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Summary

Basic causality is that a cause is present or absent and that the effect follows with a
success or not. This happy state of affairs becomes opaque when there is a third variable
that can be present or absent and that might be a seeming cause. The 2 x 2 x 2 layout
deserves the standard name of the ETC contingency table, with variables Effect, Truth
and Confounding and values {S, -S}, {C, -C}, {F, -F}. Assuming the truth we can find
the impact of the cause from when the confounder is absent. The 8 cells in the crosstable
can be fully parameterized and the conditions for a proper cause can be formulated, with
the parameters interpretable as regression coefficients. Requiring conditional
independence would be too strong since it neglects some causal processes. The Simpson
paradox will not occur if logical consistency is required rather than conditional
independence. The paper gives a taxonomy of issues of confounding, a parameterization
by risk or safety, and develops the various cases of dependence and (conditional)
independence. The paper is supported by software that allows variations. The paper has
been written by an econometrician used to structural equations models but visiting
epidemiology hoping to use those techniques in experimental economics.
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Introduction

Experimental economics may sometimes borrow techniques from epidemiology but the
different fields may use different terminologies so that the translation may not be too
easy. There may also be hidden assumptions that make sense in one field but no sense in
the other one. The following is a case in point. Schield (1999, 2003), “Simpson’s
paradox and Cornfield’s conditions”, gives an interesting if not illuminating discussion
on causality versus confounding that would be of general interest to economics as well.
However, after closer investigation there appear to be some assumptions that probably
were all too obvious for the epidemiologists but that at first escaped the attention of this
author who is a mere econometrician trained in “structural equations modelling”. The
general setting is interesting in itself. Pearl (2000) explains that economics has a long
tradition of handling causality and indeed using those structural equations models. Thus
both fields of study handle causality, as all scientists must. Yet, the different conventions
and uses of language can still cause problems of translation. The following tries to
bridge the communication gap. The following discussion thus is only for scientists who
cross over. Scientists working in only their own field of study and not the other may not
be particularly enticed by this effort at translation since they will not experience any
problems in communication. Also, this article has been written by an economist and the
examples will be from epidemiology. The discussion is directed at the fellow cross-overs
or the high-potentials for doing so. Economists who have never seen the terminology
before may need to exercise some patience. And epidemiologists crossing over might be
abhorred by this economic look at their subject.

The simplest case in causality and confounding is when the variables for effect, causality
and confounding have only 2 values each, i.e. “present” versus “absent”, which gives a 2
x 2 x 2 contingency table. The data are mere counts. Thus we have nominal data
collected in a contingency table. Since it is useful to have easy mnenomics and since
“causality” and “confounding” both start with a “c”, the causality variable will be called
“truth”. Hence the standard layout is the ETC crosstable with Effect, Truth and
Confounding as the variables, and with entries {Success, ~Success}, {Cause, “Cause}
and {Confounder, “Confounder} as the values that the variables can take.

For clarity and completeness it must be emphasized that this discussion thus excludes
the 2 x 2 x 2 contingency table where there would be one cause and two common
effects, or one effect and two confounders, or two effects and one confounder, or just
three variables whatsoever where the researcher is merely interested in some association.
Also excluded is the 2 x 2 x 2 contingency table where the effect is an incidence count
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and another dimension contains person-years so that those two dimensions are merely
used to calculate the proper effect variable of incidence rates: since that table comes
down to the 2 x 2 case.

It is also assumed that the causal relations are rather simple. The question on the table
(in a double sense) is just the direct line from the other two variables to the effect, all
other possibilities excluded. Normally the researcher has a theory of the problem at hand
and this should help the researcher to determine the direction of causation. For example,
when the Central Bank raises the rate of interest then the mortgage rate will usually rise
as well but it is less likely that when you personally switch to another mortgager with a
lower rate that the Central Bank will follow too. In the relation between smoking and
lung cancer, it may be that the effect (lung cancer) may cause people to smoke, but
theory will suggest that this is not the most likely order of events except for a few cases
where it indeed might happen in that way. It may also be that all three variables derive
from a joint common cause. But that would introduce a fourth variable and that is not the
current problem.

The problem setting is that the researcher has no easy way to determine the time
sequence of events. The data may be aggregated over time so that all sequential detail
might be lost. The effect is unquestionable but there would be doubt about the cause. We
may apply the table to a randomized controlled trial but we might also apply it to an
observational study. The limitations to intervention can be practical or moral, in that you
would not willingly subject an economy to huge inflation or unemployment, or subject a
person to some disease. Hence cause and confounder are observed simultaneously and
the key question is whether the statistical proportions allow us to determine which of the
two is the #true cause. With Y = E as the variable that must be explained and the
explanatory variables X and Z, then one tries both ETC = EXZ and ETC = EZX, and sees
whether the statistical proportions give the confounder away. In this paper we tackle this
problem by assuming that we know the true cause and then see whether it indeed can be
detected. Our approach is logical, in that we analyze the data as they are, in terms of
categories and properties, and we don’t consider the question that the quantities or
properties are so close together that we would need assumptions on theoretical statistical
distributions. We call the confounder the “confounder” since we have to look to the
situation where it is absent to find the true impact of the cause.

We will take the position of a student who is used to the 2 x 2 table and who is suddenly
exposed to the shock of a third variable. Our position is a bit like the reader of
Kleinbaum et al. (2003), “ActivEpi”. Studying this book, the student has been using 2 X
2 tables for 9 chapters and then in chapter 10 suddenly meets a third variable. The shock
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might cause that the student doesn’t understand anything anymore. The student has been
creating explanations and assumptions of himself or herself for 9 chapters to make sense
of the analyses but suddenly is confronted with confounding, which is not only the title
of chapter 10 but also the apt description of the student’s new state of mind. For
epidemiologists these 2 x 2 x 2 tables may be rather complex and not quickly discussed,
or, those might be seen as too simple, only drawn at home but not quickly stated in
papers for fear of appearing simplistic. Admittedly, issues of didactics and clarity are
probably personal to a high degree. It would seem though that clarity might increase in
general if the 2 x 2 x 2 table already was discussed in chapter 2 and was more often
stated in the journals. The following discussion is a suggestion how those chapters 2
might look like for books for cross-over economists.

With reference to Schield (2003), “Simpson’s paradox and Cornfield’s conditions”,
Appendix A discusses the Simpson paradox and Appendix B discusses Schield’s
example of Sir R.A. Fisher on smoking and confounding, and Cornfield’s conditions.
The conditions by Cornfield et al. are sufficient to block a Simpson paradox but they
may be too strong. Appendix C derives the parameters of the crosstable using safety
parameters. Appendix D derives the parameters of the table using average risk
parameters. Appendix E discusses the risk difference and the Schield plot. Appendix F
discusses an example from Pearl (2000) that uses two causes instead of one. Appendix
G list the routines in Mathematica.

This paper is part of the project Colignatus, Th. (2007¢), “Elementary statistics and
causality” (ESAC).

The 2 x 2 x 2 case

The basic causal model is a 2 x 2 x 2 contingency table in the order Effect, Truth,
Confounding (ETC), where Truth reflects the true cause and Confounding a true
confounder. We assume to know the truth and nothing but the truth so we need not
worry about whether things are different than stated. The following is a purely
theoretical numerical example.

CT[Default, "ETC"]

Cause - Cause
S Confounder 75 6
uceess - Confounder 7 5
Confounder 333 386
- Success

- Confounder 41 147
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Note the nomenclature. We already mentioned the point in the Introduction and repeat it
here because it appears to be rather important. For a real variable x we are used that it
has values like 3.45 and 1006.4, and we may easily write P(y | x) for the conditional
probability and be sloppy about the distinction between the random variable x and the
values that it takes along the real axis. Now for nominal variable Effect we have
{Success, “Success}, for Truth we have {Cause, ~Cause} and for Confounding we have
values {Confounder, = Confounder}. We can take just single letter symbols too. For
1dentification we take the letter “F” for “ConFounder”. Thus we have variables E, T,
C(-ing) versus values S, C, F and 8 combinations with their negations. But now it makes
quite a difference whether we write P[E | T] or P[S | C] since the first concerns the
variables while the second concerns just two of the values that can be taken.

The numbers and their labels can be shown in a square, where we use capitals for
presence and lower case letters for absence. The rows and columns are like in the table
but the confounder takes the inner diamond. It is conceivable to adjust the sizes of the
surfaces for the actual weights but this has not been programmed and we just print the

numbers.
ETCSquare][];
SCf Scf
7 5
75 6
SCF| ScF
sCF | scF
333 386
41 147
sCf scf
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A taxonomy of confounding

There appears to be a rather sizeable literature on trying to find a good definition for
what “true confounding” is, see for example Pearl (1998), that has become Chapter 6 in
Pearl (2000). The alternative approach is not to worry about “true confounding” but to
create a list of all possible sources for confusion. We actually need a taxonomy of
confounding like we already have books on logical fallacies, with catching names like
“post hoc ergo propter hoc” (when there is smoke then there is fire), “ad hominem”
(playing the person and not the ball), “petitio principii” (begging the question), etcetera.
Above we mentioned already the core reason why we called one variable confounding,
i.e. that we by assumption know that one variable with one value is the true cause so that
the other variable must be confounding, so that to find the impact of the cause we have
to consider the situation where the confounder is absent. If we didn’t have this certainty
then we might be unsure about the order EXZ or EZX (“confusus directionis”). But we
might also be unsure about the size of the effect (“confusus magnitudinis’). We can also
identify some other confusions as well: (a) mixing up the ETC analysis with other kinds
of problems in 2 x 2 x 2 tables (“confusus definitionis”), such as the case of one cause
and two effects, (b) mixing up variables and values (“confusus nomenclaturis”). Below
we will meet some other aspects where we can be confounded on, and collect them in a
basket.

The model

The model consists of the 8 parameters that make the entire table. We can separate the
total number 7, and consider the remaining 7 probabilities. All these might be taken as
constant and thus worthy of the label of being a parameter in the problem at hand. All
this would be a happy state of affairs. What spoils this paradise are two snakes: (1) the
proportions of the confounder may not be stable, (2) there are always the “other causes”
(“causes not mentioned”). Given those snakes we want to make sure that our parameters
are really constant. One way to do so is to use conditional probabilities.

The following definitions are useful, with s, ¢ and f the marginal probabilities, R and B
the influence of the cause on the success and p and ¢ some important conditional
probabilities. (Say, “g”, from “quiet, not-confounding”.)
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Variable  Meaning Variable Meaning Variable Meaning
S Success K P[S] R P[S | C]
C Cause c P[C] B P[S |- C]
F Confounder f P[F] p P[C | F]
q P[C |- F]

Note that generally p > q since F will be a real confounder. Otherwise you would relabel the case so that bad weather instead of
good weather becomes the confounder. It is less useful to consider P[F |C] since then we would regard F and S as joint effects
of C, while for a strong confounder we would not have the idea that it would depend upon C.

The “probability to get a success given the cause” is often called a “risk” since the
success is often an outcome like a disease. If we take the perspective of the 2 x 2 basic
world where we had only causes and effects, we would take R = P[S | C] as the
“parameter” that gives the size of the risk and B = P[S | (] as the “parameter” that
gives the size of the background risk of “other causes”. We would take them as constant
and then regard them as the driving forces behind the whole process. We would compare
R and B to the seeming risks from the confounder Rr and Br. Note indeed that the
marginal probability of the success can be decomposed as the background risk plus the
average increment due to the cause, as holds in the 2 x 2 world and still holds in the 2 x
2 x 2 world.

s=P[S]=P[S, C] +P[S, ~C] =Rc+B(1-c)=c(R-B)+B

s =P[S]=P[S, F]+P[S, =F] =Rp f+Br (1-f)= f (Rr — Br) + Br

ETCTable["ET", c, {R, B}]

Cause - Cause Total
Success cR B(-¢) B(l-c¢)+cR
- Success c(l-R) (1-B)(1-0¢) ¢cB—-B-cR+1
Sum c 1-¢ 1

However, in statistical terms R is an average. Of course still R =P[S| C] = P[S, C]/ P[C]
but now for both numerator and denominator we find a statistical dependence upon
parameters p and q.

c=P[CI=P[C|F1f+P[C|~F]I(1-)=pftq(l-))
P[S, C]=P[S, C, F1+P[S, C, ~F] =1lp, q]

As a result of weighing by the probabilities p and ¢ that are related to the confounder we
find: (a) R and B are only averages and not constant over time, (b) there arise seeming
risks so that the success seems to be related to the confounder. The “confusus
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magnitudinis” may come along with the “confusus directionis”. Due to the confounder,
we cannot just take the average, have to consider the presence of /" and —F as well, their
relative proportions and their relation to the cause.

The situation itself creates another possible confusion. Let us call it the “confusus
contributionis”. It may well be that the confounder has no direct influence on the
disease, so that it is not a causal factor per se. But it may very well be that the
confounder has a direct influence on the proportion of the population at risk. One might
call this a causal influence as well. Or not. It depends upon the situation and our state of
confusion. For some events it may come as a surprise that we need to control for some
characteristic and then that characteristic might be seen as a “causal factor”. For some
other events it might be obvious that it matters how the risk population is composed (e.g.
males versus females) and then we might not think of this as “causal factor” but rather as
a Simpson paradox.

The distribution of Truth and Confounding (summing over Effect) thus has parameters
or variables p and g (parameters only when those are statistical regularities).

ETCTable["TC", f, {p, q}]

Cause - Cause Total
Confounder fr f-p S
- Confounder 1-/f)q (1-Hd-q 1-f
Sum Sp+-Nq —fr+fa-q+1 1

Note that p = ¢ = ¢ if and only if ¢ and f are statistically independent (check the inner
matrix). Since ¢ is the independent factor, statistical independence means that we can
substitute p = ¢ = ¢. When there is no statistical independence then we may eliminate
one variate, and the question arises whether this should be p, ¢ or f It appears most
useful to eliminate p since we may take ¢ and the absence of the confounder as the norm
situation while it is useful to control f.

