero, which assures validity of the
ML and MM procedures. However, we prove that under our conditions that limit exists and
is zero?. Therefore under our assumptions the corresponding identification condition fails
and maximum likelihood or method of moments cannot be used. For these reasons we look at
the OLS estimator more closely and devise an iterative procedure that can be used for finite
samples. Again, the problem turns out to be more difficult than usual. It is not possible to

3We thank professors Ingmar Prucha and Lung-fei Lee for this and other comments.
4In his conditions, Lee introduces a special parameter h,, designed to accommodate different behaviors
at infinity. Under our conditions, the only meaningful choice is h,, = 1.



prove convergence of the sequence obtained. We indicate how its oscillating character can
be exploited to obtain a convergent sequence.

The methodology we develop is interesting in its own right. In particular, the way the
spatial matrices are modeled can be used to study more general models of type (1.2). It is
based on the idea of approximating discrete objects (sequences of vectors or matrices) with
functions of a continuous argument. Such an approximation allows one to widely use the
tools of the theory of functions. We rely on the rendition of this general idea contained
in Mynbaev (2001). The class of errors can be widened to include linear processes with
short-range dependence, at the expense of significantly lengthening the proof.

One conclusion that can be drawn from our exercise is that when dealing with (1.1) or
its generalizations, one has to work with an infinite series of type Yo, p"W/F*! in order to
avoid high-level conditions. The existing papers on spatial models do not treat such series.
To clarify, consider a simple autoregression y; = ¢; + coy;—1 + €;. In this model, one cannot
assume that dependence of y; on y;_; is essential, while all previous values of y are o0,(1).
Dependence on all previous values is a distinct feature of autoregressive models.

We start with describing our assumptions and then state the main results. The proofs
are given in Sections 2 and 3.

Assumption 1 (on the error term). For each n, one has V,, = (v, ..., v,) where vy, ..., v,
are independent, identically distributed variables with mean zero, variance ¢? and finite
moments up to juy = Ev}.

For the next assumption we need some notation. On the set of integrable on the square
(0,1)? functions we can define a discretization operator as follows. For an integrable function
K, d,K is an n X n matrix with elements

(d,K)ij = n/ K(z,y)dzdy, i,j=1,..,n,

where

Tij = {(93,?/) : ' n

are small squares that partition (0,1)?. Elements of a matrix A are denoted a;; and the
1/2

n

Euclidean norm of A is ||A|s = G

Assumption 2 (on the spatial matrices). The sequence of matrices {W,, : n =1,2,...}
is such that W, is of size n x n and there exists a function K which is square-integrable on
(0,1)? and satisfies

1
W,—d,Kl|a2=0|—]. 1.3
u l=o( =) (1)

It is evident that such classes of matrices exist. For example, one can take any function
K and put W,, = d, K, in which case the left side of (1.3) is identically zero. In Section 2
we show that Assumption 2 implies

max |wy;;| — 0, E | W] — 00, N — o0. (1.4)
/1’7

’ i.j

The first relation means that economic activities of a given unit have weak influence on
the other units, whereas the second can be understood as an increase to infinity in total

interaction between the units. Some properties often imposed on W,, in practice can be



readily visualized in terms of K . For example, in those applications which treat (1.1) as an
equilibrium model, it is customary to require W, to have zeros on the main diagonal. This
corresponds to K vanishing in the neighborhood of the 45-degree line. We would like to
stress, however, that in practice, when only one matrix is available, it can be approximated
arbitrarily well, so Assumption 2 is rather a mathematical restriction on the regularity of
the behavior at infinity of a sequence of matrices than an economic restriction.

Assumption 3 (on the function K). The function K is symmetric and the eigenvalues
Ai, ©=1,2,..., of the integral operator

(Kf)(x) = / K (2. 9)/ (y)dy

are summable: > o, [\;] < oo.

K is considered an operator in the space Ly(0,1) of square-integrable on (0, 1) functions.
Its eigenvalues \; and eigenfunctions f; are listed according to their multiplicity; the system
of eigenfunctions is complete and orthonormal in L,(0,1). For a symmetric and square-
integrable K, its eigenvalues are real and square-summable: >, A7 < co. The summability
condition we require is stronger because -

1/2
(Z A?) <D AL (15)

i>1 i>1
Necessary and sufficient conditions for summability of lambdas can be found in Gohberg and
Krein (1969).

The decomposition

K(z,y) = ZAifi(x)fi(y) (1.6)

i>1

SN = /01 /01 K2(z, y)dady (1.7)

1>1

and the identity

are important to understand both the result and the proof.
Denoting Z,, = W,,Y,, the regressor in (1.1), we have the following expression for the OLS
estimator p of p:
p=(2.2,)'2Y,. (1.8)
Put S, = I, — pW, and G,, = W, 5! when S ! exists.
Theorem 1. Suppose Assumptions 1, 2 and 3 hold.
1) If

1/2
ol < 1/ (Z A?) , (1.9)

i>1
then the matrices S, exist for all sufficiently large n and have uniformly bounded ||-||z-norms

and the bias equals
VGV,

VGG 1

p—p
2) If
ol <1/ IAdl, (1.11)

i>1
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then )
R d Zizl u;v(\;)
—

p pty T2 (1.12)
2iz 4V (N)
where u; € N(0,1) are independent and
Ai
)\i = .
v =15
3) (1.11) implies convergence
V(6% = o) -5 N(0, g — o) (1.13)
where )
62 = —1(Yn — WY (Y — pW,Yo)
n J—

is the OLS estimator of 2.

Remarks. The peculiarity of the fraction in (1.10) is that both the numerator and
denominator are non-trivial distributions (both series converging in L; and, consequently,
in probability), unlike many other econometric problems where the numerator is non-trivial
and the denominator is a constant. If the numerator in (1.10) or (1.12) has mean zero, it
does not necessarily mean that the whole fraction has mean zero (see Lemma 5 in Section 2
regarding (1.10)). Of course, infinite summation adds a lot of complexity. The characteristic
function of an infinite weighted sum of y-square variables has been found by Anderson and
Darling (1952) (see also Varberg (1966)). Because of convergence in L; of the numerator and
denominator in (1.12) the whole fraction converges in probability. Therefore by truncating
the sums an expression for approximate calculation of the fraction can be obtained.

