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ABSTRACT 

This paper provides a model that attempts to deal with the transboundary nature of the 
acid rain problem, using a game theoretic approach consistent with mainstream 
economic theory. The general forms of cooperative and non-cooperative equilibria in 
the explicit and implicit set-up of the model are presented under the assumptions of 
deterministic and stochastic deposits. 
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Introduction 

Much has been written recently about the use of negotiation and bargaining to resolve 

environmental conflicts. Negotiation and bargaining occur between governments to attempt to 

settle conflicts concerning land use, energy and air quality (Bingham, 1986). Bargaining has 

generated much theoretical interest, beginning with the classic work of Nash (1950, 1953) and 

Raiffa (1953). Until a few years ago, most theoretical work assumed complete information, i.e. 

the bargainers' utility functions, the set of feasible agreements and the recourse options 

available if bargaining failed were all considered to be common knowledge. According to this 

assumption, the problem was explored using one of the following approaches: 

i) The first approach was presented in Nash (1950, 1953) and Raiffa (1953) and was extended 

and completed recently by Roth (1979), has not tried to describe the bargaining process 

explicitly through a specific extensive form. Rather, it has concentrated on formulating and 

exploring the implications of general principles that are compatible with possibly many 

different extensive forms. This approach is often described as "cooperative" since the 

jointly agreed-upon solution is implemented presumably by a binding agreement (Roth, 

1979). 

ii) The second way of exploring the bargaining process specifies a bargaining game, whose 

equilibrium outcome then serves as a predictor of the outcome of the actual bargaining 

process. The Nash solution is only one of many equilibria of a simple one stage demand 

game in which players make demands simultaneously and the agreement occurs if the two 

demands can be met by a feasible agreement. If the demands are not compatible in this 

way, a conflict occurs and two possible disagreement outcomes can be considered:  

- the status quo which corresponds το zero welfare improvements for each 

country and  



- the non-cooperative Nash equilibrium i.e. the equilibrium point without any pre-

play activity between the bargainers (Harrison and Rutstrom, 1991; Binmore 

and Dasgupta, 1990; Roth, 1979).  

The latter, as will be seen, is the “conflict point” in the model proposed here. In fact, it will be 

seen that such a model is fully consistent with the approach outlined above as point (ii). 

Each of these approaches has its strengths and weaknesses. Specifying an extensive 

form enables us to model the strategic use of private information and, therefore, has 

implications that could be proved useful for individual bargainers. However, an extensive form 

is bound tο be arbitrary to some extent and the axiomatic approach cuts through disputes about 

choice of extensive forms (Roth, 1979). 

On the other hand there are models of bargaining which assume incomplete 

information. These models are concerned with situations where each party has private 

information (e.g. about preferences) that is unavailable to the other parties. This relaxation of 

the assumptions made in the complete information framework has crucial implications. The 

most interesting one for economists is the persistence of Pareto-inefficient outcomes in 

equilibrium, the most striking of which is the existence οf disagreement even when mutually 

beneficial agreements exist. As before in the case of complete information models, the 

theoretical studies with incomplete information have employed two somewhat different 

research strategies. The axiomatic approach was pioneered by Harsanyi and Selten (1972). The 

strategic approach is based οn Harsanyi (1967, 1968), whose work supplied the extension of 

the Nash-equilibrium concept essential tο explain games of incomplete information. 

ln this paper it is first assumed that before strategies are chosen in a formal game played 

cooperatively, players have complete information, i.e. they may communicate costlessly  and 

without restrictions, and they may choose to enter into any agreement. The non-cooperative 

solution has the property that in equilibrium no party has an incentive to deviate unilaterally 



from it (Basar and Olsder, 1982; Mehlmann, 1988; Kaitala et al., 1992). Here two types of 

equilibria are considered. One is the "social welfare" agreement that seeks to achieve 

maximum aggregate net benefits. The benchmark against which to judge the benefits of 

cooperation is, of course, the status quo, which we take to be the "naive" non-cooperative Nash 

equilibrium. Net benefits in the former case of equilibrium may be distributed unevenly and 

even be negative for some countries (Mäler, 1989, 1990; Halkos, 1994). Ιn this case, we 

identify the need for "side-payments" to induce agreement: clearly such side-payments need 

not be financial, but could be in the form of compensating net benefits from agreement on 

other issues. 

Papers by Hoel (1991), Shogren and Crocker (1991), Mäler (1989, 1990), Harrison and 

Rutstrom (1991), Kaitala et a1. (1992) and Tahvonen et al. (1993) explore the economics of 

cooperative and non-cooperative solutions in pollution control problems. Mäler provides a 

clear analysis of the "acid rain game" and some estimates of the gains from cooperation for 

European countries; Kaitala et al. (1992) and Tahvonen et al. (1993) model a dynamic game 

between Finland and four regions of the former USSR. Hoel considers a global pollution 

problem where all players are affected by the same amount of pollution. Relying on standard 

economic theory he reinterprets the classic welfare economic theory into a game theoretical 

framework's without any empirical implementation. In general, it can be said that all these 

studies provide general forms of cooperative and non-cooperative equilibria but none of them 

gives any example of an explicit solution.  