Solve[c == pf + q(1 = f), p]
fa-
{lr- =51

From our definition of the case we must regard the distribution of truth, i.e. {c, 1 - ¢} for
{C, — C}, as the “driving” distribution, either from observation or controlled
(influenced) by experiment. If there would be a causal relationship between cause and
confounder (e.g. a common cause) so that p and ¢ indeed are parameters then we would
make another model. In the simplest case f has its own causes so that the relation
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between ¢ and fis only “statistical”. It would be too simple to assume that Truth and
Confounding are distributed independently, and we allow for some statistical random
effects. The distributions would rather be such that we might also think that the
confounder is the cause, so that we really suffer the question whether we can determine
conditions such that a seeming cause can be exposed as a confounder.

Notation in Mathematica

In the discussion below there will be computer output from routines in Mathematica.
The following is a small legend for reading that output. The R and B are on the left hand
side while p and g are on the right hand side. If the latter would deserve the name of
being parameters (constant, unchanging) then one might consider that the Confounder
caused the Cause. Yet, for now these are just statistical observations, just as the
mentioned risks.

ETCPrTable[]
Risk Probability
1 ConditionalPr| Success || Cause| ConditionalPr| Cause || Confounder|
2 ConditionalPr| Success || = Cause]| ConditionalPr| Cause || = Confounder]|

Note that the above must be read as expressions for constants flx | y,] and not as for variables flx | y]. Since Truth ranges over
{Cause, ~Cause}, the above conditional probabilities don’'t depend upon Truth but upon its value Cause and ~Cause.

Parameters from further conditionalizing

When we conditionalize further then we may find quantities that we might assume to be
really constant so that they deserve the status of being a parameter.

The parameter of interest actually is » = P[S | C, —F], the conditional risk when the
confounder is absent. Similarly, b = P[S | =C, —F] for the background risk. If » = 0 then
the cause would be a “simple cause”, meaning that the effect only arises when the cause
is present.

Coming from a two-variable world we are confounded about the size of the effect when
R+rand B b.

This shows a crucial distinction between the ETC contingency table and other kinds of
contingency tables. In other kinds of tables we have for example political preference for
“Party A”, “Party B” and Party C”, and then the change from one cell to another does
not necessarily have a causal connotation. For the ETC table the absence of the cause
and / or the confounder have implications of huge importance, since they allow the direct
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identification of the individual effects. This identification of course is under the
assumption that we know the truth, and in practice we have tables EXZ and EZX and
have to compare them. But for now we just have one ETC. Thus, in terms of confouding,
we now also have the “confusus causalitatis”, holding that we might confuse an issue of
mere association (any kind of contingency table) with an analysis of causality (the ETC
case). The Simpson paradox (Appendix A) works differently depending upon whether
we do a causal analysis in which the absence of the confounder has direct import or
whether we do an investigation into mere association.

Before delving deeper into the formulas it will be useful to do the basic statistical
analysis of the example contingency model, so that we can already recognize the
variables that we have been introducing here: n, s, ¢, f, p, ¢, 1, b, R, B, Rr and Bp.

The basic statistical analysis

The basic statistical analysis consists of identifying the proper conditional probabilities.
In the following output, there are three tables that give the border-matrices for two
variables only. Of the four tables, the second one gives a rated table that will require
some explanation below. The first table gives the relation between cause and effect that
gives the average R and B from our two-variable world. The fourth table gives the
seeming relation with seeming Rp and Rp that would arise if we would take the
confouder as the cause.

m This takes the defaul CT[Data] derived from the table that has been set above.
The routine also produces formal output, that is useful in this format for other
routines to recognize the output. We can run another small routine to translate
that output to human form. Note that you could easily suppress the formal
output by putting a colon behind the call. Presently it is useful to show all
output. There is also other output that we will discuss subsequently.

(res1 = Report[Example] = ETCStatistics[] // N) // MatrixForm

Matrix ETCStatistics["Cause"]

Cause - Cause Total
Success 82 11 93
= Success 374 533 907
Sum 456 544 1000

Matrix ETCStatistics["Cause, True, Ratio"]
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Cause - Cause Total
Success 0.035 0.025 0.06
- Success 0.205 0.735 0.94
Sum 0.24 0.76 1.

Matrix ETCStatistics["Confounder"]

Cause - Cause Total
Confounder 408 392 800
— Confounder 48 152 200
Sum 456 544 1000

Matrix ETCStatistics["Seeming"]

Confounder - Confounder
Success 81 12
- Success 719 188

Sum 800 200

Total
93
907
1000
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N - 1000.

NSuccess — 93.

NCause — 456.

NConfounder — 800.

MarginalPr(Success) — 0.093

MarginalPr(Cause) — 0.456

MarginalPr(Confounder) — 0.8

IndependentPr(Truth, Confounding) — False

ConditionalPr| (Success + — Confounder) || Cause| — False

ConditionalPr| (Success + — Confounder) || - Cause| — False

ConditionalPr| Success || Cause, = Confounder| — 0.145833

ConditionalPr| Success || = Cause, = Confounder| — 0.0328947

ConditionalPr| Success || Cause, Confounder| — 0.183824

ConditionalPr| Success || = Cause, Confounder| — 0.0153061
0.183824 0.0153061

0.145833 0.0328947 )

ConditionalPr| Success || Cause| — 0.179825

ConditionalPr| Success || = Cause| — 0.0202206

ConditionalPr| Cause || Confounder| — 0.51

ConditionalPr| Cause || = Confounder| — 0.24

ConditionalPr| Success || Confounder| - 0.10125

ConditionalPr| Success || = Confounder| — 0.06

RRisk(True) — 4.43333

RRisk(Cause) — 8.89314

RelativePr(Confounder) - 2.125

RRisk(Seeming) - 1.6875

Conditions — {True, True, True, True, True}

ConditionalPr| — Success || Cause, — Confounder| — 0.854167

ConditionalPr| = Success || = Cause, = Confounder| — 0.967105

ConditionalPr| = Success || Cause, Confounder| — 0.816176

ConditionalPr| — Success || = Cause, Confounder| — 0.984694

0.816176 0.984694 )

Risk —» (

Safety_’(0.854167 0.967105

. False False
SimpleCauseQ — ( )

False False

ETCSimpson - {Necessary — False, Sufficient » {True, True, False}}

Epidemiology concentrates on the relative risks. The true relative risk is 4.4 but due to

the confounder the average relative risk is 8.9. If we would be confused about what

would be the true cause then we would think that the average relative risk was 1.7.
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ETCRiskTable[resl]

Name Value Name Value Name Value
Cause r 0.145833 R 0.179825 Rf 0.10125
Background b 0.0328947 B 0.0202206 Bf 0.06
Difference r-b 0.112939 R-B 0.159604 Rf —Bf  0.04125
Ratio r/b 4.43333 R/B 8.89314 Rf /Bf 1.6875

In the output of the ETCStatistics routine we find these conditions tested (see also the
discussion below where the safety parameters are introduced):

(a) onrisk: (1) r>b,2Q)R>B, 3)p=q, (4 Rr = Br, (5)p/q = Rr / Br.

(b) on safety: {{w=0, v=1},{e=1-r=0o0rr =1, a=1-b=1orb=0}} (left
column should be 0, right column should be 1).

In this discussion the seeming relative risk is important since we should allow that we
don’t have EXZ but EZX. The average outcome on the seeming risk may be a give-away.
It might be confusing if we were to present both tables for EXZ and EZX in one
presentation so that it better to make separate runs (see below).

Regression coefficients

The identified risks can be compared to regression coefficients in a linear regression,
since they express the contribution of a single causal event to the success. Yet, the
discussion on regression coefficients is a bit more complex since events do not just come
all by themselves, and are always classified in a table in more dimensions. The
element-regression coefficients should also be distinguished from the vector-regression
coefficients that arise when a unit of 7ruth is observed, as the vector {c, 1 - ¢}. This is an
issue to return to later. For now the following points are useful to keep in the back of
your mind:

(1) When we have more observations, distinguished by time period (such as a year), then
it might make sense not to aggregate all data as s = P[S] = P[S, C] + P[S, =C] =Rc+ B
(1-¢)=c(R—-B)+B=+06cbut to run a regression like s; =8 + 9§ ¢; + € weighed by
the numbers. This would give the weighed risk coefficients or the weighed conditional
probabilities. That we can do this confirms that we can understand the conditional
probabilities as regression coefficients. The angle is important. (1a) We can further
develop the regression model with more variables and parameters. (1b) We can locate an
influence of time. Time is a “great confounder” and it would be usefully included in our
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analysis. (1c) Above regression is only on s and not on 1 - 5. Above regression with ¢, R,
B and the addition to 1 fully explains the situation, but perhaps including the error on 1 -
s gives a different estimate. If there are more values, also with confounding, it is useful
to observe the inner elements of the tables and not just the margins, and to also use those
observations. See the discussion on safety below.

(2) Of course the coefficients are unstable when we don’t have the true model with the
true fixed coefficients. This is why we would have this “confusus magnitudinis”.

(3) Bayesians tend to think in terms of conditional probabilities and create the joint
distributions from those. It may be that they just think in terms of regression coefficients.
That method only holds when you use the proper fixed coefficients.

(4) For Ordinary Least Squares (OLS) the regression coefficient is related to the
correlation coefficient by 6 = p o, / 0. Taking just Bernouilli we might take o, =
Vs (1-s) and o, = v c(1—c¢), and then have our psc. Again, it would not be stable
under confouding. And, again, this example would concern just a value of a variable and
not the variable itself, so we should be clear about what kind of correlation coefficient
we want.

Other parameters that cause a success

Above, we identified » and b by means of conditionalizing. We first did the basic
statistical analysis to show that this was a fruitful approach, and, to prevent that you
were lost in the formulas. Now that we have seen some data and statistics, it will be a
good moment to continue the formal analysis.

The data matrix contains two rows with a success, and we have only looked at one row,
where the confounder is not present. When we take the row where the confounder is
present as well then we might attribute the change of the risk just to that confounder.

m This takes the success part of the data matrix and conditionalizes it. This is the
small risk matrix that is printed in the output of the ETCStatistics routine. By
symmetry, the background risk when F is present is the r if we would take the
confounder as the real cause. The double-struck r gives the risk when both
factors are present.

{{ P[SI CI F]! P[S I - CI F]}’ {P[S I CI _'F], P[S I - CI _'F]}} == {{f, rF}; {r’ b}}

PS|C, F) PS|-C,F) (v orF
(P(SIC,ﬂF) P(SlﬁC,ﬁF))_(r b)
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For the current model it would be strange that © > r or 7z > b. The idea of F'is that it is a
confounder and thus has no real influence. If the differences from » and b are
importantly different from zero (and possibly even negative !) then a good reason needs
to be given. One obvious explanation is that the success has not been measured
correctly. But if the confounder e.g. is the distinction between Male and Female then one
can imagine group specific risks.

What about the absence of the effect ?

Epidemiology focusses on the success, the disease. Yet, half of the cells are about the
absence of the success. While writing this paper this author was for a long time entirely
focussed on understanding and re-creating what the epidemiologists were doing, and
thus focussed as well on the risks and not the safety. This tunnel vision might be called
the “confusus focis ad risces”. Taking some distance from the risks, it appears that these
safety parameters are important for a proper causal explanation.

m This takes the safety (or failure) part of the data matrix and conditionalizes it.
This is the small safety matrix that is printed in the output of the ETCStatistics
routine.

{{P[-S|C, F], P[-S|=C, F]}, {P[-S|C, =F], P[=-S | =C, =~ Fl}} ==
{{w, v}, {e, a}}
(P(—|S|C,F) P=S|-C,F) )_[w v)

P(=S|C,~F) P(=S|-~C,~F) e a

Let u = P[~C, —F] = P[—S, —~C, —F] + P[S, —~C, —F] so that dividing both sides by u gives
1=P[~S|~C, —~F] +P[S|—~C, ~F]. Hence a = 1 - b and in the same way we find that e =

1-r

What is important: (i) we now see that » and » have consequences with a safety
interpretation, (ii) that v and w may be more sensible parameters than rx and r. Those
may namely be related more to C and —C and less to this specific F.
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m This gives the part for —S. Substraction from the total gives the part for S. Note
that p can be eliminated as a function of ¢, f'and ¢. In fact, we now have
parameterized the whole contingency table (including the additition to 1).

ETCTable["-S|TC", {c, r, b}, {f, q}, {w, v}]

Cause - Cause
Confounder c-A=-Hgpw f(l - Hljﬂ)v
- Confounder 1-fHgd-n 1-1-HU-9q
Sum (1=-Ngd-A+e-A-Ngw  A=-b)A -1 -g)+f(1- L

We can also deduce R and B, see Appendix C and Appendix D:

ETCAverageRisksFromSafety{c, r, b}, {f, q}, {w, v}]

{_W+ (l—f)q(cr+w—1) il b(f—l)(q—l)+(—16_+cf(1—q)+q)(1—V)}

In the special case that p = ¢ = ¢ then:

R=r1-H+1-w)f
B=b(1-H+(1-vf

There are two cases to consider, identifiable as the columns in the small matrix of safety

parameters:

(1) When the cause is not present then the situation should be totally safe (right column).

m If Cis the only possible cause of .S and it is a simple cause that always has
effect then its absence should give full safety, v=a = 1.

m g =P[—~S|~C, ~F] =1 - b =background safety in total absence. If there is a
background risk such that b # 0 then the background safety is reduced by the
same amount.

m yv=P[=S| —~C, F] = safety (using “v” from Dutch “veiligheid”, the “s” already
taken).

m Normally v < a since including the confounder should reduce safety.

m [fthose equalities don’t hold, then normally v <1 and a <1, and then there
would be other factors that cause people to be less safe. If blocking C does not
enhance full safety then one wouldn’t call C a “simple cause” but rather a
“contributing factor”. To get a simple cause, we would redefine the absence of
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the cause as “absence of the original cause plus the presence of a truly effective
block for other causes”.

(2) The following are curious situations since the cause is present but there is no success
(left column).

m [f Cis a simple cause of S then w = e = 0. Note that e =0 means » = 1, another

condition for a simple cause.
m ¢=P[~S| C, ~F] = exceptional (no confounder)

m w=P[~S| C, F]= miraculous (“wunderbar”, the “m” normally is an integer)
(even the confounder present)

m Normally w < e since including the confounder should reduce safety.

m Normally w < v since including the cause should reduce safety (and it is
miraculous when w # 0).

m [f'those equalities don’t hold, and thus if the cause is present but the effect does
not show, then something might actually be blocking the cause. For a “simple
cause” we would redefine the cause as “unblocked cause”, and recalculate the
table. But if it concerns only a “contributing factor” then there is no miracle,
since that concept allows that the cause does not always result into a success.

