

Does financial development increase energy consumption? role of industrialization and urbanization in Tunisia

Muhammad, Shahbaz and Lean, Hooi Hooi

COMSATS Institute of Information Technology, Lahore, Pakistan, University Sains Malaysia

1 September 2011

Online at https://mpra.ub.uni-muenchen.de/33194/ MPRA Paper No. 33194, posted 06 Sep 2011 10:02 UTC

Does Financial Development Increase Energy Consumption? Role of Industrialization and Urbanization in Tunisia

Muhammad Shahbaz Department of Management Sciences COMSATS Institute of Information Technology <u>shahbazmohd@live.com</u>

> Hooi Hooi Lean* Economics Program School of Social Sciences Universiti Sains Malaysia 11800 USM, Penang, Malaysia Tel: 604-653 2663 Fax: 604-657 0918 Email: hooilean@usm.my

Abstract

This paper assesses the relationship among energy consumption, financial development, economic growth, industrialization and urbanization in Tunisia from 1971-2008. The autoregressive distributed lag bounds testing approach to cointegration and Granger causality tests are employed for the analysis. The result confirms the existence of long-run relationship between energy consumption, economic growth, financial development, industrialization and urbanization in Tunisia. Moreover, financial development, industrialization and urbanization are positively related to energy consumption especially in the long-run. Long-run bidirectional causal relationships are found between financial development and consumption. financial development and industrialization. energy and industrialization and energy consumption. Hence, sound and developed financial system which can attract investors, boost the stock market and improve the efficiency of economic activities should be encouraged in the country. Nevertheless, promoting industrialization and urbanization can never be left out from the process of development. On the other hand, the unidirectional causality from energy consumption to financial development implies that government should implement loose monetary policy which will stimulates investment activities and enhances economic growth and hence the energy consumption.

Keywords: Energy Consumption; Financial Development; Economic Growth JEL classification: F15, B28

1. Introduction

Role of financial development in an economy is widely discussed in the economic literature. Both cross-country and country-specific studies discussed the importance of financial development on economic growth. A well established and developed financial system increases the efficiency and effectiveness of financial institutions and boosts the innovations in the financial services delivery system. It also helps the advancement of technology, reduction of information cost and profitability of investment (Levine, 1996; Bairer et al., 2004; Abu-Bader and Abu-Qarn, 2008).

Literature shows that liberalization of financial markets leads to economic growth (Bekaert and Harvey, 2000; Bekaert et al., 2001, 2002, 2005). Fung (2009) documented that an efficient financial system increases investment as well as consumption and thus production which causes more energy demand. Improvement in monetary transmission mechanism, as a result of financial liberalization, also encourages savings and investment and enhances economic growth.

An opposite view is also found in the literature which states that financial development is a result of economic growth (Lucas, 1988; Stern, 1989). A pioneering study by Kraft and Kraft (1978) found that economic growth causes growing energy demand in the United States during 1947-1974. According to Wolde-Rufael (2009) and Apergis and Payne (2009a, 2009b, 2010), rise in energy demand in emerging countries is due to increases of income. To fulfill the growing needs of their people, the emerging countries need more production which leads to more energy consumption.

Several control variables are used in the literature to explain the relationship between energy consumption and economic growth. Population growth, urbanization and industrialization are among the important factors that will boost energy consumption. Rapid growth in population will lead to urbanization which may further cause more usage of energy. On the other hand, industrialization affects the energy consumption directly and indirectly. Industrialization means enhancement of plants to expand production and hence the energy consumption. Industrial growth contributes to economic growth through cross-sectoral growth that further enlarges the demand for energy. Furthermore, industrial growth also increases the demand for labor and thus improves their income. The rise of income boosts the demand for consumer items such as cars, TVs, refrigerators, computers etc. which increases the energy consumption.

The objective of this paper is to assess the relationship among energy consumption, financial development, economic growth, industrialization and urbanization in Tunisia. Much of the literature on energy focuses on the nexus of output-energy that only portray a partial picture of the problem. Being one of the fastest growing economies in North African region, Tunisia is an interesting case study as it faces the energy shortage in fulfilling its growing energy needs. According to Boulila and Trabelsi (2004), financial development causes economic growth in Tunisia which may further causes more energy consumption. To the best knowledge of the authors, this is the only comprehensive study that takes into account financial development, industrialization and urbanization in the energy-growth nexus for Tunisia and uses the longest available data from 1971-2008, making the estimation more reliable. The finding may help policy makers to better understand some of the intricate development that confront Tunisia.

The rest of the paper is organized as follows. Section 2 reviews the literature; section 3 describes data and methodology. Results are reported in section 4 and the conclusion is in section 5.

2. Literature Review

The relationship between financial development and economic growth is complex in both empirical and theoretical literatures (McKinnon, 1973; Bascom, 1994; Dow, 1996; Kaminsky and Schmukler, 2003; Claessens and Laeven, 2003). Without scanning the prevailing economic situation, steps taken for financial development and financial liberalization may be harmful to the economy (Stiglitz, 2000; Rogoff, 2004; Arestis and Stein, 2005). The competition between domestic and foreign banks makes the financial market more flexible and generates more and new opportunities for investment. This flexibility enhances the relationship between economic growth and financial development (Mankiw and Scarth, 2008; Karanfil, 2008; Sadorsky, 2010).