The idea presented in this paper is that, instead of seeking the cooperative equilibrium 

values of abatement and then re-distributing the resulting total abatement cost across countries 

according to some more "equitable" criteria, one could directly seek the Nash and cooperative 

equilibria. This would incorporate at least some of the "equitability" requirements since the 

equilibria are obtained from maximization of the countries' coalition's total benefit from 



pollution control. Moreover, the difference between the Nash equilibria and the cooperative 

ones could be used as the basis for evaluating each country's gain (or loss) from the coalition. 

Ιn this case the "equitability" of the cooperative equilibrium could as well be put into 

discussion. This is because the benefits from cooperation are stated in "efficiency" terms: a 

cooperative policy bargain can be made which leaves some countries better off, without any 

other ones being left worse off, i.e. a Pareto preferred bargain. 

This paper considers the implications of relaxing the assumption of complete 

information. It is organized as follows. Sections 1 and 2 introduce formally a simple model in 

implicit forms under the assumptions of perfect and imperfect information. Similarly, section 3 

presents the formulation of the model in explicit terms. Section 4 provides an empirical 

application of such a model. Finally, section 5 presents some concluding remarks. 

 

1. Α PROPOSAL FOR MODELLING EMISSION CONTROL STRATEGIES 

In this section the behaviour of countries adopting emission-control strategies is 

investigated in the following simple model. Let us suppose that Ν countries, labelled i= 

1,2,...,Ν produce a single good, electricity, denoted Yi, through the use of fossil fuels. Along 

with electricity, a "bad" output, sulphur emissions, denoted Εi, is also produced, through the 

combustion of fossil fuels. The Ν countries are assumed tο be a subset of the total number of 

countries in the world and the amount of emissions caused by each country is a function of the 

electricity they plan to produce, i.e.: 

        Ei=Ei(Yi)                      i = 1, 2, ... , Ν    (1) 

The transboundary nature of the acid rain problem is represented by the following 

expression    Di = Bi + dii (1- αi)Ei + Σij dij (1- αj)Ej    (2)                                       

where Ei and Ej are the total sulphur emissions per unit of time in country i and j respectively; 

Di is the total sulphur deposition per unit of time in country i; αi is the abatement coefficient in 



country i; dij are sulphur depositions in country i per unit of sulphur emissions in country j, i.e. 

the transfer coefficient from country j to i. Similarly, dii are sulphur depositions in country i per 

unit of sulphur emissions in country i. The proportions of emissions from any source country 

that are ultimately deposited (in the form of acid rain) in any receiving country are presented in 

the European Monitoring and Evaluation Program of the Norwegian Meteorological Institute 

(see ΕΜΕΡ, 1993)(1). Bi is the level of background deposition attributable to natural sources 

(such as volcanoes, forest fires, biological decay, etc) in receptor-country i, or to pollution 

remaining too long in the atmosphere to be tracked by the model, i.e. is probably attributable 

not only to natural sources but also to emissions whose origin cannot be determined (2). Then 

equation (2) reduces to   

     Di = Bi + Σj dij (1- αj)Ej     (3) 

Sulphur deposits cause physical damage which can be measured and expressed in 

monetary terms, using the damage function  

     Qi = Qi(Di)  i= 1,2, ... ,N             (4) 

which is assumed to be strictly convex in Di, i.e. Qi'(Di) >0 and Qi"(Di) >0. For the damage 

functions, the existing literature assumes that damage is a linear function of depositions (see 

Mäler, 1989, 1990; Newbery, 1990). The evidence of sensitivity maps, however, strongly 

indicates that this is not valid, and that the damage function should be convex: doubling the 

rate of deposition will more than double the damage caused. Halkos (1992) and Halkos and 

Hutton (1993) have shown that assuming a linear damage cost function gives the Nash as a 

dominant market equilibrium. It is also notable that if the true damage cost function is convex 

instead of linear, which seems probable (and it is assumed in this paper later on) then this will 

yield an overestimate of the gains from cooperation, as the marginal benefits from reductions 

in sulphur deposits will be overstated. Also, quadratic damage functions yield interdependence 

of policies (Halkos and Hutton, 1994). Here, we will assume a quadratic damage function and 



we will infer its parameters by assuming that countries currently equate national marginal 

damage cost with national marginal abatement cost. 

Given the above, let us suppose that countries face three types of costs:  

- first, production costs, denoted PCi, which will be considered as a datum in the 

model;  

- second, costs of abatement, denoted CΑi(Εi,α), where αi is, as mentioned, 

country i's abatement coefficient; and  

- third, damage costs, denoted, as in expression (4) above, Qi=Qi(Di).  

