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1 Introduction

Online portfolio selection has been introduced in the seminal paper of Cover
(1991a). The main characteristic of Cover’s approach is that no distributional
assumptions on the sequence of assets prices are required. Indeed, within Cover’s
investment framework, the portfolio selection is based completely on the sequence
of past prices which is taken as is with few, if any, statistical processing.
No assumptions are made not only on the family of probability distributions
which describes assets prices, but even on the existence of such distributions.
To stress this independence of statistical assumptions, the portfolio has been
called Universal Portfolio (UP). Cover has shown that Universal Portfolios (UPs)
possess important theoretical properties concerning their asymptotic behavior and
exhibit reasonable finite time behavior (Algoet and Cover, 1988; Bell and Cover,
1980; Cover, 1991b). In the last years, UPs have received increasing attention,
and several contributions have been made available in the specialized literature
(Singer, 1997; Browne, 1998; Borodin et al., 2000; Helmbold et al., 1996; Auer
and Warmuth, 1998; Herbster and Warmuth, 1995; Gaivoronski and Stella, 2000).
UPs have also been investigated in the case when side-information, i.e. additional
information about the stock market, is available before each trading period takes
place (Cover and Ordentlich, 1996; Herbster and Warmuth, 1995; Fagiuoli et al.,
2007). Contributions concerned with UPs that allow investors to take both long
and short positions were first made available by Vovk and Watkins (1998) and
subsequently by Cross and Barron (2003). Furthermore, UPs have been also
studied when transaction costs are considered (Blum and Kalai, 1998; Evstigneev
and Schenk-Hoppe, 2002; Gaivoronski and Stella, 2003). Shafer and Vovk (2001)
introduced a new and original mathematical framework for computational finance,
called Game-Theoretic Framework, that rests more on game theory than on
measure theory. The main advantage of the Game-Theoretic Framework is that it
captures the basic intuitions of probability in a simple and effective manner and
clarifies the close relationship between probability theory and finance theory while
offering a natural adaptability to many practical problems.

In this paper the Online Portfolio Selection Game (OPSG) protocol, is
introduced. It allows to interpret the online portfolio selection problem as a
Bounded Forecasting Game II (Ventura, 2006) and to connect the class of UPs with
the Game-Theoretic Framework. This connection is exploited to define the class of
Defensive Online Portfolio Selection (DOPS) algorithms, which deals with finite
investment horizons. The Game Constantly Rebalanced Portfolio and Worst Case
Game Constantly Rebalanced Portfolio algorithms, belonging to the DOPS class,
are presented and theoretically analyzed. Furthermore, the empirical performance
of the Worst Case Game Constantly Rebalanced Portfolio algorithm is investigated
through a set of numerical experiments concerning the following stock market data
sets; FTSE 100, Nikkei 225, Nasdaq 100 and S&P500.

The rest of the paper is organized as follows. Section 2 introduces the notations
and main definitions. The features of the GTF are described through Section 3.
Section 4 introduces and analyzes the OPSG protocol and the DOPS class of
investment strategies. Finally, Section 5 presents the results of a set of numerical
experiments related to the FTSE 100, Nikkei 225, Nasdaq 100 and S&P500 stock
markets.
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2 Portfolio Selection and Universal Portfolios

Following the paper from Cover (1991a), a stock market vector is represented as
a vector z = (21, ..., 2, ) such that z; >0, Vi =1,...,m, where m is the number of
stocks and z; is the price relative, i.e. represents the ratio of the price at the end of
the trading period to the price at the beginning of the trading period. A portfolio is
described by a vector x = (21, ..., xp) such that z; >0, Vi=1,..,m, Y ;" @ =
1 and is an allocation of wealth across the stocks in the sense that x; represents
the fraction of the wealth invested in the i*"* stock. By assuming that x and z
represent respectively the portfolio and the stock market vector for one investment
period, the wealth relative (i.e. the ratio of the wealth at the end of the trading
period to the wealth at the beginning of the trading period), given by S = x”'z,
represents the factor by which the wealth increases/decreases in one investment
period by using portfolio x.

The problem of portfolio selection consists of selecting a portfolio x which
would maximize S in some sense. The financial theory has developed various
notions of optimality for the portfolio selection problem. One possibility is to
maximize the expected value of S subject to constraint on the variance as proposed
by the Sharpe-Markowitz theory of investment (Markowitz, 1952; Merton, 1990)
that deals with long term behavior of fixed portfolios. However, the mean-variance
investment framework does not take into proper consideration the possibility of
frequent portfolio rebalances, which is one of the most important features that
characterize a stock market.