According to Karanfil (2008), the causality between economic growth and energy consumption is not just justified by a simple bivariate model. He suggested adding one of the financial variables such as domestic credit to private sector, stock market capitalization or liquid liabilities into the model. He also argued that interest rate and exchange rate can affect the energy consumption through energy prices. In this regard, Stern (2000) indicated the omission of relevant variables from the model. Furthermore, positive and significant relationships between energy consumption and economic growth are found by Lee and Chang (2008) by including capital stock in the model for some Asian countries. Bartleet and Gounder (2010) studied the casual relationship between energy consumption and economic growth using both bivariate and multivariate models. They found that economic growth, employment and energy consumption have cointegration relationship. The causality results show that economic growth causes energy consumption and economic activity determines the increase of energy demand. Using the neo-classical production function, they found that capital stock plays an important role in determining the direction of casual relationship between energy consumption and economic growth; and real GDP and employment also significantly affect the energy consumption.

Sadorsky (2010) used different indicators¹ of financial development in twenty-two emerging economies during the period of 1990-2006. They found that the impact of financial development on energy demand is positive and significant but small. Shahbaz et al. (2010) suggested a significant and positive effect of financial development on energy consumption in Pakistan. The causality analysis indicated bidirectional casual relation between financial development and energy consumption. In Malaysia, Islam et al. (2011) revealed that financial development and economic growth have positive impact on energy consumption. Different from Pakistan, a unidirectional causality was found running from financial development to energy consumption in Malaysia.

¹ FDI, deposit money to total bank assets as share of GDP, stock market capitalization as share of GDP, stock market turnover ratio and total stock market value traded over GDP.

Belloumi (2009) confirmed cointegration and bidirectional causal relationship between energy consumption and economic growth in Tunisia. However, by applying the bivariate Johansen cointegration and Granger causality approaches, their findings may be bias. Lütkepohl (1982) argued that omissions of important variables provide biased and inappropriate results on the relationship. Bartleet and Rukmani (2010) also recommended incorporating other pertinent variables that also play an important role to elucidate the energy-growth nexus. Thus, we try to fill this research gap by investigating the relationship with a multivariate model.

3. Data and Methodology

The sample used is annual data covering the period of 1971-2008 that taken from the World Development Indicators (WDI-CD, 2009). Energy consumption is measured by total energy consumption per capita (kg of oil equivalent). Domestic credit to private sector as share of GDP is the proxy for financial development^{2,3}. Real GDP per capita measures the economic growth, industrial value added as share of GDP is the proxy for industrialization, and urban population as share of total population is the proxy for urbanization.

Log-linear specification produces a better result compared to the linear functional form of model. Thus, all data are transformed to natural logarithmic. Modified from Sadorsky (2010), the basic framework for energy demand is:

$$ENC_{t} = f(FD_{t}, GDPC_{t}, IND_{t}, URB_{t})$$
(1)

²The measure for domestic credit is obtained from banking sector including gross credit to various sectors but with the exception of credit to the central government. Banking sector includes monetary authorities, deposit money banks and other banking institutions for which data are available. It also includes institutions that do not accept transferable deposits but incurs such liabilities as time and savings deposits. This is a broad measure for the development of financial sector.

³Several researchers have used liquid liabilities as share of GDP (LLY) to proxy for financial development (McKinnon, 1973; King and Levine, 1993). The measure does not present a true picture of financial development as it shows the volume of financial sector but not financial development. Increase in LLY does not show savings mobilization. This may misrepresent some nation having high indicator even with an underdeveloped financial market. Among other measures to proxy for financial development are the ratio between commercial bank assets to the sum of commercial bank and central bank assets. The most common proxy is domestic credit to private sector as share of GDP, e.g. (see Yucel 2009 for further details).

where ENC is logarithmic total energy consumption per capita, FD is logarithmic domestic credit to private sector as share of GDP, GDPC is logarithmic real GDP per capita, IND is logarithmic industrial value added as share of GDP, and URB is logarithmic urban population as share of total population.

Financial development indicates the actual amount of money to be used in investment projects. A high value of financial development implies developed financial market which means bank and equity markets and fund are available for investment (Minier, 2009; Sadorsky, 2010). There are two main mechanisms to explain the enhancement in financial markets which is linked with investment activities and hence the economic growth. The first mechanism is level effect which reveals that developed financial markets channel financial resources to the high return projects. Regulations set a better accounting and reporting system which enhances investor's confidence and attracts foreign direct investment (Sadorsky, 2010). The second mechanism is efficiency effect which means financial development increases liquidity and asset diversification and raises funds for appropriate ventures. Thus, the impact of financial development on economic growth and thus the energy consumption should be positive.

Economic growth leads industrialization that backbone the economic activities and increases the demand for energy through sectoral growth. Similarly, energy literature such as Aqeel and Butt (2001) for Pakistan, Ghosh (2002) for India, Morimoto and Hope (2004) for Sri Lanka, Altinay and Karagol (2005) for Turkey, Ang (2008) for Malaysia, Bowden and Payne (2009) for USA, Halicioglu (2009) for Turkey, Odhiambo (2009) for Tanzania; posited that economic growth has positive impact on energy consumption. The increase of share of industrial sector's value to GDP means more energy is required in order to keep the pace of economic growth consistent. A nation's ability in upgrading machineries to develop their industrial sectors varies will explain the intensity of energy consumption. Jiang and Gao (2007) reported that a rise in industrial growth is linked with high demand for energy consumption in China.

