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Abstract

Motivated by the great moderation in major U.S. macroeconomic time series, we

formulate the regime switching problem through a conditional Markov chain. We model

the long-run volatility change as a recurrent structure change, while short-run changes

in the mean growth rate as regime switches. Both structure and regime are unobserved.

The structure is assumed to be Markovian. Conditioning on the structure, the regime

is also Markovian, whose transition matrix is structure-dependent. This formulation

imposes interpretable restrictions on the Hamilton Markov switching model. Empirical

studies show that this restricted model well identi�es both short-run regime switches

and long-run structure changes in the U.S. macroeconomic data.
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1 INTRODUCTION

There has been a substantial decline in the volatility of major macroeconomic variables since

early 1980s.1 The evidence of this decline is so striking that economists have named it the

�Great Moderation�. This feature should be captured in the calibration and estimation

1See Kim and Nelson (1999), McConnell and Perez-Quiros (2000), Warnock and Warnock (2000), Blan-
chard and Simon (2001), Kim et al. (2004), etc.
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of macroeconomic models that are applied to the entire postwar U.S. data. For example,

in a stochastic growth model, when modeling the endowment process, the volatility of the

exogenous income should be treated as a random process, as opposed to one parameter to

be estimated.2

Hamilton�s (1989) seminal application of a Markov switching model to U.S. GDP growth

data successfully captured its cyclical behavior, but at that time, the changing volatility was

not a noteworthy feature of the data. The original Hamilton model (constant variance) only

weakly identi�es some recessions when using data up to late 1990s, as shown in Figure 3

of McConnell and Perez-Quiros (2000). In this paper, we explicitely model the changes in

variance. The proposed model has two mean states and two variance states. Restrictions are

imposed on the way in which the two types of states interact with each other. The model

can be viewed as a restricted version of the Hamilton model with four states. Section 4

shows that this restricted model provides good estimates for the recession probabilities, and

the results are robust with respect to the choice of data range.

A number of previous stuides also allow changing volatility. Kim and Nelson (1999) added

an unknown change point to the Markov switching model. For the U.S. postwar GDP growth

data, they found not only evidence of a structural change toward stabilization around the

�rst quarter of 1984, but also a narrowing of the gap between growth rates during recessions

and booms. Lettau et al. (2008) applied an independent Markov switching model, developed

by McConnell and Perez-Quiros (2000), to consumption data, and found evidence of a shift

to substantially lower volatility regimes at the beginning of 1990s. One of the objectives of

this paper is to establish a simple model that captures various key features of the data, such

as the narrowing mean growth rate gap, changing volatilities, and time-varying transition

probabilities (or equivalently, changing recession durations).

This paper categorizes the state of the economy into two groups, namely, the exogenous

2An alternative method is to assume there was a structural break in the variance for the endowment
process.
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state and the endogenous state. The exogenous state, or structure, is designed to charac-

terize long-run structure changes, while the endogenous state, or regime, is used to describe

short-run business cycles. The exogenous state evolves according to a homogeneous Markov

chain. Given the exogenous state, the endogenous state also follows a homogeneous Markov

chain, whose transition probabilities depend on the exogenous state. The endogenous state

thus follows a �conditional Markov chain�, where the Markovian property applies only after

conditioning on the exogenous state.

This model imposes interpretable restrictions on the conventional Hamilton Markov

switching model with properly de�ned state variables (see Section 3 for details). To convey

the main idea, we start with the baseline setup. Let structure At take a value in f1; 2g and

regime st be either 1 or 2: By assumption, At follows a �rst order stationary Markov chain,

with a 2� 2 transition matrix PA: Regime st follows a conditional �rst order Markov chain,

where under the structure A = k, the regime is driven by the transition matrix Pk; k = 1; 2:

We assume Pk(i; j) � Pr(st = ijAt = k; st�1 = j); k = 1; 2:
3 The model is characterized by

three transition matrices and the joint distribution of initial states (A0; s0); namely,

PA =

0
B@

p 1� q

1� p q

1
CA ; P1 =

0
B@

p1 1� q1

1� p1 q1

1
CA ; P2 =

0
B@

p2 1� q2

1� p2 q2

1
CA

and Pr(A0; s0); where At 2 f1; 2g; st 2 f1; 2g: We assume both states are not observed by

the econometrician.

Like the conventional Markov switching model, the econometrician only observes the time

series fytg
T
t=1; where the data generating process of yt is given by yt = �(At; st) + �(At) � et;

et � N(0; 1). This implies yt � N(�(At; st); �
2(At)):

Because both At and st are hidden, we treat them as missing data and apply the well-

known expectation-maximization (EM) algorithm to estimate the model. The estimation

3�Pr� means probability of an event, or probability density of a random variable if no value is assigned.
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process is fast because no numerical optimization is required. Robustness of the estimation

results is checked by trying various initial values. When autoregressive terms are added as in

Hamilton (1989), an expectation-conditional-maximization (ECM) algorithm4 is applied to

ensure closed-form solutions throughout. By applying this model to U.S. post-war data on

GDP and employment, we �nd that there is a volatility change at around the �rst quarter

of 1984, consistent with most existing literature, and all NBER recession dates are well

identi�ed by looking at smoothed or �ltered recession probabilities. The estimated structure

transition probabilities also suggest that the volatility change is highly persistent.