To overcome this limitation, another possibility has been proposed by Cover
(1991b), which exploits the concept of Constant Rebalanced Portfolio (CRP), i.e.
a portfolio which at each trading period keeps the fraction of wealth invested in
every stock constant. By considering an arbitrary non random sequence of n stock
market vectors z"= z1,...,2z,, a CRP x achieves the wealth S, (x) =[]}, x"z
where it is assumed that the initial wealth is normalized to one (Sp(x) =1).
Within the class of Constant Rebalanced Portfolios (CRPs) the best one is
called Best Constant Rebalanced Portfolio (BCRP). The BCRP is determined in
hindsight, i.e. it is the CRP computed by assuming perfect knowledge of future
stock prices, and possesses interesting properties. Indeed, Cover (1991a) showed
that the achieved wealth by means of the BCRP is non inferior to the one achieved
by the best stock, the one associated with the value line and the one associated
with the arithmetic mean. These properties have motivated increasing interest to
study and to analyze the main features of this investment strategy and to use this
portfolio as the reference benchmark to evaluate and to compare online portfolio
selection algorithms. Let us now formally introduce the BCRP by considering the

vector x that solves the following optimization problem

max Sy (x) (1)

il’i =1
i=1

z; >0, Vi=1,....m.
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The vector x maximizes the wealth Sn(x) across the stock market vector sequence
z"= 71, ...,Z,, and therefore it is defined as the BCRP for the stock market vector
sequence z". However, the portfolio x cannot be used for actual stock selection
at trading periods t =1,...,n because it explicitly depends on the sequence z"
which becomes known only after the expiration of this time interval. A reasonable
objective might be, therefore, to construct a sequence of portfolios x! = x1,...,x;
which depends on the sequence z‘~'=z1,...,z,_1 and uses portfolio x; for stock
selection at trading period t. Let us denote by S, (x™) the wealth generated after
n trading periods by successive applications of the sequence of portfolios x™, then
S, (x™) = 1i-, x'z; while log S, (x") is called logarithmic wealth. It would be
desirable if such sequential investment strategy x™ would yield a wealth in some
sense close to the achieved wealth by means of the BCRP x. One such strategy
was proposed in (Cover, 1991a), under the name of Universal Portfolio (UP) and
consists of selecting the investment portfolio as follows

- 1 1 . [ xSi(x)dx
X1 = (— —> s Xt41 = m (2)

g ey

m m

The UP (2) has been shown to possess a very interesting property (Cover, 1991b):
it has the same exponent to the first order as the BCRP. Formally, by letting
Sy (x™) = [1}=, X{ z: be the achieved wealth by means of the UP, then it has been

shown that lim <% log Sy, (X") — L log Sn(;()> =0 with the following inequality
n—oo

holding S, (X") > S, (;c) C, n~(m=1/2 where C, tends to some limit along
subsequences for which W, (x) = Llog Sn(X) — W(x) for some strictly concave
function W (x). (See Theorem 6.1 from Cover (1991b)).

Another example of investment strategy, which exploits the definition of BCRP,
has been proposed in (Gaivoronski and Stella, 2000) under the name of Successive
Constant Rebalanced Portfolio (SCRP). The SCRP selects the investment portfolio
as follows:

~ 1 1 -
X1 = (E’ ey E) ) Xi41 = arg;nea%St (x) (3)

where X ={x: 2;>0,Vi=1,..,m, > ;- & =1}. The SCRP X" possesses
interesting properties. Its asymptotic wealth S, (X™) coincides with the
wealth obtained by the BCRP to the first order in the exponent,

i.e. lim (% log S, (X™) — %log Sh (;c)> =0 with the following inequality holding

* _2K?2
Sp (X™) > Sp(x) C(n—1)""% where K = sup ||V, [log (xTz®)] ||, while C' and
t,xeX
0 are constants.

Fagiuoli et al. (2007) extended both the BCRP and SCRP to the case when
side-information about the stock market is available. In such a framework the
Mixture Best Constant Rebalanced Portfolio (MBCRP) and the Mizture Successive
Constant Rebalanced Portfolio (MSCRP) have been defined and their theoretical
properties studied. MBCRP and MSCRP are shown to possess interesting
theoretical properties in the case when the stock market is non-stationary.



Defensive Online Portfolio Selection 5

3 Game-Theoretic Framework

The Game-Theoretic Framework (GTF) (Shafer and Vovk, 2001) involves a two
player (Skeptic and World) sequential game. It may have many, perhaps infinitely
many, rounds of play. At each round Skeptic bets on what will happen and then
World decides what will happen. Skeptic and World both have perfect information
about the other’s moves as soon as they are made. Following Shafer and Vovk
(2001), World can be divided into the following virtual players:

Experimenter, who decides what each round of play will be about.
Forecaster, who sets the prices.
Reality, who decides the outcomes.

Let us now introduce the Bounded Forecasting Game II (BFG II) protocol, a
slight modification of the Bounded Forecasting Game protocol (Shafer and Vovk,
2001), which will be useful in the next section.

BOUNDED FORECASTING GAME II
Parameter: C > 0
Players: Forecaster, Skeptic, Reality
Protocol
Ko=1
Fort=1,2,...,n:
Reality announces y; € Y.
Skeptic announces s¢(f) : [-C,C] — R.
Forecaster announces f; € [-C, C].
Reality announces r; € [—C, C].

Kt =Ko+ se(fe)(re — fo).

Winner: Skeptic wins if (1) K is never negative and (2) either

1
lim = (r; — f;) =0
t—o0 t
i=1
or
lim IC; = o0

t—o00

holds. Otherwise Reality wins.