In Appendix A we derive the necessary conditions for the Simpson paradox that b < r <
1 - v <1 -w, which translates too as w < v <1 - . For a causal process to get closer to
the simple causal model we would require that w - 0, v —» 1 and » —» 1. The causal
model requires that v —» 1 while the Simpson paradox requires that v — 0. Under normal
causal assumptions the Simpson paradox could not exist.

Reconstruction using safety

The former section mentioned that we have parameterized the whole 2 x 2 x 2 matrix.
See Appendix C for the actual deduction. The following shows how it works. From the
7 parameters and the summation to 1 the contingency table is created. It may be scaled
up by multiplication with some .

lis = SafetyToETCArrayi{c, r, b}, {f, q}, {w, v}];
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TableForm[lis, TableHeadings - CT["ETC", TableHeadings]]

Cause - Cause
Confounder c-1-Hpd-w (—c+fA-q)+q(1-v)
Success - Confounder (1- f)gr bl-H1-gq
Confounder (c—(1-f)q)w (—c+fd-q+qv
~ Success - Confounder (1-f)g(1-7) 1-5Hd-NH1-9

Contingency tables actually only contain natural numbers but we have disabled
a warning message on that. Note that in the output » == R reads not as a
declaration (where the LHS value is set) but as a condition that must evaluate
to True or False. The output contains other conditions that we will discuss
shortly.

(res = ETCStatistics[lis, N — False]) // Simplify // MatrixForm

Matrix ETCStatistics["Cause"]

Cause - Cause
Success -we+e—-(f-Dqg@r+w-1) b(f-D@g-D+C+f@-1)—-q(v—
= Success cw+(f-Dgr+w-1) (—c+f-fq+qv-b-1)(f-D(qg-
Sum c 1-c

Matrix ETCStatistics["Cause, True, Ratio"]

Cause - Cause Total
Success qr b-bq -qb+b+gqr
- Success q—qr b-D@-1 bg-1)—gr+1
Sum q l1-¢q 1

Matrix ETCStatistics["Confounder"]

Cause - Cause Total
Confounder c+(f-Dgqg —c+f-fq+q S
- Confounder qg-fq (f-D@-1 1-f
Sum c 1-c 1

Matrix ETCStatistics["Seeming"]

Confounder = Confounder
Success (c-q)v-m+f(g-Dv-qw+1) (f-D@G-1)-qn
= Success qv—-w)+cw-v)+f(—qv+v+gw) -(f-1)b@-D—-gr+1)

Sum f 1-f
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N1

NSuccess = b(f =1)(g=D+gr+cv—gv-—cw+qw—fV+q@r-v+w) -1
NCause - ¢

NConfounder — f

IndependentPr(Truth, Confounding) — i?— =0

/DD _

ConditionalPr| (Success + — Confounder) || Cause| — :

ConditionalPr| (Success - — Confounder) |[ = Cause| — Wﬂ)— =0
ConditionalPr| Success || Cause, = Confounder| — r
ConditionalPr| Success || = Cause, = Confounder| - b
ConditionalPr| Success || Cause, Confounder| - 1 —w
ConditionalPr| Success || = Cause, Confounder| —» 1 —v
l-w 1-v
Risk » ( )
r b

—wete=(f=1) g (r+w=1)
¢
b(=q f+f+g=D)=(c+[(g=1)=q) (=1)

c-1

ConditionalPr| Success || Cause| —

ConditionalPr| Success || = Cause| -
ConditionalPr[ Cause |[ Confounder| — #‘]—

ConditionalPr| Cause || = Confounder| - ¢

ConditionalPr| Success || Confounder| —

(c=q) v-w+f (g=Dv—g w+1)
f

ConditionalPr| Success || = Confounder| » —gb+b+qr

RRisk(True) —» %
. (D) (e =D+(f~1) g (rtw=1))

RRisk(Cause) > 50 D@ n-00-1

RelativePr(Confounder) - ”(/f—.;”q-

. . (c=q) =W+ [ (g=1) v—g w+1)
RRisk(Seeming) — T (g brbiqn)

—we+e—=(f=1) g (r+w=1) > b(=q f+f+q=D—(c+f(g-D-¢)(v=1) c=q >0 (=) v-w+f (bg
¢ - A S

C

Conditions — {r > b,
ConditionalPr| — Success || Cause, = Confounder| — 1 —r
ConditionalPr| = Success || = Cause, = Confounder| - 1 -5
ConditionalPr| — Success || Cause, Confounder| —» w
ConditionalPr| — Success || = Cause, Confounder| — v

Safety > [ "
aey_)(l—r l—b)

. w=0 v=1
SimpleCauseQ — [ )

r=1 b=0

b, BEarf gD (erf

ETCSimpson — {Necessary - b<r<l1l-v<1-w,Sufficient - {v >w, r> -
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ETCRiskTable[res] // Rationalize // Simplify

Name Value Name Value

—wete=(f=1) g (r+w=1)

Cause r r R -
b(=q f+[+q=D—(c+/(g=1)-¢) (-1
Background b b B p
Difference r-b r—b R-B h(/—l)(q—1)+(§i{(q—1)—q) (-1 4 —wc+c—(/—cl)q(r+w—l)
1 r (c=1) (c w=D+(f-1) g (r+w-1))
Ratio r/b 5 R/B

e (f-Dg-D+c+f (g-1)-q) (v-1))

The seeming relative risk simplifies a bit when we eliminate ¢. This cannot be done in
the routine since it does not know p as an independent variable.

psub = RRisk["Seeming"] /. res /. ¢ -» pf + (1 — f)q // Simplify

(p-Dv-pw+l
-gb+b+qr

When the ETC model is most powerful

Deliberately, we started with a matrix such that » # 1 and b # 0, since those are common
applications. Yet, those situations also allow vagueness about the causality. The
so-called cause then is actually a contributing factor only. The ETC model is most
powerful when we consider a “simple cause” since then we can impose strong conditions
on the parameters of the matrix. A cause is a simple cause when the success is recorded
if and only if the cause has occurred. Discussions gain in clarity if causal chains can be
broken down to those relations. Admittedly, models will always refer to “other causes”
since it could well be impossible to exclude everything else. Probably the supreme
counterfactual is to assume that there are no “other causes”. Yet in prediction we often
substitute € = 0 and then we eliminate those other causes. (Perhaps the human mind is
continuously in the state of that supreme counterfactual, since modelling requires us to
neglect things. The only thing that saves us is the ability to quickly switch to another
model.)

m We also assume that cause and confounder are distributed independently.

lis = SafetyToETCArray{c, 1, 0}, {f, c}, {0, 1}];
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TableForm[lis, TableHeadings - CT["ETC", TableHeadings]]

Cause - Cause
Confounder c¢—c(1-f) 0
Success - Confounder ¢ (1 - /) 0
S Confounder 0 d-of
- Success — Confounder 0 (1-o1=-0

m The confounder is exposed by having a relative risk of 1.
(res = ETCStatistics[lis, N — False]) // Simplify // MatrixForm

Matrix ETCStatistics["Cause"]

Cause - Cause Total
Success c 0 c
- Success 0 1-c 1-c¢
Sum c 1-c 1

Matrix ETCStatistics["Cause, True, Ratio"]

Cause - Cause Total
Success c 0 c
= Success 0 1-c¢ 1-c¢
Sum c l1-c 1

Matrix ETCStatistics["Confounder"]

Cause - Cause Total
Confounder cf f-cf f
= Confounder c—cf c-D((f -1 1-f
Sum c 1-¢ 1

Matrix ETCStatistics["Seeming"]

Confounder - Confounder Total
Success cf c—cf c
—= Success f-cf c-D(f-1 1-c

Sum f 1-f 1
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N -1
NSuccess - ¢
NCause - ¢
NConfounder - f
IndependentPr(Truth, Confounding) — True
ConditionalPr| (Success + — Confounder) || Cause| — True
ConditionalPr| (Success + — Confounder) || = Cause| — True
ConditionalPr| Success || Cause, = Confounder| — 1
ConditionalPr| Success || = Cause, = Confounder| - 0
ConditionalPr| Success || Cause, Confounder| — 1
ConditionalPr| Success || = Cause, Confounder| — 0

. 10
Risk —» ( L 0 ]
ConditionalPr| Success || Cause| — 1
ConditionalPr| Success || = Cause| » 0
ConditionalPr| Cause || Confounder| — ¢
ConditionalPr| Cause || = Confounder| - ¢
ConditionalPr| Success || Confounder| - ¢
ConditionalPr| Success || = Confounder| — ¢
RRisk(True) -» oo
RRisk(Cause) —» oo
RelativePr(Confounder) - 1
RRisk(Seeming) — 1
Conditions — {True, True, True, True, True}
ConditionalPr| — Success || Cause, = Confounder| — 0
ConditionalPr| = Success || = Cause, = Confounder| - 1
ConditionalPr| = Success || Cause, Confounder| — 0
ConditionalPr| — Success || = Cause, Confounder| — 1

Safet 01
aey—>(0 1)

SimpleCauseQ — [

True True)
True True

ETCSimpson - {Necessary — False, Sufficient » {True, True, False}}

ETCRiskTable[res] // Rationalize // Simplify

Name Value Name Value Name
Cause r 1 R 1 Rf
Background b 0 B 0 Bf
Difference r-b 1 R-B 1 Rf — Bf
Ratio r/b ComplexInfinity R /B ComplexInfinity ~ Rf /Bf

Selecting some parameter values shows us this layout in the ETC square.

Value

—_— o O
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ETCSquare[lis 100 /. {c -» 0.3, f - 0.8}];

SCf

24.

SCF

ScF

Scf

sCF

scF

sCf scf

Formal analysis on the risk approach

Above we took the safety parameters as the keys for reconstructing the contingency
table. We might also focus on risk and perform a different parameterization. When
writing this article, this was actually the first result. But the approach with the safety
parameters is most insightful and deserved the top position in the discussion above.
Now, however, it is proper to also consider the risk parameterization.

Instead of these averages we are interested in the driving risks (using above TC table):
r=P[S|C ~F]=P[S, C ~F]/(P[C|~F] P[~F]) =P[S, C, =F] /(¢ (1 -/))

b=P[S|~C, ~F]=P[S, ~C ~F]/ (P[~C | ~F] P[~F]) = P[S, =C, ~F] / ((1 - ¢) (1
-M)

And this allows us to understand what happens in general when the confounder is not
present:

P[S, C|~F]=P[S, C,~F]/P[-F]= rq
P[S, ~C | ~F] =P[S, ~C, ~F]/ P[~F] = b (1 - q)

When we consider the group —F as a whole, conditionally, then we find the following
table - which is also the second table printed in the above ETCStatistics output (i.e. the
Ratio table).
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m This looks only at the group with —F. All values must be multiplied by 1 - f.
ETCTable["ET", q, {r, b}]

Cause - Cause Total
Success qr b(l1-q) b(l-gq)+qr
- Success g(1-7 (1-0)(1-¢q) gb—-b—qr+1
Sum q 1-¢ 1

If we multiply this with 1 - f and substract this result from the earlier total, we get the

matrix for the group with F. Hence we have parameterized the whole 2 x 2 X 2 matrix

again. See Appendix D for a review. In this parameterization R and B are retained as

input parameters even though they are the outcome of the causal process. It can be useful

to have this flexibility for creating contingency tables.

Reconstruction using average risks

The following creates a contingency table from the average risks. From the 7 parameters

and the summation to 1 the matrix is created. It may be scaled up by multiplication with

some n. When the matrix is submitted to the routine for the statistics then we get the

proper results that fit the earlier tables.

m Note that we include R and B as variable. In empirical observation these are
outcomes but table designers like us will want to control how the table will
look like.

lis = RiskToETCArrayi{c, r, b}, {f, q}, {R, B}];

TableForm[lis, TableHeadings —» CT["ETC", TableHeadings]]

Cause - Cause
Confounder c¢cR-(1-f)gr B(l-0=-b-/)1-g)
Success - Confounder (1 - f)qr bA-/Hd-9q
S Confounder c(1-R)—(1-f)g(1-r) (1=-B)(1-0)-(1-bd-7)
T succeess = Confounder (1-f)g(1-7r) (1=-b)(1-)1~-9)

m The statistics routine takes the matrix as it is and its origin does not matter.
The advantage of the risk parameterization is that we now recognize more
output. For example, s was unrecognizable before but now simplifies to s = B
+c¢ (R - B).