2 RELATIONS TO OTHER RESTRICTED MARKOV SWITCHING MODELS

The above model admits rich features while keeps a reasonably parsimonious model structure.

It includes the unknown change point Markov switching model (Kim and Nelson, 1999) and

the independent Markov switching model (McConnell and Perez-Quiros, 2000, and Lettau

et al, 2008) as special cases.

Example 1 (Unknown change point Markov switching model) In the conditional Markov

chain model, let 0 < p < 1 and q = 1; then the low variance structure state is an absorbing

state. What remains is to estimate the location of the (deterministic) permanent structural

change. By further restricting P1 = P2; the resulting model is equivalent to the unknown

change point Markov switching model as in Kim and Nelson (1999)5. The transition matrices

are given by PA =

0
B@

p 0

1� p 1

1
CA ; P1 = P2 =

0
B@

p1 1� q1

1� p1 q1

1
CA : We will see in the next

example that it is also a special case of the independent Markov switching model.

Example 2 (Independent Markov switching model) If we let p1 = p2 and q1 = q2; then the

resulting model is equivalent to the independent Markov switching model, where the dynamics

4Meng and Rubin (1993) developed a general theory of the ECM algorithm.
5They considered a general setup with mean gap di¤erence and variance change, i.e., mean growth rate

depends on both At and st; while variance only depends on At:
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of regime st no longer depends on the structure state At: The independent Markov switching

model essentially requires the conditional transition matrices of regime st to be the same

across di¤erent structures, i.e., P1 = P2; with no restrictions imposed on the transition

matrix of structure At:

Recently, Geweke et al. (2007) proposed a Hierarchical Markov Normal Mixture model

(HMNM) to study �nancial asset returns. The conditional Markov chain also includes re-

strictions implied by the HMNM as special cases.

Example 3 (HMNM) If we restrict the conditional transition matrices for regimes such that

the diagonal terms add up to one and each row contains the same elements, then the condi-

tional Markov chain model becomes an HMNM model. In particular, the resulting transition

matrices take the following forms: PA =

0
B@

p 1� q

1� p q

1
CA ; P1 =

0
B@

p1 p1

1� p1 1� p1

1
CA ;

P2 =

0
B@

p2 p2

1� p2 1� p2

1
CA : The HMNM restricts the conditional transition kernel such that

Pr(st = ijAt = k; st�1 = j) = Pr(st = ijAt = k); for all i; k; j: Conditioning on a speci�c

structure At = k; the observable yt follows a mixture of two normal distributions.

It is worth mentioning that Barro et al.�s (2009) formulation for country disasters is also

a special case of the conditional Markov chain framework.

In the next section, the proposed model is cast under the conventional Hamilton Markov

regime switching framework, with four regime states, f(�2H ; �
H
L ); (�

2
H ; �

H
H); (�

2
L; �

L
L); (�

2
L; �

L
H)g:

However, the latter setup involves 12 probability parameters concerning the transition matrix

of these 4 states, and the number of parameters increases with the same magnitude as the

squared number of states, making MLE numerially undesirable. Also in practice, the likeli-

hood function generally has multiple local maxima, and it is di¢cult to achieve a reasonable

local maximum. Instead, by explicitly modeling the long-run and short-run regime changes,
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the proposed model implies a grand transition matrix with only 6 parameters, which greatly

reduces the computational burden. Thus the proposed model can be viewed as a parsimo-

nious way to model the 4-state Hamilton Markov regime switching problem. In the sense

of Sims et al. (2008), the conditional Markov chain can be treated as a way to provide

restrictions on the transition probabilities for the Hamilton Markov regime switching model.

Another implication of the conditional Markov chain model is that the �regime state� by

itself is generally not Markovian, while a common feature shared by the �rst two examples

is that the marginal process of the �regime state� is Markovian.

3 GENERAL MODEL SETUP

We make the following assumptions throughout.

Assumption 1. fAtg is an exogenous Markov process:

Pr(At+1jAt; st; At�1; st�1; :::; A0; s0) = Pr(At+1jAt):

Assumption 2. fstg is conditionally Markovian:

Pr(st+1jAt+1; At; st; At�1; st�1; :::; A0; s0) = Pr(st+1jAt+1; st):

The �rst assumption states that At forms a su¢cient statistic for the entire history of

(A; s) for predicting At+1: The second assumption means conditioning on historical structure

states, the regime s is Markovian, whose transition matrix depends on the realization of

current structure state.