Skeptic has to announce his strategy at each round before Forecaster’s move
on that round and furthermore, Skeptic’s strategy is a function of Forecaster’s
strategy. The protocol is a game between two players, namely Forecaster and
Reality. At each round Forecaster predicts Reality’s move r; chosen from the label
space [—C,C|. Forecaster’s goal is to produce f; that agrees with the observed
ry; it is formalized by adding a player, Skeptic, who is allowed to gamble at odds
given by Forecaster’s probabilities. Skeptic’'s gambling strategies can be used as
tests of agreement between f; and r¢, while all tests of agreement between f; and
ry can be expressed as Skeptic’s gambling strategies. To help Forecaster, Reality
presents him with an object y; at the beginning of the round; y; is chosen from
an object space Y. The protocol is coherent and symmetric (Shafer and Vovk,
2001). A protocol is said coherent if the gambles Skeptic is offered do not guarantee
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him an opportunity to make money. The protocol complies with this property
because Reality can supply prices 7, so that each term (r; — f;) of (4) equals zero.
Furthermore, the protocol is symmetric because the function s;(f;) takes values
on [—C,C]. According to Murphy and Epstein (1967) and Vovk et al. (2005b),
forecasts f;, such that the following condition

hm l Z (’I"t — ft) = 0 (4)

holds, are said to share the unbiasedness in the large property. However, condition
(4) is quite easy to achieve while not ensuring that forecasts f; are useful.
Therefore, in (Vovk et al., 2005b) a subtler requirement that forecasts f; should
satisfy has been given under the name of unbiasedness in the small property.
Forecasts f; are unbiased in the small if, for any f' € [-C,C], the condition

Doty (1o = J1)
Dot feegr 1

1%

0 (5)

holds, provided >, ; i foeepr 1 18 MOt t0O small, where = stands for approximate
equality.

4 Defensive Online Portfolio Selection

Defensive Online Portfolio Selection (DOPS) is a specialization of the BFG II
protocol in the Online Portfolio Selection Game(OPSG) protocol (Ventura, 2006).

ONLINE PORTFOLIO SELECTION GAME
Parameters: 0 < z~ < 2zt
Players: Reality, Skeptic, Forecaster
Protocol:
Ko=1
Fort=1,2,..,n:
Reality announces y; € Y.
Skeptic announces s;¢(x) : X — R.
Forecaster announces Xy = (41, ..., Tm) € X.
Reality announces z; : 2~ < 25 < 2t

Ki = Ki—1 + si(x¢)(log (X z¢) — log (x] z)).
Winner: Skeptic wins if (1) K; is never negative and (2) either

n

1
nlirgo - Z (log ()‘(tht) —log (x?zt)) =0 (6)
t=1
or
Kn = Q(e™r) fora k>0 (7)

holds. Otherwise Reality wins.
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The OPSG is a perfect-information protocol in the sense that each player can
see the other players’” moves and therefore can freely choose his own move based
on what he sees. It has the following interpretation: at each trading period ¢,
Forecaster invests in the stock market by using portfolio x; with the goal to track
Benchmark that invests in the stock market by using portfolio X;. It is worthwhile
to notice that the OPSG protocol, differently from the BFG II protocol, includes
a virtual player called Benchmark which is used here only to decide the winner
of the game. Benchmark selects the portfolio X; by knowing in advance, i.e. at
each trading period (¢t — 1), either the next stock market vector z; or the sequence
z" of stock market vectors for the entire investment horizon. Skeptic tries to
become rich by repeatedly betting an amount s;(x;) on the disagreement between
Forecaster and Benchmark. He wins the game if his capital K; is never negative
and if condition (6) holds or he achieves a capital which is exponential in n
(7), otherwise Reality wins. The vector y; introduced in (Vovk et al., 2005b) is
associated with additional information available to Forecaster at the beginning of
each trading period t. In the OPSG protocol this kind of information is related
to the stock market and can be conveniently summarized through the concept
of side-information. The OPSG protocol is coherent because Reality can supply
a sequence of stock market vectors z" such that x; is the best portfolio at each
trading period, i.e.

th) N YVt = 1,...,7’L.

X; = arg maxlog (x
Moreover the OPSG complies with the fundamental interpretative hypothesis
(Shafer and Vovk, 2001), which states that no strategy for Skeptic can both (1) be
sure of avoiding bankruptcy and (2) have a reasonable chance of multiplying the
initial capital by a large factor. It is worthwhile to notice that requirement (2) has
been translated into the formal condition (7). Furthermore, the OPSG protocol,
as well as the BFG 1II protocol, is symmetric. In fact, at each trading period ¢ the
achieved wealth, by means of portfolio x;, is bounded as follows

—C<logz <log (x;[zt) <logzt <C.

It is worthwhile to notice that condition (6), for the OPSG protocol, is equivalent
to condition (4), for the BFG II protocol, and is concerned with the unbiasedness
in the large property of Forecaster’s investment portfolio x;.

Let us now take into account, for the OPSG protocol, two possible choices for
Benchmark’s portfolio X;. The first choice consists of selecting, at each trading
period ¢, the BCRP x as Benchmark’s portfolio Xy, i.e. it consists of setting X; =
;cn, Vit =1,...,n. The second choice consists of selecting, at each trading period t,
the Sequential Best Constant Rebalanced Portfolio (SBCRP) % as Benchmark’s
portfolio X;, i.e. it consists of setting

)_(t :)*(t, Vtzl,,n (8)

The choice (8) is particularly interesting: the following corollary shows that the
SBCRP achieves a wealth that is never less than the achieved wealth by means of
the BCRP.
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Corollary 4.1: (Ventura, 2006) Given any stock market vector sequence z™, the
wn

achieved logarithmic wealth by means of the SBCRP x (8) is never less than the

achieved logarithmic wealth by means of the BCRP >*<n, formally:

«T

«T "
Zlog(xnzt) < Zlog(xt Zt).

