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Abstract

We derive the asymptotics of the OLS estimator for a purely autoregressive spatial
model. Only low-level conditions are used. As the sample size increases, the spatial
matrix is assumed to approach a square-integrable function on the square (0, 1)2. The
asymptotic distribution is a ratio of two infinite linear combinations of χ-square vari-
ables. The formula involves eigenvalues of an integral operator associated with the
function approached by the spatial matrices. Under the conditions imposed identifica-
tion conditions for the maximum likelihood method and methods of moments fail. A
remedial iterative procedure using the OLS estimator is proposed.

Keywords: spatial model, OLS estimator, asymptotic distribution, maximum likelihood,
method of moments

JEL codes: C13, C21

1 Introduction and Main Statements

We consider the model
Yn = ρWnYn + Vn (1.1)

where Yn is the observed n × 1 vector, ρ is the real parameter to be estimated, Wn is a
predetermined n × n matrix, called a spatial matrix, and Vn is the error vector with zero
mean. Anselin (1988) classifies (1.1) as a first-order spatial autoregressive model. The
importance of (1.1) increases with the growth of the number of more complex models in
which the error itself is generated by a spatial model, such as

Yn = Xnβ + ρWnYn + Vn (1.2)

where Vn = µMnVn + Un.
Earlier development in testing and estimation of spatial autoregressive models has been

summarized in Anselin (1988), Cressie (1993) and Anselin and Bera (1998), among others.
Some of the recent references are Kelejian and Prucha (1999, 2002), Kelejian et al. (2004) and

1Economics Department, KIMEP, Almaty, Kazakhstan
2Economics Department, University of California at Riverside, Riverside, California, USA
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Lee (2001, 2002, 2003, 2004). It is widely recognized in the spatial econometrics literature
that the OLS estimator ρ̂ of ρ is in general inconsistent, see, for instance, Section 6.1.1 in
Anselin (1988). Lee (2002) considers (1.2) and shows that, depending on the assumptions,
the OLS estimator can be consistent or can have an asymptotic bias. In the same paper
for model (1.1) he provides two examples of inconsistency. Kelejian and Prucha (1999) and
Lee (2001) have obtained asymptotic distributions of the ML estimator and the generalized
method of moments estimator.

The research in the above references has been moving towards relaxing the assumptions
and increasing generality. Along the way the conditions imposed and the results obtained
have become more complex. In this paper we move in the opposite direction: we look for sim-
pler conditions and results amenable to easy interpretation, perhaps by narrowing the area
of applicability. The highlights of the outcome are as follows. The asymptotic distribution of
the OLS estimator is a ratio of infinite linear combinations of χ-square variables; none of the
existing sources captures this effect. No normalization is necessary to achieve convergence in
distribution. The denominator of the OLS estimator converges to a non-degenerate random
variable.

We assume i.i.d. errors and use only low-level conditions. The class of matrices corre-
sponds to the case when a particular economic unit is influenced by many others, so that
the interaction between units is stronger than in other researches.3 Our formula may not be
applicable to another practically interesting situation when an economic agent is influenced
by a limited number of others, even as n→ ∞. Because of the convergence in probability of
the denominator and numerator of the formula, it can be used for approximate calculations
by truncating the sums.

Intuitively, our result is explained as follows. Assuming that Wn is symmetric with
eigenvalues λn1, ..., λnn and Vn is distributed as N(0, σ2I), it is easy to calculate the finite-
sample deviation from the true value

ρ̂− ρ =

∑n
i=1 v

2
i

λni

1−ρλni

∑n
i=1 v

2
i

(
λni

1−ρλni

)2 .

Whether this ratio-of-quadratic-forms structure will be preserved in the limit, depends on
the assumptions. If the weights of vi’s tend to zero, normality may appear in the limit.
Under our conditions they do not.

Since there is asymptotic bias, we attempt to find alternative estimators. This problem
has been tackled by Kelejian and Prucha (1999) and Lee (2001), by using the maximum
likelihood method and method of moments. They have provided conditions for asymptotic
normality and unbiasedness of these estimators. In particular, Lee (2001) imposes the re-
quirement that a certain limit exist and be different from zero, which assures validity of the
ML and MM procedures. However, we prove that under our conditions that limit exists and
is zero4. Therefore under our assumptions the corresponding identification condition fails
and maximum likelihood or method of moments cannot be used. For these reasons we look at
the OLS estimator more closely and devise an iterative procedure that can be used for finite
samples. Again, the problem turns out to be more difficult than usual. It is not possible to

3We thank professors Ingmar Prucha and Lung-fei Lee for this and other comments.
4In his conditions, Lee introduces a special parameter hn designed to accommodate different behaviors

at infinity. Under our conditions, the only meaningful choice is hn = 1.
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prove convergence of the sequence obtained. We indicate how its oscillating character can
be exploited to obtain a convergent sequence.

The methodology we develop is interesting in its own right. In particular, the way the
spatial matrices are modeled can be used to study more general models of type (1.2). It is
based on the idea of approximating discrete objects (sequences of vectors or matrices) with
functions of a continuous argument. Such an approximation allows one to widely use the
tools of the theory of functions. We rely on the rendition of this general idea contained
in Mynbaev (2001). The class of errors can be widened to include linear processes with
short-range dependence, at the expense of significantly lengthening the proof.

One conclusion that can be drawn from our exercise is that when dealing with (1.1) or
its generalizations, one has to work with an infinite series of type

∑∞

k=0 ρ
kW k+1

n in order to
avoid high-level conditions. The existing papers on spatial models do not treat such series.
To clarify, consider a simple autoregression yt = c1 + c2yt−1 + et. In this model, one cannot
assume that dependence of yt on yt−1 is essential, while all previous values of y are op(1).
Dependence on all previous values is a distinct feature of autoregressive models.

We start with describing our assumptions and then state the main results. The proofs
are given in Sections 2 and 3.

Assumption 1 (on the error term). For each n, one has Vn = (v1, ..., vn)′ where v1, ..., vn

are independent, identically distributed variables with mean zero, variance σ2 and finite
moments up to µ4 = Ev4

i .
For the next assumption we need some notation. On the set of integrable on the square

(0, 1)2 functions we can define a discretization operator as follows. For an integrable function
K, dnK is an n× n matrix with elements

(dnK)ij = n

∫

qij

K(x, y)dxdy, i, j = 1, ..., n,

where

qij =

{
(x, y) :

i− 1

n
< x <

i

n
,
j − 1

n
< y <

j

n

}

are small squares that partition (0, 1)2. Elements of a matrix A are denoted aij and the

Euclidean norm of A is ‖A‖2 =
(∑

ij a
2
ij

)1/2

.

Assumption 2 (on the spatial matrices). The sequence of matrices {Wn : n = 1, 2, ...}
is such that Wn is of size n× n and there exists a function K which is square-integrable on
(0, 1)2 and satisfies

‖Wn − dnK‖2 = o

(
1√
n

)
. (1.3)

It is evident that such classes of matrices exist. For example, one can take any function
K and put Wn = dnK, in which case the left side of (1.3) is identically zero. In Section 2
we show that Assumption 2 implies

max
i,j

|wnij| −→ 0,
∑

i,j

|wnij| −→ ∞, n→ ∞. (1.4)

The first relation means that economic activities of a given unit have weak influence on
the other units, whereas the second can be understood as an increase to infinity in total
interaction between the units. Some properties often imposed on Wn in practice can be
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readily visualized in terms of K . For example, in those applications which treat (1.1) as an
equilibrium model, it is customary to require Wn to have zeros on the main diagonal. This
corresponds to K vanishing in the neighborhood of the 45-degree line. We would like to
stress, however, that in practice, when only one matrix is available, it can be approximated
arbitrarily well, so Assumption 2 is rather a mathematical restriction on the regularity of
the behavior at infinity of a sequence of matrices than an economic restriction.

Assumption 3 (on the function K). The function K is symmetric and the eigenvalues
λi, i = 1, 2, ..., of the integral operator

(Kf)(x) =

∫ 1

0

K(x, y)f(y)dy

are summable:
∑

i≥1 |λi| <∞.
K is considered an operator in the space L2(0, 1) of square-integrable on (0, 1) functions.