In discussing costs of abatement, we need to distinguish between primary and secondary 

abatement. Primary abatement can be done by fuel switching to low- or sulphur-free fuels, by 

reducing the use of sulphurous fuels as a result of improved fuel efficiency in power plants, 

and in general by any other measure reducing the output of electricity. Secondary abatement 

cost functions measure the cost of eliminating tonnes οf emissions before (e.g. coal washing), 

during (e.g. by Fluidized Βed Combustion), or after (e.g. Flue Gas Desulphurization) burning 

the fuel(3). These vary between countries depending on specific characteristics like fuels used, 

sulphur content of these fuels, existing or new power plants and on the local costs of 

implementing best practice abatement techniques. Full details οn the secondary abatement 

cost functions used here are reported in Halkos (1992, 1993, 1994). 

In the model proposed in the next section, we assume quadratic (convex) abatement 

costs, as do Kaitala et al. (1992) and Mäler (1989, 1990). Our purpose is to rely on the level of 

existing secondary abatement in each European country (if any) and in this way, to assess the 

optimal contribution of secondary abatement in reaching the environmental targets imposed by 

current agreements ("30% Club", "New Sulphur Protocol") and to expose the role of primary 

abatement(4). Let us now consider, in turn, the non-cooperative and cooperative equilibria 

under the assumptions of perfect and imperfect information respectively. 



2. IMPLICIT FORMULATION OF THE MODEL 

2.1 Assuming complete information 

The Nash equilibrium concept is based on the assumption that countries do not 

negotiate or communicate in any other way regarding their environmental policies; each 

country acts in a non-cooperative way taking the environmental policy of other countries as 

given. It is assumed that countries are rational and behave like Cournot (Nash) duopolists, in a 

non-cooperative game theoretic framework. Then the net benefit from electricity production of 

each country, denoted ΝΒi(Υi,αi) will be defined as the difference between the value of 

production, pi Yi, where pi=pi(Yi) is the market price of electricity in country i, and the above 

mentioned three types of costs, i.e.: 

ΝΒi(Υi, αi) = pi (Yi)Yi – PCi – CAi(Ei,αi) –Qi(Di)   (5) 

Considering this simple model from a game theoretic point of view, it can immediately 

be seen that the Nash equilibrium is ensured by those values (αi
*, Yi

*) which solve the 

following problem: 

maximize NBi = pi Yi – PCi – CAi(Yi,αi) –Qi(Yi, ΣjYj, αi, Σjαj)  (6) 

subject to  pi = pi (Υi) 

for country i. Another theoretical possible non-cooperative equilibrium is the Von Stackelberg 

solution according to which one country is assumed to have superior information (for more 

details see Halkos, 1992; Halkos and Hutton, Ι994). 

However, the transboundary nature of the acid rain problem makes it obvious that some 

kind of cooperation between countries could be needed. More specifical1y, one must consider 

the terms of bargaining between countries embodied in the model, where the term bargaining 

means the negotiations between countries about the terms of possible cooperation in pollution 

control. One possible way of defining a cooperative equilibrium abatement strategy could be 

the following: 



Maximize Σi NBi  
   αi, Yi 

 
subject to  0 αi  1     (7) 

The solution concept to this problem implicitly requires transferable utility, i.e. that gains in 

one country can be transferred to other countries in order to achieve another distribution of 

gains and losses. 

 

2.2 Assuming imperfect information 

Under complete information, all players by assumption know the exact payoffs 

(benefits) that their opponents can obtain. This is a demanding assumption. Το assign the 

benefits from certain actions it is necessary to know the expected benefits each player obtains. 

But expected benefits capture individual characteristics such as attitudes towards risk. In this 

section the analysis will be carried out with the assumptions of incomplete information and risk 

neutral players. 

For our purposes, it can be said that acidic emissions may be deterministic in the sense 

that countries are able to choose adequate abatement strategies to determine the final level. 

Conversely, deposits of each country could be considered as a continuous random variable due 

to the influence of atmospheric and geologic factors that countries cannot really control and 

some probability limits can be assumed. We could think of a probability density function fi(Di) 

of the actual level of deposits Di in i=1,2, ... ,Ν different countries to be defined in an interνal 

[Bi, Βi+Πi) such that 

     ( ) ( ) 1
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      (8) 

where Βi denotes background deposits explained above and Πi for ij is defined as: 

1
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         (9) 



Therefore, the possibility for countries to set adequate abatement efficiency influences 

only the range in which the final value of the (continuous and strictly positive) random variable 

Di is more likely to occur. Α greater probability of occurrence for values nearer Bi+Πi is due to 

the fact that high levels of deposits certainly cause a negative externality to the country, but 

abatement cost increases more than proportionately with the amount of pollutant removed so 

that lower levels of (αi, Σjαj), would determine energy cost savings for the countries, although 

at the "price" of higher deposits. It is worth mentioning that it is not only weather that 

determines the range of Di for a given pattern of emissions. As we have seen, the energy cost 

savings made possible by higher deposits, i.e. lower abatement levels, cause an asymmetric 

behaviour of the probability distribution of deposits and therefore a greater occurrence of 

values of Di nearer to Βi + Πi. 