The next issue is to find a better estimator which would converge in some sense to the
true parameter. Lee (2001) has proved that under some conditions the Quasi-Maximum
Likelihood Estimator (QMLE) for (1.1) is consistent and asymptotically normally distrib-
uted. One of key elements in his proof consists in applying White’s (1994) identification
uniqueness condition. Lee has developed conditions sufficient for local and global identifica-
tion. Those conditions involve positive numbers h,, which in our case should be chosen to be
identically 1 (for the statement of his Theorem 2 to be true). Then the local identification
condition takes the form

1 2
the limit of the sequence —[tr(G),G,,) + tr(G?) — =tr*(G,,)] exists and is positive (1.14)
n n
and the global one looks like this:

for any p different from the true value py the limit

1
lim — (In|ogS, 'St —In|o2(p) S, ' (p) S (p)]) exists and is not zero  (1.15)

n—oo M,

where

o2(p) = (S, S (0)Su(p) S, ).

n

Another avenue to think about is the method of moments considered by Kelejian and
Prucha (1999) for the problem under consideration. Lee (2001) has simplified their approach



and worked out an identification condition stated in terms of a 2 x 2 matrix A,, with elements

1
an11 = Q[Ynf”;f”nyn _tr([[ylL[[n)_Yé”nYn]y
n

1
e = =Y WPW2, + te(W W)=Y/ W' W, Y,,,

n
o1 = YWY, +YW'W,Y,, Gnae = Y, WW,Y,,.

Both versions of the method of moments considered by Lee (2001) require the limit

plim lAn (1.16)
n—oo 1
to exist and be nonsingular.
Theorem 2. Under the assumptions of Theorem 1 the limits in (1.14), (1.15) and (1.16)
are zero.
Without the consistency of QMLE, the derivation of the asymptotic distribution based

on the formula

. 82InL,(5)\ " 9ln Ly (p)
does not work. Here In L, (p) is the log likelihood function (see (1.18) below) and p lies
between pgarr and p.

The problems we have just described force us to analyse the OLS estimator more closely.
The solution we have found has its limitations and advantages. Firstly, we have not been
able to prove that the procedure described below gives a consistent estimator. Rather, it
is essentially a finite-sample instrument which answers the question: if only one sample
is available and the OLS estimator has been obtained, then how that estimator can be
improved? Secondly, unlike the ML estimator, it is an iterative procedure with a well-
defined initial point: the OLS estimate. Thirdly, its format parallels the asymptotic result
in Theorem 1. Namely, from the point of view of (1.12), instead of requiring plimp = p
(consistency) it would be correct to require

plim p = p + k where Fx =0 (1.17)

and in Theorem 3 we try to satisfy this condition. Finally, the ensuing discussion will be less
rigorous than the preceding one in that we shall impose one high-level condition on matrices
W,. It is possible to obtain such a condition as a consequence of a low-level one but we
refrain from doing that to maintain transparency. Plausibility of the new assumption will
be seen from Lemma 6 of Section 2. Besides, the error term will be assumed to be normal.
This will enable us to use exact results about ratios of quadratic forms of normal variables.

The expression for the ML estimator will help the reader to understand the idea behind
our construction. The ML estimator has been derived in a more general situation by Ord
(1975), among others. In our case the log likelihood function is

1
In L, (0) = _g In(27) — gln o+ 1S (p)] = 55 (Vo = pWLYa) (Ve = oW, Ys)  (L18)



where 6 = (p, 0?). Using (3.35) we get

OlnL, (0 1
nap( ) _ —tr(W,S(p)) — o (YWY, — YWY, + 2p(W,Y,) W, Y,)
g
1
= —tr(WoS, (p)) + =5 (YWY, — p(W, Y, )W, Y,),
o
Oln L, (6) n 1 1
e L L (Y, — oW Y (Y, — oW, Y,).
do? 202 +204( n = PWadn) (Yo = pWa¥s)

The first-order conditions for maximization of In L, (6) give the estimators

) Y WY, — 63t (WS (p) )
PML =

1
:_Yn_ nYn/Yn_ nYn .

Of course, these estimators are not feasible as they contain an unknown p.

Since the OLS estimator and the formula we suggest below do not change if W, is replaced
by its symmetric derivative (W,, + W))/2, we can assume without loss of generality that all
of W, are symmetric. Then each W, can be represented as

W, = P,diag[\.1, -.; Apn] P, (1.19)
where A1, ..., Ay, are eigenvalues of W, and P, is an orthogonal matrix: P, P, = I. Denote

n

1/2
Ta(t) = [Hu + 2t1/2()\m-))] :

i=1

c—/Ooi c~—/oo di 1=1 n
) m )T )y m () 2t2(Ny) T

These integrals converge if n > 2. Let

A, = P,diag [@ C"—”} P,
Cn Cn

Iterative procedure. Estimate p and o by OLS and put

R Y'W,.Y, — 62tr (A W,S(p;_
o=, pj = ( (py=1))

=1,2, ...
(WnYn)/WnYn y J ) “y

For analytical purposes we rewrite the recurrent formula as

_ VISITLGLV, — 6%t (AW, S (pio1))
B VG GL Vi, ’

p; i=1,2, ... (1.20)

Instead of Assumption 1 we make a stronger

Assumption 1'. V, is distributed as N(0,c%I,,).

The high-level condition we talked about above is

Assumption 4. The sums Y, [A\,;|? are uniformly bounded for some p < 2.
It can be shown that (1.3) implies

Jij&i&i = iAf (1.21)
=1 =1
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(see Lemma 6 in Section 2) and that a condition stronger than (1.3) can be imposed on the
sequence {W,} to make sure that Assumption 4 is satisfied. See Gohberg and Krein (1969),
Chapter III, for more information.

