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A CONJECTURAL COOPERATIVE EQUILIBRIUM
FOR STRATEGIC FORM GAMES

SERGIO CURRARINI AND MARCO A. MARINI

Abstract. This paper presents a new cooperative equilibrium for strategic form games, de-
noted Conjectural Cooperative Equilibrium (CCE). This concept is based on the expectation
that joint deviations from any strategy pro�le are followed by an optimal and noncooperative
reaction of non deviators. We show that CCE exist for all symmetric supermodular games.
Furthermore, we discuss the existence of a CCE in speci�c submodular games employed in
the literature on environmental agreements.

Keywords: Strong Nash Equilibrium, Cooperative Games, Public Goods. JEL Classi�ca-

tion: C7

1. Introduction

Intuitively a cooperative equilibrium is a collective decision adopted by a group of indi-
viduals that can be viewed as stable (i.e., an equilibrium) against all feasible deviations by
single individuals or by proper subgroups. While modelling the possibilities of cooperation
may not pose the social scientist particular problems, at least once an appropriate economic
or social situation is clearly outlined, the de�nition of stability may be a more demanding
task for the modeler. This because the outcome, and the pro�tability, of players� deviations
heavily depends on the conjectures they make over the reaction of other players. As an
example, a neighborhood rule to keep a common garden clean possesses di¤erent stability
properties whether the conjectured reactions in the event of shirking is, in turn, that the
garden would be kept clean anyway or, say, that the common garden would be abandoned
as a result. Similarly, countries participating to an international environmental agreement
will possess di¤erent incentive to comply with the prescribed pollution abatements whether
defecting countries expect the other partners to be inactive or to retaliate.
The main focus of the present paper are cooperative equilibria of games in strategic form.

A cooperative equilibrium of a game in strategic form can be de�ned as a strategy pro�le such
that no subgroup of players can �make e¤ective� - by means of alternative strategy pro�les -
utility levels higher for its members than those obtained at the equilibrium. As expressed in
the example above, the content of the equilibrium concept depends very much on the utility
levels that each coalition can potentially make e¤ective and this, in turn, depends on the
conjectures over the reactions induced by deviations. In this paper we propose a cooperative
equilibrium for games in strategic form, based on the assumption that players deviating
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from an arbitrary strategy pro�le have non zero conjectures on the reaction of the remaining
players. More precisely, the conjectural cooperative equilibrium we propose assumes that the
remaining players are expected to optimally and independently react according to their best
response map.

1.1. Related literature. The problem of de�ning cooperative equilibrium concepts have
been centered on the formulation of conjectures ever since the pioneering work of von Neu-
mann and Morgenstern�s (1944). The concepts of � and � core, formally studied by Aumann
(1967), are based on their early proposal of representing the worth of a coalition as the aggre-
gate payo¤ that it can guarantee its members in the game being played. Formally obtained
as the minmax and maxmin payo¤ imputations for the coalition in the game played against
its complement, the � and � characteristic functions express the behaviour of extremely risk
averse coalitions, acting as if they expected their rivals to minimize their payo¤. Although
ful�lling a rationality requirement in zero sum games, � and �-assumptions do not seem jus-
ti�able in most economic settings. Moreover, the little pro�tability of coalitional objections
usually yield very large set of solutions (e.g., large cores). Another important cooperative
equilibrium proposed by Aumann (1959), denoted Strong Nash Equilibrium, extends the
Nash Equilibrium assumption of �zero conjectures� to every coalitional deviation. Accord-
ingly, a Strong Nash Equilibrium is de�ned as a strategy pro�le that no group of players can
pro�tably object, given that remaining players are expected not to change their strategies.
Strong Nash Equilibria are at the same time Pareto optima and Nash Equilibria; in addition
they satisfy the Nash stability requirement for each possible coalition. As a consequence, the
set of Strong Nash Equilibria is often empty, preventing the use of this otherwise appealing
concept in most economic problems of strategic interaction.
Other approaches have looked at the choice of forming coalitions as a strategy in well

de�ned games of coalition formation (see Bloch (1997) for a survey). Among others, the
gamma and delta games in Hart and Kurz (1985) constitute a seminal contribution.1 The
gamma game, in particular, is related to the present analysis, since it predicts that if the
grand coalition N is objected by a subcoalition S, the complementary set of players splits
and act as a noncooperative fringe. On the same behavioural assumption is based the
concept of  core, introduced by Chander and Tulkens (1997) in the analysis of environmental
agreements, where a characteristic function is obtained as the Nash equilibrium between the
forming coalition and all individual players in its complement. As in the present approach,
based on deviations in the underlying strategic form game, the  core assumes that the
forming coalition expects outside players to move along their (individual) reaction functions.
Di¤erently from our approach, however, there the forming coalition forms before choosing
its Nash equilibrium strategy in the game against its rivals, while here deviating coalitions
directly switch to new strategies in the underlying game, expecting their rivals to react
in the same manner as followers in a Stackelberg game. In applying our concept to the
analysis of stability of environmental coalitions, we may interpret these di¤erences as the
description of di¤erent structures in the process of deviation. While the  core seems to
describe settings in which the formation of a deviating coalition is publicly observed before
the choice of strategies, our approach best �ts situations in which deviating coalitions can

1More precisely, Hart and Kurz (1983) present endogenous coalition formation games and look at the
Strong Nash of these games. Other related papers (i.e., Chander and Tulkens (1998), Yi (1998)) look at the
Nash equilibrium taking as given the gamma and delta rule of coalition formation.
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implement their new strategies before their formation is monitored, enjoying a positional
advantage.
The conjectural cooperative equilibrium we propose in this paper, by assuming that remain-

ing players are expected to optimally react according to their best response map, introduces
a very natural rationality requirement in the equilibrium concept. Moreover, the coalitional
incentives to object are considerably weakened with respect to the Strong Nash Equilibrium,
thus ensuring the existence of a cooperative conjectural equilibrium in all symmetric games
in which players� actions are strategic complements in the sense of Bulow et al. (1985), i.e.,
in all supermodular games (see Topkis (1998)).