In general, the model admits M exogenous states and N endogenous states, with At 2

f1; :::;Mg and st 2 f1; :::; Ng:We have anM�M probability matrix PA to characterize the

evolution of At: Accordingly, there are altogetherM probability matrices, Pm (m = 1; :::;M),

characterizing transition probabilities of st conditional on At; each being of dimension N�N:

Based on assumptions 1 and 2, we may prove that the joint state, Zt � (At; st), is �rst order
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Markovian,

Pr(At+1; st+1jAt; st; At�1; st�1; :::; A0; s0) = Pr(At+1; st+1jAt; st):

A typical realization of joint state is given by (At = m; st = n); m 2 f1; :::;Mg; n 2

f1; :::; Ng, and the number of joint states is MN:

The MN �MN transition matrix PZ characterizing the Markov process fZtg can be

constructed as follows,

Pr(At+1; st+1jAt; st) = Pr(st+1jAt+1; At; st) �Pr(At+1jAt; st) = Pr(st+1jAt+1; st) �Pr(At+1jAt);

where Pr(st+1jAt+1; st) and Pr(At+1jAt) are given by elements of Pm (m = 1; :::;M) and PA

respectively. Zt can be viewed as a Hamilton Markov switching process withMN states and

with a restricted transition matrix.

Example 4 Consider the conditional Markov chain setup in Section 1. If we order the joint

state Zt � (At; st) as [(1; 1); (1; 2); (2; 1); (2; 2)]
0; then the corresponding transition matrix

takes the form

PZ =

0
B@

p � P1 (1� q) � P1

(1� p) � P2 q � P2

1
CA :

Clearly, the conditional Markov chain provides certain restrictions on the transition matrix of

a conventional Hamilton Markov switching model. Notice that when we assume independent

switching where P1 = P2; the transition matrix for Zt admits a simple Kronecker tensor

product representation PZ = PA 
 P1 as shown in Sims et al. (2008). One may also prove

that under the conditional Markov chain restriction, the mapping from (PA; P1; P2) to P
Z is

a bijection if the structure state At is nondegenerate.
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4 APPLICATIONS TO ECONOMIC TIME SERIES DATA

Our data sets consist of the GDP growth and the employment growth data, spanning from

the second quarter of 1947 to the fourth quarter of 2006.6 To see how the model works for

the simplest setup, we �rst abstract from autoregressive components for economic variables,

and concentrate on the basic setup as in sections 1 and 2. The growth rate is measured as the

log-di¤erence of the data multiplied by 100, i.e., yt = 100 � log(GDPt=GDPt�1). We estimate

a conditional Markov chain model with two regime states fsH ; sLg, and two variance states

fAH ; ; ALg; where �H� means high, and�L� means low. The model is yt = �(At; st)+�(At)et;

et � N(0; 1) being independent with (At; st): Let �(Ai; sj) = �
i
j; and �(Ai) = �i; i; j = H;L:

The structure state is �rst order Markovian, with transition matrix PA: Given that the

structure is At = �
2
H ; the regimes are driven by P

H at time t: Accordingly, regimes will be

driven by PL under the low volatility structure. With this speci�cation, the business cycles

are characterized by switches between high and low mean growth rate of GDP, while the

long-run change of the volatility can be viewed as a transition from �2H to �
2
L:
7

4.1 APPLICATIONS TO GDP GROWTH

The estimation procedure features a two-step process. We use the EM algorithm to ob-

tain initial estimates for parameters, and then we directly maximize the likelihood function

to re�ne our estimates and to obtain the standard errors. Maximum likelihood estimation

yields a log likelihood of �289:3155, and parameter estimates, with standard errors shown

in parenthesis, are given by

6Data source: U.S. Department of Commerce, Bureau of Economic Analysis. All data are measured in
2000 chain-weighted dollars.

7Long-run change means the probability of staying in the same structure is high, say 0.99.
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�1 �HL �HH �LL �LH �2H �2L

b�1 -0.0849 1.4149 0.1716 0.8913 0.8780 0.1590

(0.2181) (0.1610) (0.1492) (0.0545) (0.1326) (0.0258)

�2 p1 q1 p2 q2 p q

b�2 0.7572 0.8637 0.8332 0.9630 0.9933 1.0000

(0.0867) (0.0629) (0.1181) (0.0273) (0.0066) (0.0000)

The implied transition matrix for the joint states is

PZ =

0
BBBBBBB@

0:7522 0:1354 0:0000 0:0000

0:2412 0:8580 0:0000 0:0000

0:0055 0:0002 0:8332 0:0370

0:0011 0:0064 0:1668 0:9630

1
CCCCCCCA

The order of the four states is �high variance, low mean�, �high variance, high mean�, �low

variance, low mean� and �low variance, high mean�. Probabilities for low growth regimes8

and high variance structures are shown in Figure 1. The shaded areas are NBER dated

recessions. We can see that not only the NBER recessions are very precisely estimated in

terms of �ltered and smoothed recession probabilities, but the low frequency movement of

the variance is well captured9. The parameter estimates also suggest that besides a substan-

tial volatility drop, a changing mean growth gap is also an important feature. Along with

the assumption that the recession duration depends on the volatility structure, this model

