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1 Introduction

Performance measures via efficiency scores have become widespread for operators in busi-
ness, government, infrastructure, public transportation, energy production and other
sectors. This is especially true in regulated industries. The objective of the regulators
is to ensure efficient use of resources as a competitive market would. In this setting,
governmental regulators typically estimate the efficiency of firms and the resultant effi-
ciency scores are used to compare firms against ‘a benchmark’ to set targets, incentives
or similar criterion. In some scenarios, failure to improve towards benchmark firms or
failure to achieve a given absolute efficiency level can lead to monetary or other penalties,
and hence effect profits.

For example, on January 1, 2009, the German regulator (Federal Network Agency)
initiated the “Incentive Regulation Program” which called to benchmark (in terms of
efficiency) German electricity and gas network operators nationwide. Participation for
the approximately 850 electricity and 730 gas companies was compulsory. The con-
sequences of employing a given method to efficiency measurement here may have an
enormous economic impact. If a particular method produces efficiency scores which are
biased upwards, the regulator may not penalize some firms and hence the inefficiencies
are allowed to remain. On the other hand, if the efficiency scores are biased downwards,
firms may be unnecessarily penalized. This may lead to a reduction in earnings and
hence a change in the corporate landscape and possible disruption of the supply of en-
ergy. The annual benchmark related network cost (of around 200 electricity and 190 gas
companies) amounts to approximately 10 billion Euro in the electricity industry and 4
billion Euro in the gas sector. We note that even a one-percent efficiency improvement
can lead to large increases in profit to the suppliers. Alternatively, if the regulator forces
the suppliers to lower prices, this may lead to increases in consumer surplus.

To assess the efficiency score, the German regulator in this case employs both Stochas-
tic Frontier Analysis (SFA) and Data Envelopment Analysis (DEA) methods and for each
firm picks the one that reveals the largest efficiency level. In general, there is no obvious
way to choose an estimator of efficiency. While we note that both methods provide an
estimate of the efficiency score for a firm, unless the two are identical, one will be closer
to the truth (although no one knows it) in practice. It is obvious that obtaining a reli-
able efficiency score here is important especially if the regulator (based on the incorrect
efficiency score) sets a benchmark, viz., a target price that is below the “minimum”
average cost. This could result in monetary losses to suppliers and such a policy will not
be sustainable. Similar regulations are currently occurring in the UK as well as other
nations (Smith and Street (2005)). Benchmarking and efficiency analysis is routinely
performed in water utilities, electricity and natural gas, rail transportation and postal
services (Thanassoulis (2000a,b), Cubbin (2005), Dassler et al. (2006)). Furthermore,
if efficiency is not taken into account, some regulatory steps may lead to destructive
consequences for some [inefficient] firms if they are enacted rapidly (Morrison Paul et al.
(2000)).
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Here we hope to uncover which measure performs best in a given situation. This
study can also be used as a helpful guide when employing efficiency estimation. The
two primary methods to estimate efficiency scores are SFA and DEA. There has been a
long standing division between SFA and DEA. The historically perceived merit of SFA
is that the estimator is stochastic. The historically perceived merit of DEA is that the
estimator is nonparametric in nature. Recent research, however, has seen a relaxation of
functional forms in SFA and the introduction of asymptotics in DEA. That being said,
there has been no systematic comparison of these improved techniques. Most studies
either focus on one or the other, or propose a naive alternative when comparing one
model versus the other.

We attempt to compare two promising estimators of technical efficiency in the cross-
sectional case. Specifically, we compare the nonparametric kernel estimator of Fan et al.
(1996), hereafter FLW, to the nonparametric bias corrected DEA estimator of Kneip
et al. (2008), hereafter KSW. Although the FLW model requires a parametric second
stage (and hence it could be argued that it is semiparametric), it is more robust than
the initial SFA model by Aigner et al. (1977) and Meeusen and van den Broeck (1977).
Similarly, KSW (which introduces asymptotics via bootstrapping) has been shown to
perform well as compared to the standard DEA model found in Charnes et al. (1978).
To make the comparison between the two methods, first we briefly discuss the merits of
each approach in different settings. Then, using a set of simulations which we believe
are fair to each method, we assess the finite sample performance of each estimator via
Monte Carlo methods. Finally, we examine three separate empirical examples.

Our results show that the estimation of efficiency scores critically hinges upon the es-
timated ratio of the variation in efficiency to the variation in noise. Specifically, when this
ratio is high (high inefficiency variation relative to noise), estimation by both methods
works well. Both the FLW and KSW estimators do a good job at estimating efficiency
scores and efficiency rankings. However, estimation by KSW dominates in nearly each
of our methods of comparison. This makes sense as this is closer to what KSW is best
suited for.

When the ratio is near unity (similar efficiency to noise variation ratio), neither
method dominates. While both methods underestimate efficiency in this scenario, FLW
does so by less than KSW for all but the most efficient firms. In other words, FLW
is better at measuring efficiency scores for most firms (relative to the KSW estimator),
but KSW does a better job at estimating the efficiency scores of the most efficient firms
(relative to the FLW estimator). In addition, we find that both methods are good at
predicting the rankings of the top and bottom performing firms, but do a very poor job at
identifying the median efficient firms ranking. Finally, when the estimated ratio is small
(low inefficiency variation relative to noise), both methods do a poor job. Neither method
can be trusted for estimating efficiency scores or rankings. Our empirical examples reflect
the findings in the Monte Carlo section.
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It is important to note that the DEA estimator assumes the absence of noise. While
we firmly acknowledge this point, this estimator is being notoriously applied in the
literature in the presence of noise (every data tend to have noise) and hence we look at
potential consequences when this is the case. We further note that in the case where no
noise exists (see Section 3.5.2), the KSW estimator does an excellent job at estimating
efficiency scores and rankings.

It is worth emphasizing that in practice the regulator does not know from the outset
whether the variation of the noise prevails over the variation of the inefficiency, or vice
versa. Nor does the practitioner know what model is more appropriate for a particular
dataset. In this paper we attempt to provide a comprehensive yet simple guide to
choosing the estimator for technical efficiency measurement. We do not favor one model
over the other, and will let the data speak for themselves. For a given dataset we first
check to see if it even makes sense to perform the analysis with DEA or SFA. Second,
depending on the purpose of the analysis, we seek to determine what method should be
applied.

The remainder of the paper proceeds at follows: Section 2 gives a short description
of each estimation method as well as a methodological comparison. The third section
provides the details of the Monte Carlo as well as the results of the simulations and
several robustness checks. Section 4 summarizes the results of the simulations and gives
a suggestion of how and when to perform efficiency estimation in practice. In Section 5,
we use three empirical examples to see how the estimators work in practice and how the
results in each of these data sets compare to the simulations. The final section concludes.

2 The competitors

In this section we present two efficiency estimators in the cross-sectional setting. The
first is the SFA estimator of FLW which uses nonparametric kernel regression in the first
stage to estimate the technology, and then uses the approach due to Aigner et al. (1977)
to estimate the efficiency scores. The second is the DEA estimator of KSW which takes
the standard DEA model of Charnes et al. (1978) and uses bootstrapping techniques to
construct bias corrected efficiency scores. Each of the methods has its own merits both
theoretically and empirically. In this section we first discuss each estimator and then
give a brief methodological and conceptual comparison of the two methods.

2.1 (Nonparametric) estimation in a stochastic frontier frame-

work

Historically, one of the drawbacks of SFA was that it was parametric in nature. It is
well known that if the functional form in a parametric regression is misspecified then
the parameter estimates will likely be inconsistent. This inconsistency can pass onto the
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second stage in SFA, and have a detrimental impact on the estimation of the efficiency
scores. Gong and Sickles (1992) have shown in Monte Carlo experiments that the per-
formance of SFA is improved when the underlying technology is closer to that of the true
underlying model. To address this concern when the technology is unknown, FLW use
nonparametric kernel methods in the first stage.

FLW consider that the production frontier is a (smooth) unknown function of the p×1
vector of regressors x, and the structure of the composite error is known. Specifically,

yi = g (xi) + vi − ui, i = 1, 2, . . . , n, (1)

where yi is a scalar output variable, g (·) is the unknown smooth function, vi is the
standard error disturbance and ui is the one-sided error term representing technical in-
efficiency. Estimation of ui can be accomplished in two steps. First, the conditional
expectation of E (yi|xi) can be consistently estimated (see FLW) by nonparametric re-

gression, yielding an estimate of the conditional mean Ê (yi|xi). Note that g (·) is not
the conditional mean as E (yi|xi) = g (·) + E (ui|xi) ≡ g (xi) + E (ui) 6= g (xi). We can-
not separate the conditional mean from g (·). When running a nonparametric regression

of y on x and we obtain Ê (yi|xi) , not ĝ (xi). We recommend using local-linear least-
squares estimation with the AICc method for bandwidth selection (Hurvich et al. (1998))
to estimate the conditional mean. Nonparametric estimation can be influenced by the
choice of the bandwidth and regression type and so we have also run our simulations
using different bandwidth choices (Kullback-Leibler and least-squares cross-validation)
and different regression types (local-constant and local-linear). Although these variations
brought about some individual changes, qualitatively the conclusions remain unchanged.

