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Abstract 

In this paper the parameters of the generalized Pareto cumulative distribution functions of the 

marginals and the parameter θ  of the connecting copula for the water maximum discharges and water 

volumes are obtained. The isolines for ( ) ( )( ) ε−=1, yGxFC  and for ( ) ( )( ) ε=∗
yGxFC , will be drawn. 
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1. Introduction 

 

In hydrology the floods are usually characterized by the maximum discharge corresponding to a certain 

return period (or to the corresponding probability of exceedance). The value of the maximum discharge 

is used to establish the crest of the dykes, the overtopping being the most frequent cause of dykes 

failure.  

Still, in an important number of cases the dykes are destroyed due to internal erosion of the dyke itself 

or of the foundation; finally, the lost of stability of the inner or outer slope is another cause of the dykes 

failure. In these cases, the flood duration is the triggering factor of the dyke failure. Given the 

maximum discharge, the flood duration depends directly on the flood volume.   

Although in many cases the maximum discharge and the flood volume are considered as being 

independent statistical variables, in fact they can be treated as bi-variates. A copula couples the 

marginal cumulative distribution functions (cdfs) to obtain multivariate distribution functions based on 

the theorem of Sklar [12]. Initially the copulas were used in the theory of probabilistic metric spaces, 

but they are now widely applied in many fields as: econometrics and finance, political science, 

biostatistics, medical research, hydrology etc. 

The paper is organized as follows: in the following we present some definitions and results about 

copulas, the section 2 presents different methods to estimate the parameter 
θ

 of the connecting copula. 

A numerical application of the presented method is given in section 3. Some suitable conclusions are 

presented in last section. 

 

Definition 1 ([10,7,11]).  A copula is a function [ ] [ ]1,01,0: →n
C   such that 

1) If there exists i  such that 0=ix  then  ( ) 0,...,1 =nxxC . 
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2) If 1=jx  for all ij ≠  then ( ) in xxxC =,...,1 . 

3) C  is increasing in each argument. 

The following theorem (see [10,7,11]) represents the basis of the multivariate cumulative distribution 

functions using copulas:  

Theorem 1 (Sklar). Let 1X , 2X ,..., nX  be random variables with the cumulative distribution 

functions 1F , 2F  ,..., nF , and the common cdf  ( ) ( )nnn xXxXPxxH ≤≤= ,...,,..., 111 . In this case there 

exists a copula ( )nuuC ,...,1  such that ( ) ( ) ( )( )nnn xFxFCxxH ,...,,..., 111 = . The copula C  is well defined 

on the Cartesian product of the images of the marginals 1F , 2F ,..., nF . 

An important class of copulas having many practical applications is the family of Archimedean 

copulas. 

Definition 2 ([10,13,14]). If 2=n  the copula C  is Archimedean if ( ) uuuC <,  for any ( )1,0∈u  and 

( )( ) ( )( )wvCuCwvuCC ,,,, =  for any [ ]1,0,, ∈wvu . If 2>n  the copula C  is Archimedean if there exists 

a 1−n  Archimedean copula 1C  and a 2 -Archimedean copula 2C  such that 

( )=nuuC ,...,1 ( )( )nn uuuCC ,,..., 1112 − . 

Consider a function [ ] R→1,0:ϕ  decreasing and convex with ( ) 01 =ϕ  and its pseudo-inverse g  ( ( )yg  

has the value x  if there exists x  such that ( ) yx =ϕ  and 0  in the contrary case). We know (see [5,10]) 

that a copula C  is Archimedean if and only if there exists a function ϕ  as above such that for any 

[ ]1,0, ∈yx  we have 

                                                    ( ) ( ) ( )( )yxgyxC ϕϕ +=, .                                                                     (1) 

For any −n copula C  we have (see [1]) 

                                ( ) ( ) ( )nnn xxxxCxxW ,...,min,...,,..., 111 ≤≤ , where                                                  (2) 

                                                   ( ) 1,...,
1

1 +−=∑
=

nxxxW i

n

i

n                                                                   (2’) 

is the lower Fréchet bound, and  min   is the upper Fréchet bound. 

In [2] we have used in order to generate the copulas W  and min  the fact that if X  and Y  are 

connected by the copula min  there exists a function [ ] [ ]1,01,0: →f  increasing such that ( ) YXf = . If 

the copula is W  then f  is decreasing, and if the copula is odPr  the variables are independent (see 

[10,7]). The Fréchet copulas (see [1,10,7]) are generated by the mixture method (see [2]). 