Therefore, both equation (9) and the argument that deposits are depletable (i.e. what is 

not deposited in one country must be necessarily distributed among the others, or some others), 

allow us to consider deposits in different countries as dependent random variables, whose joint 

probability density function is defined as follows: 

( , ) ( ) ( / )i j i i j j ig D D f D f D D     (10) 

Of course, g(Di, Dj) would be such that: 

( , ) ( ) ( )
j j
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     (11) 

according to the statistical definition of marginal distribution. 

Recalling that emissions do not only cause damages of various kinds but also produce 

"benefits" such as the mentioned energy cost savings (made possible, for instance, by the use 

of high rather than low sulphur content fuels, so that resources otherwise allocated to 

abatement with the emission reductions, country’s i expected benefit from pollution control can 

be introduced as follows: 



1
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        (12) 

where cj is the marginal abatement cost per unit of pollutant removed and CAi(Di) is the 

abatement cost. Expression (12) represents, for each of the i= 1, 2, ..., Ν countries, the so-called 

"payoff function": the double-integral's setting and limits appear then more clear, in so far as 

they show that countries quantify their uncertainties -in this case, concerning deposits - using 

subjective probability distributions and taking the other countries' behaviour as given (see the 

second integral's lower limit Di=Dj in expression (12). Similarly, expression (10) defines for 

each of the i=1,2,...,N countries the so-called "beliefs", represented in game theory by 

subjective probability distributions over a set of possible "states of the world" -described, in 

our case, by the occurrence of different deposition levels. 

In turn, the introduction of an explicit deposits target Di to be met by the country under 

consideration (for instance, a single country might want to pursue its own deposition target 

independently of any joint action with other countries) would modify expression (12) as 

follows: 

1
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where the term ( , )
i i i

j i i

B D
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   represents the cost for country i of reducing  

deposits from Di to some target level iD . Let us now consider the model explicitly. 

 



3. EXPLICIT FORMULATION OF THE MODEL 

3.1 Assuming complete information 

Some specific functiona1 forms for total damage and abatement costs can now be 

assumed, for the purpose of giving an example of "efficient" emission control policy, which 

will show how each country's abatement strategy is able tο influence the strategies of other 

countries in a non-cooperative game theoretic framework such as the one sketched so far. For 

instance, assuming quadratic total damage and abatement costs in deposits and emissions 

respectively, i.e. TCdamage,i=γi Di
2, where Di is given by expression (3) and ΤCabatement,i=βi(αiΕi)2, 

where αi indicates country i's abatement coefficient, Εi its unconstrained emissions and γi and βi 

are parameters explained later on (in section 4), then the total cost that country i will seek to 

minimize is 

  Ci=TCproduction, i+ TCabatement, i  + TCdamage, i  = TCproduction, i+ βi (αi Εi)2 + γi Di
2        (14) 

The first order conditions (FOCs) / 0i iC    will give us the reaction function of each 

country i and the solution of these Ν FOCs will give us the Nash non-cooperative equilibrium 

values. It is implicitly assumed that the abatement values lie between 0 and 1 (i.e. 0αi1) 

because they are obtained from an "unconstrained" minimization problem (simply 

( / 0i iC    ). 

Similarly, the cooperative set-up of the model can be written as follows: 

Minimize  Σi Ci  
     αi   

          (15) 
subject to  0  αi  1 

The combination of abatement which minimizes the total abatement costs and social 

environmental damage costs across countries will be referred to, in this case, as the social 

welfare cooperative solution. The first order conditions of problem (15) are ( ) / 0i i iC      



and these conditions will give us first the reaction line of each country i, and then the unique 

cooperative or "social-welfare" equilibrium values.  

 

3.2 Assuming incomplete information 

Let us consider Di as a continuous random variable and let us assume a certain 

probability value comprised between "reasonable" limits, that is, within a finite support which 

will be formed by an "upper bound" deposition level, called DUi, and a lower bound level, 

called DLi. Such bounds will be defined as: 

(1 )Li ii i i iD d       αj=1   (16)  

(1 )Ui ii i i j ij j iD d d        αj=0   (17) 

In other words, (16) assumes that countries are actually practising the maximum abatement, as 

it can be obtained by setting αj=1 in expression (3); whereas (17) assumes that countries are not 

abating anything, so that country i receives the entire proportion of all other countries' 

emissions ΣjdijEj as proved by setting αj=0 in (3). 

Then, in order to keep the analysis simple it will be assumed that deposits are equally 

likely tο assume values between the lower and upper bounds defined so far; i.e. we assume that 

deposits are determined on the basis of a uniform probability function, which will be defined as 

follows: 

1( )i i
Ui Li

f D
D D




  i=1, 2,…, N  (18) 

Having then introduced this "new" definition of deposits, we can examine, again in the 

case of country i for our expository purposes, what the total costs for that country become. In 

fact, using (18), the minimization of the sum of production, abatement and random damage 

costs for country i will be: 



Minimize
   

(19) 

That is the difference between (19) and, for instance, (14) in the case of certainty, is 

represented by the random term in damage costs, given by expression (18), which clearly 

models country i's “expectations” concerning the value of its own deposits, and therefore of its 

own damage cost. Notice that in this way (i.e. by allowing for random deposits) the somewhat 

restrictive assumption of country i having complete information about countries j' s abatement 

coefficient values αj -necessary for deriving the Nash equilibrium set-up of the model under 

certainty- is avoided here.  