Second, by making distributional assumptions on both v and u we can construct
the log-likelihood function to be maximized in order to obtain the efficiency scores.
For example, following the normal, half-normal assumptions of Aigner et al. (1977),
the concentrated log-likelihood function ln l (λ) is maximized with respect to a single
parameter λ. Specifically,

max
λ

ln l (λ) = max
λ

{
−n ln σ̂ +

n∑

i=1

ln

[
1− Φ

(
ε̂i
σ̂
λ

)]
− 1

2σ̂2

n∑
ε̂2i

i=1

}
, (2)

where ε̂i = yi − Ê (yi|xi)− µ
(
σ̂2, λ

)
, µ(λ) =

(√
2λσ̂

)
/
[
π
(
1 + λ2

)]1/2
, and

σ̂ =

{
1

n

n∑

i=1

[
yi − Ê (yi|xi)

]2
/

[
1− 2λ2

π
(
1 + λ2

)
]}1/2

, (3)

where λ = σu/σv and σ2 = σ2
u + σ2

v.

The obtained pseudo likelihood estimate of the variation ratio λ̂ can be plugged in
Eq. (3) to retrieve σ̂. Given λ̂, σ̂, and ε̂i, it is relatively easy to obtain point estimates of
the technical efficiencies as well as their confidence intervals (see Horrace and Schmidt
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(1996)). The point estimator of inefficiency via Jondrow et al. (1982) can be obtained
from the mean of the conditional distribution of the marginal density f (u|ε), N (µ

∗
, σ2

∗
)

as

E (ui|εi) = µ
∗i + σ∗

[
φ (−µ

∗i/σ∗)

1− Φ (−µ
∗i/σ∗)

]
, (4)

where µ
∗
= −εσ2

u/ (σ
2
u + σ2

v) and σ2
∗
= σ2

uσ
2
v/ (σ

2
u + σ2

v).

We also have interest in constructing confidence bounds for the technical efficiency
scores. The lower and upper bounds of a (1− α) 100% confidence interval for technical
efficiency, modeled as exp (−u) |ε, are given by

Li = exp (−µ
∗i − zLσ∗) (5)

and

Ui = exp (−µ
∗i − zUσ∗) , (6)

where Pr (Z > zLi) = α
2

[
1− Φ

(
−µ

∗i

σ∗

)]
and Pr (Z > zUi) =

(
1− α

2

) [
1− Φ

(
−µ

∗i

σ∗

)]
,

Z is distributed as N(0, 1), and Φ is the standard normal CDF. Hence,

zLi = Φ−1

(
1− α

2

[
1− Φ

(
−µ

∗i

σ∗

)])
(7)

and

zUi = Φ−1

(
1−

(
1− α

2

)[
1− Φ

(
−µ

∗i

σ∗

)])
. (8)

As the underlying technology is generally unknown in practice, one of the major
benefits of this estimator is that the first stage is nonparametric. No distributional or
functional form assumptions are needed to obtain a consistent estimate of the conditional
mean, Ê (yi|xi). However, in the second stage, we must use distributional assumptions
on v and u in order to obtain observation specific estimates of technical efficiency. Panel
data can lead to a relaxation of these assumptions as in Kneip and Simar (1996), but
that is beyond the scope of this paper.

2.2 (Bias-corrected) estimation in nonparametric frontier mod-

els

DEA has been nonparametric from its conception (Charnes et al. (1978)). However,
the DEA estimator produces a biased estimate of the frontier. It can only measure
the best practice technology. Specifically, the true frontier lies somewhere above the
DEA estimated frontier. Hence, DEA estimates of efficiencies relative to the estimated
frontier are too optimistic. The bootstrap procedures proposed by Simar and Wilson
(1998), Simar and Wilson (2000) and KSW to correct this sampling bias use the idea
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that the known distribution of the difference between estimated and bootstrapped effi-
ciency scores mimics the unknown distribution of the difference between the true and
the estimated efficiency scores. This relationship facilitates estimation of the bias and
confidence intervals for the individual estimated efficiency scores.

In DEA, the functional form of the production process is not specified, it is solely ob-
served that p input factors x are used to produce q outputs y, employing some technology
T , where

T = {(x, y) |x can produce y} . (9)

Adopting the Shephard (1970) assumptions, we measure output oriented technical effi-
ciency (θj) for a point (xj , yj) due to Farrell (1957) as

̥
o
j (xj , yj) = sup {θj| (xj , yj/θj) ∈ T } , (10)

which is the DEA estimator based on linear programming techniques.

In practice, the T , and therefore̥o
j (xj , yj) , are unknown and must be estimated from

a finite sample. Under arguably reasonable assumptions, KSW derive the asymptotic
distribution of the DEA estimator and propose a way to perform statistical inference for
the estimator given in Eq. (10) using bootstrapping techniques. If the true score (̥o),
comes from an unknown data generating process (P), and the estimator (̥̂o), comes

from a known data generating process P̂ (x, y), then for a consistent bootstrap estimator
(̥̂o

∗

), the following holds true

(
̥̂o

∗

/̥̂o − 1
)
|P̂ (x, y)

approximately∼
(̥̂o/̥o − 1

)
|P. (11)

This equivalence allows us to get closer to ̥
o and also suggests a way to derive the

asymptotics of an estimator given by Eq. (10). KSW give a consistent bootstrap method
(subsampling) which can be implemented in two steps. First, let (the integer) m = nκ

for some κ ∈ (0, 1), where n is the sample size, and m is the size of the subsample.
Second, perform the bootstrap as follows:

1. Generate a bootstrap subsample of size m, S∗

m =
{(

x∗

j , y
∗

j

)}m

j=1
, by randomly draw-

ing (independently, uniformly, and with replacement) from the original sample,
Sn = {(xj , yj)}nj=1.

2. Apply the DEA estimator given by Eq. (10) where the technology T ∗ is defined
by the subsample drawn in step (1), S∗

m =
{(

x∗

j , y
∗

j

)}m

j=1
, to obtain the bootstrap

estimate, ̥̂o
∗

.

Repeating steps (1) and (2) a large number (B) of times (yielding ̥̂o
∗

b , b = 1, . . . , B)

allows us to approximate the conditional distribution ofm2/(p+q+1)
(
̥̂o

∗

/̥̂o − 1
)
, the left

hand side of Eq. (11), which in turn, allows us to approximate the unknown distribution
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of n2/(p+q+1)
(̥̂o/̥o − 1

)
, the right hand side of Eq. (11). The bias-corrected DEA

efficiency score is given by
̥̂̂o = ̥̂o − b̂iasB, (12)

where the bias is adjusted by employing the size m subsample

b̂iasB =
(m
n

)2/(p+q+1)
[
1

B

B∑

b=1

̥̂o
∗

b − ̥̂o

]
. (13)

Given the conditional distribution of m2/(p+q+1)
(
̥̂o

∗

/̥̂o − 1
)
, it is easy to find the

quantiles δα/2,m and δ1−α/2,m for an arbitrary α ∈ (0, 1) such that

Prob
[
m2/(p+q+1)

(
̥̂o

∗

/̥̂o − 1
)
≤ δα/2,m

]
=

α

2
(14)

and
Prob

[
m2/(p+q+1)

(
̥̂o

∗

/̥̂o − 1
)
≤ δ1−α/2,m

]
= 1− α

2
(15)

in order to compute a symmetric (1− α) 100% confidence interval for ̥
o with

̥̂o/
(
1 + n−2/(p+q+1)δ1−α/2,m

)
and ̥̂o/

(
1 + n−2/(p+q+1)δα/2,m

)
as lower and upper bounds.

One of the benefits of this estimator is that it allows for classical statistical inference.
It improves upon the traditional DEA estimator by reducing the inherent bias and KSW
have shown that it performs well in finite samples. However, it is left to the researcher
to “decide” upon the value for κ (the size of the subsample). Although the bootstrap
is consistent for all κ ∈ (0, 1), there is an optimal value that makes the estimator more
precise. The optimal κ depends on the dimensionality of the problem and therefore has
to be set for each specific application (see KSW for details). We explore more of the
benefits and shortcomings of each method in the next sub-section.