Its eigenvalues λi and eigenfunctions fi are listed according to their multiplicity; the system
of eigenfunctions is complete and orthonormal in L2(0, 1). For a symmetric and square-
integrable K, its eigenvalues are real and square-summable:

∑
i≥1 λ

2
i <∞. The summability

condition we require is stronger because

(
∑

i≥1

λ2
i

)1/2

≤
∑

i≥1

|λi|. (1.5)

Necessary and sufficient conditions for summability of lambdas can be found in Gohberg and
Krĕin (1969).

The decomposition

K(x, y) =
∑

i≥1

λifi(x)fi(y) (1.6)

and the identity
∑

i≥1

λ2
i =

∫ 1

0

∫ 1

0

K2(x, y)dxdy (1.7)

are important to understand both the result and the proof.
Denoting Zn = WnYn the regressor in (1.1), we have the following expression for the OLS

estimator ρ̂ of ρ:
ρ̂ = (Z ′

nZn)−1Z ′
nYn. (1.8)

Put Sn = In − ρWn and Gn = WnS
−1
n when S−1

n exists.
Theorem 1. Suppose Assumptions 1, 2 and 3 hold.
1) If

|ρ| < 1/

(
∑

i≥1

λ2
i

)1/2

, (1.9)

then the matrices S−1
n exist for all sufficiently large n and have uniformly bounded ‖·‖2-norms

and the bias equals

ρ̂− ρ =
V ′

nG
′
nVn

V ′
nG

′
nGnVn

. (1.10)

2) If

|ρ| < 1/
∑

i≥1

|λi|, (1.11)
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then

ρ̂− ρ
d−→
∑

i≥1 u
2
i ν(λi)∑

i≥1 u
2
i ν

2(λi)
(1.12)

where ui ∈ N(0, 1) are independent and

ν(λi) =
λi

1 − ρλi

.

3) (1.11) implies convergence

√
n(σ̂2 − σ2)

d−→N(0, µ4 − σ4) (1.13)

where

σ̂2 =
1

n− 1
(Yn − ρ̂WnYn)′(Yn − ρ̂WnYn)

is the OLS estimator of σ2.
Remarks. The peculiarity of the fraction in (1.10) is that both the numerator and

denominator are non-trivial distributions (both series converging in L1 and, consequently,
in probability), unlike many other econometric problems where the numerator is non-trivial
and the denominator is a constant. If the numerator in (1.10) or (1.12) has mean zero, it
does not necessarily mean that the whole fraction has mean zero (see Lemma 5 in Section 2
regarding (1.10)). Of course, infinite summation adds a lot of complexity. The characteristic
function of an infinite weighted sum of χ-square variables has been found by Anderson and
Darling (1952) (see also Varberg (1966)). Because of convergence in L1 of the numerator and
denominator in (1.12) the whole fraction converges in probability. Therefore by truncating
the sums an expression for approximate calculation of the fraction can be obtained.

The next issue is to find a better estimator which would converge in some sense to the
true parameter. Lee (2001) has proved that under some conditions the Quasi-Maximum
Likelihood Estimator (QMLE) for (1.1) is consistent and asymptotically normally distrib-
uted. One of key elements in his proof consists in applying White’s (1994) identification
uniqueness condition. Lee has developed conditions sufficient for local and global identifica-
tion. Those conditions involve positive numbers hn which in our case should be chosen to be
identically 1 (for the statement of his Theorem 2 to be true). Then the local identification
condition takes the form

the limit of the sequence
1

n
[tr(G′

nGn) + tr(G2
n) − 2

n
tr2(Gn)] exists and is positive (1.14)

and the global one looks like this:

for any ρ different from the true value ρ0 the limit

lim
n→∞

1

n

(
ln |σ2

0S
−1
n S ′−1

n | − ln |σ2
n(ρ)S−1

n (ρ)S ′−1
n (ρ)|

)
exists and is not zero (1.15)

where

σ2
n(ρ) =

σ2
0

n
tr(S ′−1

n S ′
n(ρ)Sn(ρ)S−1

n ).

Another avenue to think about is the method of moments considered by Kelejian and
Prucha (1999) for the problem under consideration. Lee (2001) has simplified their approach
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and worked out an identification condition stated in terms of a 2×2 matrix An with elements

an11 = 2[Y ′
nW

′2
n WnYn − tr(W ′

nWn)
1

n
Y ′

nWnYn],

an12 = −Y ′
nW

′2
n W

2
nYn + tr(W ′

nWn)
1

n
Y ′

nW
′
nWnYn,

an21 = Y ′
nW

2
nYn + Y ′

nW
′
nWnYn, an22 = −Y ′

nW
′2
n WnYn.

Both versions of the method of moments considered by Lee (2001) require the limit

plim
n→∞

1

n
An (1.16)

to exist and be nonsingular.
Theorem 2. Under the assumptions of Theorem 1 the limits in (1.14), (1.15) and (1.16)

are zero.
Without the consistency of QMLE, the derivation of the asymptotic distribution based

on the formula

ρ̂QMLE − ρ =

(
∂2 lnLn(ρ̃)

∂ρ2

)−1
∂ lnLn(ρ)

∂ρ

does not work. Here lnLn(ρ) is the log likelihood function (see (1.18) below) and ρ̃ lies
between ρ̂QMLE and ρ.

The problems we have just described force us to analyse the OLS estimator more closely.
The solution we have found has its limitations and advantages. Firstly, we have not been
able to prove that the procedure described below gives a consistent estimator. Rather, it
is essentially a finite-sample instrument which answers the question: if only one sample
is available and the OLS estimator has been obtained, then how that estimator can be
improved? Secondly, unlike the ML estimator, it is an iterative procedure with a well-
defined initial point: the OLS estimate. Thirdly, its format parallels the asymptotic result
in Theorem 1. Namely, from the point of view of (1.12), instead of requiring plim ρ̂ = ρ
(consistency) it would be correct to require

plim ρ̂ = ρ+ κ where Eκ = 0 (1.17)

and in Theorem 3 we try to satisfy this condition. Finally, the ensuing discussion will be less
rigorous than the preceding one in that we shall impose one high-level condition on matrices
Wn. It is possible to obtain such a condition as a consequence of a low-level one but we
refrain from doing that to maintain transparency. Plausibility of the new assumption will
be seen from Lemma 6 of Section 2. Besides, the error term will be assumed to be normal.
This will enable us to use exact results about ratios of quadratic forms of normal variables.

The expression for the ML estimator will help the reader to understand the idea behind
our construction. The ML estimator has been derived in a more general situation by Ord
(1975), among others. In our case the log likelihood function is

lnLn(θ) = −n
2

ln(2π) − n

2
lnσ2 + ln |Sn(ρ)| − 1

2σ2
(Yn − ρWnYn)′(Yn − ρWnYn) (1.18)
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where θ = (ρ, σ2). Using (3.35) we get

∂ lnLn(θ)

∂ρ
= −tr(WnS

−1
n (ρ)) − 1

2σ2
(−Y ′

nWnYn − Y ′
nW

′
nYn + 2ρ(WnYn)′WnYn)

= −tr(WnS
−1
n (ρ)) +

1

σ2
(Y ′

nWnYn − ρ(WnYn)′WnYn),

∂ lnLn(θ)

∂σ2
= −n

2

1

σ2
+

1

2σ4
(Yn − ρWnYn)′(Yn − ρWnYn).

The first-order conditions for maximization of lnLn(θ) give the estimators

ρ̂ML =
Y ′

nWnYn − σ̂2
MLtr(WnS

−1
n (ρ))

(WnYn)′WnYn

, σ̂2
ML =

1

n
(Yn − ρWnYn)′(Yn − ρWnYn).

Of course, these estimators are not feasible as they contain an unknown ρ.
Since the OLS estimator and the formula we suggest below do not change ifWn is replaced

by its symmetric derivative (Wn +W ′
n)/2, we can assume without loss of generality that all

of Wn are symmetric. Then each Wn can be represented as

Wn = Pndiag[λn1, ..., λnn]P ′
n (1.19)

where λn1, ..., λnn are eigenvalues of Wn and Pn is an orthogonal matrix: PnP
′
n = I. Denote

πn(t) =

[
n∏

i=1

(1 + 2tν2(λni))

]1/2

,

cn =

∫ ∞

0

dt

πn(t)
, cni =

∫ ∞

0

dt

πn(t)(1 + 2tν2(λni))
, i = 1, ..., n.