Theorem 3. Suppose Assumptions 1’, 2, 3 and 4 hold. If the true p satisfies (1.11), then
there exist random variables k,1, Kn2, kn3 and a deterministic function ), such that

p
Pj = p+ Kn1+ En2 + /{ng/ U (t)dt, (1.22)
Pj—1
Er,1 =0 for all n, plimk,s =0, (1.23)
1
limkpys = =————, 1.24
P s Zizl uiv? (i) ( )

where u; are independent standard normal, and k,3 and 1), are positive almost everywhere.
Property (1.23) is in line with (1.17).
Denote hj = p; — pj_1 the step from p;_; to p; . Then (1.22) implies

Pj—2
Pj-1

The main point about this formula is that successive steps are made in opposite directions.
For example, suppose that the step hy is positive ( p; > po = p). Because of positivity of
Kns and 1, (1.25) gives hy < 0 (p2 < p1). We have not been able to prove convergence of the
sequence {p;}. Even convergence of the steps to zero is not guaranteed. By the mean value
theorem |h;| = K31, (p)|hj—1| where p lies between p;_» and p;_;. Since in general x,,31,(p)
is not less than 1, the steps may not decline. Our suggestion is to apply one of methods of
summation of divergent series to the sequence of steps. Such methods have a good feature
that if the original series actually converges, its generalized limit ascribed by a summation
method gives the same value. The simple average in p+ 1/n Z?:1 h; is a particular case of
Cesaro methods (see Hardy (1949) for details).

2 Auxiliary Statements

Depending on the context, || - || may mean any of the norms
1/2 1 1/2 11 1/2
2]l = (Zﬁ) Al = (/ f2(x)d:v> , K2 = (/ / KQ(:L’,y)dxdy) .
el 0 o Jo

Here the set of indices I can be finite or infinite. (-,-);, denotes the scalar product associated
with the norm || - [|o.
Let (£2,F, P) be a probability space. Among the norms

=/ |X<w>|de<w>)l/p, 1 <p <o

| - ]l1 and || - || will be particularly useful. A limit in distribution is denoted —%, or dlim.
Likewise, symbols —— or plim are used interchangeably for limits in probability.



¢, €1, C,... will denote various inconsequential positive constants (which do not depend
on the variables of interest). For an n x n matrix A we find it handy to use the notation

N(A) = (E(V;Avnf) v

Lemma 1. a) With any square matrix A such that |p|||A||, < 1 one can associate the

matrix -
S(A) _ Z,OkAIH_l'
k=0

If [p| [|Wa]l, < 1, then G, = s(W,,).
b) For square matrices A, B and all integer k > 0

[ A = BHY|, < || A = Bll, (k + 1) (max {||All,, | Bll,})" (2.1)
c¢) For square matrices A, B such that |p| max {||Al|,,|B]l,} <1 one has
Is(A) = s(B)ll, < ¢(p, A, B) |A = Bl|, (2.2)
where
k
p(p, A, B) =Y (k+1) (|plmax {[|A]l,, || Bl|,})" < oo.
k>0
d) If V,, satisfies Assumption 1 and A, B are square matrices of order n, then
N(AB) < c|All, Bl - (2.3)
In particular, by choosing B = I we get
N(A) < evn|All,. (2.4)
e) Under the same conditions as in d) for all £ > 0
N (A¥ = B < ¢ | A = B, (k + 1) (max {||All,, | Bll,})" - (2.5)
Proof. a) follows from the well-known fact that if ||A|| < 1 and the norm ||-|| is submul-

tiplicative (|[AB| < || Al | B]|), then the series )~ ., A* converges and represents (I — A)~".

We apply this fact to S ' and multiply it by W,, to obtain G,,.
b) For k =0, (2.1) is trivial. If £ > 0, then the identity

AR Bl — AR(A — B)+ A" Y (A—B)B+ ...+ (A—-B)B*

and submultiplicativity of the norm ||-||, give the desired result:

IN

|4 = B < JAIS 1A = Bll, + ..+ |A— B, |1 BII}

1A= Blly (k + 1) (max {|| Al [|Bll,})"

IN

c) (2.2) follows from (2.1):

ls(A) = s(B)lly < Y ol |4 = B, < wlp, A, B) | A = B,

k>0

(2.6)

(2.7)



d) For any square matrix A of order n Lee’s (2004) Lemma A.11° yields
N(A) < c([[Ally + [erAl) . (2.8)

Since [|AB|, < [|All; || Bl, and |tr(AB)| < [|A]l, | B, (2.8) gives (2.3).

e) Because of the growing factor y/n in (2.4), it is not a good idea to estimate the left
side of (2.5) using (2.1). Instead, we apply identity (2.6) directly (this is why the assumption
k > 0 is important). By (2.3) and Minkowski’s inequality

N (AM' — BM1) < N (A¥(A-B)) +..+ N((A— B)B*)

k k
< c(IA 1A~ Bl + . + 1A~ BI,IBI)
The rest is the same as in (2.7).

We use several operators which relate functions of discrete and continuous arguments to
one another. One of them, the discretization operator d,, defined in Section 1, possesses the

property
|d. K], < | K], for all K and n (2.9)

(just apply Holder’s inequality to prove). The interpolation operator D, takes a square
matrix A of order n to a piece-wise constant function on (0, 1)? according to

n
DnA =n E aijlqi].
4,j=1

where 1g stands for the indicator of a set S: 1g(z) =1, if x € S, and 1g(x) =0, if v ¢ S.
D,, preserves norms:

I1DnAll, = [[Al, - (2.10)
The product D,,d,, coincides with the Haar projector P, defined by
P, K =n? Z K(z,y)dzdyl,,.
ij=1"
Its main property is that it approximates the identity operator:
lim ||P,K — K||, =0 for any K € L, ((0,1)*). (2.11)

Denote ¢; = {x eR: Hcrc %} , i =1,...,n. One-dimensional analogs of d,, and D,,

n

are defined, respectively, by
(dof); = \/ﬁ/ f@)de, i=1,.n, f€Ls0,1),
i

and

D,x = \/ﬁz xily, v € R™
i=1

They possess properties similar to (2.9), (2.10) and (2.11).