(res = ETCStatistics[lis, N — False]) // Simplify // MatrixForm

Matrix ETCStatistics["Cause"]
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Cause - Cause Total
Success cR B-Bc —-cB+B+cR
- Success c—cR B-1(-D B(c-1)—cR+1
Sum c 1-c¢ 1

Matrix ETCStatistics["Cause, True, Ratio"]

Cause - Cause Total
Success qr b-bq -qb+b+gqr
- Success g-qr b-D@g-1 b@-1)—gr+1
Sum q l1-¢q 1

Matrix ETCStatistics["Confounder"]

Cause = Cause Total
Confounder c+(f-Dgqg —c+f-fq+q S
- Confounder q-fq (f-D@-D 1-f
Sum c 1-c 1

Matrix ETCStatistics["Seeming"]

Confounder —= Confounder
Success —cB+B+b(—qf+f+q-1)+fqr—qr+cR (f-Db@g-1)—-qr
= Success Be-D+f+b(f-D@-1D—-fqgr+qgr—cR -(f-1Hb@g-1-¢q

Sum f 1-f
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N -1

NSuccess > —¢cB+B+cR

NCause - ¢

NConfounder - f

IndependentPr(Truth, Confounding) — i’/—q- =0

ConditionalPr| (Success + — Confounder) || Cause| - r=R
ConditionalPr| (Success ~ — Confounder) |[ = Cause| > b =B
ConditionalPr| Success || Cause, = Confounder| — r
ConditionalPr| Success || = Cause, = Confounder| — b

ConditionalPr| Success |[ Cause, Confounder| —» %{{
ConditionalPr| Success || = Cause, Confounder| — %‘ﬂ
(f=Dgr+cR  Bc=D+b(f=D(g=1
Risk »| ¢*U-De c+f(q-D—q
r b

ConditionalPr| Success || Cause| — R

ConditionalPr| Success || = Cause| -» B
ConditionalPr| Cause || Confounder| — #‘]—

ConditionalPr| Cause || = Confounder| - ¢
—cB+B+b(—q f+f+q=1)+f qr—qr+cR

ConditionalPr| Success || Confounder| —

ConditionalPr| Success || = Confounder| » —gb+b+qr
RRisk(True) - %

RRisk(Cause) —» —ﬁ;

RelativePr(Confounder) —» %‘1

: . —cB+B+b(—q f+f+g-D)+fgr—qgr+cR
RRisk(Seeming) — T

e c=q —cB+B+b(g-1)-gqr+cR bc(g=1)+q (=c B+B+c(R-r))
Conditions - {r> b, R > B, =0, i =0, YR = 0}

ConditionalPr| = Success || Cause, = Confounder| - 1 —r

ConditionalPr| = Success || = Cause, = Confounder| - 1 -5

ConditionalPr| - Success || Cause, Confounder| — —RereraCr/t/er-l)

c+(f-1)gq
ConditionalPr| — Success || - Cause, Confounder| — ‘”BJ’B*C‘/‘:;’/‘ _q(;‘f;’_(;q f+/+g=1)
—Rc+c+q (=r f+f+r-1) —cB+B+c—f+f q—q+b(=q f+f+q-1)
Safety — c+(/=Dg c+f (g-D)—q
1-r 1-b
U=Dgl=D+c®-1 _ 0 Ble=Dtb(f~(g=D _ 0
SimpleCauseQ — c+(f=Dg ctf (gD
r=1 b=0

Ble)tb(f-Dg=D) _ (f=DgrtcR
c+/(g=D~¢ cH(f-Dg

ETCSimpson - {Necessary >b<r< , Sufficient — {

—cB+B+c—f+fq

ct+f
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ETCRiskTable[res] // Rationalize // Simplify

Name Value Name Value Name Value

Cause r I% R R Rf —cB+B+b(—q f+f+q—D+fqgr—qr+c
S

Background b b B B Bf —-gb+b+qr
Difference r->b r—>b R-B R-B Rf — Bf w
R
B

Rf / Bf —cB+B+b(—q f+f+q-1)+fqgr—qr+c

Ratio r/b S Cabibign

R/B

r
b

The seeming relative risk does not simplify when we eliminate c.

psub = RRisk["Seeming"] /. res /. ¢ -» pf + q(1 - f) // Simplify

b(f=D(@-D+B(fp-fq+q-1)-fqr+qr-fpR+fqR-qR
fb@g-1)-qn

PM. If we calculate R and B from the safety parameters and use these to create the table

again, then we get the same results. See Appendix D.

Intermediate conclusions

It will help to summarize what we have done up to now so that we can use that as a base

for the subsequent discussion.

1.

We designed a statistics routine that analyzes a count data contingency table
into the various marginal and conditional probabilities.

. We identified the proper risk and safety parameters, as opposed to statistical

averages.

. We designed a routine to create a contingency table with count data, by

reverse-engineering from true parameters.

. We designed another routine to reverse-engineer but using average risks.

. We identified conditions {r, b} = {1, 0} and {w, v} = {1, 0} for when the cause

can be called a “simple cause” (a success if and only if a cause). These value
imply relative freedom or conditional independence, but not conversely. If those
values are not present then the cause is not a simple cause anymore, just a
“contributing factor”.

. We identified interdepencies between parameters and variables: (6a) p depends

upon other more useful parameters, (6b) we cannot set the safety parameters and
the averages at the same time.
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7. We identified when the distributions of cause and confounder would be
statistically independent (p = g = ¢).
For the following, we will delve deeper into the issue of statistical independence. It
appears that epidemiology uses this standardly as a frame of reference. Epidemiologists
also focus on the relation between {r, b} and {R, B}. To link up to the literature it will
be wuseful to consider independence while using the parameterization of
RiskToETCArray instead of SafetyToETCArray.

Considering the case when p=qg=c¢

To what extent are p and g really “parameters” ? Or, to what extent are they merely the
product of sampling in a perhaps random reality ? There are two key solution approaches:

m The cause and confounder are statistically independent. Then p = ¢ = c.

m The cause and confounder are statistically dependent. It may just be the case
that the numbers suggest a relation even though there isn’t one (since we are
discussing a true confouder). It p and ¢ have stable values and indeed are
parametric rather than f'itself, then f'= (¢ - ¢) / (p - q). (PM. If one substitutes p
= ¢ then they are equal to ¢ again; then f'seems indeterminate, but it isn’t, since f
is given from the marginal. Only if p # ¢ and if we regard them as parameters
then and only then we solve f=(c-¢q)/(p - q).)

The general approach thus is to allow for both dependence and independence, where the
researcher must provide a statistical explanation when the variables and the distributions

{¢, 1 -c} and {f, 1 - f} are dependent.

The following sets p =g =c.

lis = RiskToETCArrayi{c, r, b}, {f, c}, {R, B}];

TableForm[lis, TableHeadings —» CT["ETC", TableHeadings]] // Simplify

Cause - Cause
Confounder c¢((f —1)r+R) —(c-1DB+b(f-1)
Success - Confounder —c(f —1)r be-D(f-1
g Confounder  c¢(-rf+ f+r—R) (c-D@B+b(f-1-f)
T Success - Confounder c¢(f—1)(r—1) ~b-De-DH( -1

(res = ETCStatistics[lis, N —» False] // Simplify) // MatrixForm

Matrix ETCStatistics["Cause"]
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Cause - Cause
Success cR B-Bc
- Success c—cR B-D(-1
Sum c 1-c¢

Matrix ETCStatistics["Cause, True, Ratio"]

Cause - Cause
Success cr b-bc
= Success c—cr Bb-1D(-1)
Sum c 1-c

Matrix ETCStatistics["Confounder"]

Cause - Cause
Confounder cf f-cf
= Confounder c—cf c-D(f-1
Sum c 1-c

Matrix ETCStatistics["Seeming"]

Confounder
Success
= Success
Sum f

—cB+B+b(-fc+c+f-D+c((f-1)r+R
Be-D+b(f-1)(c-1)+f+cr—-cfr—cR

Total
—cB+B+cR
B(c—-1)—cR+1
1

Total
—cb+b+cr
b(c-1)—cr+1
1

Total

f
1-f
1

- Confounder
(f=-D-D=-cr
-(f-1b-1)-c
1-f
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N -1

NSuccess > —¢cB+B+cR
NCause - ¢

NConfounder - f

IndependentPr(Truth, Confounding) — True

ConditionalPr| (Success - — Confounder) || Cause| - r=R

ConditionalPr| (Success + — Confounder) |[ = Cause| - b =B

ConditionalPr| Success || Cause, =
ConditionalPr| Success || = Cause,

ConditionalPr| Success || Cause, Confounder| —

ConditionalPr| Success || = Cause,

(f=Dr+R B+b(f-1)

Risk —» / !
r b

Confounder| — r

- Confounder| - b
(f=)r+R
f

Confounder| — %—Q

ConditionalPr| Success || Cause| — R

ConditionalPr| Success || = Cause| - B

ConditionalPr| Cause || Confounder| - ¢

ConditionalPr| Cause || = Confounder| — ¢

ConditionalPr| Success || Confounder| —

—c B+B+b (—f c+c+f-1)+c

(=D r+R)

ConditionalPr| Success || = Confounder| » —cb+b+cr

RRisk(True) —» +
RRisk(Cause) - %

RelativePr(Confounder) - 1

. . —cB+B+b (=f cretf=1)+¢ (f=D) r+R)
RRisk(Seeming) — T (chrbrer)

Conditions — {r > b, R > B, True,

ConditionalPr| = Success || Cause,

—cB+B+b (c=1)+c (R-r) >0 —cb
f - B

- Confounder| - 1 —r

ConditionalPr| = Success || = Cause, = Confounder| - 1 -5

ConditionalPr| = Success || Cause,

ConditionalPr| — Success || = Cause, Confounder| —

Confounder| — L’r;*rr—_&

—rf+f+r-R  —fb+tb=B+f
Safety — f f
1-r 1-b
fO=DoriR _ g Bsb(-D _
SimpleCauseQ — I I
= 1 b = 0

ETCSimpson - {Necessary >b<r< w < L?ri@, Sufficient » {

+b+B (c—D)+c (r=R)
f(=cb+b+cr) = 0}

—fb+b-B+f
f

—f b+b=B+fr-r+R

7 >0,r:

The difference with the former result on risk is in the last column.
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ETCRiskTable[res] // Rationalize // Simplify

Name Value Name Value Name Value

Cause r r R R Rf —cB+B+b (—f c+c+f=D+c (f=Dr+
f

Background b b B B Bf —cb+b+cr
Difference r—b r—>b R-B R-B Rf — Bf w_—”—
R
B

Ratio r/b

R / B Rf/ Bf —cB+B+b (—f c+c+f=D+c ((f=1) r+

”
b f (=cb+b+cr)

The seeming relative risk Rr / Br does not simplify, and becomes more complex if we
would substitute c.

RRisk["Seeming"] /. res // Simplify

—cB+B+b(—fc+c+f-D+c((f—Dr+R
f(=cb+b+cr)

Conditional independence or relative freedom

In our two-variable world we had Y = § as the variable to be explained and explanatory
variable X = C. Now a new variable Z = F'is added.

If P[Y | X Z] = P[Y | X] then explanatory variable X contains all information and is
sufficient for the conditional probability between Y and X. Then Y and Z are said to be
“conditionally independent” given X, and this is denoted as (Y + Z | X). A shorter and
clearer English expression is that ¥ and Z are “free from each other” relative to X.

RFreePr[Y, Z][X]

ConditionalPr[ (Y + 2) || X]|

Note that there is a difference between such a relation for some fixed constants like {Xj,
X1} and the variables X that take those values. For the relation to hold for variables it
must hold for all their values.

It would be useful to define as well that P[Y || X] =V Z : (Y ~ Z | X). As Hintikka
remarked, a quantifier always has some domain, and this quantifier runs over the
available concepts in the domain of discussion, either the variables or their values, so
that if X is a variable then Z too. The double bar expresses that X is necessary and
sufficient for Y and that there cannot be any confounding (for all variables that are
available in the domain of discussion).
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Schield (2003) remarks: “Students often think of numerical associations as
immutable—as unconditional. By studying Simpson’s Paradox students overcome this
mistaken perception.” Those students not only confuse P[X, Y] and P[Y | X] but thus also
P[Y | X] with P[Y || X]. Let us call this the “confusus libertatis”.

PM 1. This also causes the thought that advances in mathematical notation are made by
catching confusions by students.

PM 2. Conditional independence is often presented as: “If P[X| ¥, Z] = P[X | Z] then X
and Y are conditionally independent given Z, and this is denoted as (X + Y | Z).” This
presentation derives from the alphabetical order X, Y, Z, and it derives from the didactics
of teachers in statistics who want to have their alphabet in neat order. But, in proper
didactics, the focus of the student is on X and Y, and not on X and Z. The student has
been working in the two-variable world and suddenly there is a third. The normal
risk-averse student will tend to regard this Z as less relevant, and neglect it, like an
austrich will hide its head in the sand or like children hide behind their hands or under a
blanket. Only the minority of risk-prone students will focus on this new event Z and be
willing to accept that it suddenly is the more important variable in a new definition. We
better serve the majority, the risk-averse students. We also had the convention that X is
the explanatory variable so that (S + F'| C) = (Y + Z | X) anyway. We should not require
students to suddenly invert all variable relationships, just to get a neat alphabetical order.
Possibly it are not the students but the teachers who are a bit confused, which could be
the “confusus doctoris”.

PM 3. We already mentioned the layout of Kleinbaum et al. (2003), with the issue of
confounding presented in chapter 10 and not in chapter 2. The current chapter 2 gives an
overview of epidemiology. But the title of the book and CD is “ActivEpi”. The overview
confronts the student with all kinds of concepts that cannot be actively applied since
they are only half understood. The long list of new topics might be called technically an
“overview” but the real meaning of “overview” is to create insight. This would be
another case of “confusus doctoris”. It would be much better to actually start doing a
case, in “learning by doing” and “hands on studying”, where both 2 x 2 and 2 x 2 x 2
tables are used, such that the 2 x 2 x 2 table helps to understand what the 2 x 2 table
means. Once the student has mastered the ETC format and has a sense of
accomplishment then one can proceed with calculating incidence rates, relating counts to
person years, to show that epidemiology is more complicated. PM. That book would also
benefit from printing in columns, given its pagewidth.
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PM 4. It is advisable to use the phrase “relative freedom” as equivalent to “conditional
independence”. The latter phrase is a technical term from the realm of theorists who
work with the concept on a daily basis. The normal student will be put off, however, and
hide under the blanket again. Independence is like freedom however and conditioning in
probability theory is just seeing probabilities in their relative proportions. The term
“relative freedom” is more student-friendly.

PM 5. Students confuse P[X | Y] and P[Y | X] as well. This is also understandable since
we have to consider both directions EXZ and EZX before we can decide which is the
confounder (the “confusus directionis”).

Conditional independence or relative freedom - continued

We took » = P[S | C, —F] as the basic risk and b = P[S | ~C, —F] as the background risk.
How is this related to independence ? When do the following equalities hold, and what
would it mean ? Above statistical independence was not enough and we might be
required to impose even stronger conditions.

r=P[S|C, ~F]=?=P[S|C]=R
b =P[S|~C,~F]=?=P[S|~C]=B

It appears (see also the examples above) that we still have freedom to deviate from these
equalities, even under independence. So, we can simple impose those conditions, as
separate assumptions of their own.

Hence:

(i) ff( S+ —~F|C)thenR =7

(i) ff S+ ~F| ~C)then B=5

(iii) Iff (S + —F | Truth)then R =r, B=b, Rp =p r + (1 - p) b and then the
seeming relative risk is

Rr _ pr+(-pb

Br qr+(-q)b
(iv) If (iii) is extended to marginal independence of Effect and Confounding then
this causes that the seeming relative risk must be 1:

Re _
Br 1
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(v) Marginal independence of Truth and Confounding (p = q = ¢) of course is
conceptually different from the notion of the relative freedom of S and —F from
Truth. (Different variables are involved.)