These integrals converge if n > 2. Let

An = Pndiag

[
cn1

cn
, ...,

cnn

cn

]
P ′

n.

Iterative procedure. Estimate ρ and σ2 by OLS and put

ρ0 = ρ̂, ρj =
Y ′

nWnYn − σ̂2tr(AnWnS
−1
n (ρj−1))

(WnYn)′WnYn

, j = 1, 2, ...

For analytical purposes we rewrite the recurrent formula as

ρj =
V ′

nS
′−1
n GnVn − σ̂2tr(AnWnS

−1
n (ρj−1))

V ′
nG

′
nGnVn

, j = 1, 2, ... (1.20)

Instead of Assumption 1 we make a stronger
Assumption 1′. Vn is distributed as N(0, σ2In).
The high-level condition we talked about above is
Assumption 4. The sums

∑n
i=1 |λni|p are uniformly bounded for some p < 2.

It can be shown that (1.3) implies

lim
n→∞

n∑

i=1

λ2
ni =

∞∑

i=1

λ2
i (1.21)
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(see Lemma 6 in Section 2) and that a condition stronger than (1.3) can be imposed on the
sequence {Wn} to make sure that Assumption 4 is satisfied. See Gohberg and Krĕın (1969),
Chapter III, for more information.

Theorem 3. Suppose Assumptions 1′, 2, 3 and 4 hold. If the true ρ satisfies (1.11), then
there exist random variables κn1, κn2, κn3 and a deterministic function ψn such that

ρj = ρ+ κn1 + κn2 + κn3

∫ ρ

ρj−1

ψn(t)dt, (1.22)

Eκn1 = 0 for all n, plimκn2 = 0, (1.23)

plimκn3 =
1∑

i≥1 u
2
i ν

2(λi)
, (1.24)

where ui are independent standard normal, and κn3 and ψn are positive almost everywhere.
Property (1.23) is in line with (1.17).
Denote hj = ρj − ρj−1 the step from ρj−1 to ρj . Then (1.22) implies

hj = κn3

∫ ρj−2

ρj−1

ψn(t)dt. (1.25)

The main point about this formula is that successive steps are made in opposite directions.
For example, suppose that the step h1 is positive ( ρ1 > ρ0 = ρ̂). Because of positivity of
κn3 and ψn (1.25) gives h2 < 0 (ρ2 < ρ1). We have not been able to prove convergence of the
sequence {ρj}. Even convergence of the steps to zero is not guaranteed. By the mean value
theorem |hj| = κn3ψn(ρ̃)|hj−1| where ρ̃ lies between ρj−2 and ρj−1. Since in general κn3ψn(ρ̃)
is not less than 1, the steps may not decline. Our suggestion is to apply one of methods of
summation of divergent series to the sequence of steps. Such methods have a good feature
that if the original series actually converges, its generalized limit ascribed by a summation
method gives the same value. The simple average in ρ̂+ 1/n

∑n
j=1 hj is a particular case of

Cèsaro methods (see Hardy (1949) for details).

2 Auxiliary Statements

Depending on the context, ‖ · ‖2 may mean any of the norms

‖x‖2 =

(
∑

i∈I

x2
i

)1/2

, ‖f‖2 =

(∫ 1

0

f 2(x)dx

)1/2

, ‖K‖2 =

(∫ 1

0

∫ 1

0

K2(x, y)dxdy

)1/2

.

Here the set of indices I can be finite or infinite. (·, ·)l2 denotes the scalar product associated
with the norm ‖ · ‖2.

Let (Ω,F, P ) be a probability space. Among the norms

‖X‖p =

(∫

Ω

|X(ω)|pdP (ω)

)1/p

, 1 ≤ p <∞,

‖ · ‖1 and ‖ · ‖2 will be particularly useful. A limit in distribution is denoted
d−→ or dlim.

Likewise, symbols
p−→ or plim are used interchangeably for limits in probability.
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c, c1, c2, ... will denote various inconsequential positive constants (which do not depend
on the variables of interest). For an n× n matrix A we find it handy to use the notation

N(A) =
(
E (V ′

nAVn)
2
)1/2

.

Lemma 1. a) With any square matrix A such that |ρ| ‖A‖2 < 1 one can associate the
matrix

s(A) =
∞∑

k=0

ρkAk+1.

If |ρ| ‖Wn‖2 < 1, then Gn = s(Wn).
b) For square matrices A,B and all integer k ≥ 0

∥∥Ak+1 −Bk+1
∥∥

2
≤ ‖A−B‖2 (k + 1) (max {‖A‖2 , ‖B‖2})

k . (2.1)

c) For square matrices A,B such that |ρ|max {‖A‖2 , ‖B‖2} < 1 one has

‖s(A) − s(B)‖2 ≤ ϕ(ρ,A,B) ‖A−B‖2 (2.2)

where
ϕ(ρ,A,B) ≡

∑

k≥0

(k + 1) (|ρ|max {‖A‖2 , ‖B‖2})
k <∞.

d) If Vn satisfies Assumption 1 and A,B are square matrices of order n, then

N(AB) ≤ c ‖A‖2 ‖B‖2 . (2.3)

In particular, by choosing B = I we get

N(A) ≤ c
√
n ‖A‖2 . (2.4)

e) Under the same conditions as in d) for all k > 0

N
(
Ak+1 −Bk+1

)
≤ c ‖A−B‖2 (k + 1) (max {‖A‖2 , ‖B‖2})

k . (2.5)

Proof. a) follows from the well-known fact that if ‖A‖ < 1 and the norm ‖·‖ is submul-
tiplicative (‖AB‖ ≤ ‖A‖ ‖B‖), then the series

∑
k≥0A

k converges and represents (I −A)−1.
We apply this fact to S−1

n and multiply it by Wn to obtain Gn.
b) For k = 0, (2.1) is trivial. If k > 0, then the identity

Ak+1 −Bk+1 = Ak(A−B) + Ak−1(A−B)B + ...+ (A−B)Bk (2.6)

and submultiplicativity of the norm ‖·‖2 give the desired result:

∥∥Ak+1 −Bk+1
∥∥

2
≤ ‖A‖k

2 ‖A−B‖2 + ...+ ‖A−B‖2 ‖B‖k
2

≤ ‖A−B‖2 (k + 1) (max {‖A‖2 , ‖B‖2})
k . (2.7)

c) (2.2) follows from (2.1):

‖s(A) − s(B)‖2 ≤
∑

k≥0

|ρ|k
∥∥Ak+1 −Bk+1

∥∥
2
≤ ϕ(ρ,A,B) ‖A−B‖2 .
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d) For any square matrix A of order n Lee’s (2004) Lemma A.115 yields

N(A) ≤ c (‖A‖2 + |trA|) . (2.8)

Since ‖AB‖2 ≤ ‖A‖2 ‖B‖2 and |tr(AB)| ≤ ‖A‖2 ‖B‖2, (2.8) gives (2.3).
e) Because of the growing factor

√
n in (2.4), it is not a good idea to estimate the left

side of (2.5) using (2.1). Instead, we apply identity (2.6) directly (this is why the assumption
k > 0 is important). By (2.3) and Minkowski’s inequality

N
(
Ak+1 −Bk+1

)
≤ N

(
Ak(A−B)

)
+ ...+N((A−B)Bk)

≤ c
(
‖A‖k

2 ‖A−B‖2 + ...+ ‖A−B‖2 ‖B‖k
2

)
.

The rest is the same as in (2.7).
We use several operators which relate functions of discrete and continuous arguments to

one another. One of them, the discretization operator dn defined in Section 1, possesses the
property

‖dnK‖2 ≤ ‖K‖2 for all K and n (2.9)

(just apply Hölder’s inequality to prove). The interpolation operator Dn takes a square
matrix A of order n to a piece-wise constant function on (0, 1)2 according to

DnA = n
n∑

i,j=1

aij1qij

where 1S stands for the indicator of a set S: 1S(x) = 1, if x ∈ S, and 1S(x) = 0, if x /∈ S.
Dn preserves norms:

‖DnA‖2 = ‖A‖2 . (2.10)

The product Dndn coincides with the Haar projector Pn defined by

PnK = n2

n∑

i,j=1

∫

qij

K(x, y)dxdy1qij
.