1.2. An example of a conjectural cooperative equilibrium. Before formally de�ning
the conjectural cooperative equilibrium, it is easy to introduce the mechanics at works for
the existence of such an equilibrium by means of the following 3x3 bi-matrix game.

A B C
A x; x d; h a; c

B h; d b; b e; f

C c; a f; e y; y

Suppose, in the game above, that (b; b) is an e¢cient outcome, i.e, such to maximize
the sum of players� payo¤. To be a cooperative equilibrium, the outcome (b; b) has to be
immune from either player switching her own strategy, given their expectation that the rival
would optimally react to the switch. When players actions are strategic substitutes (and the
game submodular), each player�s reaction map is downward sloped, implying that any move
from (b; b) by one player would generate a predicted outcome on the asymmetric diagonal
of the matrix. If we let, in the example, a > b > c > h, and b > a+c

2
, then the e¢cient

outcome (b; b) will not certainly be a conjectural cooperative equilibrium, for player 1 will
pro�tably deviate from it (from B to A), conjecturing that her rival�s best reply will go in
the opposite direction (from B to C), and getting a payo¤ of a > b. The same will happen
if c > b > a > e, in which case player 2 deviates by switching from B to C. In contrast,
suppose that the game above is supermodular, with the associated increasing reaction maps.
In this case, the conjectured outcomes in case of deviations from outcome (b; b) are only
(x; x) and (y; y). As a result, if either player �nds it pro�table to switch either to A or to C
(with x > b and y > b, respectively) then the assumption that (b; b) is an e¢cient outcome
is contradicted. We can conclude that (b; b) is a conjectural cooperative equilibrium of the
symmetric game described above whenever supermodularity holds. Note that in our example,
if d > b, the e¢cient outcome (b; b) is a conjectural cooperative equilibrium although it is
neither a Strong Nash Equilibrium nor a Nash Equilibrium.2 The above example, although
providing a clear insight of how both supermodularity and symmetry work in favour of the
existence of an equilibrium, contains two substantial simpli�cations: the presence of only
two players, ruling out existence problems related to the formation of coalitions, as well as
the restriction to 3 strategies, thus forcing the increasing best replies to generate symmetric
outcomes, from which, the fact that (B,B) is an equilibrium, directly follows. However, in
the paper we are able to show that the existence result holds for any number of players and
strategies, provided a symmetry assumption on the e¤ect of players� own strategies on the
payo¤ of rivals is ful�lled.

2Similarly, in a 2x2 Prisoner�s Dilemma, although no Strong Nash Equilibria exist, the e¢cient strategy
pro�le, that is not even a Nash equilibrium, turns out to be a CCE.
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The paper is organized as follows. The next section introduce the conjectural cooperative
equilibrium in the standard setup of strategic form games. Section 3 presents the main paper
result: for a well de�ned class of games, symmetric supermodular games, a conjectural
cooperative equilibrium always exists. Section 4 discusses in detail the meaning of this
result and presents a descriptive example of an environmental economy whose cooperative
conjectural equilibrium exists depending on individuals� preferences. Section 5 concludes.

2. Set Up

We consider a game in strategic formG =
�
N; (Xi; ui)i2N

�
, in whichN = f1; :::; i; :::; ng

is the set of players, Xi is the set of strategies for player i, with generic element xi, and
ui : X1� :::�Xn ! R+ is the payo¤ function of player i. We denote by S � N any coalition
of players, and by �S its complement with respect to N . For each coalition S, we denote by
xS 2 XS �

Q
i2S Xi a pro�le of strategies for the players in S, and use the notation X = XN

and x = xN . A Pareto Optimum (PO) for G is a strategy pro�le such that there exists
no alternative pro�le which is preferred by all players to and strictly preferred by at least
one player. The Pareto Optimum xe is e¢cient if it maximizes the sum of the payo¤s of
all players in N . In the example discussed in the above introduction, letting outcomes be
ordered as follows: a > b > c > d > e > h > x > y, and assuming that b > a+c

2
, the pro�les

(a; c), (c; a) and (b; b) are all Pareto Optima, while the e¢cient pro�le is (b; b).
A Nash Equilibrium (NE) for G is de�ned as a strategy pro�le �x 2 XN such that no

player has an incentive to change his own strategy, i.e., such that there exists no i 2 N and
xi 2 Xi such that

ui(xi; �xNni) > ui(�x).