PM: Imposing relative freedom also has these consequences:

For (i), we already had P[S, C, “F|=P[S| C, ~F] P[C | ~F]| P[~F] =r q (1 - f). If it holds
then R =randsincec=p f+q (1 -f):

P[S, C, F]+P[S, C, ~F]=P[S, C]=Rc=rc

P[S|C F]=P[S, C F1/(PIC|FIP[F)=Rc-rq(1-/)/pH=r(c-q(-f)
I (pf=r

For (ii), we had P[S, —=C, =F] =b (1 - g) (1 - ). If it holds then B = b then similary P[S |
-C, F]1=b.

Considering the case when R=rand B=b

That R = r and B = b is actually the situation studied by Schield (2003), “Simpson’s
paradox and Cornfield’s conditions”. In a nutshell, when translating epidemiology to
terms and concepts that a simple economist like this author can understand, we had to
develop the full apparatus above, to arrive at this special case. It hasn’t been an easy
path, and the realatively few pages for the reader above actually represent some years of
study for this author. These apparantly are assumptions that epidemiologists may
commonly make and that they might mention superficially but perhaps not too clearly
for the cross-over scientist. The translation problem hinges on the point that in the
“structural equations modelling” world, that forms the habitat of this author, conditional
independences of course are used, but they are not discussed like we have done above,
and the language and conventions of epidemiology didn’t allow the quick connection as
has been provided by the bridge above.

Relabel the parameters into the notation of Schield (2003):
{ri,r}={r.b} ={R, B}
{R1, Ro} = {Rp, Br}

{1, p2} = 1{p. g}
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Then we can find the seeming risks as R; = {r;, m»}. {pi, 1 - pi},or Ri=p1r1 + (1 - p1) 2
and Ry,= p, r + (1 - py) r». The seeming risk difference is Ry - Ry== (r1 - m)(p1 - p2). If
that difference is zero then the seeming relative risk is 1 and then effect and confounding
are marginally independent.

A proportionality condition (since we assume constant rates) is that if 7> r, (it is a real
cause, otherwise define the reverse) and p; > p, (it is a serious confounder, otherwise
define the reverse) then also (3) R;> R, and, importantly, p; / p» = R/ R, (equal when B
= 0).The latter inequality may be called the “Cornfield condition” (Schield (2003) and
Appendix B). It may also be seen as R - B = Ry - Bp.

This sets R =rand B=b.

lis = RiskToETCArray{{c, r, b}, {f, q}, {r, b}];

TableForm[lis, TableHeadings —» CT["ETC", TableHeadings]] // Simplify

Cause - Cause
Confounder  (c+(f-Dg)r b—e+f-fa+q)
Success — Confounder —(f~1)qr b(f-D@-1
S Confounder ~ —(c+(f -1 g)(r—1) b-Dc+flg-1)-q)
T success = Confounder (f-1)q(r—1) —b-D(F-DHg-b

(res = ETCStatistics[lis, N —» False] ) // MatrixForm

Matrix ETCStatistics["Cause"]

Cause - Cause Total
Success cr b-bc —cb+b+cr
= Success c—cr Bb-1D(-1) b(c-1)—cr+1
Sum c l1-c 1

Matrix ETCStatistics["Cause, True, Ratio"]

Cause - Cause Total
Success qr b-bgqg -qb+b+gqr
- Success q—qr b-D@-1 bg-1)—gr+1
Sum q l1-¢ 1

Matrix ETCStatistics["Confounder"]

Cause - Cause Total
Confounder c+(f-Dg —c+f-fq+q S
- Confounder qg-fq (f-D@-1 1-f
Sum c 1-c 1

Matrix ETCStatistics["Seeming"]
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Confounder - Confounder
Success b(—c+f—-fq+q+Cc+(f-Dgr (f-D@-1D~-gn
- Success —qrf+f+bc+fg-1)-q)+(@-0or -(f-1)b@-1)—-gr+1)
Sum f 1-f
N -1
NSuccess » —cb+b+cr
NCause - ¢
NConfounder —» f

IndependentPr(Truth, Confounding) — i;—q— =0
ConditionalPr| (Success + — Confounder) || Cause| — True
ConditionalPr| (Success + — Confounder) || = Cause| —» True
ConditionalPr| Success || Cause, = Confounder| — r
ConditionalPr| Success || = Cause, = Confounder| — b
ConditionalPr| Success || Cause, Confounder| — r
ConditionalPr| Success || = Cause, Confounder| —» b

Risk r b
is ﬁ[r b)

ConditionalPr| Success || Cause| — r
ConditionalPr| Success || = Cause| » b
ConditionalPr| Cause || Confounder| — %;1)—‘7—

ConditionalPr| Cause || = Confounder| - ¢
b(=c+f—fq+q)+(c+(f-Dg)r
f

ConditionalPr| Success || Confounder| —
ConditionalPr| Success |[ = Confounder| » —gb+b+qr
RRisk(True) —» +

RRisk(Cause) - %

RelativePr(Confounder) - %;”—q—

bt f—fat+c+(f-Dr

RRisk(Seeming) —» T Cabrbign)

iti 9 (c=q) (b=r) b(g—)
Conditions — {r >b,r>b, 7= 0, 7 <0, =T O}

ConditionalPr| — Success || Cause, = Confounder| - 1 —r
ConditionalPr| = Success || = Cause, = Confounder| - 1 -5
ConditionalPr| = Success || Cause, Confounder| —» 1 —r
ConditionalPr| — Success || - Cause, Confounder| — 1 —b
1-r 1-b

1-r 1-b )

l1-r=0 1-b6=1
l—r=0 1-b=1 )
ETCSimpson - {Necessary — False, Sufficient » {r > b, r > b, b > r}}

Safety — (

SimpleCauseQ — (

The difference now also is in the middle column.
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ETCRiskTable[res] // Rationalize // Simplify

Name Value Name Value Name Value
Cause r r R r Rf b(zc+f=f q+qf)+(c+(f—1)q)r
Background b b B b Bf —-gb+b+qr
Difference r-b r—>b R-B r—>b Rf - Bf —%f(}’_”—
Ratio r/b % R/B % Rf / Bf bet/—fq++e+(f=D ) r

f (=g b+b+qr)

Though the above does not quite show it, the seeming relative risk Ry / By simplifies. To
show this, we need to do the following.

= Note that the output above does not have an simple p.
p == ConditionalPr["Cause"]["Confounder"] /. res

_c+t(f=-Dg
S

m But if we use it ... then we find the Cornfield et al. condition mentioned by
Schield (2003).
RRisk["Seeming"] /. res /. ¢ » pf + q(1 — f) // Simplify

-pb+b+pr
-gb+b+qr

And by consequence for Rg:

ConditionalPr["Success"][ "Confounder”] /. res /. ¢ » pf + q(1 — f) // Simplify

-pb+b+pr

Technical note: If p were introduced in the input then the input would be
overdetermined. An option might be to let n become the dependent outcome but then we
would not have a normalized situation (or have all kinds of checks and possibly arbitrary
internal solutions on it). The current input format seems optimal, with the small cost that
the seeming relative risk looks a bit differently than the ratio of weighted rates. It is a bit
unfortunate that current mathematical concepts and routines are awkward at handling
so-called “overdetermined” situations that however are neat human psychological ways
to handle information. (This would be another opportunity to devise a notation to
capture this notion.)
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Variations on input

Consider the example contingency table that this discussion started with. Given the
output from the statistical analysis we can easily re-create the figures in the table with
our current method at parameterization. Let us consider some variations.

The average relative risk R / B for the disease is about 9. For the confounder we keep the
800 versus 200 split, so that f'= 0.8. Of the confounding group some p = 51% of their
numbers contribute to the risk population and the non-confounders contribute g = 24%
of their numbers. The prevalence ¢ of the disease then becomes:

c ==0.2%.24 + 0.8 + .51

c=0.456

The ETCStatistics already created key output. We can substitute these in the right slots.
We put the routine in Hold, otherwise we would just recover the same data (except that
1000.0 should be an integer and not a real).

RiskToETCArrayi] /. res1

Hold[RiskToETCArray][{0.456, 0.145833, 0.0328947}, {0.8, 0.24}, {0.179825, 0.0202206}, 1000.]

We already observed above that the example contingency table does not satisfy the
assumptions of conditional independence since we find that » # R and b # B. What is an
interesting variation on the input ? Normally we would take the » and b since these
would be the key parameters. But this is an exercise, and thus we may also take R and B
and see what happens.

m This is what happens when we take R and B, that have a seeming relative risk
R /B =9. Something goes horribly wrong.

lis = RiskToETCArray[{.456, .18, .02}, {0.8, .24}, {.18, 02}, 1000];
ETCArrayCheck::neg : Negative elements found R < B
ETCArrayCheck::rel : Warning: p [ q < Rf | Bf

ETCArrayCheck::neg : Negative elements found {—693}
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® And it does not help if we scale it down.

lis = RiskToETCArray[{.456, .09, .01}, {0.8, .24}, {.09, 01}, 1000];
ETCArrayCheck::neg : Negative elements found R < B
ETCArrayCheck::rel : Warning: p [ q < Rf | Bf

ETCArrayCheck::neg : Negative elements found {—150}

m So, let us just take the structural parameters (as we already planned to do).

lis = RiskToETCArray[{.456, .1458, .0329}, { 0.8, .24}, {.1458, .0329}, 1000];

TableForm[lis, TableHeadings —» CT["ETC", TableHeadings]]

Cause - Cause
S Confounder 59 13
uccess - Confounder 7 5
S Confounder 349 379
- Success - Confounder 41 147

The current table is based upon conditional independence while the original example
wasn’t. It is hard to say what the differences amount to - especially since these are only

arbitrary numbers.

m These are the differences with respect to the example table. The results are no
different when the confounder isn’t present. When it is present, we lose some
successes, most when the cause is present, with some compensation when the
cause is’t present.

TableForm[lis — CT[Data], TableHeadings —» CT["ETC", TableHeadings]]

Cause - Cause
S Confounder  —16 7
uccess - Confounder 0 0
S Confounder 16 =17
— Success — Confounder 0 0

The summary statistics become:

m There is a small deviation from conditional independence since we rounded
the contingency table. A useful point to note is that relative freedom is not
sufficient to turn this case into one of “simple causality”. The “cause” that we
have here is only a “contributing factor”.

(Report[Variant] = ETCStatistics[lis, N - True] // N) // MatrixForm

Matrix ETCStatistics["Cause"]
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Cause - Cause Total
Success 66 18 84
- Success 390 526 916
Sum 456 544 1000

Matrix ETCStatistics["Cause, True, Ratio"]

Cause - Cause Total
Success 0.035 0.025 0.06
= Success 0.205 0.735 0.94
Sum 0.24 0.76 1.

Matrix ETCStatistics["Confounder"]

Cause - Cause Total
Confounder 408 392 800
= Confounder 48 152 200
Sum 456 544 1000

Matrix ETCStatistics["Seeming"]

Confounder = Confounder Total
Success 72 12 84
= Success 728 188 916

Sum 800 200 1000
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N - 1000.

NSuccess — 84.

NCause — 456.

NConfounder — 800.

MarginalPr(Success) — 0.084

MarginalPr(Cause) — 0.456

MarginalPr(Confounder) — 0.8

IndependentPr(Truth, Confounding) — False

ConditionalPr| (Success + — Confounder) || Cause| — False

ConditionalPr| (Success + — Confounder) || - Cause| — False

ConditionalPr| Success || Cause, = Confounder| — 0.145833

ConditionalPr| Success || = Cause, = Confounder| — 0.0328947

ConditionalPr| Success || Cause, Confounder| — 0.144608

ConditionalPr| Success || = Cause, Confounder| — 0.0331633
0.144608 0.0331633

0.145833 0.0328947 )

ConditionalPr| Success || Cause| — 0.144737

ConditionalPr| Success || = Cause| — 0.0330882

ConditionalPr| Cause || Confounder| — 0.51

ConditionalPr| Cause || = Confounder| - 0.24

ConditionalPr| Success || Confounder| — 0.09

Risk —» (

ConditionalPr| Success || = Confounder| — 0.06

RRisk(True) — 4.43333

RRisk(Cause) - 4.37427

RelativePr(Confounder) - 2.125

RRisk(Seeming) - 1.5

Conditions — {True, True, True, True, True}

ConditionalPr| — Success || Cause, — Confounder| — 0.854167
ConditionalPr| = Success || = Cause, = Confounder| — 0.967105
ConditionalPr| = Success || Cause, Confounder| — 0.855392
ConditionalPr| — Success || = Cause, Confounder| — 0.966837
0.855392  0.966837 )

Safety_’(0.854167 0.967105

. False False
SimpleCauseQ — ( )

False False

ETCSimpson - {Necessary — False, Sufficient » {True, True, False}}

The main conclusion is that the average relative risk is no longer 9. NB. We should have
R /B =r/ b but after constructing the data matrix we rounded the data again so there is a
small difference.
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ETCRiskTable[]

Name Value Name Value Name Value
Cause r 0.145833 R 0.144737 Rf 0.09
Background b 0.0328947 B 0.0330882 Bf 0.06
Difference r-b 0.112939 R-B 0.111649 Rf-Bf  0.03
Ratio r/b 4.43333 R/B 4.37427 Rf /Bf 1.5

Thus, imposing relative freedom makes that the average relative risk becomes equal to
the true relative risk, R / B = r / b. Either (1) we get negative values (if we impose an
average relative risk of 9) or (2) we accept the true relative risk but then see the average
relative risk adjusted.

OutsideTable[Report, {Example, Variant},
{RRisk["True"], RRisk["Cause"], RelativePr["Confounder"”], RRisk["Seeming"]}]

Example Variant
RRisk(True) 4.43333 4.43333
RRisk(Cause) 8.89314 4.37427
RelativePr(Confounder) 2.125 2.125
RRisk(Seeming) 1.6875 1.5

Variation would rather be done on the true parameters and not on the averages that are
found. To take the averages or their ratio’s as the true parameters for this 2 x 2 x 2 table
might be called the “confusus additionis” (a special case of “confusus magnitudinis™).

Switching between truth and confounding

We mentioned the issue of choosing EXZ or EZX. We may read “cause” as “confounder”
and conversely, and repeat the analysis. One hopes that this does not confound the reader.

m This still uses the labels as above. It puts the confounder in the middle of the
table so that a call of the ETCStatistics routine will take it as the cause.