Its main property is that it approximates the identity operator:

lim
n→∞

‖PnK −K‖2 = 0 for any K ∈ L2

(
(0, 1)2

)
. (2.11)

Denote qi =
{
x ∈ R : i−1

n
< x < i

n

}
, i = 1, ..., n. One-dimensional analogs of dn and Dn

are defined, respectively, by

(dnf)i =
√
n

∫

qi

f(x)dx, i = 1, ..., n, f ∈ L2 (0, 1) ,

and

Dnx =
√
n

n∑

i=1

xi1qi
, x ∈ R

n.

They possess properties similar to (2.9), (2.10) and (2.11).

5See his supplement available at http://economics.sbs.ohio-state.edu/lee/
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Lemma 2. a) Assumptions 2 and 3 imply

lim
n→∞

‖Wn‖2 = lim
n→∞

‖dnK‖2 = ‖K‖2 (2.12)

and

‖W ′
n − dnK‖2 = o

(
1√
n

)
. (2.13)

b) Consider any orthonormal system {fi : i ≥ 1} in L2(0, 1). For a collection of indices
i = (i1, ..., ik+1), where all of ij’s are positive integers, denote

µni =

{
(dnfi1 , dnfi2)l2(dnfi2 , dnfi3)l2 ...(dnfik , dnfik+1

)l2 , if k > 0,
1, if k = 0,

and

µ∞i =

{
1, (i1 = i2 = ... = ik+1 and k > 0) or (k = 0),
0, otherwise.

Then for all i
lim

n→∞
µni = µ∞i. (2.14)

c) Denote the two-dimensional discretization operator by d2
n and its one-dimensional

counterpart by d1
n. If F (x, y) = G(x)H(y), then (d2

nF )st = (d1
nG)s (d1

nH)t for s, t = 1, ..., n.
d) If ‖Wn − dnK‖2 → 0, then (1.4) is true. A similar property holds in the one-

dimensional case.
Proof. a) Continuity of norms and (2.11) yield ‖PnK‖2 → ‖K‖2. ‖dnK‖2 → ‖K‖2

follows because by (2.10) ‖dnK‖2 = ‖DndnK‖2 = ‖PnK‖2. To prove the other equation in
(2.12) note that by (2.10), (1.3) and (2.11)

‖DnWn −K‖2 ≤ ‖DnWn − PnK‖2 + ‖PnK −K‖2 = ‖Wn − dnK‖2 + ‖PnK −K‖2 → 0.

Therefore ‖Wn‖2 = ‖DnWn‖2 → ‖K‖2.
To prove (2.13), observe that (x, y) ∈ qij if and only if (y, x) ∈ qji and, therefore, for a

symmetric K, dnK is also symmetric. Thus,

‖W ′
n − dnK‖2 = ‖(Wn − dnK)′‖2 = ‖Wn − dnK‖2 = o

(
1√
n

)
.

b) It is easy to check that Dn preserves not only norms but also scalar products. For
example, in the one-dimensional case that we need right now

(Dnx,Dny)l2 = (x, y)l2 , x, y ∈ R
n.

Using this fact, continuity of scalar products, and (2.11) we see that

(dnfi, dnfj)l2 = (Pnfi, Pnfj)l2 −→ (fi, fj)l2 =

{
1, i = j,
0, i 6= j.

(2.15)

Turning to (2.14), if k > 0 and among i1, ..., ik+1 there are at least two different indices, then
at least two adjacent ones must be unequal. Hence, (2.14) is a direct consequence of (2.15).

c) obtains by calculation.
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d) First note that

max
i,j

|wnij| ≤ ‖Wn − dnK‖2 + max
i,j

|(dnK)ij|

and then that by Hölder’s inequality and absolute continuity of the Lebesgue integral

|(dnK)ij| = n

∣∣∣∣∣

∫

qij

K(x, y)dxdy

∣∣∣∣∣ ≤
(∫

qij

K2(x, y)dxdy

)1/2

−→ 0, n→ ∞

uniformly in i, j. This proves the first of the limit relations in (1.4). By (2.12) for some
c > 0 we have c ≤ ‖Wn‖2

2 ≤ ‖Wn‖∞‖Wn‖1 which implies ‖Wn‖1 ≥ c/‖Wn‖∞ → ∞.
For natural n, L consider the random vector

UnL =



∑n

s=1(dnf1)svs

...∑n
s=1(dnfL)svs


 =




V ′
ndnf1

...
V ′

ndnfL


 .

We need the following two-dimensional function of UnL:

δnL =
L∑

i=1

U2
nLiν(λi)

(
1

ν(λi)

)
.

The limiting behavior of δnL is described in terms of the vectors

∆L = σ2

L∑

i=1

u2
i ν(λi)

(
1

ν(λi)

)
, ∆∞ = σ2

∞∑

i=1

u2
i ν(λi)

(
1

ν(λi)

)

where ui are independent standard normal.
Lemma 3. Let Vn satisfy Assumption 1 and suppose that {fi : i = 1, 2, ...} is any

orthonormal system in L2(0, 1). Then
a) For any fixed L

dlim
n→∞

δnL = ∆L, (2.16)

lim
n→∞

EδnL = E∆L = σ2

L∑

i=1

ν(λi)

(
1

ν(λi)

)
, (2.17)

lim
n→∞

var(δnL) = var(∆L) = 2σ4

L∑

i=1

ν2(λi)

(
1 ν(λi)

ν(λi) ν2(λi)

)
. (2.18)

b) If ∑

i≥1

|ν(λi)| <∞, (2.19)

then

∆L
L1(Ω)−→ ∆∞ as L→ ∞ (2.20)

and

lim
L→∞

var(∆L) = var(∆∞) = 2σ4

∞∑

i=1

ν2(λi)

(
1 ν(λi)

ν(λi) ν2(λi)

)
. (2.21)
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Proof. a) The central limit theorem from Mynbaev (2001) states that under the conditions
of the lemma for any L

UnL
d−→ N(0, σ2IL), var(UnL) −→ σ2IL as n→ ∞. (2.22)

The vector δnL is a continuous function of UnL. Since U2
nLi

d−→ σ2u2
i , n→ ∞, (2.16) is true.

The second relation in (2.22) implies (2.17):

EδnL =
L∑

i=1

ν(λi)

(
1

ν(λi)

)
EU2

nLi −→ E∆L.

To prove (2.18), we start with

var(δnL) = EδnLδ
′
nL − EδnLEδ

′
nL

=
L∑

i,j=1

(
EU2

nLiU
2
nLj − EU2

nLiEU
2
nLj

)
ν(λi)ν(λj)

(
1 ν(λi)

ν(λj) ν(λi)ν(λj)

)
.

Here

EU2
nLiU

2
nLj = E

(
n∑

s=1

(dnfi)svs

)2( n∑

p=1

(dnfj)pvp

)2

=
n∑

s,t,p,q=1

(dnfi)s(dnfi)t(dnfj)p(dnfj)qEvsvtvpvq.

From Assumption 1 it follows that

Evsvtvpvq =





σ4, if (s = t) 6= (p = q) or (s = p) 6= (t = q) or (s = q) 6= (t = p),
µ4, if s = t = p = q,
0, in all other cases.

Hence,

EU2
nLiU

2
nLj = σ4

[
n∑

s=1

(dnfi)
2
s

n∑

p=1

(dnfj)
2
p + 2

n∑

s=1

(dnfi)s(dnfj)s

n∑

p=1

(dnfi)p(dnfj)p

]

+µ4

n∑

s=1

(dnfi)
2
s(dnfj)

2
s

= σ4
[
‖dnfi‖2

2 ‖dnfj‖2
2 + 2(dnfi, dnfj)

2
l2

]
+ µ4

n∑

s=1

(dnfi)
2
s(dnfj)

2
s.