Nash equilibria are stable with respect to individual deviations, given that the e¤ect of
such deviations is evaluated keeping the strategies played by the other players �xed at the
equilibrium levels.
In trying to formulate equilibrium concepts that allow coalitions of players to coordinate

in the choice of their strategies, a natural extension of the Nash equilibrium is given by
the concept of Strong Nash equilibrium (SNE), a strategy pro�le that no coalition of
players can improve upon given that the e¤ect of deviations is, again, evaluated keeping the
strategies of other players �xed at the equilibrium levels. So, x̂ 2 XN is a SNE for G if
there exists no S � N and xS 2 XS such that

ui(xS; x̂ �S) � ui(x̂) 8i 2 S;

uh(xS; x̂ �S) > uh(x̂) for some h 2 S:

Obviously, all SNE of G are both Nash Equilibria and Pareto Optima. As a result, SNE fails
to exist in many economic problems, and in particular, whenever Nash Equilibria fail to be
Optimal. Although the lack of existence of SNE can be interpreted as a poor speci�cation
of the game theoretic model, it precludes the use of this otherwise appealing concept of a
cooperative equilibrium in many important applications.
In this paper we propose a concept of cooperative equilibrium for G based on the introduc-

tion of non-zero conjectures in the evaluation of the pro�tability of coalitional deviations.
The concept we propose captures the idea that players outside a deviating coalition are
expected to react by making optimal choices (contingent on the strategy pro�le played in
the deviation) as independent and noncooperative players. In order to describe the conjec-
tured optimizing reactions of players outside a deviating coalition S, let us de�ne �rst the
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restricted game G(xS) obtained from G by considering the restricted set of players �S, and
parameterizing payo¤s by letting each j in �S obtain the payo¤ uj(x �S; xS) out of the pro�le
x �S, for each x �S 2 X �S. We denote by R �S : XS ! X �S the map associating with each joint
strategy xS of coalition S the set R �S(xS) of Nash Equilibria of the restricted game G(xS).
The set R �S(xS) describes the conjecture of coalition S on the possible reactions of players
in �S to the choice of the joint strategy xS.

De�nition 1. A Conjectural Cooperative Equilibrium (CCE) is a strategy pro�le ex
such that there exists no coalition S, strategy pro�les xS 2 XS and x �S 2 R �S(xS) such that:

ui(xS; x �S)) � ui(ex) 8i 2 S
uh(xS; x �S)) > uh(ex) for some h 2 S:

So de�ned, a CCE satis�es very restrictive stability requirements. According to de�nition
1, any coalition S can look for improvements upon any proposed strategy pro�le by selecting
among its feasible joint pro�les xS 2 XS and, for each possible xS it may choose, by selecting
among all the Nash responses of players in �S (formally, the set R �S) the most pro�table
strategy x �S. De�nition 1 is indeed well de�ned both when the set R �S(xS) may be empty
for some (possibly all) xS 2 XS, and when the set R �S(xS) is multivalued for some (possibly
all) xS 2 XS. In this sense, it applies to all games in strategic form. This generality comes
at the price of the arguably unreasonable assumption that a deviating coalition faces no
constraint in selecting among the possibly non unique reactions of outside players. A more
realistic approach would assume that a deviating coalition should form expectations about
which equilibrium reaction would be played by outside players, and that these expectations
should be based on some sort of rationality requirement on the behaviour of such outside
players. We remark, however, that the present approach generates a smaller set of equilibria
than would result from any arbitrary selection from the set of Nash responses of outside
players. Our result of existence of a CCE in all supermodular games, contained in theorem 1
in section 3.3, would therefore extend to any equilibrium concept associated with the choice
of such a selection. In addition, lemmas 7-10 show that the present de�nition generates the
same set of equilibria that would result from the selection of the Pareto dominant element
of the set R �S(xS). Since the existence of such elements is not generally ensured, but always
holds on the class of symmetric supermodular games for which our result is obtained (see
section 3.1 for de�nitions), we have chosen to present de�nition 1 in its present, and more
general, form.

3. Existence of a CCE in supermodular games

This section contains our main result, showing that if a strategic form game G is super-
modular, and satis�es some symmetry requirements, then admits a conjectural cooperative
equilibrium.

3.1. Supermodularity. We start by de�ning the concept of a supermodular function and
by recording some results in the theory of supermodularity that will be used in the analysis
of the next section. For a partially ordered set A � Rn and any pair of elements x; y of A,
we de�ne the join element (x ^ y) and the meet element (x _ y) as follows:

(x ^ y) = (min fx1; y1g ; :::;min fxn; yng) ;

(x _ y) = (max fx1; y1g ; :::;max fxn; yng) :
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De�nition 2. The set A is a sublattice of Rn if (x_y) 2 A and (x^y) 2 A for all x; y 2 A.

De�nition 3. The function f : A! R is supermodular if for all x; y 2 A :

f (x _ y) + f(x ^ y) � f(x) + f(y):

De�nition 4. Let X; Y be partially ordered sets. The function f : X�Y ! R has increasing
di¤erences in (x; y) on X�Y if the term f(x; y00)�f(x; y0) is increasing in x for all y00 > y0.

Increasing di¤erences describe a complementarity property of the function f , whose mar-
ginal increase with respect to y is increasing in x. If A is the Cartesian product of partially
ordered sets, then the fact that f is supermodular on A implies that f has increasing dif-
ference in all pairs of sets among those whose product originates A (see Topkis (1998) for a
formal statement and proof of this fact).