4.1 Defeating the Skeptic

The next theorem is concerned with the choice of the SBCRP, i.e. X; = ;ct, vVt =
1,...,n, as Benchmark and with the case when the side-information y; is not
available. The theorem shows that Forecaster can prevent Skeptic’'s capital from

growing exponentially, which is equivalent to ensure that condition (7) does not
hold.

Theorem 4.1: (Ventura, 2006) If, for the OPSG protocol, X; = ;ct, Vt=1,..,n,
then Forecaster has a strategy ensuring K, = O(nk).

Theorem 4.1 for the OPSG protocol states that if the SBCRP is selected as
Benchmark (8), then any strategy for Skeptic admits a strategy for Forecaster that
does not allow Skeptic’s capital to grow indefinitely in the sense of (7), regardless
of what Reality is doing. The strategy used by Forecaster is the SCRP investment
scheme (3). The class of Forecaster’'s investment strategies that prevent Skeptic’s
capital from growing exponentially is the class of DOPS investment strategies.

4.2 Unbiasedness in the Large and Universality

Let us now introduce a theorem which in the case when the Forecaster’s strategy
is DOPS guarantees that the Skeptic has a strategy which ensures (6). Following
the procedure described in (Shafer and Vovk, 2001) (p. 69), in the case when the
OPSG protocol is considered, if we take into account the following strategy for
Skeptic

s¢(x) =8 (x) =e—q (9)
and let € to be a small number, it is possible to formulate the following theorem.

Theorem 4.2: (Ventura, 2006) If, for the OPSG protocol, Forecaster has a
strategy ensuring KC,, < f(n), where f(n) is sub-exponential with respect to n, i.e.

1
lim —log f(n) =0,
n—oo n
then Skeptic can force (6) and Forecaster’s strategy is said to be unbiased in the
large.

Theorem 4.1 states that the SCRP online portfolio selection algorithm (3)
does not allow Skeptic’s wealth to grow exponentially if the SBCRP is chosen as
Benchmark (8).
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However, from the proof of Theorem 4.1 (Ventura, 2006), emerges that the
same property holds for any investment strategy that achieves a wealth close
to the Benchmark’s wealth. Portfolio selection algorithms sharing property (6)
are called UPs. Therefore, UPs and the GTF are connected by the OPSG
protocol. The following theorem states that an investment strategy which shares
the unbiasedness in the large property also shares the universality property.

Theorem 4.3: (Ventura, 2006) If Forecaster has a strategy that guarantees
Skeptic’s wealth is sub-exponential in the number of trading periods, then Skeptic
has a strategy such that the unbiasedness in the large property holds. If Forecaster
has a strategy for the OPSG protocol, that guarantees that Skeptic’s wealth is sub-
exponential in the number of trading periods, then such a strategy is a UP with
respect to the selected Benchmark.

Theorem 4.3 allows to connect the class of UP investment strategies with
the GTF. This connection is particularly important: it offers the possibility to
exploit the rich set of mathematical tools belonging to the GTF for developing and
analyzing the class of DOPS investment algorithms.

4.8 Unbiasedness in the Small

Let us now consider a subtler requirement for the OPSG protocol, equivalent to
condition (5) for the BFG II protocol that forecasts should satisfy, which could be
useful to improve the investment performance when considering a finite investment
horizon. Forecasts x; are said to be unbiased in the small (or well calibrated)
(Murphy and Epstein, 1967; Vovk et al., 2005b) if, for any % € X,

Zt:l,...,n:xt%)& (1Og (X?Zt) B log (X?Zt))
Zt:l,...,n:xtEf{ 1

>~ (10)

~

provided thl)_ 1 is not too small, where = stands for approximate
equality.

Let us now consider a given value for X and following what suggested by Vovk
et al. (2005b); instead of the crisp point %X, consider a fuzzy point I : X — [0,1]
such that I(%) = 1 and I(x) = 0 for all x lying outside a small neighborhood of .
A standard choice, proposed by Vovk et al. (2005a), would be something like I :=
Ig, where E € X is a small neighborhood of x while I is its indicator function
where it is required for I to be continuous. Then, the investment strategy for
Skeptic (9), which ensures that condition (6) holds, can be properly modified as

st(x) :=s§(x) =l (x)Kt_1

to ensure that the unbiasedness in the small property holds, as stated by the
following theorem.