8In the model, recession is described as the regime with low mean growth rate. Notice that the NBER
recession is de�ned as �a signi�cant decline in economic activity spread across the economy, lasting more
than a few months, normally visible in real GDP, real income, employment, industrial production, and
wholesale-retail sales.� The intriguing feature of Markov switching model is that its estimates for recession
probabilities accord with NBER�s recession dates very well, by just looking at a single time series.

9The smoothed probabilities for high variance structures around the turning points are Pr(1984Q1jIT ) =
0:98; Pr(1984Q2jIT ) = 0:81; Pr(1984Q3jIT ) = 0:29; and Pr(tjIT ) > 0:99 for t � 1983Q4:
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Figure 1: GDP growth and estimated state probabilities, 47Q2 � 06Q4.

is able to provide more precise recession probabilities than the existing literature does. It is

natural to ask whether our restrictions on the state transition probabilities are reasonable.

We reestimate a Hamilton Markov switching model using the 4-dimensional joint states

Zt 2 f(AH ; sL); (AH ; sH); (AL; sL); (AL; sH)g. No restriction is imposed on the transition

matrix for the joint states. Maximum likelihood estimation yields a log likelihood value of

�288:8377, with the estimated transition matrix

PZ =

0
BBBBBBB@

0:7596 0:1418 0:0000 0:0000

0:2404 0:8472 0:0000 0:0000

0:0000 0:0000 0:8335 0:0377

0:0000 0:0109 0:1665 0:9623

1
CCCCCCCA

:

We can see that the estimated unrestricted transition matrix is very close to the one implied

by the conditional Markov chain restriction. A likelihood ratio test as in Hamilton and Lin
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(1998) gives a log likelihood ratio statistic of �2(�289:3155 + 288:8377) = 0:9556; which

yields a p-value of 0:9872 according to the asymptotic �2(6) distribution. This provides

statistical support that the conditional Markov chain is a reasonable restriction on the 4� 4

transition matrix of the joint state. A practical advantage of the conditional Markov chain

restriction is that it admits fast and robust computation of the MLE, while the estimation of

the unrestricted model is numerically challenging. When estimating the unrestricted model,

we tried a large variety of initial parameter values to start a Quasi-Newton optimization

procedure, and the procedure easily got stuck at a local maximum. The maximum likelihood

value is achieved by using the parameter estimates implied by the conditional Markov chain

model as starting values. For higher dimensional Markov switching models, the advantage

of model parsimony becomes practically crucial.

McConnell and Perez-Quiros (2000) use a Markov switching model with mean and vari-

ance having independent switching, which does not capture the reduced recession duration

observed in the post-1984 U.S. GDP data. They use the GDP growth data from 1953Q2

to 1999Q2. Although their model identi�es the volatility change very well, their origi-

nal model only weakly identi�es the two recessions between 1960 and 1970, as shown in

Figure 3 of their paper. We reestimate the independent Markov switching model as in

McConnell and Perez-Quiros (2000), where the regime changes of mean growth rate and

variance are independent of each other. Their original model is speci�ed as yt � �(At; st) =

� � (yt�1 � �(At�1; st�1)) + �(At)et: The independent Markov switching model produces the

same graph as their Figure 3 if we use the same data as theirs (from 1953Q2 to 1999Q2), while

conditional Markov chain model (using yt � �(At; st) = � � (yt�1 � �(At�1; st�1)) + �(At)et)

generates a much better estimated regime and structure probabilities as shown in our Figure

2. We also notice that, if we use the data span from 1947Q2 to 2006Q4, the independent

Markov switching model produce about the same nice graph as the one using our model.

Moreover, we �nd that if we restrict � = 0 and use the speci�cation yt = �(At; st)+�(At)et;
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Figure 2: GDP growth and estimated state probabilities, 53Q2 � 99Q2.

both models will produce nice regime and structure probabilities, and this result holds for

both the data span from 1953Q2 to 1999Q2 and the data span from 1947Q2 to 2006Q4. The

independent switching model reaches a log likelihood value of -290.6113, which is very close

to the one (-289.3155) achieved by conditional Markov chain model. The log likelihood ratio

statistic is �2(�290:6113+289:3155) = 2:5916; which yields a p-value of 0:2737 according to

the asymptotic �2(2) distribution. A detailed model comparison between these two models

will be discussed in Section 4.3 using Bayes factors.

4.2 APPLICATIONS TO EMPLOYMENT GROWTH

Again, the growth rate is measured as log di¤erence of employment multiplied by 100.