De�nition 5. The game in strategic form G =
�
N; (Xi; ui)i2N

�
is supermodular if the set

X of feasible joint strategies for N is a sublattice of Rn, if the payo¤ functions ui(xi; x�i) is
supermodular in xi and has increasing di¤erences in (xi; x�i) on Xi �X�i.

We will extensively exploit two properties of supermodular games, related to the existence
of a Nash Equilibrium and to the behaviour of the set of Nash equilibria in response to
changes in a �xed parameter on which these equilibria depend. We recall these properties
below, and refer to Topkis (1998) for proofs.

Lemma 1. Let G =
�
N; (Xi; ui)i2N

�
be a supermodular game, with X nonempty and compact

and ui upper hemicontinuous in xi for all i. Then the set of Nash equilibria of G is nonempty
and admits a greatest and least element.

Lemma 2. Let Gt =
�
N; (Xi; u

t
i)i2N

�
t2T

be a set of supermodular games, parameterized by
t, with T being a partially ordered set. Let the assumptions of Lemma 1 hold. Then the
greatest and least elements of the set of Nash equilibria of G are non decreasing in t on T .

3.2. Assumptions and preliminary results. We impose the following lattice structure
and continuity assumptions on our game in strategic form.
Xi is a compact sublattice of R, for all i 2 N .
ui is continuous and supermodular in xi on Xi for each x�i 2 X�i, and exhibits increasing

di¤erences on Xi �X�i.
Our requirement of continuity of ui is unnecessarily strong for the establishment of exis-

tence and monotonicity of Nash equilibria in the next lemmas. However, we will need such
assumption to ensure the existence of a strategy pro�le with certain properties in X as a
step towards the proof of theorem 1 (see lemma 9). In addition to assumptions 1 and 2, we
impose two symmetry requirements on G.
(Symmetric Players): For all x 2 X and all pairwise permutations p : N ! N :

up(i)
�
xp(1); :::; xp(n)

�
= ui (x1; :::; xn) :

(Symmetric Externalities): One of the following two cases must hold:

(1) Positive externalities: ui(x) increasing in xNni for all i and all x 2 XN ;
(2) Negative externalities: ui(x) decreasing in xNni for all i and all x 2 XN .

Assumption 3 requires that players payo¤s are neutral to switches in the strategies played
by other players, and that pairwise switches in strategies are mirrored by pairwise switches
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in payo¤s. In other words, only strategies matter, and not who plays them. Assumption
4 requires that the e¤ect of a change in other players� strategies on one�s own payo¤ is
monotonic, and its sign is the same for all players. Many well known games (including
Cournot, Betrand and public good games) satisfy this symmetry assumption. The next
results directly follow from an applications to our game G of the properties of supermodular
games listed in lemmas 1 and 2.

Lemma 3. Let assumptions 1 and 2 hold. For all xS 2 XS, the set of Nash equilibria R �S(xS)
is nonempty and has a greatest and a least element.

Proof. Application of lemma 1. �

Let rg�S and r
l
�S
the selections of the map R �S obtained by considering its greatest and least

element, respectively.

Lemma 4. Let assumptions 1 and 2 hold. The maps ru�S and r
l
�S
are non decreasing in xS.

Proof. Application of lemma 2. �

We �nally make use of the symmetry assumptions 3 and 4 to show that the set R �S(xS) is
Pareto ranked.

Lemma 5. Let assumptions 1-4 hold. If the payo¤ functions exhibit positive (negative) ex-
ternalities, then for all xS the element r

g
�S
(xS) (r

l
�S
(xS)) Pareto dominates all other elements

in R �S on the set of players �S.

Proof. Let j 2 S, x �S 2 R �S (xS) and x
0
�S
= r

g
�S
(xS) for some xS 2 XS. Let externalities be

positive. The following inequality follows:

uj(xS; x
0
�Snj; x

0
j) � uj(xS; x

0
�Snj; xj) � uj(xS; x �S):

The �rst inequality is due to the Nash equilibrium property of x0�S for the restricted game
G(xS). The second inequality is due to positive externalities. Since the argument applies
to all j in �S and for all x �S 2 R �S (xS), the result follows. The proof for the case of negative
externalities is similar and is omitted. �

3.3. Results. This section contains our main result: all games satisfying assumptions 1-4
admit a Conjectural Cooperative Equilibrium. The proof of theorem 1 is constructive: we
show that every e¢cient symmetric strategy pro�le in XN satis�es the conditions for being
a CCE. Before proving this fact in theorem 1, we establish a few preliminary results. We
�rst show that an e¢ciency symmetric strategy pro�le always exists under assumptions 1-4.