Urbanization is a major feature of economic development which involves many structural changes throughout the economy and has important implication to the energy consumption. Urbanization deliberates population and hence economic activities. The rise in economic activities due to urbanization increases in the demand for energy consumption. Mishra et al. (2009) indicated that electricity consumption is caused by urbanization in the short run for the Pacific Island countries. In the long span of time, electricity consumption and urbanization cause gross domestic product.

We employ the autoregressive distributed lag (ARDL) bounds testing approach to cointegration developed by Pesaran et al. (2001) to explore the existence of long-run equilibrium among the series. The bounds testing approach has several advantages. The approach is applied irrespective of whether the variables are I(0) or I(1), unlike other widely used cointegration techniques. Moreover, a dynamic unrestricted error correction model (UECM) can be derived from the ARDL bounds testing through a simple linear transformation. The UECM integrates the short-run dynamics with the long-run equilibrium without losing any long-run information. The UECM is expressed as follows:

$$\begin{split} \Delta ENC_{t} &= \alpha_{1} + \alpha_{T}T + \alpha_{ENC}ENC_{t-1} + \alpha_{GDPC}GDPC_{t-1} + \alpha_{FD}FD_{t-1} + \alpha_{IND}IND_{t-1} + \alpha_{URB}URB_{t-1} \\ &+ \sum_{i=1}^{p} \alpha_{i}\Delta ENC_{t-i} + \sum_{j=0}^{q} \alpha_{j}\Delta GDPC_{t-j} + \sum_{k=0}^{r} \alpha_{k}\Delta FD_{t-k} + \sum_{l=0}^{s} \alpha_{l}\Delta IND_{t-l} + \sum_{m=0}^{t} \alpha_{m}\Delta URB_{t-m} + \mu_{m} \\ &(3) \end{split}$$

$$\Delta FD_{t} &= \beta_{1} + \beta_{T}T + \beta_{ENC}ENC_{t-1} + \beta_{GDPC}GDPC_{t-1} + \beta_{FD}FD_{t-1} + \beta_{IND}IND_{t-l} + \beta_{URB}URB_{t-1} \\ &+ \sum_{i=1}^{p} \beta_{i}\Delta FD_{t-i} + \sum_{j=0}^{q} \beta_{j}\Delta GDPC_{t-j} + \sum_{k=0}^{r} \beta_{k}\Delta ENC_{t-k} + \sum_{l=0}^{s} \beta_{l}\Delta IND_{t-l} + \sum_{m=0}^{t} \beta_{m}\Delta URB_{t-m} + \mu_{t} \\ &(4) \end{split}$$

$$\Delta GDPC_{t} &= \beta_{1} + \beta_{T}T + \beta_{ENC}ENC_{t-1} + \beta_{GDPC}GDPC_{t-1} + \beta_{FD}FD_{t-1} + \beta_{IND}IND_{t-1} + \beta_{URB}URB_{t-1} \\ &+ \sum_{i=1}^{p} \beta_{i}\Delta GDPC_{t-i} + \sum_{j=0}^{q} \beta_{j}\Delta FD_{t-j} + \sum_{k=0}^{r} \beta_{k}\Delta ENC_{t-k} + \sum_{l=0}^{s} \beta_{l}\Delta IND_{t-l} + \sum_{m=0}^{t} \beta_{m}\Delta URB_{t-m} + \mu_{t} \\ &(5) \end{aligned}$$

$$\Delta IND_{t} &= \rho_{1} + \rho_{T}T + \rho_{ENC}ENC_{t-1} + \rho_{GDPC}GDPC_{t-1} + \rho_{FD}FD_{t-1} + \rho_{IND}IND_{t-1} + \rho_{URB}URB_{t-1} \\ &+ \sum_{i=1}^{p} \rho_{i}\Delta IND_{t-i} + \sum_{j=0}^{q} \beta_{j}\Delta FD_{t-j} + \sum_{k=0}^{r} \beta_{k}\Delta ENC_{t-k} + \sum_{l=0}^{s} \beta_{l}\Delta IND_{t-l} + \sum_{m=0}^{t} \beta_{m}\Delta URB_{t-m} + \mu_{t} \\ &(5) \end{aligned}$$