By Lemma 2d) and (2.15)

‖dnfi‖2 −→ 1, (dnfi, dnfj)l2 −→ δij =

{
1, i = j,
0, i 6= j,

max
s

|(dnfi)s| −→ 0,

so that
n∑

s=1

(dnfi)
2
s(dnfj)

2
s ≤ max

s
(dnfi)

2
s ‖dnfj‖2

2 −→ 0
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and
EU2

nLiU
2
nLj −→ σ4(1 + 2δij), EU

2
nLiEU

2
nLj −→ σ4 for all i, j.

These equations together with the formula for var(δnL) above prove that the left and right
members of (2.18) are equal.

Standard normal variables satisfy µ4 = 3σ4 = 3, so

var(∆L) = E∆L∆′
L − E∆LE∆′

L

= σ4

L∑

i,j=1

(
Eu2

iu
2
j − 1

)
ν(λi)ν(λj)

(
1 ν(λi)

ν(λj) ν(λi)ν(λj)

)

= σ4

L∑

i=1

(3 − 1) ν2(λi)

(
1 ν(λi)

ν(λi) ν(λi)ν(λi)

)

= 2σ4

L∑

i=1

ν2(λi)

(
1 ν(λi)

ν(λi) ν2(λi)

)
.

b) Inequality (1.5) applied to {ν(λi)} and condition (2.19) show that both components
of ∆L converge to those of ∆∞ in L1(Ω). (2.21) is proved similarly to (2.18).

Lemma 4. Suppose that for each L, δnL
d−→ ∆L as n → ∞ and that ∆L

d−→ ∆∞ as
L→ ∞. Suppose further that

lim
L→∞

lim sup
n→∞

P (|Xn1 − δnL1| + |Xn2 − δnL2| > ε) = 0

for each positive ε. Then Xn
d−→ ∆∞ as n→ ∞.

This is just Theorem 4.2 from Billingsley (1968) with the notation adapted to ours.
Lemma 5. One has

0 < cni ≤ cn <∞, i = 1, ..., n, (2.23)

and for u ∼ N(0, σ2I)

E

(∑n
i=1(cnu

2
i − σ2cni)ν(λni)∑n

i=1 u
2
i ν

2(λni)

)
= 0. (2.24)

Proof. (2.23) is obvious (cn <∞ because n > 2). Hoque (1985) has proved that if S and
B are symmetric matrices, B is positive definite and u ∼ N(0,Ω), then

E

(
u′Su

u′Bu

)
=

∫ ∞

0

|I + 2tΩB|−1/2tr[(I + 2tΩB)−1ΩS]dt.

In our case
S = diag[ν(λn1), ..., ν(λnn)], B = diag[ν2(λn1), ..., ν

2(λnn)],

Ω = σ2I, I + 2tΩB = diag[1 + 2tσ2ν2(λn1), ..., 1 + 2tσ2ν2(λnn)],

(I + 2tΩB)−1ΩS = diag

[
σ2ν(λn1)

1 + 2tσ2ν2(λn1)
, ...,

σ2ν(λnn)

1 + 2tσ2ν2(λnn)

]
.

Then

E

( ∑n
i=1 u

2
i ν(λni)∑n

i=1 u
2
i ν

2(λni)

)
=

∫ ∞

0

n∑

i=1

σ2ν(λni)

1 + 2tσ2ν2(λni)

dt

πn(σ2t)
=

n∑

i=1

cniν(λni). (2.25)

14



On the other hand, formula (10) from Jones (1986) yields

E

(
σ2

∑n
i=1 u

2
i ν

2(λni)

)
=

∫ ∞

0

dt

πn(t)
= cn. (2.26)

Combining (2.25) and (2.26) we get

E

(∑n
i=1(cnu

2
i − σ2cni)ν(λni)∑n

i=1 u
2
i ν

2(λni)

)
= cnE

( ∑n
i=1 u

2
i ν(λni)∑n

i=1 u
2
i ν

2(λni)

)

−
n∑

i=1

cniν(λni)E

(
σ2

∑n
i=1 u

2
i ν

2(λni)

)
= cn

n∑

i=1

cniν(λni) − cn

n∑

i=1

cniν(λni) = 0.

Lemma 6. (1.3) implies (1.21).
Proof. To avoid ambiguity, we restate the definitions of interpolation operators given

earlier, in the form we need now: for an n× n matrix Wn and z ∈ Rn put

D2
nWn = n

n∑

i,j=1

wnij1qij
, D1

nz =
√
n

n∑

i=1

zi1qi
.

Denote Wn the integral operator

(Wnf)(x) =

∫ 1

0

(D2
nWn)(x, y)f(y)dy.

The first part of the proof consists in showing that there is a one-to-one correspondence
between the set of non-zero eigenvalues of Wn and a similar set of Wn. Let Wnz = λz with
some λ 6= 0 and z 6= 0. Put f = D1

nz. If x ∈ [0, 1], we can assume that x ∈ qi for some i
(thereby neglecting a finite number of points). Then

(D2
nWn)(x, y) = n

∑

j

wnij1qij
, f(x) =

√
nzi,

so that

(Wnf)(x) =
∑

j

∫

qj

n
∑

j

wnij1qij

√
nzjdy =

∑

j

wnij

√
nzj = λf(x).

Since f is nontrivial, λ is an eigenvalue of Wn (in this part of the proof the assumption λ 6= 0
is not necessary). Conversely, let λ 6= 0 be an eigenvalue of Wn. Suppose x ∈ qi. Wnf = λf
implies

n
∑

j

wnij

∫

qj

f(y)dy = λf(x).

Since the left side is constant and λ 6= 0, f is constant on qi: f(x) = zi. Hence, the last
equation yields

∑
j wnijzj = λzi, i = 1, ..., n, or Wnz = λz. z is nontrivial because otherwise

f is trivial.
The statement we have just proved is sufficient for our purposes because the sums in

(1.21) are not affected by zero eigenvalues. In the second part of the proof we need some
facts from Gohberg and Krĕın (1969). s-numbers of an operator A in a Hilbert space H are
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defined as eigenvalues of the operator (A′A)1/2: sj(A) = λj((A
′A)1/2). The facts we need

are:
1) For self-adjoint operators sj(A) = |λj(A)| (p. 27),
2) For an integral operator K with a square-integrable kernel K one has ||K||2 =(∑∞

i=1 s
2
j(K)

)1/2
(pp. 108-109),

3) The expression ||A||σp
=
(∑∞

i=1 s
p
j(K)

)1/p
, 1 ≤ p <∞, is a norm (p. 92).

These facts and (1.3) give

∣∣∣∣∣∣

(
n∑

i=1

λ2
ni

)1/2

−
(

∞∑

i=1

λ2
i

)1/2
∣∣∣∣∣∣
=
∣∣||Wn||σ2

− ||K||σ2

∣∣ ≤ ||Wn −K||σ2
= ||Wn −K||2 → 0.

3 Proofs of Main Results

Proof of Theorem 1
1) Due to identity (1.7), condition (1.9) is equivalent to

|ρ|‖K‖2 < 1. (3.1)

Hence, |ρ|‖K‖2 ≤ 1 − 2ε for some sufficiently small ε > 0 and then (2.12) shows that there
exists n0 = n0(ε) such that

sup
n≥n0

|ρ|‖Wn‖2 ≤ 1 − ε. (3.2)

By Lemma 1a) Gn = s(Wn) exists and, moreover,

‖Gn‖2 ≤
∑

k≥0

|ρ|k ‖Wn‖k+1
2 =

‖Wn‖2

1 − |ρ| ‖Wn‖2

≤ c for all n ≥ n0. (3.3)

The reduced form Yn = S−1
n Vn of the basic model (1.1) and (1.8) lead to (1.10) in the usual

way:
ρ̂ = (Z ′

nZn)−1Z ′
n(ρZn + Vn) = ρ+ (V ′

nG
′
nGnVn)−1V ′

nG
′
nVn.

2) Here is the plan of the proof. The numerator and denominator of (1.10) will be con-
sidered coordinates of a new random vector Xn. Xn will be approximated by another vector
with s(dnK) instead of Gn = s(Wn). That second vector, in turn, will be approximated by
yet another vector with s(dnKL) where KL is an initial segment of (1.6):

KL(x, y) =
L∑

i=1

λifi(x)fi(y). (3.4)

To this last vector we shall be able to apply Lemma 3. Billingsley’s Lemma 4 will help us
to handle a double-indexed family of vectors that results in the course of the proof.