2.3 Methodological comparison

Prior to examining the finite sample properties of each method via simulations, it is useful
to make conceptual comparisons. First, SFA was invented as an average practice analysis,
while DEA is conceptually a best practice analysis. No observation point lies above the
DEA frontier, while the constructed SFA frontier allows some data points to be above the
frontier. The entire distance to the frontier in the DEA case is attributed to inefficiency,
while SFA treats this distance as a combination of both inefficiency and statistical noise.
Thus, it can be expected that one estimator will have an advantage depending upon the
data generating process. We hope to view both scenarios. Furthermore, although these
estimators are improvements over their predecessors: SFA using nonparametric methods
and DEA using bootstrapping, the introduction of these “features” into DEA and SFA,
does not change the “average” and “best practice” labels.

One benefit of SFA is the ability to handle the panel structure of data. For example,
panel data can relax some of the functional form restrictions required of FLW (e.g., see
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Kneip and Simar (1996)). Although attempts have been made to use DEA in a panel
data setting (Henderson and Russell (2005); Ruggiero (2007)), we are unaware of a DEA
estimator (with asymptotics proven) which can adequately handle this type of data. On
the other hand, a benefit of DEA is that it can easily handle both multiple inputs and
outputs. Under certain assumptions and data requirements, SFA can rely on distance
functions, but these are not always met. In order to compare these estimators on a
‘relatively’ level playing field, we will focus on cross-sectional data with a single output.
If the user is interested in using panel data or multiple outputs (in specific cases), the
choice of estimator is obvious.

3 Simulations

In this section we examine the finite sample performance of each of our estimators. We
are well aware that these have been examined for each estimator and that many compar-
isons have been made between traditional DEA and SFA estimators (for example, Gong
and Sickles (1992), Banker et al. (1993), Thanassoulis (1993), Bojanic et al. (1998), Cub-
bin and Tzanidakis (1998), Park and Lesourd (2000)). However, no study has compared
these efficiency estimators against one another. Many comparisons in the literature often
compare their particular model to simplistic counterparts. Given that we do not have an
a priori preference for either estimator, we will try to present the most fair comparison
possible. The goal here is to uncover useful information for the practitioner.

Specifically, we first discuss the basic design of the experiment. We define the data
generating processes used, the distributional assumptions on the data as well as the other
parameters of the experiment. Next, we discuss the methods by which we compare the
performance of the efficiency estimators. We take several standard measures as well
as one that we propose just for this experiment. Third, we run our simulations and
discuss the relative performance of the estimators under the various scenarios. Finally, we
briefly mention a subset of the vast number of robustness checks we tried and summarize
the results of those runs. The results of these additional experiments are available in
Appendices A-F.

We use the programming language R (R Development Core Team (2008)) for all
simulations and empirical examples in the paper. To obtain the results for the FLW
estimator we employ the np (Hayfield and Racine (2008)) package for kernel estimation
and the bbmle package for obtaining an estimate of the parameter λ. For the KSW
estimator we use the FEAR (Wilson (2008)) package. All R code and data are available
from the authors upon request.
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3.1 Design of the experiment

We conduct simulations for a production process which employs two inputs (x1 and
x2) to produce a single output (y). We consider two simple production functions: (1)
Cobb-Douglas (CD) y = xα

1x
γ−α
2 and (2) constant elasticity of substitution (CES) y =

[βxρ
1 + (1− β)xρ

2]
γ/ρ

. For the primary analysis we assume the output is generated via
a constant returns to scale (CRS) technology (γ = 1). We set α = 1/3, β = 2/3 and
ρ = 0.5.

We assume that the true error term is distributed normally with mean zero and
variance σ2

v, v ∼ N (0, σ2
v). We further assume that the true technical efficiency is TE

= exp (−u), where u is half-normally distributed with variance σ2
u, u ∼ N+ (0, σ2

u) and
drawn independently of v. We introduce the noise and inefficiency in the production
process of unit i as

yi = xα
1i · xγ−α

2i exp (vi − ui) (16)

in the CD case. Similarly, for the CES production function, the analog is

yi = [βxρ
1i + (1− β)xρ

2i]
γ/ρ

exp (vi − ui) . (17)

In an attempt to model various real-life scenarios, we have simulated four different
combinations for the variation of the error and inefficiency terms. Table 1 shows the
matrix of chosen combinations when σu and σv take values 0.01 and 0.05.

The first row of the table is for the case where the error variation is relatively small.
In this case, the model has relatively little variation in the error term. The first column
of the table is for the case where the variation of the inefficiency term is relatively small.
In this case, we say that the decision making units are relatively efficient. The second
row and second column represent the cases where the error variation and inefficiency
variation are relatively large, respectively. We are specifically interested in particular
cells of this table. In scenario s1 (σv = σu = 0.01, λ = 1.0), both terms are relatively
small. In other words, the data are measured with relatively little error and the units
are relatively efficient. In scenario s2 (σv = 0.01 and σu = 0.05, λ = 5.0), the data
have relatively little noise, but the units under consideration are relatively inefficient.
In scenario s3 (σv = 0.05 and σu = 0.01, λ = 0.2), the data are relatively noisy and the
the firms are relatively efficient. The fourth scenario s4 (σv = σu = 0.05, λ = 1.0) is
redundant as λ = 1.0 as in s1. However, we show this case to emphasize that the results
of the experiment depend upon the ratio of σu to σv and not their absolute values.

All experiments consist of 2000 Monte Carlo trials. Within each set of experiments,
we analyze three sample sizes, n = 50, 100, and 200. For each Monte Carlo trial, we
simulate a DGP by drawing observations for inputs x1 and x2 distributed uniformly on
[1, 2]. For each of the four combinations of σu and σv, we then compute the “observed”
output observations as in Eq. (16) and (17) in the CD and CES cases, respectively. We
thus have four base scenarios for each of the assumed production functions.
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KSW emphasized that the choice of the parameter κ that determines the subsample
of the bootstrap is important for accuracy of the estimator and the optimal value varies
depending on the dimensionality of the input/output setup. We have followed their
suggestion and set this value at 0.7.

We again want to emphasize that the estimator in KSW does not allow for noise.
That being said, we want to see the potential consequences of such an exercise. We
consider the case of no noise in our DGP for both estimators in Section 3.5.2.

It is important to note that an efficiency model only makes sense if the distribution
of (v − u) has negative skewness (Kumbhakar and Lovell (2003)). Therefore, we checked
whether the skewness of the sampled distribution of (v − u) was negative and rejected
those Monte Carlo replications that yielded the wrong (positive) skewness. When the
wrong skewness was detected we went back and sampled again. In other words, the
number of simulations (2000) was preserved. We also ran the results where we did not
throw away runs with the wrong skewness. The results of this experiment showed that
the nonparametric kernel model would (essentially) predict perfect efficiency for nearly
all observations when (v − u) yields the wrong skewness. Including these cases led to
efficiency scores which were close to unity.

3.2 Comparative measures

To compare the finite sample performance of our estimators we consider the following
median (over the 2000 simulations) measures of

1. Bias(TE) =
1

n

n∑
i=1

(
T̂Ei − TEi

)

2. RMSE(TE) =

[
1

n

n∑
i=1

(
T̂Ei − TEi

)2
]1/2

3. Upward Bias (TE) =
1

n

n∑
i=1

1
(
T̂Ei > TEi

)

4. Kendall’s τ (TE) =
nc − nd

0.5n (n− 1)

where nc is the number of concordant pairs, and nd is the number of discordant pairs
in the data set (efficiency ranks of FLW or KSW). 1 (A) denotes the indicator function

that the event A is true, T̂Ei is the estimate of technical efficiency of unit i in a given
Monte Carlo replication (by a given estimation method) and TEi is the true efficiency
score (determined by the DGP). We should note that we choose to use the median (over
the 2000 simulations) instead of the average because it eliminates the chance that a few
large values can skew the results. The mean results are similar and are available from
the authors upon request.
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As a further comparison, we report the empirical coverage accuracy (ECA) of each
estimator. ECA reports the proportion of the true efficiencies that are within the bounds
of the (predicted) 95% confidence intervals for the estimated technical efficiencies. In the
tables we report the median of these proportions across the Monte Carlo simulations.

We are also interested in comparing the density estimates of technical efficiency across
the Monte Carlo draws. Solely looking at the median (over the simulations) may hide
interesting results. Specifically, for each draw, we sort the data by the relative value
of the true efficiency. We are interested in comparing the true distribution of technical
efficiency for a percentile across all Monte Carlo simulations. We therefore plot these
(kernel) densities for the α−percentile (αn), the median (n/2) and the (1−α)−percentile
((1−α)n) of the efficiency scores. These show us how well each of the estimators perform
at estimating particular portions of our sample. For example, if interest lies in estimating
the benchmark firms, then we would be interested in knowing which estimator does the
best job at estimating the (1− α)−percentile of the efficiency distribution.