(6)

$$\Delta URB_{t} = \sigma_{1} + \sigma_{T}T + \sigma_{ENC}ENC_{t-1} + \sigma_{GDPC}GDPC_{t-1} + \sigma_{FD}FD_{t-1} + \sigma_{IND}IND_{t-1} + \sigma_{URB}URB_{t-1} + \sum_{i=1}^{p}\sigma_{i}\Delta URB_{t-i} + \sum_{j=0}^{q}\sigma_{j}\Delta FD_{t-j} + \sum_{k=0}^{r}\sigma_{k}\Delta ENC_{t-k} + \sum_{l=0}^{s}\sigma_{l}\Delta GDPC_{t-l} + \sum_{m=0}^{t}\sigma_{m}\Delta IND_{t-m} + \mu_{t}$$
(7)

where Δ is the first difference operator and μ_{I} is error terms. The optimal lag structure of the first difference regression is selected by the Akaike Information criteria (AIC). The lags induce when noise property in the error term⁴. Pesaran et al. (2001) suggested F-test for joint significance of the coefficients of the lagged level of the variables. For example, the null hypothesis of no long-run relationship between the variables in equation (3) is $H_0: \alpha_{ENC} = \alpha_{GDPC} = \alpha_{FD} = \alpha_{URB} = 0$ against the alternative hypothesis of cointegration $H_1: \alpha_{ENC} \neq \alpha_{GDPC} \neq \alpha_{FD} \neq \alpha_{URB} \neq 0$.

Two asymptotic critical bounds are used to test for cointegration, lower bound is applied if the regressors are I(0) and the upper bound is used for I(1). If the F-statistic exceeds the upper critical value, we conclude the favor of a long-run relationship. If the F-statistic falls below the lower critical values, we cannot reject the null hypothesis of no cointegration. However, if the F-statistic lies between the two bounds, inference would be inconclusive. When the order of integration for all the series is known to be I(1), the decision is made based on the upper bound. Similarly, if all the series are I(0), then the decision is made based on the lower bound. The robustness of the ARDL model has been checked through some diagnostic tests. The diagnostics tests are checking for serial correlation, functional form, normality of error term and heteroskedasticity.

After investigating the long-run relationship between the variables, we employ the Granger causality test to determine the causality between the variables. If there is cointegration, an error correction model can be developed as follows:

⁴ The mean prediction error of AIC based model is 0.0005 while that of SBC based model is 0.0063 (Shrestha and Choudhary, 2007).

$$(1-L)\begin{bmatrix} ENC_{t} \\ FD_{t} \\ GDPC_{t} \\ IND_{t} \\ URB_{t} \end{bmatrix} = \begin{bmatrix} \phi_{1} \\ \phi_{2} \\ \phi_{3} \\ \phi_{4} \\ \phi_{5} \end{bmatrix} + \sum_{i=1}^{p} (1-L) \begin{bmatrix} a_{11i}a_{12i}a_{13i}a_{14i}a_{15i} \\ b_{21i}b_{22i}b_{23i}b_{24i}b_{25i} \\ c_{31i}c_{32i}c_{33i}c_{34i}c_{35i} \\ d_{41i}d_{42i}d_{43i}d_{44i}d_{45i} \\ e_{51i}e_{52i}e_{53i}e_{54i}e_{55i} \end{bmatrix} \times \begin{bmatrix} ENC_{t-i} \\ FD_{t-i} \\ GDPC_{t-i} \\ IND_{t-i} \\ URB_{t-i} \end{bmatrix} + \begin{bmatrix} \xi_{1} \\ \xi_{2} \\ \xi_{3} \\ \xi_{4} \\ \xi_{5} \end{bmatrix} [ECT_{t-1}] + \begin{bmatrix} \mu_{1t} \\ \mu_{2t} \\ \mu_{3t} \\ \mu_{4t} \\ \mu_{5t} \end{bmatrix}$$

$$(8)$$

where (1-L) is the difference operator; ECM_{t-1} is the lagged error correction term which is derived from the long-run cointegrating relationship. The long-run causation is shown by significance *t*-statistic of the lagged error correction term. The existence of a significant relationship in first differences of the variables provides evidence on the direction of the short-run causality. The joint χ^2 statistic for the first difference lagged independent variables is used to test the direction of short-run causality between the variables. For instance, $a_{12,i} \neq 0 \forall_i$ indicates that Granger causality is running from financial development to energy consumption.

4. Empirical Findings and Discussion

Table 1 reports the descriptive statistics and correlation matrix of the variables. The correlation results show significant and positive association between financial development and energy consumption. There is also positive link between economic growth, industrial value added, urbanization and energy consumption. The association of economic growth, industrial value added and urbanization with financial development is positive and significant. The correlation between industrial value added and economic growth is positive but it is insignificant while urbanization is positively and significantly correlated with economic growth.

Table 1. Descriptive Statistics and Correlation Matrix						
Variables	ENC	FD	GDPC	IND	URB	
Mean	6.3659	4.0319	7.2380	3.3474	4.0306	
Std. Dev.	0.2818	0.2096	0.2814	0.1156	0.1246	
Skewness	-0.3952	-1.0237	0.2263	-1.5606	-0.3455	
Kurtosis	2.2822	2.9722	2.3332	5.5438	1.8006	
FD	0.8833					
GDPC	0.9737	0.7964				
IND	0.5899	0.7002	0.4871			
URB	0.9785	0.8712	0.9518	0.5091		

 Table 1: Descriptive Statistics and Correlation Matrix

The results of Ng-Perron (2001) unit root tests are reported in Table 2. Ng-Perron test is preferred as the results are more reliable and consistent compared to the traditional ADF and P-P tests. Dejong et al. (1992) and Harris and Sollis (2003) argued that due to their poor size and power properties, these tests are not reliable for small sample size. These tests will over-reject the null hypotheses when it is true and accept the H_0 when it is false. Ng-Perron test can solve the problem of over-rejection of null hypothesis and can be applied on small sample size. Table 2 shows that all variables are I(1).