The scheme we have just explained is realized through the representation

Xn = αn + βnL + γnL + δnL (3.5)
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where

Xn =

(
V ′

nG
′
nVn

V ′
nG

′
nGnVn

)
, αn =

(
V ′

n

(
G′

n − s(dnK)
)
Vn

V ′
n

(
G′

nGn − s2(dnK)
)
Vn

)

βnL =

(
V ′

n

(
s(dnK) − s(dnKL)

)
Vn

V ′
n

(
s2(dnK) − s2(dnKL)

)
Vn

)
, γnL =

(
V ′

ns(dnKL)Vn

V ′
ns

2(dnKL)Vn

)
− δnL;

δnL has been defined before Lemma 3. Our goal is to show that αn, βnL and γnL are negligible
in some sense and therefore δnL represents the main part of Xn.

Bounding αn. We evaluate coordinates of the alphas, betas, and gammas separately.
Using (2.4) for k = 0 and (2.5) for positive k, we have

‖αn1‖2 = N

(
∑

k≥0

ρk
(
(W ′

n)k+1 − (dnK)k+1
)
)

≤ N (W ′
n − dnK)

+
∑

k>0

|ρ|kN
(
(W ′

n)k+1 − (dnK)k+1
)
≤ c

√
n ‖W ′

n − dnK‖2

+c ‖W ′
n − dnK‖2

∑

k>0

(k + 1) (|ρ|max {‖W ′
n‖2 , ‖dnK‖2})

k
. (3.6)

Because of (1.5), assumption (1.11) implies (1.9) and, consequently, (3.1). Hence, in the way
we derived (3.2) we can now derive

sup
n≥n0

|ρ|max {‖W ′
n‖2 , ‖dnK‖2} ≤ 1 − ε. (3.7)

This allows us to continue (3.6) using (2.13)

‖αn1‖2 ≤ c
√
n ‖W ′

n − dnK‖2 = o (1) . (3.8)

Repeating the argument which led us to (3.3) we can assert that for the ε from (3.7)
there exists n0 = n0(ε) such that

sup
n≥n0

‖Gn‖2 <∞, sup
n≥n0

‖s(dnK)‖2 <∞. (3.9)

By (2.2)
‖G′

n − s(dnK)‖2 = ‖Gn − s(dnK)‖2 ≤ c ‖Wn − dnK‖2 (3.10)

where we have used the symmetry of s(dnK) (see the proof of Lemma 2a)) and the fact that
ϕ(ρ,Wn, dnK) <∞ because of (3.7). Now we may use (2.3), (3.9) and (3.10) to obtain

‖αn2‖2 ≤ N
((
G′

n − s(dnK)
)
Gn

)
+N

(
s(dnK)

(
Gn − s(dnK)

))

≤ c(||G′
n − s(dnK)||2||Gn||2 + ||s(dnK)||2||Gn − s(dnK)||2)

≤ c1 ‖Wn − dnK‖2 . (3.11)

Bounding βnL. For any 1 ≤ L < M ≤ ∞ we can write by Lemma 2c)

(
dn

(
M∑

i=L

λifi(x)fi(y)

))

st

=
M∑

i=L

λi(dnfi)s(dnfi)t, s, t = 1, ..., n (3.12)
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(here the dn at the left is two-dimensional and at the right one-dimensional). Since for any
n, i, j by the Cauchy-Schwartz inequality and (2.9)

|(dnfi, dnfj)l2| ≤ ‖dnfi‖2 ‖dnfj‖2 ≤ ‖fi‖2 ‖fj‖2 = 1, (3.13)

we deduce from (3.12)

∥∥∥∥∥dn

(
M∑

i=L

λifi(x)fi(y)

)∥∥∥∥∥

2

2

=
n∑

s,t=1

M∑

i,j=L

λiλj(dnfi)s(dnfi)t(dnfj)s(dnfj)t

=
M∑

i,j=L

λiλj(dnfi, dnfj)
2
l2
≤
(

M∑

i=L

|λi|
)2

.

This bound along with decompositions (1.6) and (3.4) of K and KL produces three particular
cases:

‖dnK‖2 ≤
∑

i≥1

|λi|, ‖dnKL‖2 ≤
∑

i≥L

|λi|, ‖dnK − dnKL‖2 ≤
∑

i>L

|λi|. (3.14)

The last bound will be used for estimating the terms in βnL with k > 0. For k = 0, (2.8),
(3.12) and (3.14) give the inequality

N(dnK − dnKL) ≤ c

(
‖dnK − dnKL‖2 +

∣∣∣∣∣
∑

i>L

λi ‖dnfi‖2
2

∣∣∣∣∣

)
≤ c1

∑

i>L

|λi|. (3.15)

Overall, utilizing (2.5), (3.14) and (3.15) we can bound the first component of βnL as follows

‖βnL1‖2 ≤ N (dnK − dnKL) +
∑

k>0

|ρ|kN
(
(dnK)k+1 − (dnKL)k+1

)

≤ c1
∑

i>L

|λi| + c
∑

i>L

|λi|
∑

k>0

(k + 1)

(
|ρ|
∑

i≥1

|λi|
)k

≤ c2
∑

i>L

|λi|. (3.16)

It is important that c2 here does not depend on n.
(3.14) trivially leads to the bound

max {‖s(dnK)‖2 , ‖s(dnKL)‖2} ≤
∑

k≥0

|ρ|k
(
∑

i≥1

|λi|
)k+1

≤ c (3.17)

which is uniform in n and L, while (2.2) and (3.14) guarantee that

||s(dnK) − s(dnKL)||2 ≤ c||dnK − dnKL||2 ≤ c
∑

i>L

|λi| (3.18)

where

c = ϕ(ρ, dnK, dnKL) ≤
∑

k≥0

(k + 1)

(
|ρ|
∑

i≥1

|λi|
)k

<∞.
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It follows from (2.3), (3.17) and (3.18) that

‖βnL2‖2 ≤ N
((
s(dnK) − s(dnKL)

)
s(dnK)

)

+N
(
s(dnKL)

(
s(dnK) − s(dnKL)

))

≤ c||s(dnK) − s(dnKL)||2(||s(dnK)||2 + ||s(dnKL)||2) ≤ c1
∑

i>L

|λi|. (3.19)

Estimating γnL. Using formula (3.12) it is easy to show by induction that (see Lemma
2b) for the notation µni )

(dnKL)k+1
st =

∑

i1,...,ik+1≤L

k+1∏

j=1

λijµni(dnfi1)s(dnfik+1
)t. (3.20)

Hence, in terms of the vector UnL used in Lemma 3

V ′
ns(dnKL)Vn =

n∑

s,t=1

∑

k≥0

ρk(dnKL)k+1
st vsvt

=
∑

k≥0

ρk
∑

i1,...,ik+1≤L

k+1∏

j=1

λijµniUnLi1UnLik+1
.

We need to express δnL1 in similar terms. Replacing 1/(1 − ρλi) by
∑

k≥0(ρλi)
k gives

δnL1 =
L∑

i=1

U2
nLi

∑

k≥0

ρkλi
k+1 =

∑

k≥0

ρk

L∑

i=1

λi
k+1U2

nLi.

Since µ∞i vanishes for i with different components, this is the same as

δnL1 =
∑

k≥0

ρk
∑

i1,...,ik+1≤L

k+1∏

j=1

λijµ∞iUnLi1UnLik+1
.