CT[Order, {"Effect", "Confounding", "Truth"}]

Confounder - Confounder
S Cause 75 7
uccess - Cause 6 5
S Cause 333 41
T success - Cause 386 147

If we take the statistics of this case it will appear that » < b or R < B. This makes for a
dumb causal model and silly confounding. Hence, we reverse the categories as well.
When good weather has a lower risk than bad weather, then the latter should be the true
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cause. We can try various reversals for various variables untill we have a serious causal

model.

m This is from above model.

(Report[Confound] = ETCStatistics[%, N — True, Print - False] // N) //
MatrixForm;

"Conditions" /. Report[Confound]

{False, True, True, True, False}

This reverses the old confounder and new cause categories. Still some
conditions not satisfied.

CT[Switch, "NewModel-1", "ETC—1-Truth—1-Confounding—1-Effect",

"Confounding" - {! "Confounder", "Confounder"}];

(Report[Confound] = ETCStatistics[CT["NewModel-1", Data],
N - True, Print - False] // N) // MatrixForm;

"Conditions" /. Report[Confound]

{True, False, False, True, False}

This reverses also the supposed confounder categories. Still some conditions
not satisfied.

CT[Switch, "NewModel-2",
"ETC-1-Truth—1-Confounding—1-Effect"”, "Truth" - {! "Cause", "Cause"},

"Confounding” - {! "Confounder”, "Confounder"}];

(Report[Confound] = ETCStatistics[CT["NewModel-2", Data],
N - True, Print » False] // N) // MatrixForm;

"Conditions" /. Report[Confound]

{False, False, True, False, True}
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m This reverses the categories for all variables, also the effect. Ah, finally all
conditions are satisfied.

CT[Switch, "NewModel-3", "ETC—1-Truth—1-Confounding—1-Effect",
"Effect" - {! "Success", "Success"}, "Truth" - {! "Cause", "Cause"},
"Confounding" - {! "Confounder", "Confounder"}]

= Confounder Confounder
S - Cause 147 386
T success Cause 41 333
S - Cause 5 6
uceess Cause 7 75

(Report[Confound] = ETCStatistics[CT["NewModel-3", Data],
N - True, Print - False] // N) // MatrixForm;

"Conditions" /. Report[Confound]

{True, True, True, True, True}

We have found a new model that on the face of it might be a causal model while we also
might be properly confounded. Above table still contains the original labels. We now
relabel. Above suppressed the output but we can show it now.

With these relabelled data, the analysis would be that the “the absence of the original
confounder” would cause the non-success. An example helps. If the original model EXZ
for example would be that smoking caused lung cancer, with a confounding difference
between cities (bad air) and rural areas (good air), then the new causal analysis EZX
would be that the rural areas with their good air “caused” the absence of lung cancer. We
are not speaking about statistical association but about cause here. Let us first produce
the statistics and then think about the causal chain (as people normally tend to do).
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m Now everything is relabeled. What was Truth now is Confouding, what was

—F now is C, and so on.

ETCSquare["NewModel-3"];

SCf
41

147

SCF

ScF

386

333

Scf

sCf

sCF

scF

75

scf

m This also uses the new labels.

(Report[Confound] = ETCStatistics[CT["NewModel-3", Data], N - True] // N) //

MatrixForm

Matrix ETCStatistics["Cause"]

Success
- Success

Sum

Matrix ETCStatistics["Cause, True, Ratio"]

Success
= Success
Sum

Cause

188
12
200

Cause

0.0899123
0.0153509
0.105263

Matrix ETCStatistics["Confounder"]

Confounder

- Confounder

Sum

Cause
152

48

200

Matrix ETCStatistics["Seeming"]

- Cause Total

719 907

81 93

800 1000
- Cause Total
0.730263 0.820175
0.164474 0.179825
0.894737 1.
- Cause Total
392 544
408 456
800 1000
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Confounder - Confounder Total
Success 533 374 907
- Success 11 82 93
Sum 544 456 1000

N - 1000.

NSuccess — 907.

NCause — 200.

NConfounder — 544.

MarginalPr(Success) — 0.907

MarginalPr(Cause) - 0.2

MarginalPr(Confounder) — 0.544

IndependentPr(Truth, Confounding) — False

ConditionalPr| (Success + — Confounder) || Cause| — False

ConditionalPr| (Success + — Confounder) || - Cause| — False

ConditionalPr| Success || Cause, = Confounder| — 0.854167

ConditionalPr| Success || = Cause, = Confounder| — 0.816176

ConditionalPr| Success || Cause, Confounder| - 0.967105

ConditionalPr| Success || = Cause, Confounder| — 0.984694
0.967105 0.984694

0.854167 0.816176 )

ConditionalPr| Success || Cause| — 0.94

ConditionalPr| Success || = Cause| — 0.89875

ConditionalPr| Cause || Confounder| — 0.279412

ConditionalPr| Cause || = Confounder| — 0.105263

ConditionalPr| Success || Confounder| — 0.979779

ConditionalPr| Success || = Confounder| — 0.820175

RRisk(True) - 1.04655

RRisk(Cause) —» 1.0459

RelativePr(Confounder) — 2.65441

RRisk(Seeming) —» 1.1946

Conditions — {True, True, True, True, True}

ConditionalPr| — Success || Cause, = Confounder| — 0.145833

ConditionalPr| — Success || = Cause, = Confounder| — 0.183824

ConditionalPr| = Success || Cause, Confounder| — 0.0328947

ConditionalPr| — Success || = Cause, Confounder| — 0.0153061

0.0328947 0.0153061
0.145833  0.183824 )

Risk —» (

Safety — (

. False False
SimpleCauseQ — ( )

False False

ETCSimpson — {Necessary — False, Sufficient — {False, True, True}}
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ETCRiskTable[]

Name Value Name Value Name Value
Cause r 0.854167 R 0.94 Rf 0.979779
Background b 0.816176 B 0.89875 Bf 0.820175
Difference r-b 0.0379902 R-B 0.04125 Rf - Bf 0.159604
Ratio r/b 1.04655 R/B 1.0459 Rf/Bf 1.1946

This reproduces the output of the original example EXZ and the new EZX.

OutsideTable[Report, {Example, Confound}, {RRisk["True"], RRisk["Cause™],
RelativePr["Confounder"], RRisk["Seeming"], "Conditions"}]

Example Confound
RRisk(True) 4.43333 1.04655
RRisk(Cause) 8.89314 1.0459
RelativePr(Confounder) 2.125 2.65441
RRisk(Seeming) 1.6875 1.1946
True True
True True
Conditions True True
True True
True True

The numerical conditions for calling this a proper causal model are satisfied. Yet, in
terms of content is may not quite convince. Of course, it all depends on what the content
is. As in the stated example of lung cancer and rural areas, it is difficult to imagine how
people would have a natural disposition to cancer and that “good rural air” would
prevent or cure it. It might be some curative pollen or so. In terms of causality, it is
turning the world upside down in changing the causality that smoking and bad air cause
lung cancer into that rural good air causes health (with non-smoking as a confouder).
But, of course, these are entirely fictional data and we don’t have a real problem so we
cannot say anything yet. The only conclusion that we arrive at is that these conditions
and manipulations definitely can help and guide us towards better understanding the
causal relations. For a definite answer on causality we still depend upon the true model
of the world.

Safety and the conditions on safety are worth mentioning too. The differences from 0
(left column) and 1 (right column) make that we do not have a simple cause in this EZX
configuration. The “wunderbar” result of the original has been greatly resolved since w
is much closer to 0 now. But it comes at the price of a v that was close to 1 as it should
be and now is closer to 0 as it shouldn’t be. The lack of evidence for a EZX would
support the EXZ interpretation.
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Some readers might expect that I now reveal that the true relation was EZX to start with.
Sorry, these are entirely fictional data.

Comparing the Simpson paradox and the Cornfield et al. condition

The Cornfield et al. condition arises from assuming relative freedom or conditional
independence of S and F given C. Thus, a variable is defined to be a “confounder” if and
only if it cannot contribute information on the causal relation from C to S. This is a
rather strong condition since it limits the degree to which we can be confounded. This
could be called the “confusus confusi”. However, when the condition is satisfied, which
we can do by directly checking conditional independence or using the inequality
condition derived by Cornfield et al. (easiest R - B = Ry - Br), then we may indeed have
more confidence in the notion that F'is only a confounder. However, we would still need
a model to explain the causal relations, since we cannot exclude mere chance as the
reason that the condition is satisfied.

The Simpson paradox as discussed in Appendix A is a bit different. The main thrust of
the paradox comes from subpopulations such that those show property 4 while the
summed total shows property —4. The particularly relevant property is relative risk, such
that the subpopulations have RR > 1 while RR < 1 for the summed total. The only two
serious subpopulations that we have in the ETC world comes from the division in /" and
—F. If we were to divide along the lines of Effect and Truth then this would not make
sense since it is precisely their relationship that is the causal one. What happens with
their properties and proportions is not relevant and thus cannot be paradoxical. Taking
the division along the line of Confounding makes sense in that the distribution of fand 1
- fis taken as a more or less “causal” explanation for the overall effect. Thus, the only
relevant Simpson paradox for the ETC world is that the subpopulations of F and —F
have relative risks pointing one way while the total points another way. The final
question is what directions to take. For the —F population we have already assumed that
r > b, so that RR > 1. It would be strange for the F population to have a different
direction, and thus we have RR > 1 there too. Hence, the paradox would be that the total
would show RR < 1. That would be a paradox indeed, since under our assumptions the
confounder really cannot affect the true causal relations so that it would be surprising
indeed if it were to affect the relative risk measure. In Appendix A we derive the
necessary conditions for the paradox as b <r» <1 -v <1 - w, which translates too as w <
v <1 - r, and the sufficient condition that when these are satisfied and then R < B, then
the Simpson paradox occurs. In the discussion above on safety we determined the ranges
of the parameters. For a causal process to get closer to the simple causal model we
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would require that w - 0, v - 1 and » — 1. The causal model requires that v — 1 while
the Simpson paradox requires that v — 0. Under normal causal assumptions that v>1 - r
the Simpson paradox could not exist. The Simpson paradox requires that the “other
causes” would have perverse effects. The outcome R < B makes less sense when we are
speaking about a true cause and a true confounder. Hence, in the 2 x 2 x 2 ETC world
the Simpson paradox has no good reason to exist, and if the conditions are satisfied then
one should check one’s causal model. What is conceivable, however, is a relative effect,
in that the subpopulations have say RR > 3 and the sum 1 < RR < 3. This has not been
looked into.

Under relative freedom or conditional independence {R, B} = {r, b} and with » > b we
find that the Simpson paradox cannot occur. Thus the Cornfield condition is sufficient to
prevent Simpson. Yet this limits the range of possible models. It is more adequate to
allow for the possibility of (some, statistical) dependence. It makes more sense to require
that v> 1 - r and this indeed also prevents the paradox.

We might call it the “confusus conditionis (Simpson et Cornfield et al.)” to not see these
conditions in their proper relation.

If some crucial data are missing

Up to now we have been assuming that we have a completely filled contingency table. It
may also be that the crucial second line is missing so that we cannot calculate our » and
b. As said, experimental economics may meet with practical or moral limitations. For
example, if we do an experiment on the impact of drinking water or drinking beer on the
quality of decisions by Central Bankers, all other drinks excluded, then it might not be
considered appropriate to withhold them those two drinks as well for the weeks that the
experiment would take.

lis = CT[Data] /. {5 —» Missing[1], 147 » Missing[2]};

TableForm[lis, TableHeadings —» CT["ETC", TableHeadings]]

Cause — Cause
S Confounder 75 6
uccess = Confounder 7 Missing(1)
S Confounder 333 386
T Success - Confounder 41 Missing(2)

There are all kinds of variations on this theme. For example, the data on success may
come from one country and the data from failure may come from another country, and
one has to patch together a joint story. Or, indeed, we would leave the 2 x 2 x 2 world
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and meet more variables and sizes. All this is just to say that the ETC model looks strong
but that this may be deceptive since it assumes full knowledge.

We cannot review all possible combinations on missing data but now that we have
mentioned above example it is tempting to consider it. Let us compare the data table
with the fully parameterized table. However, the most crucial missing datum is the total
sample size n. For a controlled experiment one might set the total number of cases where
both cause and confounder are withheld, so the m = Missing[1] + Missing[2] is known
but not how it is distributed over success or failure. In that case, also, m is set by the
experimenter to an arbitrary number, and then not actually performed, which has a ring
of magic to it, since we may choose any number and then not do it. When the experiment
however runs over a limited number of weeks then one can indeed imagine that m has a
proper value. Let us assume this, and replace Missing[2] such that the total number is
1000 again.

lis2 = SafetyToETCArrayi{c, r, b}, {f, q}, {w, v}] 1000; s

TableForm[lis2, TableHeadings —» CT["ETC", TableHeadings]]

Cause — Cause
S Confounder 1000 (¢ —(1 - ) ¢) (1 —w) 1000 (=c+ f (1 -=q) +¢) (1 =v)
uceess - Confounder 1000 (1 - f)gqr 10005 (1 - /) (1-¢)
S Confounder 1000 (c—=(1 - fHrgw 1000 (~c+ f (1 -q) +q)v
T suceess - Confounder 1000 (1 - f)g (1 -7) 1000 (1 =b) (A =) (1 -q)

sol = Solve[Add[lis] == 1000, Missing[2]];
lis = CT[Data] /. {5 —» Missing[1], 147 - Missing[2]} /. sol[[1]];

TableForm[lis, TableHeadings —» CT["ETC", TableHeadings]]

Cause - Cause
S Confounder 75 6
uceess = Confounder 7 Missing(1)
g Confounder 333 386
T success - Confounder 41 152 — Missing(1)

It appears that other key parameters are not affected and that mainly our estimate of b is
impossible. The data still allow the calculation of ¢, fand ¢, still unaffected at 0.456, 0.8
and 0.24, so that the Missing[ 1] value is direct in proportion to b, as Missing[1] = 1000 b
*(0.2 * 0.76. Thus, in the statistics also those ratios are affected that depend upon b.