Level							
Variables	MZa	MZt	MSB	MPT			
ENC	-3.3273	-1.1513	0.3460	24.6911			
FD	-8.2178	-1.9570	0.2381	11.2944			
GDPC	-1.8814	-0.8360	0.4443	39.6181			
IND	-6.0343	-1.7368	0.2878	15.1009			
URB	-9.8729	-2.0209	0.2047	10.0736			
	1 st Difference						
ENC	-27.4132*	-3.7003	0.1349	3.3353			
FD	-33.2143*	-4.0718	0.1225	2.7623			
GDPC	-19.6562**	-3.1235	0.1589	4.7049			
IND	-16.8163*	-2.8182	0.1675	5.9001			
URB	-20.0058**	-3.1531	0.1576	4.6129			

 Table 2: Results of Ng-Perron Unit Root Test

 Level

Note: *, ** indicate the significance at the 1%, 5% levels.

Table 3	Results of ARDL	Cointegration Tes	t

				-			
Variable	ENC	FD	GDPC	IND	URB		
F-statistics	7.737***	6.754***	6.031	8.430**	0.7215		
Critical values [#]	1 per cent level	5 per cent level	10 percent level				
Lower bounds	10.150	7.135	5.950 ⁵				
Upper bounds	11.130	7.980	6.680				
Diagnostic tests							
R^2	0.8957	0.8974	0.8465	0.7917	0.9439		
$Adj - R^2$	0.8133	0.7774	0.6104	0.4273	0.8554		
F-statistics	10.878*	7.295*	3.5854*	2.1726***	10.7668*		
Note: *, ** and *** show the significance at 1%, 5% and 10% level respectively.							

⁵ Critical values bounds are from Narayan (2005) with unrestricted intercept and unrestricted trend.

Akaike information criterion is used to select the lag length for ARDL bounds testing approach to cointegration. Results of ARDL bounds testing are reported in Table 3. We find three cointegration vectors when energy consumption, financial development and industrialization are used as the dependent variable. This result confirms the existence of long-run relationship between energy consumption, economic growth, financial development, industrialization and urbanization in Tunisia. For robustness check, we also perform the Johansen multivariate cointegration test. Results in Table 4 show two cointegrating vectors. This implies that the long-run relationship between the variables is valid and robust.

Table 4 Results of Johansen Cointegration Test

Hypothesis	Trace Statistic	Maximum Eigen Value				
R = 0	92.8829*	36.5734**				
$R \leq l$	56.3094*	29.1072**				
$R \leq 2$	27.2022	14.0898				
$R \leq 3$	13.1123	12.3818				
$R \leq 4$	0.7305	0.7305				

Note: * and** show significant at 1% & 5% level respectively.

Dependent Va		rt-Run Anarys			
Long-Run Re					
Variable	Coefficient	T-Statistic			
Constant	-1.9161*	-6.6508			
FD	0.1352**	2.0699			
GDPC	0.4840*	7.8169			
IND	0.2130**	3.2317			
URB	0.8733*	4.9217			
Short-Run R	esults				
Variable	Coefficient	T-Statistic			
Constant	0.0016	0.0787			
FD	0.0800	1.5116			
GDPC	0.6547*	4.6351			
IND	0.2352**	2.3841			
URB	0.2266	0.1445			
ECM_{t-1}	-0.6457**	-3.0367			
Diagnostic Tests					
Test	F-statistic	Prob. value			
$\chi^2 NORMAL$	0.8323	0.6595			
$\chi^{2}SERIAL$	1.9906	0.1548			
$\chi^2 ARCH$	0.0150	0.9030			

$\chi^2 WHITE$	0.7055	0.7110
$\chi^2 REMSAY$	2.3963	0.1321
	1	1 1 1 1 1 1

Note: * and** denote the significant at 1% and 5% level.

Since there are cointegration vectors among the variables, we derive the long-run elasticities as the estimated coefficient of the one lagged level independent variable divided by the estimated coefficient of the one lagged level dependent variable and multiply with a negative sign. Table 5 shows financial development is positively related to energy consumption and significant at the 5% level. A 10% increase in domestic credit to private sector is expected to raise energy demand by 1.4%, ceteris paribus. Financial development promotes investment which raises energy demand due to economic growth. The easy access of credit enables consumers to purchase big ticket durable consumer items, and the usage of consumer items directly increases the energy demand. Naceur and Samir (2007) documented that banks and equity markets promote economic growth in Middle East and North African countries including Tunisia. Our finding is consistent with Karanfil (2009) and Sadorsky (2010).

The coefficient of economic growth indicates that economic growth has significant and positive effect on energy consumption. A 1% increase in economic growth enhances demand for energy consumption by 0.5%, ceteris paribus. This finding supports the view of Aqeel and Butt (2001) in Tunisia. The impact of rising industrial value added is also having significant positive impact on energy consumption. The rise in industrial activities requires more energy to contribute in the gross domestic product. A 10% rise in industrial value added increases energy consumption by 2%. Meanwhile the impact of urbanization on energy consumption is positive and highly significant. The result reveals that 0.9% of energy consumption increases due to1% rise in urban population. This empirical evidence supports the findings by Lui (2009) and Mishra et al. (2009) on the relationship between urbanization and energy consumption.