LGMEX X

Theorem 4.4: (Ventura, 2006) If, for the OPSG protocol, K,, < f(n) with
1
lim - log f(n) =0,

then Skeptic can force condition (10) and Forecaster’s strategy is said to be unbiased
in the small.
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4.4  Game Constantly Rebalanced Portfolio

In binary forecasting it has been empirically observed that the performance of
defensive forecasting with a fixed small ¢, does not depend on ¢ very much (Vovk
et al., 2005b), thus suggesting to let € — 0. We use the Gaussian bells I}, located
densely and uniformly in the interval [0, 1], with standard deviation o > 0 as test
functions, j indexes the mixture’s components. Following the procedure described
by Vovk et al. (2005b) it is possible to write s;(x) as follows:

t—1

si(x) =Y K ((y0) s (xi,¥3)) (log(%, 2) — log (xi 2t)) (11)

i=1

where K ((x,¥:), (Xi,¥:)) is the Mercer kernel which ensures that (11) possesses
the unbiasedness in the small property. It is approximated as follows

2 2
vyl + llx = x| ) 12)

K ((x,yt), (xi,yi)) = exp ( 552

Let us now exploit the rich set of mathematical tools belonging to the GTF to
introduce a new algorithm, originating from the OPSG protocol that will be called
Game Constantly Rebalanced Portfolio (G-CRP) algorithm (Ventura, 2006).

GAME CONSTANTLY REBALANCED PORTFOLIO
Parameter: forecast-continuous Mercer kernel K on (X x Y)Q.
Fort=1,2,..:
READ y; €Y.
ST s1(x) = S K ((x,1)  (xi,1)) (o, ) — log (x72:)).
SEARCH any root x for s¢(x) = 0.

o .
IF a root x exists THEN

Xy i=X. Juses the root X as the investment portfolio/
ELSE

X¢ 1= Xt Juses the SCRP X; as the investment portfolio/
READ z;.

END

The G-CRP algorithm approximates instances belonging to the class of online
portfolio selection strategies introduced by means of Theorem 4.4. Let us analyze
the G-CRP algorithm to show that it possesses the unbiasedness in the large
property (6), as well as the unbiasedness in the small property (10), depending
on the choice of the Mercer kernel K. It is worthwhile to notice that within the
G-CRP algorithm the portfolio X; is the SCRP (3) at trading period ¢ while the
forecast-continuous Mercer kernel K is defined according to formula (12). The
properties shared by the G-CRP algorithm are presented through the following
three theorems.
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Theorem 4.5: (Ventura, 2006) The G-CRP algorithm, with parameter K,
ensures the following bound holds

n

Z (x¢,yt)(log( xTz) log (xszl))

1
n

< :\/ﬁ&CJrn(QC) (13)

where ® is a function such as K (a,b) = ®(a)®(b) while 1 is the number of trading
periods such that a root X for s;(x) = 0 does not ewist.

The unbiasedness in the large property is considered by the following theorem.

Theorem 4.6: (Ventura, 2006) The investment strategy associated with the G-
CRP algorithm when setting ®(xy,y:) =1, is unbiased in the large, therefore
condition (6) holds.

Let us now focus on the unbiasedness in the small property and let (X,y) be a

point in X X Y. We would like portfolio x and portfolio X to achieve close wealth
values, also whenever (x,y:) is close to (X,y). The forecast-continuous Mercer
kernel K : (X x Y)2 — R is fixed and the soft neighborhood is defined as follows:

I("Q)") (X7Y) =K ((iv}”)? (Xv Y))

for some point (%X,y). Then, the following theorem can be formulated.

Theorem 4.7: (Ventura, 2006) The investment strategy associated with the G-
CRP algorithm when setting ZI %.3) (Xt,¥t) > \/n, is unbiased in the small,
therefore condition (10) holds.

The G-CRP algorithm is numerically difficult to compute because it requires
to solve a multidimensional root finding problem (s;(x) = 0.) which is known to be
quite hard (Acton, 1970). It is worthwhile to mention that this problem becomes
even more difficult due to the presence of the non-negativity constraints associated
with the components of the portfolio vector x and with the linear constraint
required to ensure the solution vector x to be a portfolio. Therefore, a different
investment strategy, less computationally demanding, is described in the following
subsection.

4.5 Worst Case Game Constantly Rebalanced Portfolio

The GTF requires the Skeptic’s capital, generated accordingly to:

T T
Kt = Ki—1 + s¢(x¢)(log(x; z¢) — log (xt zt)), (14)
to be sub-exponential in n. The SCRP algorithm (3) ignores the s;(x;) term in

(14) while focuses its attention to minimize the term (log(x, z;) — log (x{z:)) and
therefore to go as close as possible to the logarithmic wealth achieved by means
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of the SBCRP. The SCRP algorithm exploits the fact that when the number of
trading periods n becomes sufficiently large, the difference between the achieved
wealth by means of the SCRP and SBCRP algorithms becomes negligible, as
emerges by combining conditions (22) and (23) from Gaivoronski and Stella (2000)

to obtain o2
«T «T 1
IOg(Xn Zn) - 10g(Xn,1Zn) < T n—1"

The G-CRP algorithm tries to find a root x for s (x) = 0 to be used as investment
portfolio for trading period ¢; when such a root does not exist it uses the SCRP (3)
as investment portfolio. A natural question to be asked, in the case when a root X
does not exist, whether to select the investment portfolio x; which maximizes s;(x)
is a good strategy or not when compared with the SCRP. The main problem of this
strategy, which when a root x for s (x) = 0 exists sets x; = x while otherwise uses
the portfolio which minimize s;(x) is the limitation we have to cope with. In fact,

«T
no information, about the future behavior of the term (log(x, z¢) — log (x{ z¢)), is
available. To overcome this limitation a worst case approach, namely the Worst
Case Game Constantly Rebalanced Portfolio (WCG-CRP) algorithm, is proposed.
This algorithm, at each trading period t, performs the following test
2K? 1

5¢(%)2C < St(;it)Tm (15)

where X := argmin |s;(x)|, X; is the corresponding SCRP (3),

max  (z;)v/m
_ 1§j§m,i<t( is) 1 & ziz!
K= s 0= )\min 5

min = (z;) >

: 112
1<j<m, i<t =1 ||z

and selects the investment portfolio x; as follows.