The result is the representation

γnL1 =
∑

k≥0

ρk
∑

i1,...,ik+1≤L

k+1∏

j=1

λij(µni − µ∞i)UnLi1UnLik+1
(3.21)

which can be used for bounding.
By the Hölder inequality, (2.8) and (3.13) for any i, j

E |UnLiUnLj| ≤
[
E (V ′

ndnfiV
′
ndnfj)

2
]1/2

= N(dnfidnf
′
j)

≤ c



(

n∑

s,t=1

(dnfi)
2
s(dnfj)

2
t

)1/2

+

∣∣∣∣∣

n∑

s=1

(dnfi)s(dnfj)s

∣∣∣∣∣




= c
[
‖dnfi‖2 ‖dnfj‖2 + |(dnfi, dnfj)l2|

]
≤ c1. (3.22)

According to (2.14), for any positive (small) ε and (large) L we can choose n0 = n0(ε, L) so
large that

|µni − µ∞i| ≤ ε for all n ≥ n0 and i1, ..., ik+1 ≤ L. (3.23)
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Finally, we conclude from (3.21), (3.22) and (3.23) that for all n ≥ n0

E|γnL1| ≤ c1ε
∑

k≥0

|ρ|k
∑

i1,...,ik+1≤L

k+1∏

j=1

|λij | ≤ c1ε
∑

k≥0

|ρ|k
(
∑

i≥1

|λi|
)k+1

= c2ε. (3.24)

For numbers or square matrices a one has the identity

(
∑

k≥0

ak

)2

=
∑

k, l≥0

ak+l =
∑

m≥0

am(m+ 1) (3.25)

because there are (m + 1) pairs (k, l) such that k + l = m. If one chooses a = ρdnKL here
and then applies (3.20), one gets

V ′
ns

2(dnKL)Vn = V ′
n

(
∑

k≥0

(ρdnKL)k

)2

(dnKL)2Vn = V ′
n

∑

m≥0

ρm(m+ 1)(dnKL)m+2Vn

=
∑

m≥0

ρm(m+ 1)
n∑

s,t=1

(dnKL)m+2
st vsvt

=
∑

m≥0

ρm(m+ 1)
∑

i1,...,im+2≤L

m+2∏

j=1

λijµniUnLi1UnLim+2
. (3.26)

Application of (3.25) also provides another expression for

δnL2 =
L∑

i=1

U2
nLiλ

2
i

(
∑

k≥0

(ρλi)
k

)2

=
L∑

i=1

U2
nLiλ

2
i

∑

m≥0

(ρλi)
m(m+ 1)

=
∑

m≥0

ρm(m+ 1)
L∑

i=1

U2
nLiλ

m+2
i .

Since µ∞i = 0 if among the indices i1, ..., im+2 there are at least two different ones, δnL2

equals

δnL2 =
∑

m≥0

ρm(m+ 1)
∑

i1,...,im+2≤L

m+2∏

j=1

λijµ∞iUnLi1UnLim+2
.

Therefore, taking into account also (3.26), we can rewrite γnL2 as

γnL2 = V ′
ns

2(dnKL)Vn − δnL2

=
∑

m≥0

ρm(m+ 1)
∑

i1,...,im+2≤L

m+2∏

j=1

λij(µni − µ∞i)UnLi1UnLim+2
.

As above, application of (3.22) and (3.23) leads to an analog of (3.24): for any positive ε, L
there is n0 = n0(ε, L) such that

E|γnL2| ≤ c1ε
∑

m≥0

|ρ|m(m+ 1)
∑

i1,...,im+2≤L

m+2∏

j=1

|λij | ≤ c2ε (3.27)
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for all n ≥ n0.
Proving (1.12). Under condition (1.11) we have

0 < c1 = 1 − |ρ|
∑

i≥1

|λi| ≤ 1 − |ρλi| ≤ |1 − ρλi|

≤ 1 + |ρλi| ≤ 1 + |ρ|
∑

i≥1

|λi| = c2 <∞, all i

so that
|λi|
c2

≤ |ν(λi)| ≤
|λi|
c1
, all i (3.28)

where c1 and c2 depend on ρ. Hence, the condition
∑

i≥1 |λi| < ∞ is equivalent to (2.19),
and we can use (2.16) and (2.20).

(3.8) and (3.11) show that plimαn = 0. From (3.16) and (3.19) we have by the Chebyshev
inequality

P (|βnL1| + |βnL2| > ε) ≤ 1

ε2

∥∥|βnL1| + |βnL2|
∥∥

2
≤ c

ε2

∑

i>L

|λi|

where c does not depend on n. From (3.24) and (3.27) we conclude that for any fixed L
plimn→∞γnL = 0. Thus, (3.5) implies

lim sup
n→∞

P (|Xn1 − δnL1| + |Xn2 − δnL2| > ε) ≤ c

ε2

∑

i>L

|λi|.

All conditions of Lemma 4 are satisfied and, consequently,

dlim
n→∞

Xn = ∆∞.

By the continuous mapping theorem (Theorem 5.1 from Billingsley (1968)) it follows that

dlim (λ̂− λ) = dlim
Xn1

Xn2

=
∆∞1

∆∞2

which is (1.11). Theorem 5.1 is applicable because ∆∞2 > 0 almost surely.
3) Proving (1.13). In the definition of σ̂2 we may as well put n instead of n− 1. Substi-

tuting Sn(ρ̂)S−1
n = I − (ρ̂− ρ)Gn we have

√
n(σ̂2 − σ2) =

√
n
V ′

nS
′−1
n S ′

n(ρ̂)Sn(ρ̂)S−1
n Vn

n
−
√
nσ2

=
√
n
V ′

nVn − nσ2

n
+ 2

ρ− ρ̂

nε

V ′
nG

′
nVn

n1/2−ε
+

(ρ− ρ̂)2

nε

V ′
nG

′
nGnVn

n1/2−ε

=

∑
(v2

i − σ2)√
n

+ 2
ρ− ρ̂

nε

Xn1

n1/2−ε
+

(ρ− ρ̂)2

nε

Xn2

n1/2−ε
. (3.29)

Here ε ∈ (0, 1/2) is arbitrary. From the proof of Theorem 1 we know that Xn1, Xn2, ρ − ρ̂
and (ρ− ρ̂)2 converge in distribution. Therefore the second and third terms in the last line
are op(1). The first term is known to converge to N(0, µ4 − σ4) in distribution.

Proof of Theorem 2

21



Proving that the limit in (1.14) is zero. The next equation is quite similar to the passage
from (3.6) to (3.8):

|tr(Gn) − tr(s(dnK))| = |tr(s(Wn) − s(dnK))| ≤ |tr (Wn − dnK) |
+
∑

k>0

|ρ|k|tr
(
Wn

k+1 − (dnK)k+1
)
| ≤

√
n ‖Wn − dnK‖2

+ ‖Wn − dnK‖2

∑

k>0

(k + 1) (|ρ|max {‖Wn‖2 , ‖dnK‖2})
k = o(1).

Using (3.20) and (2.14) we see that

tr(s(dnK)) =
∑

k≥0

ρktr((dnK)k+1)

=
∑

k≥0

ρk

∞∑

i1,...,ik+1=1

k+1∏

j=1

λijµni(dnfi1 , dnfik+1
)l2

−→
∑

k≥0

ρk

∞∑

i1,...,ik+1=1

k+1∏

j=1

λijµ∞i(fi1 , fik+1
)l2

=
∑

k≥0

ρk
∑

i≥1

λk+1
i =

∑

i≥1

ν(λi).

Sending n→ ∞ here is possible because under condition (1.11) the series converge uniformly.
The conclusion is that

lim
n→∞

tr(Gn) =
∑

i≥1

ν(λi) (3.30)

where the series at the right converges because of (3.28).
Reviewing the argument that took us from (3.9) to (3.11) we see that

|tr(G′
nGn) − tr(s2(dnK))| ≤

∣∣tr
((
G′

n − s(dnK)
)
Gn

)∣∣+
∣∣tr
((
Gn − s(dnK)

)
Gn

)∣∣
≤ ||G′

n − s(dnK)||2||Gn||2 + ||Gn − s(dnK)||2||s(dnK)||2 −→ 0.

Arguing along the lines following (3.26) we have

tr(s2(dnK)) = tr



(
∑

k≥0

(ρdnK)k

)2

(dnK)2


 = tr

(
∑

m≥0

ρm(m+ 1)(dnK)m+2

)

=
∑

m≥0

ρm(m+ 1)
∞∑

i1,...,im+2=1

m+2∏

j=1

λijµni(dnfi1 , dnfim+2
)l2 .