We apply the conditional Markov chain model to nonfarm employment data spanned from
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Figure 3: Nonfarm employment growth and estimated state probabilities, 47Q2 � 06Q4.

1947Q2 to 2006Q4. MLE estimates, with standard error in parentheses, are given by

�1 �HL �HH �LL �LH �2H �2L

b�1 -0.6274 0.8550 -0.1354 0.5735 0.2598 0.0364

(0.1227) (0.0584) (0.0587) (0.0264) (0.0364) (0.0061)

�2 p1 q1 p2 q2 p q

b�2 0.7480 0.9252 0.8910 0.9721 0.9847 0.9880

(0.0823) (0.0268) (0.0738) (0.0195) (0.0142) (0.0157)

where log(likelihood) = -138.8607. Regime probabilities are shown in Figure 3. Again,

the NBER recession dates are well estimated in terms of smoothed or �ltered recession

probabilities. Post-1984 periods are identi�ed to be under the low-variance structure. But

there are also several pre-1984 years being identi�ed as the low-variance structure, such as

early 60s, 70s and 80s. The reason why we get a di¤erent result from that of GDP data is
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Figure 4: Nonfarm employment growth and estimated state probabilities, 50Q4 � 06Q4.

that the employment growth of early 50s appears to be extremely volatile, compared with

what we observe since the 60s. The growth rate shoots up to a record high from a negative

growth rate within only several quarters. The data around early 50s tend to bring up our

estimates for the high variance to a certain level, such that it is hard for the simpli�ed two-

variance structure model to identify the high-variance structure unless the actual variance

is high enough. To justify our conjecture, we reestimate the model using data from 1950Q4

to 2006Q4. The resulting recession and high variance probabilities are shown in Figure 4,

where all pre-1984 periods are identi�ed as the high-variance structure according to smoothed

probabilities. The log(likelihood) = -108.7197, and parameter estimates are given by
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�1 �HL �HH �LL �LH �2H �2L

b�1 -0.5931 0.8145 -0.1336 0.5666 0.1914 0.0351

(0.1105) (0.0444) (0.0542) (0.0253) (0.0251) (0.0055)

�2 p1 q1 p2 q2 p q

b�2 0.7323 0.9338 0.9008 0.9702 0.9928 1.0000

(0.0889) (0.0244) (0.0673) (0.0208) (0.0072) (0.0001)

4.3 MODEL COMPARISON USING BAYES FACTORS

Because it is easy to evaluate the conditional likelihood for the Markov switching model, we

can readily apply Bayes factors to compare various model speci�cations. To �x idea, we focus

on comparing the conditional Markov chain (Model 1) and independent Markov switching

speci�cation (Model 2) for the basic setup yt = �(At; st) + �(At)ut using GDP growth data,

where both models provide nice regime probability estimates. The Bayes factor is de�ned as

K =
p(yjM1)

p(yjM2)
=

R
p(yj�1;M1)p(�1jM1)d�1R
p(yj�2;M2)p(�2jM2)d�2

;

where p(yj�j;Mj) is the conditional likelihood for data y given parameter �j under model j;

and p(�jjMj) is the prior density for �j under model j: The Bayes factor provides evidence for

which model is better supported by the data. Using a wide variety of prior speci�cations for

the parameters, we did not �nd unanimous support for either model. A general observation is

that if we specify prior to be tight around the MLE estimators, the Bayes factors are slightly

in favor of model 1 (conditional Markov chain), while if we use less informative priors, Bayes

factors indicate that model 2 (independent Markov switching) is slightly preferred.

When specifying priors, we maintain the following identifying restrictions �HL < �HH ;

�LL < �LH ; 0 < �2L < �2H : We use a reparametrization which we also applied in the MLE
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Figure 5: First set of marginal prior densities.

estimation. Let X be a vector of free parameters, and �HL = X(1); �
H
H = X(1) + e

X(2); �LL =

X(3); �LH = X(3) + eX(4); �2L = eX(6); �2H = eX(5) + eX(6): A typical reparametrization for

probability parameters is given by p = minf1; (b� a) ex

1+ex
+ ag such that a < p < 1:

The �rst set of priors for X is taken as normal, centered around its MLE estimates,

with variance being 1:2 times the estimated asymptotic variance, except that we draw q

(the probability of staying in the high variance state) from minf1; (1:09 � 0:9) � u + 0:9g

where u � Uniform[0; 1]: The simulated prior densities for the original parameters of the

conditional Markov chain model take the shape in Figure 5. The Bayes factor is around

1:41; based on 10 Monte Carlo experiments, each with 6 � 104 draws. When we increase the

variance of the prior, the Bayes factor tends to decrease. For example, when the variance

for X is taken as 1:6 times the estimated asymptotic variance, and the priors for p and q are
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Figure 6: Second set of marginal prior densities.

both minf1; (1:02� 0:8) � u+ 0:8g with u � Uniform[0; 1]; then the Bayes factor is around

1:0: When we further increase the variance for X to be 2 times the estimated asymptotic

variance, the Bayes factor turns out to be around 0:9; where the resulting prior densities for

the original parameters of the conditional Markov chain model take the shape in Figure 6.