WORST CASE GAME CONSTANTLY REBALANCED PORTFOLIO

Parameter: forecast-continuous Mercer kernel K on (X x Y)2
Fort=1,2,..:

Ir (t ==1) THEN
%t = (5 30+ )
ELSE

(a) x4 :==x Juses the minimum of |s¢(x)| as the investment portfolio/
ELSE
(b) x¢ :=X¢.  Juses the SCRP X as the investment portfolio/
END
END
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The rationale behind the WCG-CRP algorithm is twofold; the exploitation of
the asymptotic property of the SCRP (3) and the improvement of its short term
performance. The left hand side of (15) represents the increase of Skeptic’s capital
in the worst case, i.e. when |s;(x)| is minimized, while the right hand side of (15),
estimates the worst case performance when using the SCRP. It is evident how
the right hand side of (15) tends to zero when the number of trading periods ¢
becomes large. Therefore, there is an integer N, such that the WCG-CRP invests
by using the SCRP for all trading periods ¢t > N. This asymptotic behavior allows
to conclude that assignment (a) leads to a constant wealth, and the WCG-CRP
exhibits in the long run the unbiasedness in the large property or the unbiasedness
in the small property, depending on the choice of the kernel K. This is easily
verified when considering an investment horizon n > N by adding a constant to
the numerator of (13) which represents the starting point for the proofs of Theorem
4.6 and Theorem 4.7.

5 Numerical Experiments

The performance of the WCG-CRP algorithm has been evaluated for the following
stock markets; FTSE 100, Nikkei 225, Nasdaq 100 and S&P500. The first 30
stocks, sorted by weight, have been selected for each stock market. The considered
investment period goes from January 2"¢ 2007 to December 31°¢ 2009 for the
FTSE 100, from January 4* 2007 to December 30" 2009 for the Nikkei 225,
while it goes from January 3"¢ 2007 to December 31%¢ 2009 for both the Nasdaq
100 and the S&P500. The considered three year time interval is known to be a
high volatility period which includes the credit crunch or subprime mortgage crisis
which started in September 2008 and hopefully finished in March 2009. This crisis
was responsible for several bank defaults and probably started the worst world
economic recession since the longest and most severe economic depression, known
ad the Great Depression which began in October 1929.

The following benchmarks have been used; Sequential Best Constant
Rebalanced Portfolio (SBCRP), Best Constant Rebalanced Portfolio (BCRP),
stock market index (Index), two instances of the Sharpe-Markowitz minimum
variance portfolio (SMy and SM;), Successive Constant Rebalanced Portfolio
(SCRP), Exponentiated Gradient (Helmbold et al., 1996) with parameter 7 =
0.01 (EG(0.01)) and Switchning Portfolio (Singer, 1997) with parameter v = 0.25
(SP(0.25)). It is worthwhile to mention that the first instance of the Sharpe-
Markowitz minimum variance portfolio (SMj) uses the stock market data for the
years 2005 and 2006 to compute the minimum variance portfolio to be applied to
the years 2007, 2008 and 2009. The second instance (SM3) is a standard practice
which updates the investment portfolio, i.e. the minimum wvariance portfolio
computed on the stock market data of the last two years, every three months.
The performances of SBCRP and BCRP, i.e. their achieved wealths, have to be
correctly taken into account. Indeed, these portfolios cannot be used for actual
stock selection because they explicitly depend on the entire sequence of price
relatives which becomes known only after the expiration of the investment horizon.
The numerical experiments concerning the WCG-CRP have been performed by
using the following o2 values; 0.01, 0.001, 0.0001 and 0.00001.
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Table 1 Wealth comparison of the portfolios.

Portfolio FTSE 100 Nikkei 225 Nasdaq 100 S&P500
SBCRP 8.68 7.76 13.24 5.64

BCRP 2.14 1.55 2.42 1.49

Index 0.87 0.61 1.06 0.79

S My 1.04 0.64 1.02 0.94

SMs3 1.07 0.67 1.12 1.04

SCRP 0.58 0.31 0.82 1.12

EG(0.01) 1.20 0.78 1.28 1.06

SP(0.25) 1.20 0.78 1.28 1.06

WCG-CRP (02=0.01000) 0.98 0.63 2.34 1.22
WCG-CRP (02=0.00100) 1.14 0.68 1.21 1.16
WCG-CRP (02=0.00010) 1.12 0.66 1.38 1.11
WCG-CRP (0%=0.00001) 1.20 0.65 1.23 0.76