Lemma 6. Let G satisfy assumption 1-4. Then there exists an e¢cient strategy pro�le
xe 2 XN such that x

e
i = x

e
j for all i; j 2 N:

Proof. Compactness of each Xi implies compactness of X. Continuity of each ui implies
continuity of the social payo¤ function uN =

P
i2N ui. Existence of an e¢cient pro�le

directly follows from Weiestrass theorem. To show that there exists a symmetric e¢cient
pro�le, we need to exploit the supermodularity properties of payo¤ functions. Consider any
arbitrary asymmetric pro�le x, with xi 6= xj for some players i and j. By the symmetry
assumption on payo¤ functions, we write

(3.1) uN (x) = uN(xi; xj; xNnfi;jg) = uN(xj; xi; xNnfi;jg)
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where we have used the convention of writing the strategies of players i and j as �rst
and second elements of x, respectively. Since the sum of supermodular functions is itself
supermodular, assumptions 1 and 2 imply:

(3.2) 2 � uN(x) � uN
�
xi; xi; xNnfi[jg

�
+ uN

�
xj; xj; xNnfi[jg

�
:

It follows that either

(3.3) uN(x) � uN
�
xi; xi; xNnfi[jg

�

or

(3.4) uN(x) � uN
�
xj; xj; xNnfi[jg

�

or both.
Suppose that (3.3) holds, and let x0 =

�
xi; xi; xNnfi[jg

�
. This is without loss of generality

for the ongoing argument. If xk = xi for all k 2 Nn fi [ jg our proof is complete. If not,
then let xk 6= xi. In this case, again by supermodularity of payo¤ functions, we write

(3.5) 2 � uN(x
0) � uN

�
xi; xi; xi; xNnfi[j[kg

�
+ uN

�
xi; xk; xk; xNnfi[j[kg

�
:

Condition (3.5) implies, again, that either

(3.6) uN(x
0) � uN

�
xi; xi; xi; xNnfi[j[kg

�

or

(3.7) uN(x
0) � uN

�
xi; xk; xk; xNnfi[j[kg

�

or both. Suppose �rst that only (3.7) holds. Using the de�nition of x0 we obtain

(3.8) uN
�
xi; xi; xk; xNnfi[j[kg

�
� uN

�
xi; xk; xk; xNnfi[j[kg

�
:

For this case, using again supermodularity, we write

(3.9) 2uN
�
xi; xk; xk; xNnfi[j[kg

�
� uN

�
xi; xi; xk; xNnfi[j[kg

�
+ uN

�
xk; xk; xk; xNnfi[j[kg

�
:

Using (3.8) and (3.9) we obtain that

(3.10) uN
�
xi; xk; xk; xNnfi[j[kg

�
� uN

�
xk; xk; xk; xNnfi[j[kg

�
:

Conditions (3.8) and (3.10) directly imply

(3.11) uN(x
0) � uN

�
xk; xk; xk; xNnfi[j[kg

�
:

We have therefore shown that either (3.6) or (3.9) must hold. By iteration of the same
operation for each additional player in Nn fi [ j [ kg, we obtain the conclusion that there
exists some symmetric pro�le xs for which uN(x

s) � uN(x). Since the starting pro�le x was
arbitrary, and by the existence of an e¢cient pro�le proved in the �rst part of this proof, we
conclude that a symmetric e¢cient pro�le xe always exists under assumptions 1-4. �

We now consider the possible joint strategies that an arbitrary coalition S can use in order
to improve upon an e¢cient pro�le xe. In particular, we focus on the �best� strategies S can
adopt, by this meaning the pro�les x� (S) 2 XN satisfying the two following properties: i)
x��S 2 R �S (x

�
S); ii) there exists no x

0
S 2 XS and x

0
�S
2 R �S (x

0
S) such that ui

�
x0S; x

0
�S

�
� ui (x

�)
8i 2 S and uh (x

0
S; r �S (x

0
S)) > uh (x

�) for at least one h 2 S. In words, x�(S) is a Pareto
optimal pro�le for coalition S in the set F (S) of all pro�les that are consistent with the
reaction map R �S:

F (S) = fx 2 XN : x �S 2 R �S (xS)g :
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Note that F (S) is a compact set by the compactness of XN and by the closedness of the
Nash correspondence R �S (xS).

Lemma 7. Let G satisfy assumptions 1-4. Then for all x0 2 F (S) there exists some pro�le
x�(S) 2 XN which is a best strategy for S in the sense of conditions i) and ii) above and
such that ui(x

�(S)) � ui(x
0) for all i 2 S.

Proof. Let x0 2 F (S). If x0 = x�(S) for some x�(S) then the lemma is proved for x0. If
x0 6= x�(S) for all x�(S), then let the set

Pi(x
0) = fxN 2 F (S) : ui(x) � ui(x

0)g

de�ne the set of strategy pro�les that are weakly preferred by player i to x0. The set Pi(x
0)

is nonempty by the fact that x0 6= x�(S) for all x�(S), and it is closed and bounded by
continuity of ui and by compactness of F (S). Since this holds for all i 2 S, it follows that
the set PS(x

0) = \i2SPi(x
0) is closed and bounded.3 Moreover, it is non empty because

x0 6= x�(S). We can therefore conclude that the problem

max
x2PS(x)

X

i2S

�iui(x)

has a solution for all � in the interior of the #S � 1 dimensional unitary simplex. Call x(�)
such a solution. Clearly, x(�) satis�es conditions i) and ii) de�ning the pro�le x�(S). Also,
clearly x(�) Pareto dominates x0 on the set of players S, which concludes the proof. �

By lemma 7, we can restrict our analysis to the �best� choices x�(S) of coalition S, since
if S cannot pro�tably deviate by any such pro�les, it cannot deviate by means of any pro�le
in F (S). We remark here that in the choice of a �best� pro�le x�(S), coalition S is assumed
able to select among all the possible (equilibrium) reactions of �S, as speci�ed by R �S, in order
to maximize its joint payo¤. This is in line with our de�nition of a CCE, in which this ability
of S was implicitly assumed. The next lemma shows that under assumptions 3 and 4 the
best choice of S always selects strategies for �S that are greater (least) elements of the set
R �S (xS), depending on the sign of the externality being positive or negative, respectively.