The short-run elasticities are computed as the estimated coefficients of the first differenced variables. The short-run results are reported in Table 5. Financial development exerts positive impact on energy consumption marginally. In short-run, 0.1% energy consumption will be increased due to a 1% increase in domestic credit

to private sector. The impact of economic growth on energy consumption is positive and highly significant. A 1% rise in economic growth will increase energy consumption by 0.7%. The economic activities in industrial sector are positively associated with energy consumption. It is found that 1% increase in industrial value added will cause 0.2% energy consumption rise. However, the impact of urbanization on energy consumption is insignificant.

The significance of error correction term implies that change in the response variable is a function of disequilibrium in the cointegrating relationship and the changes in other explanatory variables. The coefficient of ECM_{t-1} shows speed of adjustment from short-run to long-run and it is statistically significant with negative sign. Bannerjee et al. (1998) noted that significant lagged error term with negative sign is a way to prove that the established long-run relationship is stable. The deviation of energy consumption from short-run to the long-run is corrected by 64.6% each year. In addition, the model passes all diagnostic tests for non-normality of error term, serial correlation, autoregressive conditional heteroskedasticity, white heteroskedasticity and model specification.

VECM Granger Causality Analysis

The Granger causality test is performed to find the direction of causality between energy consumption and other variables. As there is long-run relationship, we apply the VECM framework to detect the causality between the variables for both short and long runs. The results of Granger causality test are reported in Table 6.

Table 6: Results of VECM Granger Causality Test							
Variables	ENC	GDPC	FD	IND	URB	ECT_{t-1}	
ENC		7.4987*	1.1753	2.8752***	1.1884	-0.5009***	
		[0.0028]	[0.3252]	[0.0752]	[0.3213]	[-1.8965]	
GDPC	7.4239*		1.8783	3.5267**	8.8627*	-0.0630	
	[0.0029]		[0.1738]	[0.0448]	[0.0012]	[-0.6636]	
FD	3.7378**	6.5878*		0.8249	0.4369	-0.7420*	
	[0.0380]	[0.0050]		[0.4499]	[0.6508]	[-4.1282]	
IND	0.7228	0.7107	1.0233		0.7511	-0.5217*	
	[0.4952]	[0.5006]	[0.3739]		[0.4822]	[-2.9060]	
URB	2.9234*	3.8143**	0.09525	0.8342		-0.0175	
	[0.0723]	[0.0358]	[0.9095]	[0.4459]		[-1.6602]	

Table 6: Results of VECM Granger Causality Test

Note: *, ** and *** show significant at 1%, 5% and 10% levels. Figure in the parentheses is the p-value for variables and t-statistic for ECT.

Our empirical results suggest that the ECT_{i-1} is having negative sign and statistically significance in the energy-equation, finance-equation and industrialization-equation. This infers that there is bidirectional causality between financial development and energy consumption, financial development and industrialization, and industrialization and energy consumption in the long-run. Offering affordable credit to individuals will increase the purchase of electrical home appliances and more usage of these electrical products will increase the energy consumption. On the other hand, increase of energy consumption will lead to more economic and investment activities. This raises the demand for financial services and leads to financial development.

Bidirectional causality between financial development and industrialization reveals that financial development and industrialization are complementary. On one hand, financial development causes industrialization by providing easy access of financial resources to firms. On the other hand, increase in industrialization demands more financial services and leads to financial development. At the same time, industrial growth demands for more energy and energy as an important input of production may improve the productivity and output.

In the short-run, we find bidirectional causal relationship between energy consumption and economic growth. This implies that energy conservation polices may not adversely affect the economic growth. This finding is consistent with Belloumi (2009) who reported feedback effect in Tunisia. On the other hand, industrialization Granger causes energy consumption and economic growth. We also find that energy consumption Granger causes urbanization while economic growth and urbanization have feedback effect. The demand-side hypothesis is confirmed as economic growth Granger causes financial development. The unidirectional causality is also found from energy consumption to financial development.

5. Conclusion and Policy Implications

The literature on financial development-economic growth nexus enlightens us on the importance of finance in economic activities while the energy literature relates the role of energy in enhancing economic growth. In a free market system, entrepreneurs translate their ideas to actions with the assistant of finance. A financially developed system provides an appropriate way to reallocate financial resources in high return investment projects. Hence, investment stimulates economic growth which in turn raises the demand for energy. This paper attempts to verify the reasoning that is intuitively appealing in the case of Tunisia.

Our empirical evidences confirm that cointegration exists among the variables. We also find that financial development, economic growth, industrialization and urbanization increase energy consumption in Tunisia especially in the long-run. Granger causality test reveals long-run bidirectional causal relationship between financial development and energy consumption, financial development and industrialization, and industrialization and energy consumption. Hence, sound and developed financial system which can attract investors, boost the stock market and improve the efficiency of economic activities should be encouraged in the country. Nevertheless, promoting industrialization and urbanization can never be left out from the process of development.