Table 1 gives the following observations:

the BCRP achieved wealth values greater than those achieved by the
considered investment strategies. However, the SBCRP, i.e. the benchmark
portfolio used by the OPSG protocol, achieved the best wealth values.

the WCG-CRP algorithm achieved a wealth value always greater than the
Index, except when o2 = 0.00001 on the S&P500 stock market. However, the
difference is extremely small, i.e. 0.76 vs 0.79.

the Sharpe-Markowitz portfolio SMj3 always outperformed the Index.
Furthermore, S M3 outperformed S M while their wealth values did not differ
much.

there is always at least one instance of the WCG-CRP investment portfolio
which outperforms the minimum variance portfolio SMs; on the FTSE 100
data set three out of four WCG-CRP instances outperformed SM3, the same
occurred for the S&P500 data set while on the Nasdaq 100 data set all the
WCG-CRP instances outperformed SMs3.

the performance of the WCG-CRP investment portfolio on the Nikkei 225
data set is somewhat curious. Indeed, the wealth is almost flat while ranging
from 0.61 to 0.68 for the Index and the whole set of investment portfolios.

the WCG-CRP is the best investment strategy on three stock markets (FTSE
100, Nasdaq 100 and S&P500) while it does not achieve the maximum wealth
value on the Nikkei 225 stock market data set. Indeed, the best investment
strategies are the Exponentiated Gradient (EG(0.01)) and the Switching
Portfolio (SP(0.25)).

the wealth values achieved by the Exponentiated Gradient (FG(0.01)) and
by the Switching Portfolio (SP(0.25)) are the same across all the considered
stock market data sets.
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The timeseries of the portfolio’s returns allow to evaluate the nature of an
investment strategy and to compute risk measures such as Value at Risk, Expected
Shortfall and conditional Value at Risk. For matters of brevity only 95% and
99% one month Value at Risk, computed with the historical simulation method,
are reported in Table 2 and Table 3. The less risky investment strategies, at
95% and 99% confidence level, are those associated with the minimum variance
investment portoflios SMy and SM;z. The Exponentiated Gradient (EG(0.01)),
Switching Portfolio (SP(0.25)) and the four instances of the WCG-CRP algorithm
achieved VaR values wich are comparable to those achieved by the minimum
variance investment portoflios SMy and SMj3. 95% and 99% VaR values associated
with the WCG-CRP instances tend to be smaller than those associated with
the Exponentiated Gradient (EG(0.01)) and Switching Portfolio (SP(0.25)).
Furthermore, the best WCG-CRP, for the FTSE 100 and Nikkei 225 stock
markets, achieved a value of 95% VaR which does not significantly differ from
the one achieved by the Exponentiated Gradient (EG(0.01)) and Switching

Table 2 Portfolios 95% one month Value at Risk (in percentage).

Portfolio FTSE 100 Nikkei 225 Nasdaq 100 S&P500
SBCRP 14.31 13.91 17.64 17.22

BCRP 15.67 14.52 18.45 25.69

Index 10.78 13.25 14.17 12.55

S My 9.68 12.37 10.20 11.29

S Ms 9.14 12.42 6.74 8.47

SCRP 17.16 23.47 22.16 26.41

EG(0.01) 10.56 12.56 11.71 11.84

SP(0.25) 10.56 12.56 11.69 11.88

WCG-CRP (02=0.01000) 12.76 13.07 8.43 8.96
WCG-CRP (02=0.00100) 13.43 14.07 11.43 16.05
WCG-CRP (02=0.00010) 11.26 14.01 11.34 10.90
WCG-CRP (02=0.00001) 11.05 12.55 11.43 12.49

Table 3 Portfolios 99% one month Value at Risk (in percentage).

Portfolio FTSE 100 Nikkei 225 Nasdaq 100 S&P500
SBCRP 18.40 18.14 2378  31.13

BCRP 31.28 19.68 20.06  36.97

Tndex 16.93 28.43 2462  22.25

SM, 15.62 18.13 1949  16.93

SN, 14.07 20.37 16.87  14.96

SCRP 34.22 36.18 41.02  35.23

EG(0.01) 20.03 26.21 22.31 18.71

SP(0.25) 20.03 26.22 22.31 18.77

WCG-CRP (¢2=0.01000) 19.31 26.65 1358  15.21
WCG-CRP (62=0.00100) 21.82 23.48 16.97  26.10
WCG-CRP (62=0.00010) 18.73 25.76 2354  14.28
WCG-CRP (62=0.00001) 14.29 17.83 2256  28.62
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Portfolio (SP(0.25)), while it is significantly smaller than the one achieved by the
Exponentiated Gradient (EFG(0.01)) and Switching Portfolio (SP(0.25)) for the
Nasdaq 100 and S&P500. The WCG-CRP moves its advantage further over the
Exponentiated Gradient (FG(0.01)) and Switching Portfolio (SP(0.25)) when 99%
VaR is concerned. Indeed, the WCG-CRP achieved a value of the 99% VaR on all
stock market data sets which is significantly smaller than those achieved by the
Exponentiated Gradient (EG(0.01)) and Switching Portfolio (SP(0.25)).