®See his supplement available at http://economics.sbs.ohio-state.edu/lee/
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Lemma 2. a) Assumptions 2 and 3 imply
tun [0, =l 1, = K, 212)
and
W — duK]l, = 0 <%) | (2.13)

b) Consider any orthonormal system {f; : ¢ > 1} in L9(0,1). For a collection of indices
i = (i1, ..., i+1), where all of 4;’s are positive integers, denote

Loni = { (dnfiudnfiz)lz(dnfiwdnfi3>l2“-(dnfikadnfik+1)lza if k> 07

1, if k=0,
and
o 1, (ilzigz...:ik_‘_l andk:>0) or (/{3:0>,
Hooi = 0, otherwise.
Then for all ¢

c¢) Denote the two-dimensional discretization operator by d? and its one-dimensional
counterpart by d.. If F(x,y) = G(z)H(y), then (&2F),, = (d.G), (dLH), for s,t =1, ...,n.

d) If |W, —d,K|, — 0, then (1.4) is true. A similar property holds in the one-
dimensional case.

Proof. a) Continuity of norms and (2.11) yield ||P,K|l2 — ||K|l2. [|[dnK]|l2 — [ K]2
follows because by (2.10) ||d, K ||2 = || Dndn K||2 = || P K ||2. To prove the other equation in
(2.12) note that by (2.10), (1.3) and (2.11)

HDan - KHZ < HDan - PnKH2 + HPnK - KHQ = HWn - dnKH2 + HPnK - KHQ — 0.

Therefore |Wy|l2 = ||DuWall2 — || K]|2-
To prove (2.13), observe that (z,y) € g;; if and only if (y,x) € ¢;; and, therefore, for a
symmetric K, d, K is also symmetric. Thus,

1
W) = duKllo = (W = duK)'lo = [ Wi — duK]|> = o (%) |

b) It is easy to check that D, preserves not only norms but also scalar products. For
example, in the one-dimensional case that we need right now

(any Dny)lz = <x7y)l27 T,y € R™.
Using this fact, continuity of scalar products, and (2.11) we see that

(dnfis dnfi)i, = (Pafis Pafi)ie — (fis fi)ie = { é: z ;?

Turning to (2.14), if £ > 0 and among iy, ..., {541 there are at least two different indices, then
at least two adjacent ones must be unequal. Hence, (2.14) is a direct consequence of (2.15).
c) obtains by calculation.

(2.15)
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d) First note that

max |wnij| < HWn - dnKH2 + max |(dnK)”|
2,] 2,7

and then that by Holder’s inequality and absolute continuity of the Lebesgue integral

1/2
< </ KQ(x,y)dxdy) — 0, n — o0
Qij

uniformly in ¢,j. This proves the first of the limit relations in (1.4). By (2.12) for some
c > 0 we have ¢ < [|[W,]13 < [|[Wallso|Wa |1 which implies ||[W,, |1 > ¢/||Wh|lee — oo-
For natural n, L consider the random vector

Zgzl(dnf1>svs Védnfl
U, = =

Z::l (dnfL)sVs Vod, fr,

We need the following two-dimensional function of U, r.:

St = éUguy(A,-) ( V&i) ) .

The limiting behavior of §,,;, is described in terms of the vectors

A, — U?é;ugy(Ai) ( V&i) ) A= a2§;u?u(Ai) < 1/(1)\1') )

where u; are independent standard normal.

Lemma 3. Let V, satisfy Assumption 1 and suppose that {f;: i =1,2,...} is any
orthonormal system in L9(0,1). Then

a) For any fixed L

[(dnK)i] =n

/ K(z,y)dzdy
qij

n—oo

L
lim Ed,, = EAp = U2ZV ( ) ) : (2.17)

n—oo

L
4 2( v(A)
JLIEO var(d,z) = var(Ar) = 20 Z;I/ ( ) 200 ) . (2.18)
b) If
> ()| < oo, (2.19)
i>1

then
AP A L as L — oo (2.20)

and

L—oo

lim var(Ap) = var(Ay) = 20! Z v ( ) :2((/\);)) ) . (2.21)
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Proof. a) The central limit theorem from Mynbaev (2001) states that under the conditions
of the lemma for any L

Unr, —5 N(0,0°11), var(U,.) — oI as n — oo. (2.22)

The vector d,,, is a continuous function of U, r. Since U2, L o?u?, n — oo, (2.16) is true.
The second relation in (2.22) implies (2.17):

L
1
Ebu, =Y v(\) ( V) ) EU?,, — EA;.

i=1
To prove (2.18), we start with

var(d,r) = FEbu10,, — EdyEo,;
L

= Z (EUstUsLJ EUngEUSLJ) v(Av(A) ( V(}\j) l/(;\/z());())‘ﬂ) ) .

4,j=1

Here

n 2 n 2
EU2 UnLj - (Z d fz sU s) (Z(dnfj)pvp)
s=1

p=1
S @A) Bty
s,t,p,q=1
From Assumption 1 it follows that
ol if (s=t)#£(p=q)or (s=p)#(t=¢q) or (s=¢q) # (t =p),

Evsvvpv, = ¢ e, if s=t=p=gq,
0, in all other cases.

Hence,
EU2 U’n,Lj = Z d fz Z d f] Z(dnfi)S(dnfj)s Z(dnfi)p(dnfj)p
s=1 p=1 s=1 p=1
+u4z<dnfi)§(dnfj>§

s=1

= " [[ldn fill3 I dnfill + 2(dnfis dnfi)1,] + pa > (dnfi)2(dn )7
s=1

By Lemma 2d) and (2.15)

L, 1=y,
HdnfiHQ — 1, (dnfi7dnfj)lz - 51'3' - { 0, i #j, msax‘(dnfi)s‘ — 0,

so that

n

> (dnfi)2(dnfi)s < max(daf)? 1 dnfll; — 0

s=1

13



and
EUZLZ.USLJ. — o (1 + 24;), EUjLZ.EUZLj — o for all 4, 5.