In [4] there are found analytical formulae for the copulas that connect the number of customers in a 

Gordon and Newell queuing network, and their corresponding Spearman ρ  and Kendall τ . This value 

is (see [7]): 

                        

( )( )( ) ( )( )( )
( ) .411,4
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                                         (3) 

Sometimes we need the overlay probabilities, and we need in this case the notion of co-copula 

                                  ( ) ( ) 11,...,1,...,
1

11 +−+−−= ∑
=

∗
nuuuCuuC i

n

i

nn .                                                  (4) 

 

2. Estimation of parameters 

 

The marginal parameters are estimated using the moments’ method (see [9]). 
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First we estimate τ  using the empirical probabilities in the above formula, and next we compute the 

last term: we find τ  in function of θ . For instance, in the case of Farlie-Gumbel-Morgestern copula 

(see [7,10,8]) we find 

                                                              
9

2θτ = ,               (5) 

 

 and from here  

2

9τθ = .                                                                                (5’) 

For the Fréchet family the copula is a mixture between the upper Fréchet bound, min  and the copula 

product (the independence case) with the weights θ , respectively θ−1 . Due to the fact that in the min  

case we have 1=τ , and in the product case we have 0=τ  we obtain 

                                                                           τθ = .                                                                           (6) 

When the copula is Archimedean and we know the function ϕ  in (1) we use the variables change 

( )ux ϕ=  and ( )vy ϕ= , and finally we obtain 

                                                      

( ) ( )

( )( ) dxdyyxg
2

0

0

0

0

41 +′⋅−= ∫∫
ϕϕ

τ .                                                    (3’) 

In the case of Clayton family we have 

                                                           ( ) ( ) θθθ
1

1,
−−− −+= vuvuC .                                                            (7) 

From 
( )
( )v

u

v
C

u
C

ϕ
ϕ
′
′=

∂
∂
∂
∂

 we obtain first ( ) 1−−−=′ θϕ uu , and from here 

                                                                 ( )
θ

ϕ
θ 1−

=
−

u
u , and                                                               (7’) 

                                                                  ( ) ( ) θθ
1

1
−+= wwg .                                                                (7”) 

Using (3’) we obtain 

                                                            
2+θ

θ
=τ ,                                                                                    (8) 

and from here 

                                                                        

      
τ−
τ⋅

=θ
1

2
.                                                                             (8’) 

Other family of Archimedean copulas presented in [5,6,7] and simulated in [2] is the Frank family. In 

this case for  
∗∈Rθ   we have 

                                            ( )
( )

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−

+−−
⋅−= −

−−−+−

1
ln

1
, θ

θθθθ

θ e

eeee
vuC

vuvu

.                                            (9) 

We obtain also the copula Prod for  0=θ   and the copula min  for ∞→θ . For −∞→θ  we obtain the 

lower Fréchet bound W . 

From ⎟
⎠
⎞⎜
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⎝
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′
′

=

∂
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v
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C
u
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ϕ
ϕ

 we obtain first ( )
1−−

−
=′

u
e

u
eu θ

θθϕ , and from here 

                                                              ( )
ue

e
u ⋅−

−

−
−

= θ

θ

ϕ
1

1
ln , and                                                             (9’) 
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                                              ( ) ( ) 1,1ln
1

−=+−= −− θγγ
θ

ewhereewg
w

.                                             (9”) 

For this family we obtain 

                                                                 I⋅−= 41τ , where                                                                (10) 

 

                                                   
( )

( )
dx

xx

x
I

+
+

+
⋅

+
= ∫

1

11ln

1ln

1

0
2

γ

γ
.                                                 (10’) 

In the case 0≠θ  we multiply the relation (10’) by ( )γ+1ln2
, and in the case 0=== τγθ  and 4

1=I  

we compute ( )
36
10 =′I  using the Taylor series for ( )x+1ln  and x+1

1
. We obtain the Cauchy problem 

( ) ( )( )
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1

4
1
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Because 
4

1 τ−=I  we obtain the Cauchy problem 

( ) ( )( )
( )( )

( ) ( )
( ) ( )( )

( )

( )

( )
⎪
⎪
⎪
⎪
⎪
⎪

⎩

⎪
⎪
⎪
⎪
⎪
⎪

⎨

⎧

=γ

−=γ′

≠τ

τγ+
τγ+⋅τ−⋅

+
τγ+

−
τγ
τγ+

⋅

τγ+
=τγ′

00

90

0for

1

1ln12
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. 

Finally we take into account that ( ) 1−= −θθγ e  and ( ) ( )τθτγ θ ′⋅−=′ −
e . We obtain 

                                                      

( )
( )

( )

( )
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⎪
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2

.                                        (11) 

The above Cauchy problem is solved using the Runge-Kutta method. 
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In the case of the Gumbel-Hougaard family (see [5,7,11,8]) we have for 1≥θ  and θβ 1=  

                                              
( )

βθθ
⎟⎟
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=
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evuC

lnln

,
.                                                      (12) 

For 1=θ  we obtain the copula Prod  and for ∞→θ  we obtain the copula min . 

From 
( )
( )v

u

v
C

u
C

ϕ
ϕ
′
′=

∂
∂
∂
∂

 we obtain first ( ) ( )
u

u
u

1
ln

−−−=′
θθϕ , and from here 

                                                                ( ) ( )θϕ uu ln−= , and                                                             (12’) 

                                                                      ( ) β
x

exg
−= .                                                                    (12”) 

For this family we obtain 

                                                            θ
τ 1

1−= , and from here                                                           (13) 

                                                                        τ
θ

−
=

1

1
.                                                                     (13’) 

The Gumbel-Barnett copula is 

                                       ( ) ⎟
⎠
⎞

⎜
⎝
⎛ ⎟

⎠
⎞⎜

⎝
⎛⎟

⎠
⎞⎜

⎝
⎛−

⋅⋅=
vu

evuvuC
lnln

,
θ

, with 10 ≤<θ .                                            (14) 

We notice that we have also the copula product (independence) for 0→θ . 