Lemma 8. Let G satisfy positive (negative) externalities. Let S � N and x0 2 F (S).
Then, ui

�
x0S; r

g
�S
(x0S)

�
� ui (x

0) (respectively, ui
�
x0S; r

l
�S
(x0S)

�
� ui (x

0)) for all i 2 S.

Proof. We show only the case of positive externalities; the proof for negative externalities
is symmetric and left to the reader. Since rg�S (x

0
S) � x �S for all x �S 2 R �S (x

0
S), and since

x0�S 2 R �S (x
0
S), positive externalities imply that ui

�
xS; r

g
�S
(x0S)

�
� ui

�
xS; x

0
�S

�
for all xS.. �

The implications of lemmas 7 and 8 are better illustrated by referring to the sets F g(S) �
F (S) and F l � F (S), de�ned as follows:

F g(S) =
�
x 2 F (S) : x �S = r

g
�S
(xS)

	
;

F l(S) =
�
x 2 F (S) : x �S = r

l
�S (xS)

	
:

Lemmas 8 implies that, under positive externalities, the same strategy pro�le x�(S), maxi-
mizing (by lemma 7) the aggregate payo¤ of S over the set F (S) for some vector of weights
�, also maximizes the same aggregate payo¤ over the set F g(S). The same conclusion can
be drawn, with respect to the set F l(S), for the case of negative externalities. This result

3We remind here that S is a �nite set.
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is important for two reasons. First, it endows the somewhat problematic assumption that
S can select among Nash reactions of players in �S - which, as we said, is implicit in the
de�nition of a CCE and of the set F (S) above - with the more appealing interpretation that
the Pareto dominant Nash equilibrium will be played by members of S. This interpretation
is supported by the result of Lemma 5, by which the greater and least elements of R �S (x

0
S)

are the best choices for �S under positive and negative externalities, respectively. Second,
the result of lemma 8 allows us to exploit the properties of the maps rg�S (xS) and r

l
�S
(xS) in

supermodular games. This is done in the next lemma, in which these properties are shown to
imply that at x�(S) the strategies played by members of S and of �S are ordered according to
the sign of the externality: under positive externalities, players in S play �greater� strategies
than those in �S, while the opposite is true under negative externalities.

Lemma 9. Let i 2 S and j 2 S, and denote by x 2 X and y 2 X the strategies of player
i 2 S and player j 2 S, respectively, at x� (S). Then:
i) positive externalities imply x � y;
ii) negative externalities imply y � x.

Proof. For simplicity of notation, let x� denote the pro�le x�(S). Let Ui(x; y) � ui

�
x�Sni; x; x

�
NnSnj; y

�
,

and similarly let Uj(x; y) = uj

�
x�Sni; x; x

�
NnSnj; y

�
. We use supermodularity of ui to write:

(3.12) Ui(y; y) + Ui(x; x) � Ui(x; y) + Ui(y; x):

By the properties of x�,

(3.13) Uj(x; y) � Uj(x; x);

implying by symmetry that

(3.14) Ui(y; x) � Ui(x; x):

Using (3.12) and (3.14) we obtain

(3.15) Ui(y; y) � Ui(x; y) = ui(x
�):

Now suppose that y > x and assume that the game has positive externalities. By lemma 4,
the equilibrium best response map has non decreasing greatest element, so that

(3.16) y > x) r
g
�S
(x�Sni; y) � r

g
�S
(x�S) = x

�
�S:

By positive externalities

(3.17) ui(x
�
Sni; y; r

g
�S
(x�Sni; y)) > ui(x

�
Sni; y; r

g
�S
(x�S)) = Ui(y; y):

Equations (3.15) and (3.17) imply

(3.18) ui
�
x�Sni; y; r

g
�S
(x�Sni; y)

�
> ui(x

�):

Finally, since y > x, positive externalities also imply that for every player k 2 Sni:

(3.19) uk
�
x�Sni; y; r

g
�S
(x�Sni; y)

�
� uk(x

�):

Both 3.18 and 3.19 contradict the assumption that x� is a Pareto Optimum. Suppose now
that y < x and assume that the game has negative externalities. Supermodularity of ui and
uj imply

(3.20) y < x) rl�S(x
�
Sni; y) � r

l
�S(x

�
S) = x

�
�S:
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By negative externalities

(3.21) ui(x
�
Sni; y; r

l
�S(x

�
Sni; y)) � ui(x

�
Sni; y; r

l
�S(x

�
S)) = Ui(y; y):

Again, equation (3.22) imply

(3.22) ui(x
�
Sni; y; r

l
�S(x

�
Sni; y)) > ui(x

�):

and, by negative externalities,

(3.23) uk
�
x�Sni; y; r

g
�S
(x�Sni; y)

�
> uk(x

�)

for every k 2 Sni, a contradiction. �

Since by lemma 7 we can restrict our attention to the pro�les x�(S), we will use the
above result as a characterizing of the strategies played in the only relevant pro�les that
may be used in any deviation from an e¢ciency pro�le xe. The next result makes use of
this characterization to prove that at any pro�le x� (S), the members of S cannot be better
o¤ than the members of S. This result generalizes to the present setting of coalitional
actions a well known property of the subgame perfect equilibrium in two player symmetric
supermodular games, in which the �leader� is weakly worse o¤ than the �follower�.