In this more reasonable case, country i does not have perfect information concerning 

countries j's abatement strategies but, as we wil1 see, a Nash equilibrium will still be possible, 

since country i, by expression (18) is able to compute a subjective probability over the other 

countries' behaviour and therefore over its own costs which must be minimized. Returning to 

expression (19) and omitting, for reasons of simplicity, the cost of production, we obtain: 

Minimize
  

(20)
 

so that, as already mentioned, the Nash equilibrium abatement rates can be found by solving 

the FOCs, / 0i iTC    , which will give us first the reaction functions of each country i and 

then the Nash solutions. 

Comparing the FOCs of problems (20) and (14) it can be said that country i's abatement 

coefficient under the assumption of "stochastic" deposits will be smaller than the abatement 

coefficient that country i would select under the assumption of "deterministic" deposits only if 

( 0.5) 0j ij j jd E        (21) 

We can then conclude this part of the discussion by saying that market equilibrium may 

well be reached under uncertainty concerning deposits - and therefore damage costs -but that 



such equilibrium presents some "inefficiency" with respect to the certainty Nash equilibrium, 

since it leads to abatement choices that might overestimate - or underestimate -the real damage 

they will cause. However, the question whether something "better" could be attained by some 

kind of joint action or cooperation with other countries is quite significant in the analysis of the 

economics of acidification in Europe. 

Let us now consider the cooperative set-up in the case of incomplete information. 

Recalling (20) we have: 

Minimize 
   

(22)
 

and solving the FOCs (i.e. / 0iSW    ) we can derive the abatement coefficients under 

uncertainty for each country i. Then, comparing the FOCs of problems (22) and (15), it can be 

said that if 

2
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22

1
3

j j ii
i

d



   

then country i's abatement coefficient under uncertainty will be smaller than the abatement 

coefficient that country i will choose under certainty. This makes sense because countries 

under certainty are prepared to abate more than under uncertainty. 

Finally, cooperative and non-cooperative solutions of the game embodied in the 

proposed model could be compared to assess the benefits of cooperation. The empirical 

evidence οn the magnitude of these potential cooperation gains suggests that they might be 

quite significant (Mäler 1989, 1990; Halkos, 1994). In this respect, the social welfare 

maximizing case becomes fully relevant. The model presented in this section could then be 

regarded as a useful "tool" to describe and interpret such a reality: for this reason, in the next 

section a simulation of the model is provided. 



4. ΑΝ EMPIRICAL APPLICATION OF THE MODEL 

4.1 Simulation  

Preliminary steps need to be considered, which relate to the fact that it is the monetary 

values of abatement and damage costs that must be considered in the empirical test of the 

model. More precisely, the total-cost formula was: 

TCi = TCabatement, i + TCdamage. i  = i i
2Ei

2 + γi Di
2           

where TCi the total cost of country i (i=1,2,...,Ν). The method used to estimate the monetary 

coefficient βi is the following. First, the relationship 

TCabatement, ik  =  a +bi TSRik
2 + uik           

for country i and for the value k of TSR (= αiEi), is estimated by ordinary least squares (OLS); 

and where a is a constant, u is a disturbance term and TSR is the tota1 amount of sulphur 

removed(5). 

We calibrate the damage function by assuming that nationa1 authorities act as Nash 

partners in a non-cooperative game with the rest of the world, taking deposits originating in the 

rest of the world as given. Το obtain the damage cost's monetary value γi we have: 

TCi = [a +bi (αi
2 Ei

2)] + γi [dij (1- αi)Ei + Σij dij (1- αj)Ej]2           

Then, letting the first derivative of the above with respect to αi be equal to zero gives: 

20 2 2 ( ) 0i
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In order to model the politica1 unification of Germany, the damage coefficient of the FRG has 

been used for both countries (FRG and GDR) for the year 2000. The trade-off of sulphur on 

which the results of the paper are based is drawn from the ΕΜΕΡ model. This is based on the 

old European boundaries. However, it turns out that it is useful to work with "old data". It does 

not make much sense to aggregate FGR and GDR simply for the sake of using current 



boundaries because historic policies in the two areas have been so different. Also, as our 

calibration is based on the year 1990 it is necessary to treat the former USSR and 

Czechoslovakia as political units even in the year 2000. 

Finally, the unconstrained sulphur emissions used here are based on research conducted 

by IIASA for the years 1990 and 2000. The emissions for the year 1990 are net (i.e. after 

secondary abatement) while these for the year 2000 are gross (Amann and Sorensen, 1991). 

For 1990 and for calibration of the damage function, we have estimated gross emissions using 

the existing secondary abatement level of European countries in 1990.  