We should note that the results likely include sampling variation apart from what
we would find for individual, fixed points that do not change from one trial to the next.
To state things differently, the α−percentile firm in trial 1 is likely different from the
α−percentile firm in trial 2, and so on. An alternative approach could focus on one
or perhaps a small set of fixed points in the input-output space that are held constant
over Monte Carlo trials. We have conducted limited simulations which show that these
two approaches lead to qualitatively similar results and these results are available upon
request.

Finally, we also plot the distribution of the ranks for each of these percentiles. This
will show us how well each estimator does at predicting the correct rankings of the firms.
These densities should be centered around αn, n/2, and (1− α)n. In this paper we set
α = 0.05. We note that most studies surrounding efficiency scores essentially look at
average behavior. It will be shown that we uncover different findings depending upon
which percentile is being estimated. In other words, the relative performance of our
estimators are heterogenous across the sample.

3.3 Baseline case

In this sub-section we provide our baseline results. The results are given in Tables 2 and
3 and Figures 1-4. Table 2 as well as Figures 1 and 3 correspond to the CD technology.
Similarly, Table 3 as well as Figures 2 and 4 are for the CES production function. Recall
that KSW represents the DEA estimator and FLW represents the SFA estimator. Here
we consider the case where the distributional assumptions on the error terms in the FLW
model are correctly specified. Many of these assumptions will be relaxed later.
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3.3.1 Estimation of technical efficiency

Tables 2 and 3 show the performance measures of the technical efficiency estimates for the
CD and CES technologies, respectively. In Table 2, FLW generally tends to outperform
KSW in terms of ECA. In Table 3, this dominance by FLW is uniform across the scenarios
and sample sizes. Moreover, in Table 3, ECA improves with the sample size for FLW,
but gets worse with KSW. A potential answer for this phenomenon will become apparent
later.

Turning to the bias of the technical efficiency scores, we note that the median bias
is negative in nearly all cases. This implies that both of our estimators (at the median)
tend to underestimate the true technical efficiency scores. In terms of RMSE, the RMSE
of technical efficiency is relatively small when σv is small. The opposite result holds
when σv is relatively large. A peculiar result emerges for the KSW estimator. Here we
see that the RMSE of the technical efficiency estimates increases with the sample size in
each scenario (recall that KSW assume the absence of noise).

In addition to the median bias, we also consider an alternative approach to compare
across estimation methods. Specifically, we give an estimate of upward bias. The upward
bias measure shows the percentage of points for which technical efficiency has been
overestimated. The measure checks whether an estimate is larger than the true value. If
so, then the indicator function returns a value of one. If not, then a zero value is given.
The number of estimates above the truth are then divided by the sample size to give
the percentage of estimates which were over estimated. Values near 0.5 are ideal for this
measure. Anything in excess of one-half suggest an upward bias and anything less than
a half suggests a downward bias. For both estimators we see that as the sample size goes
up, the percentage of over-estimated results goes down. In other words, given that the
desired value of upward bias is 0.5, both FLW and KSW systematically underestimate
the true technical efficiency.

It is difficult to conclude from the tables whether or not one method underestimates
more than the other. Therefore, we look at other percentiles of the efficiency distribution
as well. Figures 1 and 2 show the distributions of the 5th, 50th, and 95th percentiles of the
true and estimated technical efficiencies. Each row contains three panels corresponding
to the 5th, 50th, and 95th percentiles of efficiency for a particular scenario. For visual
simplicity, we have chosen to show only the case when n = 200. The other figures do
not differ much and are available upon request.

Figures 1 and 2 confirm that KSW performs best in scenario s2. Here we see that the
KSW densities are very close to the true distributions of efficiency. This is expected as
this estimator is more closely designed for this particular scenario (again, KSW assumes
no noise). FLW systematically underestimates the efficiency of the chosen percentiles.
The mode of the FLW estimator is anywhere from 3 to 13 percentage points lower than
the true mode.
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Scenario 2 is the only obvious case between estimators here. In contrast, when λ is
unity (s1 and s4), FLW and KSW consistently underestimate (each of the 5th, 50th, and
95th percentiles) the efficiency scores. If we examine the mode of the densities, FLW
appears to be closer to the truth when looking at the 5th or 50th percentile, but the
opposite is true at the 95th percentile. What this says (for s1 and s4) is that KSW is
better at determining the benchmark firms, but FLW is better at estimating a majority
of the efficiency scores. It is up to the user to determine which method is needed for their
particular problem. That being said, we should note that the spread of the efficiency
estimates is much larger for FLW than KSW. In other words, FLW sometimes confounds
noise with inefficiency.

Perhaps the most discouraging result is for scenario s3. Here we have the case where
the error variation is relatively large and the inefficiency variation is relatively small.
We see that when λ is relatively small that both estimators do a poor job at predicting
efficiency scores. It can be argued that FLW is slightly better when looking at the 5th

or 50th percentile and KSW is relatively better when looking at the 95th percentile, but
neither does a good job. It appears that both estimators break down when trying to
predict inefficiency here. Neither estimator is able to correctly draw efficiency scores
when the noise variation is large relative to that of the inefficiency variation. We tried
other combinations which produce the same value for λ and as expected we find that
the results depend only upon parameter λ and not the absolute values of σv and σu.

Finally, we would like to note that plotting the densities also gives us an explanation
to why ECA decreases in KSW and increases in FLW with the sample size. As n increases
(not shown) we get more probability mass around the true means of the 5th, 50th, and
95th percentiles. In other words, as the variation of the true efficiencies decreases with the
sample size, given that the KSW performs poorly with a small sample, when the sample
size is increased, it does even worse. On the other side, given that FLW is better in
predicting certain percentiles in small samples, when n increases, FLW gets better. This
helps validate our decision to examine specific percentiles of the efficiency distribution.

3.3.2 Efficiency rankings

The last element of Tables 2 and 3 give Kendall’s τ for the efficiency ranks between
the true and estimated efficiency scores. In each scenario, for each sample size, FLW
has a large Kendall’s τ . This measure suggests that FLW does a slightly better job at
identifying the ranks of efficiency scores.

We again note that the values in Tables 2 and 3 correspond to median behavior.
Figures 3 and 4 look for differences at particular percentiles of the efficiency (ranking)
distributions. These figures show the empirical distribution of the 5th, 50th, and 95th

percentiles of the true (vertical line) and estimated ranks. Each row contains three
panels corresponding to the 5th, 50th, and 95th percentiles of ranks for a particular
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scenario. Ideally we would like to see the densities lie on top of the vertical (true) line
with minimal variation. Again we show only the case of n = 200 for visual simplicity.

The first thing to note in the figures is that the FLW and KSW densities are difficult
to distinguish from one another. The best case scenario for both estimators is s2. Here
we see that regardless of the percentile, both estimators do a good job at identifying the
ranks. In other words, in the s2 world, we can be somewhat confident that the rankings
provided by both estimators are correct. However, the results for s3 are alarming. Recall
that the efficiency scores were poorly estimated in s3. Here we see that these densities
are more or less uniform over the observations. What this means is that both estimators
have a non-trivial probability of ranking the 95th percentile as the 5th percentile, and
vice versa. In other words, the practitioner should place relatively little confidence in
efficiency rankings from either estimator when λ is relatively small.

On the other hand, when λ is relatively large (s1 and s4), we have both good and
bad outcomes. Both estimators appear to do a good job at identifying the best and
worst performing firms. However, neither estimator can accurately predict the median
efficient firm. Therefore, if interest lies in detecting the best or worst performing firms,
then either estimator may be sufficient in this scenario. However, if the goal is to do a
ranking of all firms across the sample, those ranks in the middle are questionable.

3.4 Finite sample properties of lambda

The conclusions of our simulations depend heavily upon the value of λ. Although FLW
give simulation results and claim that the estimator of λ is root-n consistent, we feel the
need to show the finite sample properties of our estimates of λ across our simulations.
The first three columns of Tables 4 and 5 present the median value of the difference
between the estimated and true values of λ, its interquartile range (IQR), and median
of the squared difference between the estimated and true values of λ across our 2000
simulations for each of our scenarios for each sample size. It can be seen that as the
sample size rises, all three measures fall. Additionally, three last columns of the Tables 4
and 5 give the sizes of the bootstrapped tests for testing the null that estimated value
of λ equals the true value of λ at 1%, 5%, and 10% levels. We use 500 bootstrap
replications in each of our 2000 Monte Carlo simulations. The numbers in the tables are
close to the nominal values suggesting neither systematic under- nor overrejection of the
null. The sizes of the tests in a battery of robustness checks that we describe below are
generally in line with the baseline cases. As expected, there some distortions when the
true distribution of u is Gamma. However, when the true noise is heteroskedastic, the
estimated sizes are close to nominal sizes.

We note here that we choose to use median (over the 2000 simulations) estimates here
and throughout the paper because kernel methods occasionally give large (in absolute
terms) values in the tails. For the case of λ, for each scenario, one or two of the 2000
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simulations would give an estimated value of λ which was extremely large (sometimes in
excess of 50) and this skews mean square error values.