(res = (ETCStatistics[lis] // N) /. (1. » 1)) // MatrixForm

Matrix ETCStatistics["Cause"]
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Cause - Cause Total
Success 82 Missing(1) + 6 Missing(1) + 88
- Success 374 538 — Missing(1) 912 — Missing(1)
Sum 456 544 1000

Matrix ETCStatistics["Cause, True, Ratio"]

Cause - Cause
Success 0.035 0.005 Missing(1.)
= Success 0.205 0.005 (152. — 1. Missing(1.))
Sum 0.24 0.76

Matrix ETCStatistics["Confounder"]

Cause - Cause Total
Confounder 408 392 800
= Confounder 48 152 200
Sum 456 544 1000

Matrix ETCStatistics["Seeming"]

Confounder - Confounder
Success 81 Missing(1) + 7
—= Success 719 193 — Missing(1)

Sum 800 200

Total

0.005 (Missing(1.) + 7.)

0.005 (193. — 1. Missing(1.))

1.

Total

Missing(1) + 88
912 — Missing(1)
1000
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N - 1000.

NSuccess - Missing(1) + 88.

NCause — 456.

NConfounder — 800.

MarginalPr(Success) — 0.001 (Missing(1) + 88.)

MarginalPr(Cause) — 0.456

MarginalPr(Confounder) - 0.8

IndependentPr(Truth, Confounding) — False

ConditionalPr| (Success + — Confounder) || Cause| — False

ConditionalPr| (Success - - Confounder) |[ = Cause| - 49. Missing(1) = 114.

ConditionalPr| Success || Cause, = Confounder| — 0.145833

ConditionalPr| Success |[ = Cause, = Confounder| — 0.00657895 Missing(1)

ConditionalPr| Success || Cause, Confounder| — 0.183824

ConditionalPr| Success || = Cause, Confounder| — 0.0153061
0.183824 0.0153061

0.145833  0.00657895 Missing(1) )

ConditionalPr| Success || Cause| — 0.179825

ConditionalPr| Success |[ = Cause| - 0.00183824 (Missing(1) + 6.)

ConditionalPr| Cause || Confounder| — 0.51

ConditionalPr| Cause || = Confounder| — 0.24

ConditionalPr| Success || Confounder| - 0.10125

ConditionalPr| Success |[ = Confounder| —» 0.005 (Missing(1) + 7.)

. 22.1667
RRisk(True) —» Missing(1)

: 97.8246
RRISk(CﬁllSC) g m‘

RelativePr(Confounder) - 2.125

) . 2025
RRisk(Seeming) — Missing()+7.

Risk —» (

Conditions — {6. Missing(1) < 133., 57. Missing(1) < 5234., True, 4. Missing(1) < 53., M;Ogﬁ)ﬁ—

ConditionalPr| = Success || Cause, — Confounder| — 0.854167

ConditionalPr| = Success || = Cause, = Confounder| —» 1 — 0.00657895 Missing(1)
ConditionalPr| — Success || Cause, Confounder| — 0.816176

ConditionalPr| = Success || = Cause, Confounder| — 0.984694

0.816176 0.984694 ]

Safety > (0.854167 1 - 0.00657895 Missing(1)

. False False
SimpleCauseQ — ( )

False 1-0.00657895 Missing(1) = 1
ETCSimpson — {Necessary — False, Sufficient — {True, 6. Missing(1) < 133., Missing(1) < —766

We just considered one consequence of missing data. The general idea is that when data

are missing then this reduces the scope for conclusions. Perhaps there are more

possibilities for conjectures like “if the process would be conditionally independent then

..., but when such conjectures are not testable due to the lack of data anyhow, then there

seems little value in them.
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The collected confusions
We identified:

1. “confusus definitionis”: mixing up the ETC analysis with other kinds of
problems in 2 x 2 x 2 tables.

2. “confusus directionis”: not knowing to take either EXZ or EZX.
3. “confusus nomenclaturis”: confusing variables and values.

4. “confusus categoriae”: taking the wrong value of the right category as the true
cause.

5. “confusus magnitudinis”: being unsure about the size of the effect (for various
reasons).

6. “confusus additionis”, a special case of 5: using averages instead of the true
parameters.

7. “confusus contributionis”: confused about assigning the label “cause” to f
(which is OK if you are aware of it).

8. “confusus causalitatis”, confusing an issue of mere association with an analysis
of causality, with different interpretations of the Simpson paradox. (This
confusion is a specific kind of 1 and adds flavour to 2 to 7.) (This is not “post
hoc ergo propter hoc” since there is no time element yet.)

9. “confusus libertatis”: confusing P[.X, Y] with P[Y | X] or P[Y | X] with P[Y || X]
or both.

10. “confusus focis ad risces”: focussing on risk and forgetting about safety (and
key parameters there).

11. “confusus historiae”: using a wrong historical example in trying to clarify a
point but thereby actually increasing confusion (see Appendix B).

12. “confusus doctoris”: getting things wrong because you don’t think for yourself
but follow your teachers who are confused on some issues and who e.g. focus
on neat alphabetical order instead of what they told before.

13. “confusus confusi”: defining that something can only be a “confounder” if it
satisfies relative freedom or conditional independence with the effect measure
given the cause (the Cornfield et al. condition). This neglects confounders that
show mere statistical association.



56 2007-05-29-ETC222-45.nb

14. “confusus conditionis (Simpson et Cornfield et al.)”: imposing the Cornfield et
al. condition to prevent the Simpson paradox, while a weaker condition is
sufficient (v > 1 - ). This can also be a special case of the “confusus focis ad
risces”, since one focusses on a few risk averages while one should use the
whole ETC table.

It would seem that this taxonomy merely restates what is already very well known to the
practical epidemiologists. Yet, some categorization or labelling seems to help
understanding the issues. As a cross-over / hitch-hiker in this 2 x 2 x 2 universe, this
author has suffered all these confusions himself at one moment or another. You should
not feel ashamed if some happen to you. (But you should feel ashamed right from the
start when just follow the analysis in this paper without thinking for yourself.)

Clarity about these angles to confounding would seem to be a prerequisite for handling
the more formal approaches of Pearl (1998) or Pearl (2000) chapter 6 to confounding.

PM. On the lighter side there is also the confusion that one doesn’t quite know what one
is confused about, and on the darker side there is the awkward situation that one thinks
that one isn’t confused while one is (with the added possibilities that one’s environment
knows or doesn’t know, and everybody else knows or doesn’t know).

Conclusions

1-7. See the earlier intermediate conclusions.

8. Causality cannot be resolved with statistical conditions just by themselves. The
researcher still needs a model of the world that provides a guide on the direction
from cause to effect.

9. But with such a model of the world, the conditions and manipulations discussed
here can be used to say more about causality and the effect size.

10. The ETC model is most powerful when we consider a “simple cause” since
then we can impose strong conditions on the parameters of the matrix. A
scientific discussion on cause and effect gains in clarity if causal chains can be
broken down to those. (Yet models will always refer to “other causes” since it
could well be impossible to exclude everything else.)
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Appendix A: The Simpson paradox

Introduction

The Simpson paradox arises when at least two subpopulations show property 4 while
adding them gives property 4. Examples and discussions are in Schield (2003), Saari
(2001) in voting theory, and Kleinbaum et al. (2003).

Schield (2003) discusses the Simpson paradox and suggests that the Cornfield et al.
condition helps to understand it. However, it seems that these are two different issues, at
least in the ETC 2 x 2 x 2 world. The Cornfield et al. condition, e.g. p /q = R / Br or R
- B = Rr - B, concerns the border sum matrices while the Simpson paradox concerns
the addition of subpopulations.

Saari (2001) contains a discussion that is targetted specifically at the Simpson paradox
without mentioning the Cornfield et al. condition. In Saari’s case, the paradox arises
merely from the weights of two subpopulations. Translated to our ETC world, the
populations F and —F have weights f and 1 - f and the relative risks of both
subpopulations would point into one direction while the sum would point into the other
direction. This does not necessarily mean that this would be a problem for causality,
with its true parameters {r, b, w, v}, or even that it would be possible given our
assumptions.

Creating Simpson paradoxes

The following is a routine to create such a paradox e.g. for treatment-control matrices.

A treatment-control matrix has effect rate p; under treatment and effect rate p, for the
controls.

TreatmentControlMatrix[Set, Pr, n1, p1, n2, p2];
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TreatmentControlMatrix[Table]

Effective Ineffective Total
Treatment nl pl nl —nlpl nl
Controls n2p2 n2 —n2p2 n2
Sum nl pl +n2p2 -plnl +nl +n2 —n2p2 nl +n2

m This is the routine to create a paradox.

? SimpsonParadox

SimpsonParadox[{F1, p1, F2, p2}, {S1, q1, S2, q2}] creates the First and Second (treatment—
control) matrices and conditions for the SimpsonParadox, such that the relative
risks (or cure rates) are pl/p2 > 1 and q1/q2 > 1 in the subpopulations, while that
is precisely the opposite for the total when the data are added. See InequalitySolve
when there are numerical values. The joint condition concerns linear combinations
of {pl, ql} resp. {p2, q2}, and necessary for the paradox is p2 < pl < q2 < ql. NB.
The sufficient condition is True if the paradox occurs (but only in the > direction

m This is the structure of the problem, with First and Second matrices, and rows
1 and 2.

SimpsonParadox[{n1, p1, n2, p2}, {m1, q1, m2, q2}]

nl pl nl —nl pl nl
{Matrix(l) - | n2p2 n2 —n2p2 n2 R
nlpl+n2p2 —-plnl+nl+n2-n2p2 nl+n2
ml ql ml -mlql ml nl pl +
Matrix(2) —» | m2q2 m2-m2q2 m2 , Matrix(Sum) - | n2p2 +
mlql+m2q2 —-qlml+ml+m2-m2q2 ml+m2 nlpl+

Condition — {p1 > p2, q1 > q2, (m2 + n2) (nl pl + m1 ql) < (m1 +nl) (n2 p2 + m2 q2)}}

m This is an example where the first two relative risks (or cure rates) are larger
than 1 while the sum shows a value lower than 1.

SimpsonParadox[{88, 1/4, 10, 1/5}, {45,5/9, 90, 4/9}]

22 66 88 25 20 45
{Matrix(l)—> 2 8 10 |, Matrix(2) - |40 50 90 |,
24 74 98 65 70 135
47 86 133

Matrix(Sum) —» | 42 58 100 |, Condition — {True, True, True}}
89 144 233
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m This is an example where the three relative risks all point into the same
direction.

SimpsonParadox[{88, 1/4, 10, 1/5}, {45, 8/9, 90, 1/3}]

22 66 88 40 5 45
{Matrix(l)—>[2 8 10 ,Matrix(Z)—>[30 60 90 ]
24 74 98 70 65 135
62 71 133
Matrix(Sum) - [32 68 100 ], Condition — {True, True, False}}
94 139 233

Relating the Simpson paradox to the ETC world

Let us consider a proper ETC contingency matrix and extract the submatrices for F and
—F. Since we can always express R and B in terms of w and v, it suffices if we do the
discussion in terms of those output parameters, which helps to link up our result to the

Cornfield et al. condition.

lis = RiskToETCArrayf{c, r, b}, {f, q}, {R, B}] // Simplify;

TableForm[lis, TableHeadings - CT["ETC", TableHeadings]]

Cause = Cause

S Confounder  (f—-1)gr+cR —cB+B+b(—qf+f

ueeess - Confounder —(f —1)gr b(f-1(g-1)

S Confounder —Rc+c+q(-rf+f+r-1) Ble-1)—-c+f+b(f-1(g
T success - Confounder (f —1)g(r—1) —b-D(f-D(g-1)

Extraction for F.

PopF = TransposeToFirst[lis, {3}1[[11];
TableForm[PopF,

TableHeadings —» {CT[TableHeadings][[1]], CT[TableHeadings][[2]]}]

Cause = Cause

Success (f-1Dgr+cR —cB+B+b(—qf+f+q-1)
— Success —Rc+c+q(-rf+f+r-1 Bc-1)—c+f+b(f-1)(g-1D-fq+q

Extraction for —F.

PopNotF = TransposeToFirst[lis, {3}1[[2]];
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TableForm[PopNotF,
TableHeadings —» {CT[TableHeadings][[1]], CT[TableHeadings][[2]]}]
Cause = Cause
Success —-(f-Dgqr b(f-D@-1
- Success (f-Dg@r-1 -b-D(f-DH@g-1

The sum

Pop = PopF + PopNotF // Simplify;

TableForm[Pop,
TableHeadings —» {CT[TableHeadings][[1]], CT[TableHeadings][[2]]}]
Cause - Cause
Success cR B-Bc
= Success c—cR B-1(-1

Define a general ETCRiskCondition. Since the condition of relative risk > 1 runs the risk
of division by zero but is the same as the risk difference > 0, this allows us some
freedom.

ETCRiskCondition[{{a_, b_}, {c_, d_}}] := ETCRiskCondition[a/(a+c), b/ (b +d)]

ETCRiskCondition[{{a, b}, {c, d}}]

b
ETCRiskCondition(ﬁ, n d)

Risks for F.

RiskPopF = ETCRiskCondition[PopF] // Simplify

(f-Dgr+cR B(c—l)+b(f—1)(q—1))
c+(f-Dgq ’ ct+flg-D-gq

ETCRiskCondition(

Risks for —F.

RiskPopNotF = ETCRiskCondition[PopNotF] // Simplify

ETCRiskCondition(r, b)
The sum

RiskPop = ETCRiskCondition[Pop] // Simplify

ETCRiskCondition(R, B)
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Hence for the Simpson paradox:
{RiskPopF, RiskPopNotF, RiskPop }

{ETCRiskCondition(

(f=1)gr+cR B(c—1)+b(f—1)(q—1))
c+(f-Dg ° c+flg-1)-q ’
ETCRiskCondition(r, b), ETCRiskCondition(R, B)}

A necessary condition for the Simpson paradox in the ETC world is p2 < pl <q2 <ql,
which translates as:

RiskPopNotF[[2]] < RiskPopNotF[[1]] < RiskPopF[[2]] < RiskPopF[[1]]

Ble-D)+b(f-1(g-1) - (f-1)gr+cR
c+fl@g-1-gq c+(f-Dg

b<r<

In case we want a formulation of the latter in terms of the safety parameters:

% /. Thread[{R, B} » ETCAverageRisksFromSafety{c, r, b}, {f, q}, {w, v}1]1 //
Simplify

b<r<l-v<l-w

A sufficient condition for the Simpson paradox in the ETC world is (all would be True
for the paradox to occur):

{RiskPopF /. ETCRiskCondition[x_, y_] » (x > y),
RiskPopNotF /. ETCRiskCondition[x_, y_] :» (x > y),
RiskPop /. ETCRiskCondition[x_, y_] :» (x < y)}

{(f—l)qr+cR . B(c—1)+‘b(f—1)(q—1)’r>b’R<B}
c+(f-Dgq ctflg-1)-¢q

In case we want a formulation of the latter in terms of the safety parameters:

% /. Thread[{R, B} » ETCAverageRisksFromSafetyi{c, r, b}, {f, q}, {w, v}11 //
Simplify

b(—=qf+f+q-1)—(Cc+fg-D-qv-1) s (f-Dgr+w-1) o 1}

{v>w,r>b,
c—1 c
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Conclusion

Two conditions that are identified are: (1) v > w, (2) R < B. Both are not likely to occur
given the assumptions that we have formulated for a serious causal model. If we would
formulate the paradox in a reverse direction, then we would have to assume 7 < b, which
neither makes sense for a causal model. See further the body of the text for the summary
conclusion.