Moreover, the long-run unidirectional causality from economic growth to energy consumption supports the energy conservation policy. The environmental friendly policies such as electricity conservation, including efficiency improvement measures and demand-side management policies, which aim to reduce the wastage of electricity would not adversely affect the economic activities in the long span of time. However, the short-run bidirectional causality between energy consumption and economic growth implies that energy conservation policies will restrict economic growth in Tunisia. Therefore, energy conservation policies should be used in the long- run only. In the short-run, the government could encourage investment activities on research and development to formulate new energy savings technology and involve financial sector to meet the rising demand for energy due to the industrialization and urbanization.

While modernization of financial system does not help in economic growth and energy consumption, short-run economic policies may focus on enhancing the productivity and improving the overall economy in the country. The unidirectional causality from energy consumption to financial development implies that government should implement loose monetary policy which will stimulate investment activities and enhance economic growth and hence the energy consumption. In turn, sustainable economic growth will generate more demand for financial services which will then push the development of financial sector. The government can also direct the financial institutions to invest in energy sector for meeting the rising demand for energy.

Industry sector is the second contributor after the agriculture sector in Tunisia; so Tunisian government should encourage investment activities not only in the small industry such as cottage industry but also in the heavy industry. This wave of industrialization will promote economic growth and increase the energy consumption. Besides, the government should pay attention to explore new sources of energy to meet the rising demand for energy. Last but not least, the government should also provide energy facilities in the rural areas to control the rapid urbanization and its environmental consequences.

Reference

- 1. Abu-Bader, S., Abu-Qarn, A.S., 2008. Financial development and economic growth: the Egyptian experience. Journal of Policy Modeling 30, 887-898.
- 2. Altinay, G., Karagol, E., 2005. Electricity consumption and economic growth: evidence from Turkey. Energy Economics 27, 849-856.
- 3. Ang, J.B., 2008. Economic development, pollutant emissions and energy consumption in Malaysia. Journal of Policy Modeling 30, 271-278.
- 4. Apergis, N., Payne, J.E., 2009b. Energy consumption and economic growth: evidence from the Commonwealth of Independent States. Energy Economics 31, 641-647.
- 5. Apergis, N., Payne, J.E., 2010. Energy consumption and growth in South America: Evidence from a panel error correction model. Energy Economics 32, 1421-1426.
- 6. Apergis, N., Payne, J.E., 2009a. Energy consumption and economic growth in Central America: evidence from a panel cointegration and error correction model. Energy Economics 31, 211-216.
- Aqeel, A., Butt, M.S., 2001. The relationship between energy consumption and economic growth in Tunisia. Asia-Pacific Development Journal 8, 101-110.
- 8. Arestis, P., Stein, H., 2005. An institutional perspective to finance and development as an alternative to financial liberalization. International Review of Applied Economics 18, 381-398.
- 9. Bairer, S.L., Dwyer, Jr, G.P., Tamura, R., 2004. Does opening a stock exchange increase economic growth? Journal of International Money and Finance 23, 311-331.
- Bannerjee, A., Dolado, J., Mestre, R., 1998. Error-correction mechanism tests for cointegration in single equation framework. Journal of Time Series Analysis 19, 267-83.
- 11. Bartleet, M., Gounder, R., 2010. Energy consumption and economic growth in New Zealand: results of trivariate and multivariate Models. Energy Policy 38, 3505-3517.
- 12. Bascom, W.O., 1994. *The economics of financial reform in developing countries*. London: Macmillan.
- 13. Beakert, G., Harvey, C.R., Lumsdaine, R.L., 2002. Dating the integration of world equity markets. Journal of Financial Economics 65, 203-247.
- 14. Beakert, G., Harvey, C.R., 2000. Foreign speculators and emerging equity markets. Journal of Finance 52, 565-614.
- 15. Beakert, G., Harvey, C.R., Lundblad, C., 2001. Emerging equity markets and economic development. Journal of Development Economics 66, 465-504.
- 16. Beakert, G., Harvey, C.R., Lundblad, C., 2005. Does financial liberalization spur growth? Journal of Financial Economics 77, 3-55.
- 17. Belloumi, M., 2009. Energy consumption and GDP in Tunisia: cointegration and causality analysis. Energy Policy 37, 2745-2753.
- 18. Boulila, G., Trabelsi, M., 2004. The causality issues in the finance and growth nexus: empirical evidence from Middle East and North African Countries. Review of Middle East Economics and Finance 2, 123-138.
- 19. Bowden, N., Payne, J.E., 2009. The causal relationship between US energy consumption and real output: a disaggregated analysis. Journal of Policy Modeling, 31, 180-188.