These equations together with the formula for var(d,;) above prove that the left and right
members of (2.18) are equal.
Standard normal variables satisfy py = 30* = 3, so

V&I‘(AL) = EALA/ —EALEA/

) 1 V(/\z)
— Z (Buiu; — 1) v(A)v(A)) ( v(A) v(A)r()) )

7,7=1

\ L ) 1 v(Ai)
s ZZ:;(g— D) v(\) ( v(\i) v()r(\) )

— 2y (L4 )

b) Inequality (1.5) applied to {v(\;)} and condition (2.19) show that both components
of Ay, converge to those of Ay, in L1(€2). (2.21) is proved similarly to (2.18).

Lemma 4. Suppose that for each L, d,, 4, Ar as n — oo and that A LN Ay as
L — oo. Suppose further that

llm limsup P(|Xn1 — nra| + [ Xn2 — dnre| >€) =0

L—oco pooo

for each positive €. Then X, LN Ao as n — 00.
This is just Theorem 4.2 from Billingsley (1968) with the notation adapted to ours.
Lemma 5. One has
0<cp<c,<oo,i=1,..n, (2.23)

(B ) o o

Proof. (2.23) is obvious (¢, < oo because n > 2). Hoque (1985) has proved that if S and
B are symmetric matrices, B is positive definite and u ~ N(0,€2), then

and for u ~ N(0,0°1)

E (“ S“) - / I + 26QB| "2 [(I + 2tQB) ' QS]dt
u' Bu 0

In our case
S = diag[v(An1), s v(Aun)], B = diag[*(An1), -, V2 ()],
Q= 0%, I+ 2tQB = diag[l + 2to*v*(\u1), ..., 1 + 2to*v* (M),

a?v( A1) o?v(Ann)
14 2to?v2(\)” 14 2t02v2(N\n) |

(I +2tQB)'QS = diag {

Then

ZZL 1 ufy()‘m) . o Ugy()\m) dt B n | |
) (Z@ et )) ) 2 T O o)~ 2o O (229)
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On the other hand, formula (10) from Jones (1986) yields

o’ gt
b - = Cn- 2.26
(Z?:l U?’ﬂ()\m;)) /0 7 (t) ¢ ( )
Combining (2.25) and (2.26) we get

P ) - (Shac)

- Z CniV(Ai) E (Z?zl U?VQ(AM)) =cp Z Cni(Ani) — Cn ' Cni(Ani) = 0.

i=1

Lemma 6. (1.3) implies (1.21).
Proof. To avoid ambiguity, we restate the definitions of interpolation operators given
earlier, in the form we need now: for an n X n matrix W,, and z € R" put

n n
2 _ 1, _ )
DWW, =n g Wnijle,, Dpz = N E zilg,.
i=1

ij=1

Denote W, the integral operator

W) () = / (D2W,0) (2, 9) f(4)dy.

The first part of the proof consists in showing that there is a one-to-one correspondence
between the set of non-zero eigenvalues of W,, and a similar set of W,. Let W,z = Az with
some A # 0 and z # 0. Put f = D}z. If € [0, 1], we can assume that = € ¢; for some i
(thereby neglecting a finite number of points). Then

(D’?LWTL)(‘/L‘7y) - nzwmjlqzw f(x) = \/ﬁzzﬁ

J

so that

Whf)(x) = Z / “Zwmﬂqﬁ Vnzidy = anij\/ﬁ%’ = Af(z).

Since f is nontrivial, A is an eigenvalue of W, (in this part of the proof the assumption A # 0
is not necessary). Conversely, let A # 0 be an eigenvalue of W,,. Suppose = € ¢;. W,.f = \f

implies
w3 | )y = Af(a).

Since the left side is constant and A # 0, f is constant on ¢;: f(z) = z;. Hence, the last
equation yields >  Wnij2j = Azi, 1 =1,...,n,or W,z = Az. z is nontrivial because otherwise
f is trivial.

The statement we have just proved is sufficient for our purposes because the sums in
(1.21) are not affected by zero eigenvalues. In the second part of the proof we need some
facts from Gohberg and Krein (1969). s-numbers of an operator A in a Hilbert space H are

15



defined as eigenvalues of the operator (A’A)Y% s;(A) = \;((A’A)Y?). The facts we need
are:
1) For self-adjoint operators s;(A) = |\;(A)| (p. 27),
2) For an integral operator I with a square-integrable kernel K one has ||K||; =
o 1/2
(30, 52(K)) " (pp. 108-109),

3) The expression ||A|,, = (35, s?(lC))l/p, 1 <p < oo, isanorm (p. 92).

These facts and (1.3) give

n 1/2 0 1/2
(Zﬁ) —(Z&z) = [[Wallo, = [IKllo| < [Wa = Kllo, = [[Wn = K[l2 — 0.
i=1 i=1

3 Proofs of Main Results

Proof of Theorem 1
1) Due to identity (1.7), condition (1.9) is equivalent to

Pl < 1. (3.1)

Hence, |p|||K||2 < 1 — 2¢ for some sufficiently small € > 0 and then (2.12) shows that there
exists ng = ng(e) such that
sup [pf[[Walls <1 —e. (3:2)

n>ng

By Lemma la) G,, = s(W,,) exists and, moreover,

[Wally

1Gally < D 1o IWall5* = — 2
222 L 1= ol Wl

k>0

< ¢ for all n > ny. (3.3)

The reduced form Y,, = S 1V, of the basic model (1.1) and (1.8) lead to (1.10) in the usual
way:
p=(Z,2,) " Z)(pZn + Vo) = p+ (ViGrG Vo) VG Vi,

2) Here is the plan of the proof. The numerator and denominator of (1.10) will be con-
sidered coordinates of a new random vector X,,. X,, will be approximated by another vector
with s(d, K) instead of G,, = s(W,,). That second vector, in turn, will be approximated by
yet another vector with s(d, K ) where K, is an initial segment of (1.6):

Ki(r,y) = Z)‘zfz(x)fz(y) (3.4)

To this last vector we shall be able to apply Lemma 3. Billingsley’s Lemma 4 will help us
to handle a double-indexed family of vectors that results in the course of the proof.
The scheme we have just explained is realized through the representation

Xn = o, + 6nL + YnL + 5nL (35)
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where

Y — VoG Va _ V(G — s(doK)) Vi,
"\ VIGLGLV, ) T\ VGG, — $2H(dK))V,

( VI(s(doK) = s(d, K1) Vi o V!s(d,KL)V, 5o
B = V! (s*(doK) — $*(d K1)V ) L=\ VI(d KLV, ) O

0,z has been defined before Lemma 3. Our goal is to show that «,,, §,1, and v, are negligible
in some sense and therefore 9,7, represents the main part of X,,.