We further analyze how the WCG-CRP algorithm compares with respect to
the stock market index and the Sharpe-Markowitz gold standard. For matters of
brevity only two stock market data sets, namely the FTSE 100 and the Nasdaq
100, are presented. The Index (Index) together with the behavior of the wealth
achieved by SMjz (SM), best and worst WCG-CRP instances (WCG-CRP best
and WCG-CRP worst) are depicted in Figure 1 for the FTSE 100 data set and in
Figure 2 for the Nasdaq 100 data set.

The analysis of Figure 1 allows to make the following observations; the wealth
achieved by the best WCG-CRP (WCG-CRP best) is almost always greater than
the Index (Index) and greater than the wealth achieved by the minimum variance
Sharpe-Markowitz portfolio SMs (SM). The wealth achieved by the worst WCG-
CRP (WCG-CRP worst) is almost always smaller than the wealth achieved by
the minimum variance Sharpe-Markowitz portfolio SM3 (SM), while starting from
April 2009 the worst WCG-CRP (WCG-CRP worst) outperformed the Index.

The analysis of Figure 2 allows to make the following observations; the
best WCG-CRP (WCG-CRP best) significantly outperformed both the Index
(Index) and the minimum variance Sharpe-Markowitz portfolio SM3 (SM). Indeed,
starting from January 2007 the wealth achieved by the best WCG-CRP (WCG-
CRP best) is consistently greater than the wealth achieved by the minimum
variance Sharpe-Markowitz portfolio SMs (SM). The wealth value achieved by the

Figure 1 Index, Sharpe-Markowitz, best and worst WCG-CRP (FTSE 100).
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worst WCG-CRP (WCG-CRP worst) is smaller than both the Index (Index) and
the wealth value achieved by the minimum variance Sharpe-Markowitz portfolio
SMs (SM) till March 2008. However, from April 2008 to December 2009 the worst
WCG-CRP (WCG-CRP worst) behaved nearly the same as the minimum variance
Sharpe-Markowitz portfolio SMs (SM), and thus it consistently outperformed the
Indezx.

The result of the numerical experiments allows us to conclude that the WCG-
GRP portfolio investment strategy is competitive with respect to the Sharpe-
Markowitz golden standard in terms of both risk and return. For all the considered
stock market data sets the WCG-GRP portfolio achieved a wealth which is greater
than the wealth achieved by the Sharpe-Markowitz portfolio, while resulting in a
VaR value which does not significantly differ from the one achieved by the Sharpe-
Markowitz portfolio. The wealth achieved by the WCG-GRP portfolio investment
strategy significantly outperformed the wealth achieved by the Index for all the
considered stock market data sets, while the WCG-GRP portfolio and Index
did not significantly differ in terms of risk. The wealth achieved by the WCG-
GRP portfolio outperformed the wealth achieved by other portfolio investment
strategies; SCRP, EG(0.01) and SP(0.25). Indeed, the wealth achieved by the
WCG-GRP portfolio was not less than the wealth achieved by SCRP, EG(0.01)
and SP(0.25) for three out of the four considered stock market data sets. However,
the WCG-GRP portfolio achieved a 99% VaR value, which is significantly lower
than the one achieved by SCRP, EG(0.01) and SP(0.25). Therefore, the WCG-
GRP portfolio is confirmed to be an extremely competitive investment strategy,
also when extremely stressful market conditions have to be dealt with. Its defensive
nature allows to achieve VaR values which are lower or comparable to those
associated with minimum variance (risk) portfolios.

Figure 2 Index, Sharpe-Markowitz, best and worst WCG-CRP (Nasdaq 100).
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6 Conclusions and Research Directions

This paper links the class of Universal Portfolios with the Game-Theoretic
Framework and develops a new mathematical framework for online portfolio
selection. A new game protocol, called Online Portfolio Selection Game protocol,
has been introduced. This protocol allows us to link the wniversality property
with both the unbiasedness in the large property and unbiasedness in the small
property. The unbiasedness in the small property has been exploited to define
the class of Defensive Online Portfolio Selection investment strategies which is
capable of taking into account the finiteness of the investment horizon. The
Game Constantly Rebalanced Portfolio (G-CRP) and the Worst Case Game
Constantly Rebalanced Portfolio (WCG-CRP) algorithms have been introduced.
Their performance has been theoretically analyzed. The empirical performance of
the WCG-CRP has been investigated through a rich set of numerical experiments
concerning four major stock markets. The results emphasized the relevance of
the class of Defensive Online Portfolio Selection investment strategies. However,
the value of the o? parameter influences the wealth achieved by the WCG-
CRP algorithm. Therefore, it is important to understand how the value of this
parameter affects the performance of the WCG-CRP. It is worthwhile to mention
that the wealth achieved by the WCG-CRP is quite stable for o2 equal to 0.001
and 0.0001. However, a deeper analysis to find its optimal value, provided it exists,
is required. This important aspect is out of the scope of this work and is currently
under investigation through the design and analysis of adaptive optimization
strategies. In light of such considerations some interesting research directions are:

e to study of the optimality of the o parameter together with a sensitivity
analysis of the wealth with respect to the o2 parameter,

e to study and development of further kernel functions specialized for stock
markets data,

e to develop of new game protocols to allow Skeptic to test different statistical
laws, e.g. the game-theoretic law of the iterated logarithm.
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