From ⎟
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⎞⎜
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 we obtain first 
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⎟
⎠
⎞⎜

⎝
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u
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θ

ϕ
, and from here 

                                                             ( ) ( )
θ
θϕ u

u
ln1ln −

= , and                                                         (14’) 

                                                                      ( ) θ
θxe

exg
−

=
1

.                                                                  (14”) 

Using (3’) we obtain 

                                                              0<⋅−=
−∞

∫ dx
x

e
e

x

β

βτ .                                                            (15) 

where θβ 2= . 

The Ali-Mikhail-Haq copula is 

                                             ( ) ( )( )vu

vu
vuC

−−−
⋅

=
111

,
θ , with 11 ≤≤− θ .                                           (16) 

We notice that we have the copula Prod (independence) for 0=θ . 
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                                                                 ( ) ( ) θ
θ
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= − x
e
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1
.                                                              (16”) 

Using (3’) we obtain 
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( ) ( )

θθ
θθτ

3

2

3

1ln12
1

2

2

−
−−

−= .                                                      (17) 

In the above formula τ  is increasing on θ , and we have ( )
3

2ln851 −=−τ  and ( )
3
11 =τ . If we know τ  

we obtain θ  using the bisection method. 

 

3. Case study 

 

Let consider the annual maximum discharges and the floods volumes over a given threshold at 

Budapest gauge station, for a period of 85 years.  

We obtain the Pareto marginals with 24115.01 =a , 99617.12431 =b  and 76968.50941 =c  for 

discharges, respectively 21028.02 −=a , 46865.10832 =b  and 52616.652 =c  for volumes. The Kendal 
τ  is 09524.0 . The parameter θ  depending on the copula type is as in the following table. 

 

Type Constraints on [ ]1,1−∈τ  θ  

Clayton: 0>θ  0>τ  21053.0  

Frank: 0≠θ  0≠τ  00146.0  

Gumbel-Hougaard: 1≥θ  0≥τ  10526.1  

Gumbel-Barnett: 10 ≤< θ  0<τ  not our case 

Ali-Mikhail-Haq: 11 ≤≤− θ  3

1

3

2ln85 ≤≤− τ  38451.0  

FGM: 11 ≤≤− θ  
9
2≤τ  42857.0  

Fréchet: 0≥θ  0>τ  09524.0  

 

In the following graph (fig. 1) the isolines ( ) ( )( ) 99.01, =−= εyGxFC  corresponding to a probability 

of non-exceedance of 99% for the Clayton copula (blue), Frank copula (green), Gumbel-Hougaard 

copula (red), Ali-Mikhail-Haq copula (light blue), Farlie-Gumbel-Morgestern copula (magenta) and 

Fréchet (light green) are drawn. 
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Fig. 1. Isolines of the probability of non-exceedance of 99% 

 

Because in the engineering practice the values corresponding to the probability of exceedance are 

necessary, the isolines ( ) ( )( ) 01.0, ==∗ εyGxFC  for the above families of copula are presented in the 

same order in the following graph (fig. 2). 

 

 
 

Fig. 2 Isolines of the probability of exceedance of 1% 
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We notice that the isolines for the Ali-Mikhail-Haq copula and for the Farlie-Gumbel-Morgestern 

copula are very closed. All the isolines are located between the Frank copula (green) and the Gumbel-

Hougaard copula (red). The edge for the Fréchet copula (light green) can be explained by the fact that 

the upper Fréchet bound min  is not analytical. 

 

 

 

  

4. Conclusions  

 

This paper presents a method to describe the simultaneous behavior of the maximum discharges and of 

the floods volume using bivariate cumulative distribution function obtained by copulas. 

The estimation of the parameter θ  of the copula does not depend on the marginal distributions: the cdfs 

of the marginal are increasing and by applying them to the data we have the same increases of the 

variables. This is the reason to use Kendall’s τ  instead of Spearman’s ρ . 

The points on the isolines from fig.1 are such that the probability of non-exceedance for the coupled 

variables (the discharges and the volumes) is fixed to a given value α . A similar interpretation is valid 

for the the points on the isolines from fig. 2, but for the probability of exceedance. Each point on these 

isolines identified by the couple %1),(
max

VQ represents a possible realization of the flood corresponding 

to a probability of exceedance of 1%. This means that there is not a unique flood corresponding to a 

probability of exceedance of 1% (or to a return period of 100 years), but an infinite number of such 

floods. The greater the maximum discharge, the smaller the volume is and vice-versa. From this 

infinity of floods, of outstanding interest in engineering practice is the flood corresponding to the 

maximum discharge and the flood corresponding to the maximum volume due to the different 

mechanisms of dykes’ failure. 
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