3.5 Robustness checks

The baseline results above are informative, but we can often wonder whether they are
truly representative of the estimators. Therefore, in this sub-section, we consider several
robustness checks to make sure that our simulations accurately depict the performance
of our estimators. The results for each of these robustness checks are given in Appendices
A-F.

3.5.1 Changes in true distribution of error term

To check the responsiveness of both estimators to changes in the distribution of the true
technical efficiencies, we alternatively draw the inefficiency term (u) from the gamma
distribution, u ∼ Γ (k, θ). It is expected that this will not qualitatively change the
results for KSW as the estimator does not require an assumption on the distribution
of the error term. However, this is not the case for FLW. Here we consider the case
where FLW is misspecified in the second stage. In other words, while we change the
distribution of u from half-normal to gamma, we still estimate the FLW model assuming
the distribution of u is half-normal. Within our experiments, we examine three shapes of
the gamma distribution: k ∈ {exp (−1) , 1, exp (1)}. To make this Monte Carlo extension
comparable to our baseline results, we set θ equal to (36.79, 100, 271.83) so that σu = 0.01
and equal to (7.36, 20, 54.37) so that σu = 0.05 (recall that the variance of the gamma
distribution is kθ2).

Not surprisingly, the results (Appendix A) for the exponential case where k = 1
are nearly identical to the half-normal case discussed in the previous sub-section. The
true gamma distribution of the inefficiency for k = exp(−1) looks more “squeezed” than
the half-normal and therefore exposes much less true inefficiency. Conceptually, even if
the standard deviation remains equal to that of the half-normal case, all scenarios get
“closer” to the s3 scenario for the half-normal case, which proved to be difficult for both
estimators. We thus expect deterioration in each estimators’ performance.

The bias of technical efficiency is still negative, implying aggregate underestimation of
true scores. As expected, now that the distribution of the true inefficiency is “squeezed”,
both estimators perform poorly at predicting the 95th percentile of the true efficiencies.
Further, neither estimator does a good job at identifying the true ranks. In short, with
some minor quantitative changes, the results from the baseline case seem to generally
hold.

When considering the case where k = exp (1), the median inefficiency gets larger and
improves the performance of both estimators. The main change from the baseline case is
that the bias of KSW is now positive in scenario s2. Thus, KSW tends to overestimate
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when there is little noise especially at higher true levels of efficiency. The upward bias
measure is now in excess of 0.5 for KSW in scenario s2 but falls as sample size increases.

In short, we find that changing the true distribution of u can have an effect on the
results of the exercise. However, the results still depend upon the estimated value of
λ. Larger values lead to better estimation for both models, smaller values lead to worse
estimation for both models and values near unity come with mixed results.

3.5.2 No noise

We have stressed in the paper that the KSW estimator assumes the absence of noise.
However, our simulations include noise in each scenario. Further, we saw that when the
efficiency to noise ratio was high, the KSW estimator performed well.

Here we consider the case where there is no noise in the DGP. The results in Appendix
B show that KSW clearly dominates the FLW estimator. This is expected as the KSW
estimator assumes no noise and the FLW estimator assumes noise exists. Given that
the FLW estimator assumes noise exists, it appears to treat some of the inefficiency as
noise and hence further underestimates technical efficiency. That being said, the FLW
efficiency estimates are similar to (but smaller than) those in scenario s2. In fact, the
upward bias measure is close to zero. On the other hand, for the KSW estimator, this
measure is close to the desired value of 1/2. In short, when no noise exists, we recommend
using KSW.

3.5.3 Returns to scale

As noted before, all of our DGP’s assume a CRS technology. We also consider the
case where the technology exhibits decreasing returns to scale (γ < 1). Specifically, we
consider the case where γ = 0.8. We ran this specification for various technologies and
report the results most closely related to the baseline case in Appendix C. We expected
the performance of the KSW estimator to deteriorate as we employed the KSW efficiency
measure which assumes CRS. However, the results only differed slightly. For both this
modified baseline case and others, we do not see any changes to the qualitative results
of the experiment.

3.5.4 Changes in technology

We also performed simulations using the more complicated technology in Guilkey et al.
(1983):

yeθy = [δ1x
ρ
1

1i + δ2x
ρ
2

2i ]
γ/ρ

. (18)

This relatively flexible (as compared to CD and CES) technology allows for different
elasticities of substitution between inputs by tweaking the parameters ρ1, ρ2, and ρ (see
Guilkey et al. (1983)). We tried various combinations of the parameters ρ1, ρ2, and ρ.
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The results of this experiment appear in Appendix D. Even though this is a more
complicated technology, we do not see any major differences from the baseline results.
This is likely the case because both estimators are nonparametric and thus make no
assumptions on the functional form. Hence, both are equally good at estimating a more
complicated technology as compared to their respective performances in the baseline
results.

3.5.5 Heterogenous parameters

The choice of homogenous parameters has been questioned in empirical work (see Hastie
and Tibshirani (1993)). It can be argued that firms differ both in their intercepts and
their slope parameters. To see whether or not this has an effect on the results of our study
we considered the Cobb-Douglas DGP in Eq. (16) where the coefficient α was unique to
each i. Specifically, we generated α = 1/3 plus a mean zero normally distributed term
with standard deviation 0.01. We report the results where we allow αi to vary across
Monte Carlo replications and note that the results do not differ significantly if we fix αi

across replications. CRS was maintained. The results of this experiment can be found in
Appendix E. The qualitative results do not change. This is expected as nonparametric
methods do not make assumptions of homogenous parameters.

3.5.6 Heteroskedasticity

Our final robustness check is to introduce heteroskedasticity in the error term. This is
potentially problematic for the FLW estimator as their second stage assumes the variance
components are constant. Specifically, we have generated our error term (vi) as before
except allow the variance to be a function of x1 and specific to each observation i (with
varying degrees of heteroskedasticity). The results of this experiment can be found in
Appendix F. We find a slight decrease in the upward bias measure for each estimator
relative to the baseline results. We do not find any other qualitative differences in the
results.

4 Which estimator and when

Throughout our simulations and robustness checks we have seen that our results depend
upon the relative sizes of σu and σv. Assuming this holds true for other data generating
processes not considered, we want to offer a simple outline of when to use efficiency
analysis and what estimator to be employed in various scenarios.

The practitioner should of course start by checking whether there is evidence of
technical inefficiency in the data. One way to do this is to perform the test due to
Schmidt and Lin (1984). Next, recall that we essentially have three different possible
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outcomes: (1) The value of λ can be near unity. This occurs when the variation in the
error (σv) and efficiency (σu) are of similar magnitudes (scenarios s1 and s4). (2) The
value of of λ is relatively large. This occurs when the variation from the efficiency term
is large relative to that of the noise (scenario s2). (3) Finally, the value of λ can be
relatively small. Here we have scenario s3, where the error variation is large relative to
the variation of the efficiency term.

We argue that the first step in any efficiency analysis should be to check the estimated
value of λ (as estimated by FLW). If the estimated value of λ is relatively small, then, as
we have seen, the efficiency scores and ranks will likely be poorly estimated. In this case,
we do not recommend efficiency estimation with these particular methods. This does not
imply that all firms are perfectly efficient. It is just difficult to extract the inefficiency
from the (relatively large) noise component. In essence, studies which conduct efficiency
in this scenario may be unreliable.

The second scenario is the case where λ is relatively large. Here both estimators do
a good job at estimating efficiency and estimating the ranks. Here, KSW appears to
be dominant in terms of estimating efficiency. On the other hand, even though there
appears to be a slight performance improvement for FLW in terms of the rankings,
KSW is not much different and should be considered reliable in this situation as well.
In short, the KSW estimator should get the nod in general for this scenario, but FLW
will not necessarily produce poor estimates. As we will see in the empirical section, for
the scenario in which λ is large, both estimators produce similar efficiency scores and we
find a high correlation between the (efficiency) rankings of the estimators.

The more difficult scenario to detect is when the ratio is near unity. Here we do
not see a well defined winner between the two estimators, nor can we be confident of
our rankings for a significant portion of our samples. Figures 1 and 2 show that when
examining the 5th or 50th percentile of the efficiency scores that the FLW estimator does a
better job at estimating the true efficiency score. That being said, the estimator generally
gives efficiency scores which are too small. On the other hand, when examining the 95th

percentile of the efficiency scores, the KSW estimator does a better job at estimating
the true efficiency scores. Again, KSW underestimates the true efficiency score at each
percentile shown. When moving to the rankings, it is obvious that both estimators
do a decent job at ranking the top and bottom performers, but both do a poor job at
identifying the median rank. In short, FLW appears to be better at identifying the worst
performers and KSW appears to be better at identifying the best performers. However,
a close examination of the plots of the rankings show very minor differences and we do
not want to place too much emphasis on the differences between the estimators here.
What we do want to point out is that trying to use this to pick rankings at the median
is difficult at best.