Bounding «,. We evaluate coordinates of the alphas, betas, and gammas separately.
Using (2.4) for k = 0 and (2.5) for positive k, we have

n

lamll, = N (Z P (W) = (dnK)’““)) <N (W, —dnK)

k>0

+ ) [N (W)F = (da K)*HY) < e/ [|W), = do K|

k>0

k
Fel|Wy = duklly Y (k + 1) (o] max {[[Wy ], [da [, 1)" (3.6)

k>0

Because of (1.5), assumption (1.11) implies (1.9) and, consequently, (3.1). Hence, in the way
we derived (3.2) we can now derive

sup [p| max {[|[W,l,, ldn K|l ,} <1 —e. (3.7)

n>ng
This allows us to continue (3.6) using (2.13)
lamlly < ev/n W), = dn K|l = 0 (1) (3.8)

Repeating the argument which led us to (3.3) we can assert that for the ¢ from (3.7)
there exists ng = ny(e) such that

sup |Gy, < 0o, sup ||s(d,K)]|, < oco. (3.9)
n>ng n>ngo
By (2.2)
!/
G, = s(dnK)ly = |G = s(dn K) |y < ¢ [[Wn — dn K|l (3.10)

where we have used the symmetry of s(d,K) (see the proof of Lemma 2a)) and the fact that
o(p, Wy, d,K) < oo because of (3.7). Now we may use (2.3), (3.9) and (3.10) to obtain

laally < N ((G), = s(daK))Gr) + N (s(dn ) (Gn — s(d K)))
< c(||G}, = s(dnK)||2||Grll2 + ||s(dn K)||2]|Gr — s(dnK)|]2)
< | W, — doK],. (3.11)

Bounding ,p. For any 1 < L < M < oo we can write by Lemma 2c)

<dn (Z )\ifi(x)fi(y)>> = Z Xi(dnfi)s(dnfi)e, s,t=1,...n (3.12)
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(here the d,, at the left is two-dimensional and at the right one-dimensional). Since for any
n,i,j by the Cauchy-Schwartz inequality and (2.9)

|<dnfi7dnfj)l2| < ||dnf1||2 Hdnfsz < ||f1||2 ”f]”z =1, (3.13)
we deduce from (3.12)

dy, (Z )\zfz<x)fz(y>>

2

= Z Z )\i>\j(dnfz‘)s(dnfi)t(dnfj)é’(dnfj)t

2 s,t=114,j=L
M M 2
= D AN(dafidafy)i, < (Zw) .
i,j=L i=L

This bound along with decompositions (1.6) and (3.4) of K and K7, produces three particular
cases:

K lly < Y Nl ldaKLlly <Nl 1daK = duKLlly <) A (3.14)

i>1 i>L i>L

The last bound will be used for estimating the terms in [, with & > 0. For k£ = 0, (2.8),
(3.12) and (3.14) give the inequality

> X ldafill;

i>L

N(d, K — d,K;) < ¢ (||dnK — d Ky |, +

) <a) N (315)

i>L
Overall, utilizing (2.5), (3.14) and (3.15) we can bound the first component of 3, as follows

1Barally < N(dnK —doKp) + > [pl*N ((dp ) = (dn K )F)

k>0
k
< ad [NlHed MDD (k+1) <|p|Z|Ai|> <) M (3.16)
i>L i>L k>0 i>1 i>L

It is important that co here does not depend on n.
(3.14) trivially leads to the bound

max {||s(dK)|ls . Is(daKp) o} < D 1ol* (Z |M> <c (3.17)

k>0 i>1

which is uniform in n and L, while (2.2) and (3.14) guarantee that

5(dnkC) — s(duEK1)lls < clldn — dEplls < > N (3.18)

i>L
where

c=v(p,d,K,d,Kp) < Z(k +1) <|p| Z ]AA) < 00.

k>0 i>1
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It follows from (2.3), (3.17) and (3.18) that
1Barally < N ((s(dnK) — 5(dnKp))s(dnK))
+N (s(dnKL)(s(dnK) — s(dnKL)))
< lls(dnk) = s(dnK1)[2(|s(dn )|z + |5(dnKp)l2) < 2 Y [Nl (3.19)
i>L
Estimating 7,r. Using formula (3.12) it is easy to show by induction that (see Lemma

2b) for the notation fi,; )

k+1

(A B = > TN ni(dnfi)s(dnfiy )i (3.20)

Uyenyip 1 <L j=1

Hence, in terms of the vector U, used in Lemma 3

Vis(daK )V = > > pM(dnKL) 5 o0
s,t=1 k>0
k+1

= > 0" > T snilUniiUnii,-

E>0  d1,einp1 <L j=1

We need to express 0,7, in similar terms. Replacing 1/(1 — pA;) by >7,-,(pAi)* gives

L L
5nL1 _ Z USLZ Z pk)\ikJrl _ Z pk Z )\ik+1U2Li’
=1

k>0 k>0 =1
Since fio; vanishes for ¢ with different components, this is the same as

k+1

OnL1 = Z,Ok Z H i tooiUnLiy UnLiy . -

k>0 d1,.ig 1 <L =1

The result is the representation

k+1

VoLl = pk Z H )\ij (/Lm - ,Uooi)Uanj UnLik+1 (321)