The last expression tends to

∑

m≥0

ρm(m+ 1)
∑

i≥1

λm+2
i =

∑

i≥1

λ2
i

∑

m≥0

(ρλi)
m(m+ 1)

=
∑

i≥1

λ2
i

(
∑

k≥0

(ρλi)
k

)2

=
∑

i≥1

ν2(λi).
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Thus,

lim
n→∞

tr(G′
nGn) =

∑

i≥1

ν2(λi). (3.31)

In this proof we can replace G′
n by Gn. Then instead of (3.31) we have

lim
n→∞

tr(G2
n) =

∑

i≥1

ν2(λi). (3.32)

(3.30), (3.31) and (3.32) show that the limit in (1.14) is zero.
Proving that the limit in (1.15) is zero. In accordance with the ML methodology, here

we redenote the true value by ρ0 and use ρ for points close to ρ0. The transformation in the
next equation is analogous to that in (3.29)

σ2
n(ρ) =

σ2
0

n
tr [(I − (ρ− ρ0)Gn)′(I − (ρ− ρ0)Gn)]

=
σ2

0

n
tr
[
I − 2(ρ− ρ0)Gn + (ρ− ρ0)

2G′
nGn

]

= σ2
0

[
1 − 2(ρ− ρ0)

tr(Gn)

n
+ (ρ− ρ0)

2 tr(G′
nGn)

n

]
.

It is clear from (3.30) and (3.31) that

limσ2
n(ρ) = σ2

0 for any ρ. (3.33)

Using properties of logs, determinants and the fact that Sn(ρ), Sn and their inverses
commute with each other (as functions of the same matrix Wn) we have

ln |σ2
0S

−1
n S ′−1

n | − ln |σ2
n(ρ)S−1

n (ρ)S ′−1
n (ρ)| = ln(σ2

0/σ
2
n(ρ)) + 2(ln |Sn(ρ)| − ln |Sn|). (3.34)

The formula (see Horn and Johnson (1985))

∂ ln |Sn(ρ)|
∂ρ

= −tr(WnSn(ρ)) (3.35)

implies (cf. Gohberg and Krĕin (1969), p.158)

ln |Sn(ρ)| − ln |Sn| = −
∫ ρ

ρ0

tr(WnSn(t))dt = −
∫ ρ

ρ0

tr(s(t,Wn))dt

where we have denoted s(t,Wn) =
∑∞

k=0 t
kW k+1

n . Here we are assuming that |ρ0| <
1/
∑

i≥1 |λi| and ρ is in a small neighborhood of ρ0 so that s(t,Wn) converges uniformly
on the segment connecting ρ0 and ρ. Similarly to (3.30) one can show that

lim
n→∞

tr(s(t,Wn)) = lim
n→∞

tr(s(t, dnK)) =
∑

i≥1

λi

1 − tλi

uniformly in t from the neghborhood indicated above. Therefore

lim
n→∞

(ln |Sn(ρ)| − ln |Sn|) = −
∫ ρ

ρ0

∑

i≥1

λi

1 − tλi

dt.
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This relation, (3.33) and (3.34) show that the limit in (1.15) is zero for ρ close to ρ0.
Proving that limit (1.16) is zero. The desired result will follow if we show that L2(Ω)-

norms of all elements of An are uniformly bounded. To this end, the reader can consult
(2.3), (2.12) and statement 1) of Theorem 1 and verify that

(
E(Y ′

nW
′2
n WnYn)2

)1/2
= N(S ′−1

n W ′2
n WnS

−1
n ) ≤ c1

∥∥S−1
n

∥∥2

2
‖Wn‖3

2 ≤ c2,

|tr(W ′
nWn)| ≤ ‖Wn‖2

2 ≤ c,
(
E(Y ′

nWnYn)2
)1/2

= N(S ′−1
n WnS

−1
n ) ≤ c1

∥∥S−1
n

∥∥2

2
‖Wn‖2 ≤ c2,

(
E(Y ′

nW
′2
n W

2
nYn)2

)1/2
= N(S ′−1

n W ′2
n W

2
nS

−1
n ) ≤ c1

∥∥S−1
n

∥∥2

2
‖Wn‖4

2 ≤ c2,
(
E(Y ′

nW
′
nWnYn)2

)1/2
= N(S ′−1

n W ′
nWnS

−1
n ) ≤ c1

∥∥S−1
n

∥∥2

2
‖Wn‖2

2 ≤ c2,
(
E(Y ′

nW
2
nYn)2

)1/2
= N(S ′−1

n W 2
nS

−1
n ) ≤ c1

∥∥S−1
n

∥∥2

2
‖Wn‖2

2 ≤ c2.

Proof of Theorem 3
Deriving (1.22). Denoting

ν(ρ, λni) =
λni

1 − ρλni

, i = 1, ..., n,

and using (1.19), for the matrices involved in (1.20) we have representations

Sn(ρ) = Pndiag[1 − ρλn1, ..., 1 − ρλnn]P ′
n,

Gn = Pndiag[ν(λn1), ..., ν(λnn)]P ′
n,

tr(AnWnS
−1
n (ρj−1)) =

1

cn

n∑

i=1

cniν(ρj−1, λni).

It is easy to see that the vector Ṽn = P ′
nVn is distributed as N(0, σ2I). (1.20) becomes

ρj =

∑n
i=1 ṽ

2
i

ν(λni)
1−ρλni

− σ̂2

cn

∑n
i=1 cniν(ρj−1, λni)∑n

i=1 ṽ
2
i ν

2(λni)
.

The numerator can be rearranged as follows:

n∑

i=1

ṽ2
i

ν(λni)

1 − ρλni

− σ̂2

cn

n∑

i=1

cniν(ρj−1, λni) =
n∑

i=1

ṽ2
i

(
ν(λni)

1 − ρλni

− ν(λni)

)

+
n∑

i=1

(
ṽ2

i −
σ2cni

cn

)
ν(λni) +

σ2 − σ̂2

cn

n∑

i=1

cniν(λni) +
σ̂2

cn

n∑

i=1

cni(ν(λni) − ν(ρj−1, λni)).

Hence, if we denote

κn0 =
n∑

i=1

ṽ2
i ν

2(λni), κn1 =
1

κn0

n∑

i=1

(
ṽ2

i −
σ2cni

cn

)
ν(λni),

κn2 =
σ2 − σ̂2

κn0cn

n∑

i=1

cniν(λni), κn3 =
σ̂2

κn0

,
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then ρj becomes

ρj = ρ+ κn1 + κn2 + κn3

n∑

i=1

cni

cn
(ν(λni) − ν(ρj−1, λni)).

If we also take into account that

ν(λni) − ν(ρj−1, λni) = ν(ρ, λni) − ν(ρj−1, λni) =

∫ ρ

ρj−1

∂ν(t, λni)

∂t
dt =

∫ ρ

ρj−1

ν2(t, λni)dt

and denote

ψn(t) =
n∑

i=1

cni

cn
ν2(t, λni),

then ρj rewrites as (1.22).
Final touches. The validity of the first equation in (1.23) follows from (2.24):

Eκn1 =
1

cn
E

(∑n
i=1(cnṽi

2 − σ2cni)ν(λni)∑n
i=1 ṽi

2ν2(λni)

)
= 0.

We claim that (see Lemma 3)

dlim
n→∞

κn0 = ∆∞2 = σ2

∞∑

i=1

u2
i ν

2(λi). (3.36)

This is so because κn0 = V ′
nG

′
nGnVn = Xn2.

(2.23) and Assumption 4 imply by Hölder’s inequality

∣∣∣∣∣
1

n1/q

n∑

i=1

cni

cn
ν(λni)

∣∣∣∣∣ ≤
1

n1/q

(
n∑

i=1

|ν(λni)|p
)1/p

n1/q ≤ c. (3.37)

Hence, factorizing κn2 as

κn2 =
1

n1/2−1/q

[√
n(σ2 − σ̂2)

] [ 1

κn0

][
1

n1/q

n∑

i=1

cni

cn
ν(λni)

]

we see that by (1.13), (3.36) and (3.37) the factors in all brackets are Op(1), so that κn2 =
op(1). We have proved the second relation in (1.23).

(1.24) is a consequence of (3.36) and consistency of σ̂2.
Nonnegativity of κn3 and ψn are obvious.
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