To summarize this discussion, we have reported these results into two tables: Table 6
for efficiency scores and Table 7 for rankings. Table 6 gives a summary of the results
for each scenario and a suggestion for which estimator to use. The first row for each
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combination of σu and σv shows the relative magnitude of the estimates. For example,
when σu = 0.01 and σv = 0.01, FLW and KSW are relatively similar in terms of efficiency
scores. Specifically, sometimes FLW is larger and sometimes KSW is larger. However,
both are smaller than the true efficiency scores. Similarly, for scenario s2 (σu = 0.05
and σv = 0.01), FLW typically produces smaller efficiency scores than KSW which is
relatively close to the truth. The second through fourth rows corresponding to each
scenario are our suggestion for which estimator to use depending on which part of the
population the researcher is concerned with estimating. For example, when λ is near
unity, we suggest that authors use FLW for all but the best decision making units. For
those near the top, KSW is preferable. Finally, we want to note that even though we
have suggestions for s3, we do not recommend performing efficiency analysis with these
procedures for this scenario.

Table 7 is not divided between FLW and KSW. We do not give a recommendation
between these two estimators for ranks as they are quite similar. We conclude that they
are (roughly) equally good or equally bad in estimating rankings under each scenario.
Here we just provide the situations in which a practitioner can trust the rankings of
the efficiency scores. In the table, for each scenario, we report the performance of
the estimators in terms of determining the true ranking at different percentiles of the
efficiency distribution. For example, when σu and σv are of similar magnitude (s1 and
s4), both estimators do a fair job at identifying the best and the worst performing
decision making units. However, each does a relatively poor job at identifying the median
performer. At the same time, under scenario s2, both estimators do a good job at
identifying the rankings. As expected, both estimators do a poor job when λ is relatively
small.

To further simplify the results, we would like to offer the following four step approach
to choosing an estimator

1. Estimate the model via FLW and obtain an estimate of λ.

2. Refer to Table 1 to determine what scenario your data lies in.

3. Check to see if efficiency estimation is recommended.

4. If your data pass step 3, use Tables 6 and/or 7 to help choose the appropriate
estimator for your particular needs.

Here we argue that a one size fits all approach is inappropriate for efficiency analysis.
When using these results for policy or in court, the user must be aware of which obser-
vations are of particular interest and whether or not interest lies in the estimate or the
ranking. We have shown that for most (but not all) cases the estimators underestimate
the efficiency. This should be considered if setting a threshold for firms. We have also
shown when rankings are reliable and when they are not. Therefore we stress that these
four steps be taken before discussing the results from an efficiency exercise.
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For a practical example, we note that for the case mentioned in the Introduction,
identifying a benchmark firm(s) is often important to regulators. A benchmark firm(s)
(say top 5%) is often used to decide the penalty (or carrot) for the bottom firms in
yardstick competition. In such a case, it is important to accurately estimate the top 5%
and bottom 5% of firms. We note that identification of both the top 5% and bottom
5% of firms is feasible in scenarios s1, s2 and s4. In general, FLW would produce more
reliable results for the bottom 5% (except for s2) and KSW would generally produce
more reliable results for the upper 5%.

5 Empirical applications

We have shown the performance of the estimators in Monte Carlo simulations, but it
is also worthwhile considering how the estimators work in practice. Here we consider
three separate datasets used in empirical papers which correspond to estimated values
of λ which are less than, greater than and close to unity. We report the parameters
from the FLW nonparametric regression of each model in Table 8. In this table we also
report a measure for R2 of the first stage regression in FLW, defined as the Kendall
correlation coefficient between the predicted and true output. Table 9 provides the
summary statistics of the technical efficiencies whereas the panels in Figure 5 give the
kernel densities of the estimated technical efficiencies. Finally, Table 10 presents the rank
correlation coefficients between the technical efficiency estimates of the two estimators.

5.1 Utilities data

The first data set comes from Kumbhakar and Tsionas (2011), hereafter KT. KT estimate
a production function for 72 fossil fuel-fired steam electric power generating plants in
the United States over the period 1986-1999. Specifically, they model output (net steam
electric power generation in megawatt-hours) as a function of labor, fuel and capital.
Quantities of labor are calculated by diving the aggregate costs of labor by a cost-share
weighted price for labor. The fuel quantities are calculated by dividing the fuel expenses
by the Tornqvist price of fuel aggregate. The values of capital stocks are calculated by
the valuation of base and peak load capacity at replacement cost to estimate capital
stocks in a base year and then updating it in the subsequent years based upon the value
of additions and retirements to steam power plants.

Here we consider the year 1998 (the year with the most observations), where the
sample size n is 81 firms. Note that using other years does not change the qualitative
results of the experiment. The first thing to notice in Table 8 is the relatively large
estimate of λ = 4.0961 with bootstrapped standard error 1.3206 (we used 1000 bootstrap
replications). This puts us in scenario s2. Recall that this scenario leads to the most
reliable results for technical efficiency estimates. The summary statistics for the efficiency
estimates can be found in Table 9. Notice that the estimates for all points considered
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are relatively similar between the estimation methods. This is further shown in the first
panel of Figure 5. Other than the small dip in the upper tail of the distribution, these
densities are quite similar.

The correlation rankings can be found in Table 10. Here we consider three different
correlation coefficients: Kendall, Pearson and Spearman. Each of them show a relatively
high correlation between the rank estimates of the two estimators. Even with this
relatively small sample (n = 81), both estimators appear to be very similar. We expect
that these estimated efficiencies are similar to the true efficiencies.

5.2 Manufacturing industry database

The second data comes from the NBER-CES Manufacturing Industry Database (May,
2009), which is compiled by Randy A. Becker, and Wayne B. Gray. This database is a
joint effort between the National Bureau of Economic Research and U.S. Census Bureau’s
Center for Economic Studies, containing annual industry-level data on output, employ-
ment, payroll and other input costs, investment, capital stocks, total factor productivity,
and various industry-specific price indexes (http://www.nber.org/data/nbprod2005.html).
This data has been used in many studies (e.g. Berndt and Morrison (1995), Amato and
Amato (2000)). We consider a production function, Y = f(K,L,M), where Y is defined
as the total value of shipments divided by a respective deflator, K is the total real capital
stock, L is the total employment, and M is the total cost of materials, electric and fuels
divided by a respective deflator. We consider the year 2004 for our analysis, but note
that other years produce similar results.

For the year 2004 (the most recent year available), we have n = 473 firms. Our
estimate of λ that is significantly less than unity (0.0016) and indistinguishable from
zero when considering the bootstrapped standard error (0.7271). This does not imply
that the regression is poor. In fact, the R2 of this regression is in excess of 0.90. However,
we caution that the results of this exercise may be suspect given what we found in our
simulations. Table 9 gives the descriptive statistics of the efficiency estimates for each
estimation. The results are striking. Here we see that the minimum and maximum
efficiency score for FLW are the same to four decimal places. Each of the values here
show the efficiency score to be equal to 0.9998 for each observation. It is difficult to
believe that all firms are (nearly) perfectly efficient. At the same time, KSW show that
the efficiency scores go from 0.0774 to 0.7621. It is obvious that these results conflict
one another. Our belief, based on our Monte Carlo simulations, is that neither is likely
correct. This is a prime example of why it is problematic to conduct efficiency analysis
when the estimated value of λ is significantly less than unity.
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5.3 Forestry data

Our final example concerns a production function for the timber industry. Specifically,
we take the data from Lien et al. (2007), hereafter LSB, and estimate output as a
function of labor, forest area cut and capital. These data come from the Sample Survey
of Agriculture and Forestry, compiled by Statistics Norway in 2004. All data are for the
year 2003 and the sample consists of n = 3249 active forest owners. Output is measured
as the annual timber sales from the forest. Labor is obtained as the hours worked by
the owner, his/her family or hired labor plus the hours worked by contractors. Forest
area cut is measured in hectares. This variable only includes the total hectares cut, not
the total number of hectares the owner possesses. Finally, capital is an estimate of the
value of the increment from the forest.

The results from the nonparametric regression of output on labor, forest area cut
and capital can be found in Table 8. Here we see that this model produces the highest
goodness-of-fit measure of our three empirical data sets (R2 = 0.9339). The next point of

interest from the table is λ̂, which is close to unity (1.2222), with bootstrapped standard
error 0.5157. This roughly corresponds to scenarios s1 and s4 from above. Recall that
in these scenarios, FLW did a better job at estimating the lower end of the distribution
and KSW did a better job at estimating the higher end of the distribution of efficiency
scores. Table 9 gives us a description of the efficiency scores. First, note that the
minimum efficiency score shown by KSW (0.1524) is much smaller than that reported
by FLW (0.5518). Given what we have seen from above, we believe that KSW severely
underestimates the true efficiency of this particular farmer. At the same time, both the
median and the upper quartile (Q3) are very different between the two estimators (≈ 0.5
each). It is also likely that KSW underestimates these efficiency scores as well. However,
at the high end, both estimators give similar efficiency scores for the top performer and
we believe that KSW provides more reliable scores for this particular observation.