E>0  d1,ening1 <L j=1

which can be used for bounding.
By the Holder inequality, (2.8) and (3.13) for any 1, j

1/2
BlUwilnss| < [E(VidafiVidof;] " = N(dufiduf))

" 1/2
< ¢ (Z(dnfz)i(dnfj)?> +

s,t=1

n

> (dnfi)s(dnf;)s

s=1

= C [||dnfz||2 HdnfjHQ + |(dnfivdnfj>l2|] <. (3'22)

According to (2.14), for any positive (small) ¢ and (large) L we can choose ng = ng(e, L) so
large that
|fni — tooi| < € for all n > ng and 4y, ..., 7541 < L. (3.23)
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Finally, we conclude from (3.21), (3.22) and (3.23) that for all n > ng
k+1 k+1
Elyar| < 0152 |ol* Z H As,| < 0162 |ol* (Z |Ai ‘) = C2€. (3.24)
k>0 i1y <L j=1 k>0 i>1
For numbers or square matrices a one has the identity
2
(Z ak> = Z aFth = Z am(m+1) (3.25)
k>0 k,1>0 m>0

because there are (m + 1) pairs (k,[) such that k + [ = m. If one chooses a = pd,, K, here
and then applies (3.20), one gets

2
Vi (d,Kp)V, = V! (Z(pdnKL)k) (A1) Ve =V~ p™(m+ 1) (dn K)™ 2V,

k>0 m>0
= Zp m+ 1 Z(d K)o,
m>0 s,t=1
m+2
= Z p m "‘ Z H )\z] ,UannLu Uanm+2 (326)
m>0 1] 5eees im+2§L _]=1

Application of (3.25) also provides another expression for

OnL2 = ZUng)\zQ (Z ) ZUng)\zQZ Ai)™ (m+ 1)

k>0 m>0
= Z p™(m + 1) Z U2 A2
m>0

Since jio; = 0 if among the indices iy, ..., 7,12 there are at least two different ones, d,r2
equals

m+2
OnLo = g p"(m+1) E H Ai; BooiUnLis UnLiyy 4o
m>0 i yeeim 2 <L j=1

Therefore, taking into account also (3.26), we can rewrite 7,12 as

YnL2 = VASQ(dnKL)Vn_énLZ

m+2
= Z pm (m + ]-) Z H )\zj Hni — ,uooz)Uanl Uanm+2
m=>0 i1, sim42 <L j=1

As above, application of (3.22) and (3.23) leads to an analog of (3.24): for any positive ¢, L
there is ng = ng(e, L) such that

m—+2
Elynre] < cie Z [p|™(m + 1) Z H Ay | < cae (3.27)
mZO 1] 4eeey Zm+2§LJ 1
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for all n > ng.
Proving (1.12). Under condition (1.11) we have

0<c¢ = 1—|P|Z|)\z’|§1—|P)\i|§|1_0)\i|

i>1
< T+ [ph| <1+ [pl Y [N = < o0, alli
i>1
so that
M o< (3.28)
(&) C1

where ¢; and ¢, depend on p. Hence, the condition ., [Ai| < oo is equivalent to (2.19),
and we can use (2.16) and (2.20).
(3.8) and (3.11) show that plim o, = 0. From (3.16) and (3.19) we have by the Chebyshev

inequality
(‘6nL1|+|6nL2| >€ H|ﬁnL1’+|/6nL2|H2 < _ZP\ |
i>L
where ¢ does not depend on n. From (3.24) and (3.27) we conclude that for any fixed L
plim Ynr = 0. Thus, (3.5) implies

n—o0

limsup P(|Xn1 — 0pra| + [Xnz = dnr2| > €) < _Z [Adl-

nmee i>L
All conditions of Lemma 4 are satisfied and, consequently,

dlim X,, = A,

By the continuous mapping theorem (Theorem 5.1 from Billingsley (1968)) it follows that

an o Aool
Xn2 B Ac>02

dlim (A — \) = dlim

which is (1.11). Theorem 5.1 is applicable because A, > 0 almost surely.
3) Proving (1.13). In the definition of 6% we may as well put n instead of n — 1. Substi-
tuting S, (p)S; ' =1 — (p — p)G,, we have

rQr—-1qr (A A —1
VnSn Sn<p)Sn(p)Sn Vn_\/ﬁoj

n
ViVa—no® L p=pViGiVi | (p= ) ViGuGuVa

Vil - o?) = Vi

- \/ﬁ n né nl/2-e ne nl/2—¢
> (v —a?) p—pP Xm (p—p)? X
- \/ﬁ +2 né nl/2-¢ + ne nl/2—e’ (329)

Here € € (0,1/2) is arbitrary. From the proof of Theorem 1 we know that X1, X2, p —p
and (p — p)? converge in distribution. Therefore the second and third terms in the last line
are 0,(1). The first term is known to converge to N (0, g — o*) in distribution.

Proof of Theorem 2
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Proving that the limit in (1.14) is zero. The next equation is quite similar to the passage
from (3.6) to (3.8):

tr(G) — tr(s(dnK))| = [tr(s(Wy) — s(dK))| < |tr (W, — duK) |
+ 3 lplFltr (Wb = (du K1) | < Vi | W — du K,
W = du K|, Y (k+ 1) (|p| max {[|Wo |, |4, K, })" = o(1).

Using (3.20) and (2.14) we see that

t(s(d, ) = 3 pFte((d K

= Zpk Z H)\ZJ,Um nfnad f2k+1)

>0 d1,eipgpi=1j=1
[e's) k+1

e Zp Z HAz],uom fz17flk+1)

k>0 11,..00g41=1 j=1

- AT =T

k>0 i>1 i>1

Sending n — oo here is possible because under condition (1.11) the series converge uniformly.
The conclusion is that

lim tr(G,) = v(\) (3.30)

n—00 -
1>1

where the series at the right converges because of (3.28).
Reviewing the argument that took us from (3.9) to (3.11) we see that

ltr(GL.G,) — tr(s*(d, K))| ltr (G}, — s(d, K))Gy) | + |tr (G — s(dnK))Gn) |

<
< G = s(dn K [2]|Ghll2 + |G = s(dn K] [2]]5(dn K )] — 0.