The exercise in this section suggests that there is no signi�cant evidence from the data to

choose one speci�cation against the other.

5 MULTIPLE-EQUATION REGRESSION

Suppose the vector Zt of economic variables follows a structural VAR,

�(At)(Zt � �(At; st)) = B(At)(Zt�1 � �(At�1; st�1)) + C(At)ut;
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where ut is iid N(0; I) and has the same dimension as Zt: The above equation assumes that

structural coe¢cients �; B; C only depend on At; while the mean vector � depends on both

At and st: The corresponding reduced form is represented by

Zt � �(At; st) = �(At)
�1B(At)(Zt�1 � �(At�1; st�1)) + �(At)

�1C(At)ut; or

Zt � �(At; st) = �(At)(Zt�1 � �(At�1; st�1)) + �(At)ut:

To estimate state probabilities, we may rely on the above reduced form representation instead

of the structural one. The estimation approach is a direct extension of the one for single

series AR process where time-varying pattern of the parameters are the same, and we may

obtain the likelihood function during the �ltering step of the EM algorithm. Closed-form

solution is available for the ECM algorithm as in the single series case. It is worth mentioning

that At might represent policy shift, breakthrough technology advance (e.g., better inventory

control), which we do not explore here.

Likelihood of the reduced form VAR can be recursively calculated using �ltering tech-

nique given in the appendix. Numerical optimization of the likelihood is hard because the

number of parameters is large. In the applications, we let Zt be the quarterly growth rate

of GDP and nonfarm employment. If we do not impose any restrictions on �(At) and

�(At); the quasi-Newton numerical algorithm employed by Matlab 7.0 hardly converges for

a wide range of starting parameter values. We also tried a block-updating scheme suggested

by Sims, Waggoner and Zha (2008) by dividing the parameters into probability and non-

probability parameters. We found that although the �rst order conditions were met fairly

fast in the direction of probability parameters, they are rarely convergent in the direction of

non-probability parameters such as �; � and �. In addition, the probability parameters tend

to stop updating at unreasonable regions.

If we restrict �(At) and �(At) as diagonal matrices, the likelihood function is easily
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maximized by Matlab 7.0. Such restrictions break the causality link between GDP growth

and employment growth in the VAR. Their dynamics are linked together only through the

states At and st: Unlike in the single series estimation where we allow di¤erent series to

have di¤erent states (A; s); here in the multiple series setup, we assume that di¤erent series

share the same states (A; s); i.e., they have common regime switching dynamics. We report

parameter estimates, followed by plots of state probabilities.

�1 �HL �HH �LL �LH �2H �2L �H �L

b�GDP -0.3159 1.5156 0.0385 0.8685 0.8771 0.1837 0.1871 0.0059

(0.2062) (0.1496) (0.1762) (0.0500) (0.1214) (0.0272) (0.1091) (0.0885)

b�EMP -0.2498 0.8182 0.0929 0.4728 0.2037 0.0214 0.6554 0.8367

(0.1472) (0.1077) (0.1015) (0.0773) (0.0311) (0.0031) (0.0823) (0.0459)

�2 p1 q1 p2 q2 p q

b�2 0.7393 0.8863 0.7775 0.9527 0.9674 0.9739

(0.0771) (0.0418) (0.1287) (0.0244) (0.0216) (0.0192)

The recession probabilities along with high variance probabilities are shown in Figure 7.

Although there are some wrong reports of recessions, the duration of the wrong reports is

very short. The post-1984 recessions are better estimated compared with estimates from

single series information.

6 IDENTIFYING RECESSION DATES USING PARTIAL DATA

There is a noteworthy lag when NBER�s recession dating committee announced the most

recent recession. For example, the November 2001 trough was announced July 17, 2003,

while the March 1991 trough was announced December 22, 1992. Can we do better in terms

of identifying recession dates with a shorter time lag of announcement? By �tting out model

19



dlog(GDP)

1950 1960 1970 1980 1990 2000

-4

-2

0

2

4

dlog(Emp)

1950 1960 1970 1980 1990 2000

-2

0

2

filtered low-mean probability

1950 1960 1970 1980 1990 2000

0

0.5

1

filtered high-var probability

1950 1960 1970 1980 1990 2000

0

0.5

1

smoothed low-mean probability

1950 1960 1970 1980 1990 2000

0

0.5

1

smoothed high-var probability

1950 1960 1970 1980 1990 2000

0

0.5

1

Figure 7: Estimated state probabilities through bivariate VAR, 47Q2 � 06Q4.