Lemma 10. Let i 2 S and j 2 �S. Then uj(x
� (S)) � ui(x

� (S)).

Proof. For simplicity, let again x� denote the pro�le x�(S). The following inequalities hold:

(3.24) uj (x
�
S; x

�
�S) � uj

�
x�S; x

�
�Snj; x

�
i

�
� uj

�
x�Sni; x

�
j ; x

�
�Snj; x

�
i

�
:

The �rst part is implied by the conditions de�ning the pro�le x�; the second part follows
from lemma 9 and assumption 4. By assumption 3, we also have

(3.25) uj

�
x�Sni; x

�
j ; x

�
�Snj; x

�
i

�
= ui (x

�
S; x

�
�S) :

Inequalities (3.24) and (3.25) imply

uj (x
�) � ui (x

�) ;

which proves the result. �

We are now ready to show that an e¢cient strategy pro�le xe satis�es the requirements
of a Conjectural Cooperative Equilibrium.

Theorem 1. Let the game G satisfy assumption 1-4. Then, G admits a conjectural cooper-
ative equilibrium.

Proof. Let xe be a symmetric e¢cient strategy pro�le for G, that is, a symmetric strategy
pro�le that maximizes the aggregate payo¤ of N . Let u(xe) denote the payo¤ of each agent
at xe. Suppose, by contradiction, that there exists a coalition S � N such that for all i 2 S:

(3.26) ui(x
�(S)) � u(xe)

with strict inequality for at least one h 2 S. Note that by lemma 10, it must be that

(3.27)

P
i2S

ui(x
�(S))

s
�

P
j2 �S

uj (x
�(S))

n� s
;
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otherwise there would exist i 2 S and j 2 �S for which

ui (x
�(S)) > uj (x

�(S)) :

By condition (3.27) we obtain the following implication:

(3.28)

P
i2S

ui(x
�(S))

s
> u(xe))

P
j2 �S

uj (x
�(S))

n� s
> u(xe):

We conclude that if ui(x
�(S)) � u(xe) for all i 2 S, with strict inequality for at least one

h 2 S, then using (3.26) and (3.28), we obtain

(3.29) s

P
i2S

ui(x
�(S))

s
+ (n� s)

P
j2 �S

uj (x
�(S))

n� s
> s u(xe) + (n� s) u(xe)

or,

(3.30)
X

i2N

ui(x
�(S)) > n u(xe)

which contradicts the e¢ciency of xe. �

4. On the Existence of Equilibria in Submodular Games

4.1. The Role of the Slope of the Reaction Map. Theorem 1 establishes su¢cient
conditions for the existence of a conjectural cooperative equilibrium of the game G. The
crucial condition, strategic complementarity in the sense of Bulow et al. (1985), generates
non decreasing best replies; in particular, the supermodularity of payo¤ functions implies
that the Nash responses of players outside a deviating coalition are a non decreasing function
of the strategies of coalitional members. This feature ensures that each players outside
S is better o¤ than each coalitional member of S when deviating. Deviations by proper
subcoalitions of players are therefore little pro�table, while the grand coalition, not a¤ected
by this �deviator�s curse�, produces a su¢ciently big aggregate payo¤ for a stable cooperative
outcomes to exist. In this section we show how the same mechanics responsible for our
existence result on the class of supermodular games, provide useful insight for the analysis
of games with strategic substitutes, as, for instance, environmental and public goods games.
We will use as an illustration an environmental Cobb-Douglas economy to show that as long
as best replies are not �too� decreasing (thereby providing deviating coalitions with a not
�too� big positional advantage), stable cooperative outcomes exist.

4.2. An illustration using a Cobb-Douglas environmental economy. We consider
an economy with set of agents N = f1; ::i; ::; ng, in which z � 0 is the environmental quality
enjoyed by agents, xi � 0 is a private good, pi � 0 is a polluting emission originated as a by-
product of the production of xi. We assume that for each i in N preferences are represented
by the Cobb-Douglas utility function

ui (z; xi) = z
�x�;

technology is described by the production function

xi = p

i ;
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and emissions accumulate according to the additive law

(4.1) z (p) = A�
X

i2N

pi

where A is a constant expressing the quality of a pollution-free environment. We will assume
that ; � and � are all positive and  � 1. We associate with this economy the game
Ge with players set N , strategy space [0; p

0
i ] for each i, with

P
i2N p

0
i < A, and payo¤s

Ui(p1; :::; pn) = z�p�i , where � = �. Using this (symmetric) setup, we can express the
maximal per-capita payo¤ of each coalition S in the event of a deviation from an arbitrary
strategy pro�le in G as follows:

(4.2) ui (S) = s
��A�+��2� (� + �)���� (� + � (n� s))�� ��:

This simple setup of an environmental economy can be used to illustrate how CCE exist
when best replies are not too decreasing or, in other terms, when strategies are not too
substitute. This in turn requires that players� utilities does not decrease too much with
other players� choice, a property mainly depending on the level of log-concavity of the term
z (p)�. We prove this analytically for the case � = 1, while we rely on numerical simulation
for the general case. Note that z (p)� is log-concave (and the game is not log-supermodular)
for � > 0, and best replies are decreasing. The environmental game admits a unique Nash
equilibrium �p with �pi =