 

4.2 Empirical results 

Ιn this section the results obtained by the model are interpreted. Tables 1-3 present the 

abatement rates (%) and the total abatement and damage costs under certainty and uncertainty 

for the year 2000 and in the cases of non-cooperation (Nash) and cooperation (Social Welfare 

maximization). Looking at table 1 it can be seen that the Nash abatement rates are considerably 

higher under uncertainty than under certainty for the USSR and FRG (more than twice as 

much), and GDR; and somewhat higher for Bulgaria, Czechoslovakia, Italy, Poland, Romania, 

Spain, Turkey, the UK and Yugoslavia.  

Similarly, the social welfare solution is much higher under uncertainty than under 

certainty for GDR and FRG, and somewhat higher for Turkey and USSR. The optimal 

cooperative solution finds countries like Austria, Belgium, Bulgaria, Czechoslovakia, Greece, 

Ireland, Luxembourg, Poland, Spain, USSR and the UK having to abate much more than the 

amount of their Nash non-cooperative solution. On average, the Nash non-cooperative solution 

under certainty is 4.5% while the social welfare solution is approximately 10%. These averages 

are low because they rely on the existing secondary abatement in Europe in 1990. Although 

there are countries like Austria, Denmark, Finland, FRG, the Netherlands and Sweden where 



secondary abatement takes place, in most of the other European countries secondary abatement 

does not exist or it is very low. 

From Tables 2 and 3 it can be seen that the Nash abatement costs are similar under 

certainty and uncertainty for most European countries, except for the FRG (more than twice as 

much), GDR and USSR but the Nash total damage costs are quite different (a result expected 

according to the assumption of imperfect information regarding deposits). Under uncertainty 

the main polluters (Eastern European countries, FRG, Ita1y, Spain, Turkey and the UK) abate 

more. Countries receiving large amounts of sulphur deposits from others abate less: Austria, 

Denmark, Luxembourg, Netherlands and the Scandinavian countries. The total damage costs 

are higher under uncertainty on1y for the FRG, Poland, Spain, USSR, and the UK. For the rest 

of the European countries the Nash damage cost is much lower under uncertainty. 

In terms of totals, the Nash abatement costs are $884 m and $1037 m under certainty 

and uncertainty respectively. As mentioned the increase in Nash abatement costs is carried 

mainly by FRG, GDR and USSR. The Nash damage costs are $1229 m and $901 m under 

certainty and uncertainty respectively. If countries cooperate then tota1 abatement cost is 

$1006 m and $1078 m under certainty and uncertainty respectively. The abatement costs under 

uncertainty are higher only for the FRG and Turkey. Besides, in terms of cooperative damage 

costs we have $1063$ m and $851 m under certainty and uncertainty respectively. 

Finally, table 4 summarizes the results obtained by each strategy under certainty and 

uncertainty for the year 2000. Ιt can be seen that, if countries cooperate under certainty they 

will haνe to pay an extra 14% of the total Nash abatement cost. This will result in an extra 1.71 

million tonnes of sulphur reduction and approximately 14% less damage cost. Similarly if 

countries cooperate under uncertainty they will haνe to pay an extra 4% of the Nash total 

abatement cost and this will reduce sulphur emissions by 621 million tonnes which is only one 

third of the leνel achieved under certainty. Comparing the tota1s under certainty and 



uncertainty it can be seen that the Nash abatement costs are 17% higher under uncertainty and 

Nash damage costs 27% higher under certainty.  

It is notable that although for most countries the Nash abatement costs are simi1ar under 

certainty and uncertainty, Germany (FRG and GDR) and USSR make the difference. If 

countries cooperate then abatement costs are 7% higher and damage cost 20% lower under 

uncertainty. But cooperation results in much higher abatement levels under certainty (1.7 m 

tonnes) than under uncertainty (621 m t). Also the gains from cooperation are much higher 

under certainty (45 m $) than under uncertainty (approximately 9 m $). Obviously, under the 

assumption of stochastic deposits the gains from cooperation are much less than under the 

assumption of deterministic deposits. 

TABLE 1: Abatement rates under certainty and uncertainty (%) 

Countries Nash 
Certainty 

Nash 
Uncertainty 

Socia1 Welfare 
Certainty 

Socia1 Welfare 
Uncertainty 

Albania 0.99 0.56 1.9 0.85 
Austria 5.5 2.5 17.0 10.2 
Belgium 0.9 0.8 20.0 1 1.5 
Bulgaria 1.2 1.3 9.2 5.0 

Czechoslovakia 2.9 3.8 9.5 7.4 
Denmark 7.9 2.72 11.0 4.3 
Finland 2.6 1.03 3.0 1.14 
France 5.3 4.9 11.0 8.11 
GDR 25.2 36.3 30.2 40.5 
FRG 23.0 47.4 26.0 48.4 