to GDP growth data up to 2002Q1, we are already con�dent to see the 2001 recession by

looking at model estimates in Figure 8. The estimated recession probability by 2002Q1 is

close to 1. In this exercise, we use observations up to 2002Q1 instead of the whole sample to

get parameter estimates. Thus the �ltered/smoothed low growth probabilities are di¤erent

from those obtained in precious full sample exercise. Likewise, using GDP growth data up

to 1991Q2, we are able to identify the 1991 March trough. By looking at GDP growth rate

alone, and within a very simple Markov switching framework, we can provide a very nice

guide to the estimates for recession dates, which precisely accords with NBER�s announced

recession dates. A noteworthy advantage of our model is that we do not need to wait too

long to obtain a reasonable estimate of smoothed or �ltered recession probabilities.
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Figure 8: Identi�cation of the 2001 trough using partial data.

7 CONCLUSION

Using a conditional Markov chain restriction on the conventional Hamilton Markov switching

model, we are able to incorporate several important features of major aggregate economic

time series data. Economic explanations well accord with the model structure. Empirically,

the volatility decline since the 1980s is well identi�ed and is highly persistent. Recessions

during each volatility structure are also precisely identi�ed in terms of �ltered and smoothed

probabilities. Compared with the independent Markov switching restriction, the empirical

performance of the conditional Markov chain restriction is more robust with respect to the

model speci�cation and the choice of data span, although one cannot statistically reject

one restriction against the other. The method of this paper can be applied to macro or

asset pricing models with Markov switching and learning. For example, it is possible to

reformulate the learning mechanism of Lettau et al. (2008) for their consumption process.

A natural extension includes developing a multivariate model incorporating monthly data

to identify and to forecast the state of an economy.
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8 APPENDIX: ESTIMATION METHOD

From now on, we use eXT = fX1; X2; :::; XTg to represent the full history of X up to time T:

Given the time series of observables, the likelihood function is given by

L(�; eyT ) = fy(eyT j�) =
X

ZT

� � �
X

Z1

f(eyT ; eZT j�)

where Zt � (At; st). The model is estimated using the Expectation-Maximization (EM)

method. A by-product of the EM procedure is that a recursive representation of the like-

lihood function is obtained. For a detailed description the EM algorithm, one may refer

to Kim and Nelson (1999), McLachlan and Krishnan (1996), or Hamilton (1994). Here we

brie�y review the algorithm for the particular case in this paper. The EM algorithm will

iterate between expectation and maximization steps until some convergence criteria is met.

In the expectation step, we form the following objective function,

Q(�; eyT ; �k�1) =
X

eZT

log[f(eyT ; eZT j�)] � Pr( eZT jeyT ; �k�1)

=
X

eZT

log[f(eyT j eZT ; �)] � Pr( eZT jeyT ; �k�1) +
X

eZT

log[Pr( eZT j�)] � Pr( eZT jeyT ; �k�1)

where �k�1 is the parameter estimates in step k � 1; and Pr( eZT jeyT ; �k�1) can be obtained

using a �ltering-smoothing procedure as described in Kim and Nelson (1999).

In the maximization step, Q is maximized with respect to �, resulting in the step-k

parameter estimates �k:

�k = argmax
�
Q(�; eyT ; �k�1)

One favorable property of EM algorithm is that each iteration increases the likelihood

value. With arbitrary initial values of the parameters, �0; the above two steps are iterated

until �k converges to a local maximum of the likelihood function.
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The �rst term of Q can be written as

X
eZT
log[f(eyT j eZT ; �)] � Pr( eZT jeyT ; �k�1)d eZT

=

TX

t=1

X

eZT

log[f(ytjZt; �1)] Pr( eZT jeyT ; �k�1)d eZT =
TX

t=1

X

Zt

log[f(ytjZt; �1)] Pr(ZtjeyT ; �k�1)

where for simplicity we assume log[f(ytjZt; �1] = �
1
2
log(2�)� 1

2
log(�2(At))�

1
2
(yt��(Zt))2

�2(At)
: No-

tice that in the V AR(1) speci�cation, we have log[f(ytjZt; �1] = �
p

2
log(2�)�p

2
log det(�(At))�

1
2
[yt� �(Zt)� �(At)(yt�1� �(Zt�1))]

0�(At)
�1[yt� �(Zt)� �(At)(yt�1� �(Zt�1))]. The same

EM algorithm can be applied by de�ning a new state variable Z�t = (Zt; Zt�1):

Similarly, the second term can be written as

X

eZT

log[Pr( eZT ; �2)] Pr( eZT jeyT ; �k�1)

=
TX

t=1

X

At;st;st�1

log[Pr(stjst�1; At; �2)] Pr(At; st; st�1jeyT ; �k�1)

+
TX

t=1

X

At;At�1

log[Pr(AtjAt�1; �2)] Pr(At; At�1jeyT ; �k�1)