6 Conclusion

In this paper, we have attempted to provide a careful comparison of two efficiency esti-
mators. The first estimator, by FLW improved upon past SFA estimators, by estimating
the conditional mean nonparametrically. The estimator by KSW, improved upon past
DEA estimators, by introducing asymptotics via bootstrapping. Both approaches are
well studied in the literature, but little is known about their relative performance against
one another.

We first gave a brief description of each method and discussed their methodological
differences. We then used an extensive set of Monte Carlo simulations to determine when
each estimator performed best. We found that when the variation ratio of efficiency to
noise was large, the KSW estimator performed very well with all measures (noting that
KSW assumes the absence of noise). Alternatively, when that ratio was small, neither
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estimator did a very good job at estimating efficiency or efficiency ranks. When the ratio
was near unity, we saw benefits of both the KSW and FLW approaches for particular
observations of interest. Further, we provided a four step procedure to suggest where,
when and how to perform efficiency estimation in a cross-sectional setting with a single
output. We hope that this proves to be valuable to academic researchers as well as
practitioners. Finally, we used the methods in three separate empirical exercises. Each
of the exercises could be compared back to our simulations and we were able to provide
some information of the “potential” reliability of each of the estimates.

We hope that the information provided in this paper can pinpoint some of the per-
ceived problems associated with efficiency analysis as pointed out by Stone (2002) and
others. Efficiency analysis is a large and growing field and authors need to be aware of
where and when to use particular estimators. Failing to go through these checks could
lead to estimates which are essentially meaningless. Policies based on these estimates
could lead to detrimental outcomes.
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Table 1: Combinations of error and inefficiency used in the Monte Carlo simulations

σu = 0.01 σu = 0.05

σv = 0.01 s1: λ = 1.0 s2: λ = 5.0
σv = 0.05 s3: λ = 0.2 s4: λ = 1.0
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Table 2: Finite sample performance of the efficiency estimates under a Cobb-Douglas
production technology.a

ECAb, Technical Efficiency

95% CI Bias RMSE Upward Biasc Correlationd

FLWe KSW FLW KSW FLW KSW FLW KSW FLW KSW

s1: σv = 0.01, σu = 0.01, λ = 1

n=50 0.92 0.46 −0.0034 −0.0098 0.0044 0.0098 0.3200 0.2000 0.4335 0.3072
n=100 0.95 0.34 −0.0030 −0.0115 0.0039 0.0115 0.3200 0.1600 0.4485 0.3603
n=200 0.96 0.24 −0.0031 −0.0136 0.0591 0.1166 0.3150 0.1100 0.4623 0.4001

s2: σv = 0.01, σu = 0.05, λ = 5

n=50 0.92 0.72 −0.0107 0.0028 0.0133 0.0049 0.2800 0.4400 0.7616 0.5978
n=100 0.94 0.62 −0.0127 −0.0023 0.0132 0.0035 0.2100 0.3500 0.7846 0.6884
n=200 0.94 0.49 −0.0148 −0.0057 0.0148 0.0057 0.1600 0.2700 0.8026 0.7494

s3: σv = 0.05, σu = 0.01, λ = 0.2

n=50 0.78 0.22 −0.0379 −0.0584 0.0379 0.0584 0.0200 0.1000 0.1216 0.0882
n=100 0.85 0.14 −0.0331 −0.0715 0.0331 0.0715 0.0200 0.0600 0.1200 0.0987
n=200 0.88 0.09 −0.0278 −0.0831 0.0278 0.0831 0.0250 0.0400 0.1206 0.1042

s4: σv = 0.05, σu = 0.05, λ = 1

n=50 0.92 0.34 −0.0134 −0.0318 0.0196 0.0318 0.3400 0.2600 0.4563 0.3528
n=100 0.95 0.24 −0.0092 −0.0476 0.0160 0.0476 0.3600 0.1700 0.4675 0.3885
n=200 0.96 0.16 −0.0059 −0.0621 0.0124 0.0621 0.3950 0.1100 0.4694 0.4110

a A Cobb-Douglas production function: yi = xα
1i · xγ−α

2i exp (vi − ui), γ = 1.0, α = 1/3,
u ∼ N+ (0, σu);

b Empirical Coverage Accuracy is the share of true technical efficiencies that are within bounds
of predicted 95 percent confidence interval for estimated technical efficiency. Reported in this
table is the median of such shares across all Monte Carlo simulations;

c Upward Bias is the share of predicted technical efficiencies strictly larger than the true ones.
The desired value of upward bias is 0.5. The values less (greater) than 0.5 indicates systematic
underestimation (overestimation) of technical efficiencies. Reported in this table is the median
of such shares across all Monte Carlo simulations;

d Kendall correlation coefficient between predicted and true technical efficiencies. Reported in
this table is the median of such coefficients across all Monte Carlo simulations;

e FLW represents the SFA estimator. KSW represents the DEA estimator..
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Table 3: Finite sample performance of the efficiency estimates under a constant
elasticity of substitution production technology.a

ECAb, Technical Efficiency

95% CI Bias RMSE Upward Biasc Correlationd

FLWe KSW FLW KSW FLW KSW FLW KSW FLW KSW

s1: σv = 0.01, σu = 0.01, λ = 1

n=50 0.92 0.44 −0.0045 −0.0109 0.0052 0.0109 0.2800 0.2000 0.4498 0.3085
n=100 0.94 0.31 −0.0040 −0.0125 0.0045 0.0125 0.2800 0.1400 0.4582 0.3671
n=200 0.96 0.21 −0.0040 −0.0146 0.0650 0.1210 0.2700 0.1000 0.4672 0.4015

s2: σv = 0.01, σu = 0.05, λ = 5

n=50 0.92 0.70 −0.0120 0.0015 0.0142 0.0046 0.2200 0.4000 0.7796 0.6016
n=100 0.92 0.59 −0.0148 −0.0033 0.0151 0.0039 0.1700 0.3200 0.8012 0.6912
n=200 0.92 0.47 −0.0168 −0.0069 0.0168 0.0069 0.1300 0.2400 0.8141 0.7516

s3: σv = 0.05, σu = 0.01, λ = 0.2

n=50 0.78 0.22 −0.0397 −0.0605 0.0397 0.0605 0.0200 0.1000 0.1135 0.0890
n=100 0.85 0.14 −0.0334 −0.0729 0.0334 0.0729 0.0200 0.0600 0.1139 0.0933
n=200 0.88 0.09 −0.0280 −0.0851 0.0280 0.0851 0.0250 0.0400 0.1201 0.1057

s4: σv = 0.05, σu = 0.05, λ = 1

n=50 0.92 0.34 −0.0157 −0.0323 0.0209 0.0323 0.3200 0.2600 0.4661 0.3528
n=100 0.95 0.24 −0.0105 −0.0486 0.0167 0.0486 0.3500 0.1700 0.4683 0.3883
n=200 0.96 0.15 −0.0068 −0.0633 0.0133 0.0633 0.3800 0.1050 0.4724 0.4137

a A constant elasticity of substitution production function: yi =

[βxρ
1i + (1− β)xρ

2i]
γ/ρ

exp (vi − ui), γ = 1.0, β = 2/3, ρ = 0.5, u ∼ N+ (0, σu);
b Empirical Coverage Accuracy is the share of true technical efficiencies that are within bounds
of predicted 95 percent confidence interval for estimated technical efficiency. Reported in this
table is the median of such shares across all Monte Carlo simulations;

c Upward Bias is the share of predicted technical efficiencies strictly larger than the true ones.
The desired value of upward bias is 0.5. The values less (greater) than 0.5 indicates systematic
underestimation (overestimation) of technical efficiencies. Reported in this table is the median
of such shares across all Monte Carlo simulations;

d Kendall correlation coefficient between predicted and true technical efficiencies. Reported in
this table is the median of such coefficients across all Monte Carlo simulations;

e FLW represents the SFA estimator. KSW represents the DEA estimator..
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Table 4: Finite sample properties of λ̂ under a Cobb-Douglas
production technology.a