Greece 0.94 0.8 11.0 0.88 
Hungary 0.9 0.9 2.2 1.6 
Ireland 0.84 0.6 4.8 2.4 

Italy 0.92 1.4 3.2 2.2 
Luxembourg 5.82 1.5 29.0 20.7 

Nether. 12.7 3.9 23.0 12.3 
Norway 2.54 0.31 4.5 0.92 
Poland 0.8 1.3 3.5 2.6 

Portugal 0.85 0.7 1.3 0.9 
Romania 0.84 1.1 1.5 1.43 

Spain 0.92 1.5 6.0 3.4 
Sweden 3.7 1.6 7.0 2.4 

Switzerland 6.2 1.41 9.0 3.4 
Turkey 1.6 2.04 Ι.7 2. Ι 
USSR 4.2 10.3 13.7 Ι3.9 

UK 0.99 1.7 4. Ι 2.95 
Yugoslavia 0.84 1.1 3.0 2.03 

Average 4.48 4.943 9.9 7.9Ι 



    TABLE 2: Total abatement costs under certainty and uncertainty for the year 2000 (in 1985 $US m) 

Countries Nash 
Certainty 

Nash 
Uncertainty 

Socia1 Welfare 
Certainty 

Socia1 Welfare 
Uncertainty 

Albania 0.0033 0.00102 0.0095 0.0023 
Austria 0.173 0.33 2.035 0.525 
Belgium 0.014 0.0098 10.3 2.23 
Bulgaria 0.9266 0.93 1.3 1.011 

Czechoslovakia 48.37 48.82 56.3 51.91 
Denmark 0.73 0.074 1.5 0.185 
Finland 16.17 16.065 16.2 16.07 
France 38.79 38.321 47.3 41.38 
GDR 134.43 143.0 168.9 158.06 
FRG 101.64 245.33 135.2 255.49 

Greece 17.65 17.645 17.67 17.65 
Hungary 16.35 16.351 16.61 16.45 
Ireland 0.0053 0.0027 0.184 0.042 

Italy 100.5 100.66 101.93 101.063 
Luxembourg 0.0144 0.001 0.65 0.1624 
Netherlands 5.22 3.51 11.42 4.702 

Norway 0.027 0.0004 0.088 0.0033 
Poland 81. 15 81.3 82.91 82.01 

Portugal 8.85 8.85 8.871 8.852 
Romania 38.05 38.1 38.19 38.17 

Spain 90.02 90.1 91.81 90.57 
Sweden 0.118 0.02 0.4 0.046 

Switzerland 0.434 0.02 1.0 0.1151 
Turkey 38.32 38.46 38.34 38.471 
USSR 0.43 2.38 5.66 4.323 

UK 93.15 93.62 97.71 95.182 
Yugoslavia 52.81 52.83 53.2 52.961 

Total 884.35 1036.73 1005.69 1077.64 
 

 

       



ΤABLE 3: Total damage costs under certainty and uncertainty for the year 2000 (in 1985 $US m) 

Countries Nash 
Certainty 

Nash 
Uncertainty 

Socia1 Welfare 
Certainty 

Socia1 Welfare 
Uncertainty 

Albania 0.904 0.1251 0.87 0.122 
Austria 11.773 0.9743 10.12 0.741 
Belgium 3.198 0.9779 2.35 0.703 
Bulgaria 0.765 0.3773 0.67 0.341 

Czechoslovakia 41.5 29.53 36.13 27.077 
Denmark 38.3 1.775 34.6 1.567 
Finland 19.12 1.263 16.99 1.169 
France 118.38 40.251 105.81 37.03 
GDR 203.4 101.311 162.84 85.85 
FRG 504.02 565.825 433.13 544.28 

Greece 8.05 2.568 7.69 2.522 
Hungary 10.98 4.971 10.37 4.83 
Ireland 1.302 0.2934 1.22 0.274 

Italy 20.06 19.51 18.96 19.083 
Luxembourg 0.97 0.0365 0.713 0.0182 
Netherlands 64.79 2.121 53.3 1.368 

Norway 12.05 0.082 11.09 0.068 
Poland 20.19 22.03 18.29 21.25 

Portugal 3.05 0.919 2.94 0.903 
Romania 11.87 8.863 11.33 8.722 

Spain 5.83 6.329 5.32 6.032 
Sweden 16.51 Ι. 184 15.03 1.094 

Switzerland 39.83 0.842 36.48 0.711 
Turkey 20.68 13.964 20.17 13.88 
USSR 13.84 33.359 11.48 31.64 

UK 30.23 36.035 28.231 34.84 
Yugoslavia 7.34 5.361 6.92 5.22 

Total 1228.93 900.88 1063.04 851.14 
 

 

 

 

 

 

 

 

 

 



TABLE 4: Abatement and damage costs (in US $m) and sulphur removed (in 1000 t) 

Strategy  Certainty  Uncertainty  
Nash abatement cost 884.35 1036.73 

Nash damage cost 1228.93 900.88 
Total Nash abatement cost 2113.28 1937.61 

Nash sulphur removed (leνel) 1438 2176 
Nash sulphur removed (%) 4.5% 5% 

Social welfare abatement cost 1005.69 1077.64 
Social welfare damage cost 1063.04 851.14 