8.1 CLOSED-FORM SOLUTION

The �rst order conditions concerning the structure transition imply

p =

PT

t=2 Pr(At�1 = 1; At = 1jeyT ; �k�1)PT

t=2 Pr(At�1 = 1; At = 1jeyT ; �k�1) +
PT

t=2 Pr(At�1 = 1; At = 2jeyT ; �k�1)

q =

PT

t=1 Pr(At�1 = 2; At = 2jeyT ; �k�1)PT

t=1 Pr(At�1 = 2; At = 1jeyT ; �k�1) +
PT

t=1 Pr(At�1 = 2; At = 2jeyT ; �k�1)

where p is the probability of staying in high-volatility structure if At = 1 means volatility is

high.
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The �rst order conditions regarding the conditional transition matrices imply

pj =

PT

t=2 Pr(At = j; st = sL; st�1 = sLjeyT ; �k�1)PT

t=2 Pr(At = j; st = sL; st�1 = sLjeyT ; �k�1) +
PT

t=2 Pr(At = j; st = sH ; st�1 = sLjeyT ; �k�1)

qj =

PT

t=2 Pr(At = j; st = sH ; st�1 = sH jeyT ; �k�1)PT

t=2 Pr(At = j; st = sH ; st�1 = sH jeyT ; �k�1) +
PT

t=2 Pr(At = j; st = sL; st�1 = sH jeyT ; �k�1)

where j = 1; 2 and pj is the probability of staying in �low-mean� regime when A = j:

Under the normality assumption, we also have closed form solutions for mean and vari-

ance. For example the low mean under high variance structure is

�HL =

PT

t=1 yt � Pr(At = 1; st = sLjeyT ; �k�1)PT

t=1 Pr(At = 1; st = sLjeyT ; �k�1)
:

After obtaining all mean parameters, the high variance is given by

�2H =

PT

t=1

�
(yt � �

H
L )

2 � Pr(At = 1; st = sLjeyT ; �k�1) + (yt � �HH)2 � Pr(At = 1; st = sH jeyT ; �k�1)
	

PT

t=1 Pr(At = 1jeyT ; �k�1)
:

In order to get the above parameter solutions, we need three types of smoothed probabil-

ities: Pr(At; stjeyT ; �k�1);Pr(At; At�1jeyT ; �k�1) and Pr(At; st; st�1jeyT ; �k�1); which we brie�y

described as follows.

8.2 FILTERING AND SMOOTHING PROCEDURE

Let It = eyt = fy0; y1; :::; ytg be the information available at time t. It is helpful to work with

the Markov joint state Z = (A; s); whose �ltered and smoothed probabilities are calculated

following the standard formula (see, e.g., Kim and Nelson, 1999).

Step 1. Given Pr(Zt�1 = ijIt�1); i = 1; 2; at the beginning of time t iteration, the

one-step-ahead prediction Pr(Zt = jjIt�1) is calculated as

Pr(ZtjIt�1) =
X

Zt�1
Pr(Zt; Zt�1jIt�1) =

X
Zt�1

Pr(ZtjZt�1) � Pr(Zt�1jIt�1):
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Step 2. Use Bayes rule to obtain the �ltered probabilities

Pr(ZtjIt) = Pr(ZtjIt�1; yt) =
Pr(Zt; ytjIt�1)

f(ytjIt�1)
=

f(ytjZt) � Pr(ZtjIt�1)P
Zt
f(ytjZt) � Pr(ZtjIt�1)

;

where by de�nition It = fIt�1; ytg:

To start the above iteration, we need an initial guess for Pr(Z0jI0): A good candidate is

the invariant distribution computed from the last step parameter estimates �k�1:

As a by-product, we also obtain the likelihood function as Likelihood =
P

t

P
Zt
f(ytjZt)�

Pr(ZtjIt�1): For any model setup where the conditional density f(ytjZt) has closed-form rep-

resentation, one may directly maximize the likelihood function using numerical optimization

methods.

Based on the complete information, the smoothed probabilities can be obtained as follows,

Pr(Zt = j; Zt+1 = kjIT ) =
Pr(Zt+1 = kjIT ) � Pr(Zt+1 = kjZt = j) � Pr(Zt = jjIt)

Pr(Zt+1 = kjIt)
;

Pr(Zt = jjIT ) =
X4

k=1
Pr(Zt = j; Zt+1 = kjIT ):

Thus given Pr(ZT jIT ) from the �ltering procedure, one may work backwards to get the

smoothed probabilities for t = 1; 2; :::; T . Notice that Pr(Zt; Zt�1jIT ) = Pr(At; st; At�1; st�1jIT ):

Integrating out the e¤ect of At�1 will give us Pr(At; st; st�1jIT ): And Pr(At; At�1jIT ) is ob-

tained by integrating out st and st�1:
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