Size of the test

λ̂i − λi (λ̂i − λi)
2 at α levelb

median IQR median α = 1% α = 5% α = 10%

s1: σv = 0.01, σu = 0.01, λ = 1

n=50 0.5629 1.0838 0.4006 0.0145 0.0545 0.1040
n=100 0.4280 0.7819 0.2282 0.0105 0.0415 0.0884
n=200 0.4066 0.5981 0.1924 0.0161 0.0537 0.1069

s2: σv = 0.01, σu = 0.05, λ = 5

n=50 −1.3368 2.8774 4.0912 0.0125 0.0529 0.0979
n=100 −1.1435 2.0947 2.3719 0.0095 0.0484 0.0868
n=200 −0.8765 1.6037 1.2408 0.0145 0.0464 0.0863

s3: σv = 0.05, σu = 0.01, λ = 0.2

n=50 0.9956 0.9488 0.9913 0.0126 0.0537 0.1054
n=100 0.7728 0.5979 0.5973 0.0151 0.0563 0.0996
n=200 0.5994 0.4601 0.3592 0.0087 0.0471 0.0952

s4: σv = 0.05, σu = 0.05, λ = 1

n=50 0.4958 1.0889 0.3368 0.0055 0.0415 0.0855
n=100 0.2627 0.7710 0.1617 0.0130 0.0586 0.1088
n=200 0.1581 0.5498 0.0846 0.0136 0.0522 0.0989

a A Cobb-Douglas production function: yi = xα
1i ·

xγ−α
2i exp (vi − ui), γ = 1.0, α = 1/3, u ∼ N+ (0, σu);

b Size of the test for the null that estimated value of λ is equal to the
true value of λ. We use 500 bootstrap replications in each of our
2000 Monte Carlo simulations.
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Table 5: Finite sample properties of λ̂ under a constant elas-
ticity of substitution production technology.a

Size of the test

λ̂i − λi (λ̂i − λi)
2 at α levelb

median IQR median α = 1% α = 5% α = 10%

s1: σv = 0.01, σu = 0.01, λ = 1

n=50 0.6296 1.1817 0.4571 0.0111 0.0453 0.0850
n=100 0.4849 0.8343 0.2745 0.0145 0.0511 0.0952
n=200 0.4349 0.6412 0.2128 0.0161 0.0614 0.1172

s2: σv = 0.01, σu = 0.05, λ = 5

n=50 −1.0636 3.3007 4.1587 0.0125 0.0507 0.1009
n=100 −0.7875 2.5632 2.4105 0.0135 0.0556 0.1093
n=200 −0.6807 1.7407 1.1920 0.0120 0.0531 0.1138

s3: σv = 0.05, σu = 0.01, λ = 0.2

n=50 1.0356 0.9705 1.0724 0.0086 0.0499 0.0943
n=100 0.7696 0.6270 0.5922 0.0096 0.0494 0.0984
n=200 0.5977 0.4284 0.3573 0.0103 0.0405 0.0893

s4: σv = 0.05, σu = 0.05, λ = 1

n=50 0.5690 1.1489 0.4275 0.0121 0.0564 0.1058
n=100 0.2881 0.7917 0.1716 0.0141 0.0552 0.1035
n=200 0.1465 0.5706 0.0900 0.0141 0.0510 0.1081

a A constant elasticity of substitution production function:

yi = [βxρ
1i + (1− β)xρ

2i]
γ/ρ

exp (vi − ui), γ = 1.0, β = 2/3, ρ = 0.5,
u ∼ N+ (0, σu);

b Size of the test for the null that estimated value of λ is equal to the
true value of λ. We use 500 bootstrap replications in each of our
2000 Monte Carlo simulations.
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Table 6: Relative finite sample performance of the efficiency
estimates at the 5th, 50th, and 95th percentiles of the effi-
ciency distributiona

σu = 0.01 σu = 0.05
FLW ≈ KSW <Truth FLW < KSW ≈ Truth
5: FLW 5: KSW

σv = 0.01 50: FLW 50: KSW
95: KSW 95: KSW
FLW ≈ KSW <Truth FLW ≈ KSW < Truth
5: FLW 5: FLW

σv = 0.05 50: FLW 50: FLW
95: KSW 95: KSW

a FLW represents the SFA estimator. KSW represents the DEA
estimator.

Table 7: Reliability of efficiency rankingsa (same conclusion
for both FLW and KSW estimators)

σu = 0.01 σu = 0.05
5: fair 5: good

σv = 0.01 50: poor 50: good
95: fair 95: good
5: poor 5: fair

σv = 0.05 50: poor 50: poor
95: poor 95: fair

a FLW represents the SFA estimator. KSW represents the DEA
estimator.
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Table 8: Estimates from the first stage regression of the
FLW estimatora

R2b λ σλ
c σu σv µ

Data 1 0.8235 4.0961 1.3206 0.4336 0.1059 0.3460
Data 2 0.9139 0.0016 0.7271 0.0003 0.1693 0.0002
Data 3 0.9339 1.2222 0.5157 0.1697 0.1388 0.1354

a FLW represents the SFA estimator.
b R2 of the first stage regression in FLW is defined as the Kendall
correlation coefficient between the predicted and true output.

c σλ is calculated via 1000 bootstrap replications.

Table 9: Technical efficiency descriptives

Min. Q1 Median Mean Q3 Max.

Data 1

FLW 0.3131 0.6180 0.7627 0.7288 0.8597 0.9620
KSW 0.2796 0.6438 0.7426 0.7325 0.8829 0.9633

Data 2

FLW 0.9998 0.9998 0.9998 0.9998 0.9998 0.9998
KSW 0.0774 0.1481 0.1725 0.1792 0.1996 0.7621

Data 3

FLW 0.5518 0.8641 0.8852 0.8774 0.9075 0.9778
KSW 0.1524 0.3454 0.3834 0.3871 0.3932 0.9638

a FLW represents the SFA estimator. KSW represents the DEA
estimator.
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Table 10: Correlation coefficients between FLW and KSW
efficiency estimates

Pearson Kendall Spearman

Data 1 0.8653 0.6722 0.8121
Data 2 0.6494 0.5726 0.7597
Data 3 −0.8735 −0.6131 −0.7926

a FLW represents the SFA estimator. KSW represents the DEA
estimator.
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Figure 1: Distributions (estimated kernel densities) of 5th, 50th, and 95th percentiles of
technical efficiency estimates under a Cobb-Douglas (yi = xα

1i ·xγ−α
2i exp (vi − ui), γ = 1.0,

α = 1/3, u ∼ N+ (0, σu)) production technology.
Four scenarios:
s1: σv = 0.01, σu = 0.01, λ = 1;
s2: σv = 0.01, σu = 0.05, λ = 5;
s3: σv = 0.05, σu = 0.01, λ = 0.2;
s4: σv = 0.05, σu = 0.05, λ = 1. 36
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Figure 2: Distributions (estimated kernel densities) of 5th, 50th, and 95th percentiles
of technical efficiency estimates under a constant elasticity of substitutionm (yi =

[βxρ
1i + (1− β)xρ

2i]
γ/ρ exp (vi − ui), γ = 1.0, β = 2/3, ρ = 0.5, u ∼ N+ (0, σu)) pro-

duction technology.
Four scenarios:
s1: σv = 0.01, σu = 0.01, λ = 1;
s2: σv = 0.01, σu = 0.05, λ = 5;
s3: σv = 0.05, σu = 0.01, λ = 0.2;
s4: σv = 0.05, σu = 0.05, λ = 1.
FLW represents the SFA estimator. KSW represents the DEA estimator.
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Figure 3: Distributions (estimated kernel densities) of 5th, 50th, and 95th percentiles of
ranks of technical efficiency estimates under a Cobb-Douglas (yi = xα

1i ·xγ−α
2i exp (vi − ui),

γ = 1.0, α = 1/3, u ∼ N+ (0, σu)) production technology.
Four scenarios:
s1: σv = 0.01, σu = 0.01, λ = 1;
s2: σv = 0.01, σu = 0.05, λ = 5;
s3: σv = 0.05, σu = 0.01, λ = 0.2;
s4: σv = 0.05, σu = 0.05, λ = 1.
FLW represents the SFA estimator. KSW represents the DEA estimator.
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Figure 4: Distributions (estimated kernel densities) of 5th, 50th, and 95th percentiles
of ranks of technical efficiency estimates under a constant elasticity of substitution
(yi = [βxρ

1i + (1− β)xρ
2i]

γ/ρ
exp (vi − ui), γ = 1.0, β = 2/3, ρ = 0.5, u ∼ N+ (0, σu))

production technology.
Four scenarios:
s1: σv = 0.01, σu = 0.01, λ = 1;
s2: σv = 0.01, σu = 0.05, λ = 5;
s3: σv = 0.05, σu = 0.01, λ = 0.2;
s4: σv = 0.05, σu = 0.05, λ = 1.
FLW represents the SFA estimator. KSW represents the DEA estimator.
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Distributions of efficiency indices, KT Data , N = 81
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Distributions of efficiency indices, LSB Data , N = 3248
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Figure 5: Distributions of technical efficiency estimates. FLW represents the SFA esti-
mator. KSW represents the DEA estimator.
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