Total social welfare abatement cost 2068.73 1928.78 
Social welfare sulphur removed (leνe1) 3146 2797 

Social welfare sulphur removed (%) 10% 8% 
Difference from Nash   

Abatement cost -121.34 -40.91 
Damage cost + 165.89 +49.74 

Net +44.55 +8.83 
Sulphur removed + 1708 +621 

 

5. Summary and conclusions 

In this paper, different equilibria concepts have been considered under the assumptions 

of stochastic and deterministic sulphur deposits. One of the different equilibria was the Nash, 

where each country minimizes only its own pollution control costs. But in global 

environmental problems each country's own contribution to worldwide emissions is relatively 

small so that there is little a country can do by itself. This interdependence across countries 

provides a case for cooperation in sulphur emissions control policies (particularly in Europe), 

since by cooperation of national policies a given set of deposition goals can be attained at a 

lower cost than if each country acts in isolation. Distinguishing between certainty and 

uncertainty about deposits, it was shown that: 

1. Relying on the existing (if any) secondary abatement in Europe, it can be said that, in 

order to achieve the environmental targets set by International Agreements (for 

instance, "30% Club", "New Sulphur Protocol") it is required that countries will have to 

use primary abatement. Targets less the optimal cooperative secondary abatement 

provide an estimate of the required primary contribution, which seems to be quite 



high(6). Otherwise, targets will not be satisfied (for more details see Halkos and Hutton, 

1994). 

2. Under uncertainty the gains from cooperation are much less than under certainty. 

3. Germany dominates the effort as its initial abatement is high. The old FRG has to abate 

more than twice as much under uncertainty and it is the only country (except for USSR) 

for which damage costs are higher under uncertainty. Additionally, a1though the Nash 

abatement costs are similar under certainty and uncertainty Germany is again an 

exceptional case. 

4. The Nash abatement costs are similar under certainty and uncertainty for most countries 

(except for GDR, FRG and USSR). 

5. The Nash damage costs are quite different due το the assumption of stochastic deposits. 

Under uncertainty countries wil1 face much less damage costs (except for FRG, 

Poland, Spain, USSR, UK).  

6. Main polluters abate more under uncertainty while pol1utees abate more under 

certainty. 

Finally, it is obvious that the nature of uncertainty matters. Here, a uniform probability 

function was assumed for the deposits. This work can be extended by considering different 

forms of probability density functions and their implications for the analysis. Also, an obvious 

area for further research is how the change in European boundaries affects the results. It would, 

however, be equally interesting to disaggregate the data to the levels of grids (squares) in order 

to evaluate the consequences of local differences in either emissions or sensitivity το 

depositions. 
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NOTES 

(1) The estimates of the tonnes of sulphur emissions and the subsequent deposits between 
countries are based on the ΕΜΕΡ (1993) model (European Monitoring and Evaluation 
Program, Norwegian Meteorological Institute). The proportional transfer coefficients of the 
EMEP's transfer matrices have been used with IIASA's unconstrained sulphur emission 
estimates for the year 2000 (Amann and Sorensen, 1991) Το derive a transfer matrix of a 
closed system of 27 countries. 

(2) The background deposits have been excluded as it is impossible to be tracked by our model. 

(3) Other types of abatement options that are omitted in this approach are abatement through 
energy conservation in its broadest sense (energy demand suppression, fuel switching, and 
efficiency measures) and fuel substitution. 

(4) For more details on the existing secondary abatement in Europe at 1990 and the future 
plans for installation of abatement technologies, see Halkos (1992) and Halkos and Hutton 
(1994). For the "New Sulphur Protocol" see Κlaasen (1993) and IIASA (1993). 

(5) Originally, the model was estimated as ΤCabatement,i = a+diΤSRi+bi ΤSRi
2. di was constrained 

tο zero, however, for avoiding negative abatement solutions. Also, in the explicit set-up of the 
model and for reasons of simplicity we preferred το use βi rather than all the monetary 
coefficients a, di and bi. Obviously, after constraining di=0, βi ={[a/(αi

2Ei
2)]+bi}. 

(6) Sulphur emissions can be reduced through either conservation or energy improvements. 
The latter can be achieved for instance by reducing energy consumption through more efficient 
generation, use of combined heat and power, etc. Low sulphur coal may be a good way to 
reduce emissions where emission standards are met by using coal within a specific range of 
sulphur content. For instance, a standard of 2000 mg/m3 is equivalent to approximately 1% 
sulphur content of coal, as the cut-off level above which sulphur abatement technologies would 
be used. Emission standards between 1000 and 2000 mg/m3 are equivalent το coal sulphur 
content of 0.5-1% and there is no percentage removal requirement. Plants facing these 
standards can use either low sulphur content coal alone, or in conjunction with a limited-
efficiency abatement technique (Vernon, 1989). Substitution of fossil fuels by nuclear power 
and natural gas is also possible. Public pressure may increase the demand for gas fired power 
plants. High capital cost and costs of decommissioning mean that the nuclear plants have no 
advantage over coal-fired plants with secondary emissions control. 
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