Arguing along the lines following (3.26) we have

tr(s*(d,K)) = tr (Z(pdnK)k) (dK)?*| =tr (me(m+1)(dnK)m+2>

k>0 m>0
m+2
= me(m -+ 1) Z H /\zjlvbm d fnad f2m+2)
mZO 1 ..... Zm+2 1 j 1

The last expression tends to

Do mADY AT = 3N (pA)"(m+ 1)

m>0 i>1 i>1 m>0
- Y (Ter) -x
i>1 k>0 i>1



Thus,
lim tr(G.,G ZV (3.31)

n—o0
i>1

In this proof we can replace G!, by G,. Then instead of (3.31) we have

lim tr(G?) Zl/ (3.32)

i>1

(3.30), (3.31) and (3.32) show that the limit in (1.14) is zero.

Proving that the limit in (1.15) is zero. In accordance with the ML methodology, here
we redenote the true value by py and use p for points close to pg. The transformation in the
next equation is analogous to that in (3.29)

o2p) = r[(L = (p = p)Gn) (I = (p— po) )]

= %tr [1—2(p = po)Gr + (p— po)*Gl G|

tr(G, tr(GG,
= op [1—-2(p— Po)% +(p— P0)2¥
It is clear from (3.30) and (3.31) that
lim o2 (p) = op for any p. (3.33)

Using properties of logs, determinants and the fact that S,(p), S, and their inverses
commute with each other (as functions of the same matrix W,,) we have

InfogS, S = o (p)S, (p)Sy (p)] = In(og /o7 (p)) + 2(In [Sy(p)| — In[Sy]).  (3.34)
The formula (see Horn and Johnson (1985))

01 S (p)]

o =t WaSu(p)) (3.35)

implies (cf. Gohberg and Krein (1969), p.158)
p p
In|S,(p)| —In|S,| = —/ tr(W, 5, (t))dt = —/ tr(s(t, W,,))dt

po PO

where we have denoted s(t,W,) = >, t*WFT'. Here we are assuming that |py| <
1/ > i1 |Ail and p is in a small neighborhood of py so that s(¢,W,) converges uniformly
on the segment connecting py and p. Similarly to (3.30) one can show that

lim tr(s(¢t, W,,)) = lim tr(s(t,d,K)) = Z A

i>1

uniformly in ¢ from the neghborhood indicated above. Therefore

lim (In|S,(p)| —In|S,|) = /

i>1
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This relation, (3.33) and (3.34) show that the limit in (1.15) is zero for p close to py.
Proving that limit (1.16) is zero. The desired result will follow if we show that Lo(£2)-
norms of all elements of A, are uniformly bounded. To this end, the reader can consult

(2.3), (2.12) and statement 1) of Theorem 1 and verify that

(BOGWRW.Y)?) " = NS WS < o [|S7 Il < ea,
|t (W )| < [Wall3 < e,

(E(Y,W,Y)) 2 = N(STWLS ) < e |15 Wl < o,
(BE,WEW2Y,)) 2 = N(STWEW2SY) < e[|S0 |5 IWalls < e,
(EY,WIW,Y)2) Y2 = NS WIWLS,Y) < e[|S0 IWall? < e,

(B = NSWEST) < e [[837 IWalls < ea

Proof of Theorem 3
Deriving (1.22). Denoting

)\m'

=—1=1,..
1_p)\nl7/l/ )

I/(p, Anl)

7n7

and using (1.19), for the matrices involved in (1.20) we have representations

Sn(p) =
G, = P,diaglv( A1), ..., v(A\n

n

§ CpsV P] 1a
=1

It is easy to see that the vector V, = P!V, is distributed as N(0,02I). (1.20) becomes

)‘ni 52
S TR — E T v (py1s M)

2 e UV (i)

The numerator can be rearranged as follows:
~2

n
U———g Criv(pj—1 =
i nig ji— >m
i=1 1_p)‘nz

—|—Z (,{),ZQ _ O'CCn’i> V()\nz) +
i=1 "

Hence, if we denote

P,diag[l — pAn1, ... 1 — pAnn] PL,

)it

1
tI‘(AanS p] 1 = C_

P =

n

~2
2.7
i=1

n

(5 o)

o2 — 42

Ani) = V(Pj—1, Ani))-

Z Cnil/()\ni) + (Z-_Q Z Cm'(V(
i=1 " oi=1

n

1 a 0 Cni
Rno = E m Rn1 = — V<)\m')7

/{nO
n ~
O'2 — O’2 O'2
Rn2 = E CniV )\nz) Rn3 =
RnoCn i=1 Rno
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then p; becomes

C’H/L
Pj _p+/€n1+"€n2+"{n3z )_V<pj—1a>‘m'))'

TL

If we also take into account that

r a tu )\m p
V(i) = ¥(pjm1 Ans) = v Ans) = (P, Ans) = / %dt = / V2 (t, Ay )dt

Pj—1 Pj—1

and denote .
c
D)
Cp,
=1

then p; rewrites as (1.22).
Final touches. The validity of the first equation in (1.23) follows from (2.24):

n 52 52, 4
i = Lp (Eled ) _,
> i1 Vi 2 (Ani)

n

We claim that (see Lemma 3)

dlim k0 = As2 = 0 Zu (3.36)

n—oo

This is so because kpo = V.G, G, V,, = X,0.
(2.23) and Assumption 4 imply by Holder’s inequality

1/p
= i/ <Z| ) 't <e. (3.37)

n

1 m

Hence, factorizing x,o as

n

Finz = ﬁ [Vn(o® - 6%)] L%O] [# > ii:u(Am)]

=1

we see that by (1.13), (3.36) and (3.37) the factors in all brackets are O,(1), so that r, =
0p(1). We have proved the second relation in (1.23).

(1.24) is a consequence of (3.36) and consistency of 2.

Nonnegativity of x,3 and 1, are obvious.
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