- 20. Claessens, S., Laeven, L., 2004. What drives bank competition? some international evidence? Journal of Money, Credit and Banking 36, 563-583.
- DeJong, D.N., Nankervis, J.C., Savin, N.E., Whiteman, C.H., 1992. Integration versus trend stationarity in time series. Econometrica 60, 423-433.
- 22. Dow, S., 1996. European monetary integration, endogenous credit creation and regional economic development. In Vence-Deza, X. & Metcalfe, J. (eds) Wealth from Diversity: innovation and structural change and finance for regional development in Europe, Kluwer, 293-306.
- Fung, H.K., 2009. Financial development and economic growth: convergence or divergence? Journal of International Money and Finance 28, 56-78.
- 24. Ghosh, S., 2002. Electricity consumption and economic growth in India. Energy Policy 30, 125-129.
- 25. Halicioglu, F., 2007. Residential electricity demand dynamics in Turkey. Energy Economics 29, 199-210.
- 26. Harris, R., Sollis, R. 2003. *Applied time series modeling and forecasting*. Wiley, West Sussex.
- 27. Islam, F., Shahbaz, M., Alam, M., 2011. Financial development and energy consumption nexus in Malaysia: a multivariate time series analysis. MPRA paper 28403, University library of Munich, Germany.
- Jiang, W., Gao, W., 2007. The impact of industrialization on China's energy consumption. School of City Development, University of Jinan, Jinan 250022, China.
- 29. Kaminsky, G., Schmukler, S., 2003. Short-run pain, long-run gain: the effects of financial liberalization. NBER working paper no. 9787.
- Karanfil, F., 2008. Energy consumption and economic growth revisited: does size of underground economy matter? Energy Policy 36, 3019-3025.
- 31. Karanfil. F., 2009. How many times again will we examine the energy– income nexus using a limited range of traditional econometric tools? Energy Policy 36, 3019-3025.
- 32. King, R.G., Levine, R., 1993. Finance and growth: Schumpeter might be right. Quarterly Journal of Economics 108, 717–738.
- 33. Kraft, J., Kraft, A., 1978.On the relationship between energy and GNP. Journal of Energy and Development 3, 401-403.
- 34. Lee, C.C., Chang, C.P., 2008. Energy consumption and economic growth in Asian economies: a more comprehensive analysis using panel data. Resources and Energy Economics 30, 50-65.
- 35. Levine, R., 1996. Financial development and economic growth: views and agenda. Policy research working paper series 1678, The World Bank.
- 36. Lucas, R.E., 1988. On the mechanism of economic development. Journal of Monetary Economics 22, 3-42.
- Lütkepohl, H., 1982. Non-causality due to omitted variables. Journal of Econometrics 19, 367-378.
- Lui, Y., 2009. Exploring the relationship between urbanisation and energy consumption in China using ARDL (autoregressive distributed lag) and FDM (factor decomposition model. Energy 34, 1846-1854.
- 39. Mankiw, N.G., Scarth, W., 2008. Macroeconomics: third Canadian Edition. Worth Publishers, New York.

- 40. McKinnon, R.I., 1973. Money and capital in economic development. Brookings Institution, Washington, DC (1973).
- 41. Minier, J., 2009. Opening a stock exchange. Journal of Development Economics 90, 135-143.
- 42. Mishra, V., Sharma, S.S., Smyth, R., 2009. Is economic development exportled or import-led in the Pacific Island Countries? evidence from panel data models. Pacific Economic Bulletin 25, 46-63.
- 43. Morimoto, R., Hope, C., 2004. The impact of electricity supply on economic growth in Sri Lanka. Energy Economics 26, 77-85.
- 44. Naceur, S.B., Samir, G., 2007. Stock markets, banks, and economic growth: empirical evidence from the MENA region. Research in International Business and Finance 21, 297-315.
- 45. Narayan, P.K., 2005. The saving and investment nexus for China: evidence from cointegration tests. Applied Economics 17, 1979-1990.
- 46. Ng, S., Perron, P., 2001. Lag length selection and the construction of unit root test with good size and power. Econometrica 69, 1519-1554.
- 47. Odhiambo, N.M., 2009. Energy consumption and economic growth nexus in Tanzania: An ARDL bounds testing approach. Energy Policy 37, 617-622.
- 48. Pesaran, M.H., Shin, Y., Smith, R., 2001. Bounds testing approaches to the analysis of level relationships. Journal of Applied Econometrics 16, 289-326.
- 49. Rogoff, K., 2004. Extending the limits of global financial integration. Journal of Policy Modeling 26, 519-523.
- 50. Sadorsky, P., 2010. The impact of financial development on energy consumption in emerging economies. Energy Policy 38, 2528-2535.
- Shahbaz, M., Islam, F., Islam, M.M., 2010. The impact of financial development on energy consumption in Pakistan: evidence from ARDL bounds testing approach to cointegration. The 2nd International Conference on the Role of Social Sciences and Humanities in Engineering (ICoHSE) 2010. 12-14 Nov. 2010, VENUE: Bayview Beach Resort, Penang, Malaysia.
- 52. Shrestha, M., Chowdhury, K., 2007. Testing financial liberalization hypothesis with ARDL modeling approach. Applied Financial Economics 17, 1529-1540.
- 53. Stern, D.I., 2000. A multivariate cointegration analysis of the role of energy in the U.S. macroeconomy. Energy Economics 22, 267-283.
- 54. Stern, N., 1989. The economics development: a survey. Economic Journal 100, 597-685.
- 55. Stiglitz, J., 2000. Capital market liberalization, economic growth, and instability. World Development 28, 1075-1086.
- 56. Wolde-Rufael, Y., 2009. Energy consumption and economic growth: the experience of African countries revisited. Energy Economics 31, 217–224.
- 57. Yucel, F., 2009. Causal relationships between financial development, trade openness and economic growth: the case of Turkey. Journal of Social Sciences 5, 33-42.