A
�+n

for every i 2 N , and a unique e¢cient pro�le pe (by e¢cient we
mean �aggregate welfare maximizer�). Simple algebra yields the following expression:

ui (S) = s
�1A��+1�2� (� + 1)���1 (� + n� s)�� :

The pro�tability of individual deviation from the e¢cient strategy pro�le pe is evaluated as
follows:

ui (p
e)� ui (S) = �

� (� + n� 1)�� n� 1 < 0, � < 1:

It follows that when the function z(p)� is strictly concave (� < 1), then no CCE exists.
However, when � = 1, the CCE is unique, and equal to pe. It is also easy to show that for
� > 1 (z(:)� convex ) the strategy pro�le pe is still a CCE. We conclude that the existence of
a CCE only requires a not too strong log-concavity of z(:)�. This ensures that the marginal
utility of each consumer does not decrease too much with the rivals� private consumption
and hence, a deviating coalition, by expanding its pollution (and private consumption) does
not exploit too much its advantage against complementary players. When this is the case,
although the environmental game is a natural �strategic substitute� game, the CCE exists.
It is interesting to relate the existence of a stable cooperative (and e¢cient) solution with
the relative magnitude of the parameters �, � and , expressing the intensity of preferences
for the environment and for private consumption, and the characteristics of technology. It
turns out that in order for an agreement on emissions to be reached, agents must put enough
weight on the environment in their preferences (high enough �), and emissions must not
be too �productive� according to the available technology. In other words, this conclusion
rephrases the common intuition that a clean environment is sustainable only if agents care
enough for ambient quality. As we said, the analysis of existence of a CCE for the general
case (that is, removing the assumption � = 1) is not possible in analytical terms. In what
follows we show by means of computations that the set of CCEa of the game �e can be
characterized with respect to three possible con�gurations of the parameter �; � and  of
the economy: the case � = �, in which the CCE is unique and assigning to each player the
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payo¤ ui(p
e) (for this case we provide an analytical proof); the case � > �, in which the set

of CCEa strictly includes the pro�le pe; the case � < �, in which the set of CCE is empty.

Proposition 1. If � = � the unique CCE is the e¢cient pro�le pe.

Proof. We �rst show that no pro�le p 6= pe can be a CCE. By 4.2 we obtain

ui (p
e)� ui (fig) =

��A�+� (� + �)���� ��
�
(� + � (n� 1))� � ��n�

�

n� (� + � (n� 1))�

from which

ui (p
e)� ui (fig) = 0()

�
(� + � (n� 1))� � ��n�

�
= 0;

Using the fact that � = � we get

�
(� + � (n� 1))� � ��n�

�
= [� + � (n� 1)]� � (�n)� = 0

from which

ui (p
e) = ui (fig) :

To show that pe is a CCE, it su¢ces to show that ui (S) � ui (p
e) for all coalitions S such

that s > 1. Using 4.2 we obtain

ui (p
e)� ui (S) � 0()

�
s� (� + � (n� s))� � ��n�

�
� 0

which, using again the fact that � = � reduces to

ui (p
e)� ui (S) � 0() [s (� + � (n� s))]� � (�n)� .

The last condition can be rewritten as

ui (p
e)� ui (S) � 0() s+ (n� s) s+ s2 � n+ s2

which is always satis�ed since s � 1. �

Proposition 2. If � > � then pe is a CCE.

Proof. We proceed by numerical simulations. Our aim is to show that whenever � > � the
di¤erence ui (p

e) � ui (S) is positive for every s. We �rst consider the case s = 1. We plot
the graph of

fi (�; n) � max f(ui (p
e)� ui (fig)) ; 0g

for the �xed value of � = 0:5. The domains are taken to be (1; 10000) for n and (0; 1) for �.
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From the �gure above it is evident that ui (p
e) > ui (fig) whenever � > 0:5 = �. Similar

graph are obtained for other values of � in the range (0; 1). We perform the same exercise
for coalition of size s > 1. We plot the function

f (�; s) � max f(ui (p
e)� ui (fSg)) ; 0g

for �x values of n and �. The domains are taken to be (�; 1) for � and (1; n] for s. For the
case n = 1000 and � = 0:2 we obtain the following graph:

In �gure the graph of f (�; s) all lies above the zero plane for all values of s 2 (1; n] and of
� 2 (�; 1). Summing up, whenever � > � we found that ui (p

e) > ui fig for s � 1; we thus
conclude that whenever � > � then pe is a CCE. �

Proposition 3. If � > � there exists no CCE.

Proof. We again proceed by numerical simulations and evaluate the function

f̂i (�; n) � min f(ui (p
e)� ui (fig)) ; 0g
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for an arbitrary player i 2 N and a �xed value of �. The domains are taken to be (0; 1) for

� and [1; 10000] for n. Figure 3 depicts the graph of f̂i (�; n) for the case � = 0:5.

It is evident from the �gure above (and from numerical evaluations around the point � = 0:5)
that for any value of n in the selected range, ui (p

e) < ui (fig) for the whole range of values
of � < �. We thus conclude that for such values there is no CCE. �

The above results can be usefully summarized by plotting the value of the di¤erence
[ui (p

e)� ui fig] as a function of the parameter � for �xed values of �; n and for s = 1.
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