Appendix B: Fisher on smoking and confounding

Statement

The author is an independent researcher and has no material, political or moral interests
in any issue on smoking and lung cancer.

Introduction

The following example and discussion is based upon Schield (2003), “Simpson’s
paradox and Cornfield’s conditions”. Shield presents a historical case of a discussion on
the possible causes of lung cancer, with two “Letters to the editor” by Sir R.A. Fisher
(1958ab). Historical examples often help clarifying an issue indeed. Yet, in this case it
appeared, at least to this author, after some struggle for clarity, that the use of this
historical example actually contributed to confusion. That is, it would contribute if we
were to use it in the main body of the text. There was a version of this paper that actually
proceeded in this manner. But it totally confused both the history and the subject. Thus,
here in the appendix, the historical issue can find a good place for proper sub-discussion,
and then it will be clarifying again. Schield apparently followed the history as it
afterwards got to be told yet the objective of his paper is different from our objectives.
For us, it appears that the history needs to be rewritten. So, this is a new subject. History
on Fisher and smoking needs to be rewritten.
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An example problem setting

In 1958 it was for the first time seriously conjectured that smoking caused lung cancer.
Fisher apparently had his doubts, though. Fisher (1958ab) considered fraternal and
identical twins and compared their habits of smoking, that he categorized into being
either alike or unlike. He found that 51% of male fraternal twins and 24% of male
identical twins had distinct different habits in smoking (smoking versus non-smoking, or
cigarette versus pipe). This indicated a strong effect of genetics and thus created the
possibility, also in this debate on the cause for lung cancer, that smoking was just a
confounder. Genotype might very well cause both lung cancer and a disposition to
smoke. Fisher’s data on smoking habits were the following (correcting a typesetting
error):

CT[Set, "Fisher Twins"]

Fraternal Identical
. Male 15 39
Alike Female 9 44
. Male 16 12
Unlike Female 9 9

Fisher (1958a): “(...) of the (male) dizygotic pairs (...) 16 out of the 31 are distinctly
different, this being 51 per cent. as against 24 per cent. (...) among the monozygotic. the
(male) monozygotic twins show closer similarity and fewer divergences than the
dizygotic. There can therefore be little doubt that the genotype exercises a considerable
influence on the smoking and on the particular habit of smoking adopted (...)".

Note that the discussion quickly becomes complicated. These data don’t tell anything
about getting cancer or the amount of smoking. They just show equality of habit. The
“alike” groups would be split over smoking or not. So there is only a suggestion of the
influence of the genotype. Fisher definitely does not say anything particular about the
prevalences of hidden genetic factors that would be a common cause for both smoking
and cancer, and neither does he say anything about the rates of risk. Fisher merely
pointed to genetics as a common factor that should not be overlooked when establishing
causality for an important disease. In the end, it indeed will also be molecules that
interact with molecules.

Nevertheless, the ratio’s of 51% and 24% struck a chord, and got interpreted as such
prevalences.
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Cornfield et al. 1959 stated: “if, cigarette smokers have 9 times the risk of nonsmokers
for developing lung cancer, and this is not because cigarette smoke is a causal agent, but
only because cigarette smokers produce hormone X, then the proportion of
hormone-X-producers among cigarette smokers must be at least 9 times greater than that
of non-smokers. If the relative prevalence of hormone-X-producers is considerably less
than ninefold, then hormone X cannot account for the magnitude of the apparent effect.”
(Taken from Schield (2003).)

They thus identified a ‘minimum effect size’ for possible confounders: the relative
prevalence (p versus ¢) must be at least the seeming relative risk (Rr versus Br). One
can impose this condition if there is adequate (theoretical) reason that the causal
relations should be proportional. This is OK as it is.

Fisher had mentioned the numbers of 51% and 24% and this got interpreted as a 2-fold
relative prevalence. This could not explain the 9-fold relative risk for smoking itself.

But this was not what Fisher had expressed. Thus, the minimum effect size got into the
literature by confusion. Schield (2003) states: “Fisher never replied.” But would you
“reply” if you say “A” and somebody else says “not B but C” ? Fisher already had
replied on confusion, and one can imagine that he would have been perplexed when this
very remark targetted towards clarity was confounded itself.

The Fisher model

Fisher’s suggestion comes down to creating groups with different genotypes. A
“genotype” can be defined such that the risk for getting cancer and the inclination to
smoke are biologically proportional. This is modelled as statistical independence. It is
crucial to see that biological proportionality is modelled such - and the biological
explanation is that the genotype here deals with “other causes”. If the risk of getting
cancer and the inclination to smoke are not statistically independent then we split up the
group again, if necessary down to the individual level. For ease, we take two groups,
those with “riskier” genes and those with “safer” genes. Risk group 4 of size n4 has risk
S4 to get cancer (a “Success”) and inclination F4 to smoke. Background risk group B has
ng, S and Fp. By necessity of our definition, in group 4 the probabilities {S4, 1 - S}
and {F4, 1 - F} would be statistically independent. The non-smokers in 4 would still
get cancer at rate S4. Each group has a proportional relation to its two variables that does
not change with group size. The overall outcome is the sum of those tables weighed by
the sizes of the groups.
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TableForm[Transpose[{ ny PrTable[Sa, Fal, ng PrTable[Sg, Fgl}, {2, 1, 3}],
TableHeadings —»
{{"Cancer", Not["Cancer"]}, {"A", "B"}, {"Smoking", Not["Smoking"]}}]

A B
Smoking FA ny SA FB”BSB
Cancer — Smoking (1 — F4)nyS, (1 = Fy)ng S
Smoking FAHA (I—SA) FBVIB(I—SB)
~ Cancer - Smoking (1 —F)ny(1-S,) (1-Fg)ng (1l —Sp)

In this square Y / N stands for having (risk for) cancer and the + / - stand for the
presence of the confounder. The cause would be the genotype which thus occupies the

columns.
ETCSquare[Label, First -» {"Y", "A", "+"}, Last -» {"N", "B", "-"}I;
YA- YB-
YA+ | YB+
NA+ | NB+
NA- NB-

For this dichotomous and stratefied model (with possibly more strata than just two),
Kleinbaum et al. (2003:423) advise: “The Mantel-Haenszel test is the most widely used
and recommended procedure for testing an overall association in a stratefied analysis.”
But they add (p429), pointing to a Simpson effect: “When there is opposite direction
interaction, use of the Mantel-Haenszel test is often inappropriate because it may mask a
strong interaction effect that reflects the true exposure disease relationship.” The latter
point is only noted here. Our reason to quote this is merely to point out that this Fisher
model is do-able and does in no way relate to criticism of the minimum effect size issue
that history attributes to it.

The Fisher model is special in that it assumes (1) statistical independence, (2)
proportionality to group sizes, and (3) a degree of presence (different rates per group, all
down the alphabet, since Fisher did not limit himself to two groups), (4) the genotype is
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a common cause for both confounder and effect. Alternatives to these assumptions are:
(ad 1) statistical dependence, for example due to random causes not mentioned, or that
we have not disaggregated enough, (ad 2) non-proportionality for various other reasons
than aggregation, (ad 3) presence or absence (thus dichotomy only), (ad 4) allow causal
independence between cause and confounder.

The analysis in the main body of the text departs from the Fisher model in these ways:
(ad 4) allow causal independence between cause and confounder, (ad 3) presence or
absence, (ad 1) allow statistical dependence, (ad 2) allow indeterminacy on
proportionality, since we have only one table. We don’t have “groups” but
subpopulations who are exposed to the cause or not. Of necessity these subpopulations
are groups anyhow, yet they are not the groups that are by definition intended to have
independent probabilities.

If the cause is absent then one generally would presume that the effect does not occur,
yet we still will allow for some “background risk” due to other causes (“ causes not
mentioned”). Or alternatively, if there should always be a value 0 somewhere, then one
would have to reshuffle the data.

By consequence, the main body of the text uses different variable names than the one in
this appendix on Fisher’s model.

It must also be remarked that the Fisher model does not say anything about causality.
The direction of events derives from a different kind of reasoning than the mere way of
tabulating the data.

Some other remarks

The 2 x 2 x 2 case that we studied in the main body of the text is sufficiently general to
be used to study the Fisher model as well, since that is minimally 2 x 2 x 2 as well. Yet
one must keep those issues in mind when making the translation (“confusus
definitionis”). An inquisitive reader may note that our example table, that is entirely
fictitious, already contains p = 51% and g = 24%, so that the 800 persons could be seen
as fraternal twins, and the confounder would be “having distinctly different smoking
habits”. Also there is a relative average risk of about 9. The other numbers on effect and
cause are entirely fictitious though. It thus is dubious what one can do with this, in
particular since “having a different smoking habit than your twin brother” is
non-informative on smoking at all.
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Needless to say, this author thinks that smoking is a cause for cancer. Yet, it would not
be right to misread Fisher. His warning was against confounding, about mistaking
correlation for causation. His model was adequate and his observation of the influence
of genetics was important. In the same way of “getting the record straight”, it must be
remarked that, though Schield (2003) follows the historically grown interpretation that
Fisher’s 51% and 24% would be prevalences, which they are not, this author is
enormously indebted to Schield for helping to understand the issue. It did take some
effort to first understand Schield (2003) and then to see that the issue is slightly
different, yet, in the end it was an important point to start from.

It still is not entirely clear to this author whether this issue is one of proportionality or
one of imposing conditional independence. For epidemiologists it may be natural to
think in terms of conditional independence, so that for them the insight of Cornfield et
al. derives from the proportionality. For an economist though, contingency tables in
principle might take any values, everything is proportional to #z, and the insight is from
imposing relative freedom.

It is not clear to this author whether Fisher historically knew about the notion of
conditional independence. It would be strange however to assume that he would not, in
all practical matters, have used the notion. Perhaps the notation and the developed
mathematics must have been unknown since these were of a later date, yet, those
concepts, to an important degree, merely express common sense. It would seem, at least
to this author, that Fisher might have thought: ‘You folks may come with all kinds of
explanations for lung cancer, yet, please be aware that correlation is no causation, and
for example that new wonderful invention of genetics might be the true cause’. Which
thought is caught by that double bar in P[Y || X].

Epidimiological language and conventions

This sub-section uses Schields notation. For translation (us = Schield): S=E, C =C, F
=A.

Schield (2003:3) in the first column states: “If factor A (smoking) had no effect on the
likelihood of an observable effect E (lung cancer), Cornfield et al. proved that the
prevalence of the actual cause (C) must satisfy: P(C|A) / P(C|A") > P(E|A) / P (E|A").”
(In our notation thisis p/q > Rp / Br.)

However, this statement is totally incomprehensible since it has not been defined for the
reader what “had no effect” means. It might be (1) P[E, A] or (2) P[E | A] or (3) P[E | C,
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A] or (4) P[E || A]. Schield (2003:3) then in the second column gives a sufficient
condition for “no effect”, which is conditional independence, of E + A | C. It is not clear
whether sufficiency is actually the definition. Also, it seems to amount to begging the
question. Yes, if there is this relative freedom then the Cornfield et al. condition holds,
as well as R - B = Rp - By, but it does not of necessity follow that A (our F) is a
confounder if and only if E + A | C.

Schield (2003:3) states: “The necessary condition of Cornfield et al is the positive side
of Simpson's Paradox. It allowed statisticians to conclude that, to the best of their
knowledge, smoking caused cancer — based on observational studies.”

This is not quite true. The main body of the text showed that the EXZ analysis can be
inverted to some EZX form that satisfies all conditions. One requires additional theory
on how the world operates to truly arrive at a decision.

In his own Appendix, Schield (2003:7) quotes the Appendix A of Cornfield et al. (who
use a different notation again): “Let the disease rate for those exposed to the causal
agent B, be r| and for those not exposed, 7, each rate being unaffected by exposure or
nonexposure to the noncausal agent, A.”

However, this statement is totally incomprehensible since it has not been defined for the
reader what “being unaffected by exposure or nonexposure” means. It is only fortunate
that the present author heard about the notion of “conditional independence” and was
able to make an educated guess. But your author remained and remains perplexed why
one would make such an assumption, since it might very well be that » # R. These are
serious diseases. One should not impose assumptions from thin air and without even
speaking about them. But the author has had no boot camp in epidemiology, so he may
have missed basic training. Part of the solution appears the paradigm that biological
proportionality tends to be modelled as statistical independence. And it is likely the
simplest model that one tries. Perhaps that is all.

Appendix C: Deductions on safety

It will be useful to substitute:
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sol = Solve[c = pf + q(1 — ), pll[1]]

{p_> C+ffq—q}

This is the total when S and —S are added.

ETCTable["TC", f, {p, q}]

Cause - Cause Total
Confounder fpr f-p) f
- Confounder 1-Hq (1-H0-q -7
Sum fp+(1-1q -fp+fa-q+1 1

mat = Take[%, 2, 2];
This gives the part for —S.
w=P[=S|C, F]=P[S, C, F|/ P[C, F] =P[=S, C, F]/(p f)
v=P[=S|~C, F]=P[=S, ~C, F]/ P[~C, F] =P[=S, ~C, F]1/((1 -p) /)
e=P[=S|C, ~F] =P[S, C, ~F]/P[C, ~F] =P[=S, C, ~F]/(q (1 -/))
a=P[=§|~C ~F] =P[=S, ~C, ~F]/P[~C, ~F]=P[~S, =C, ~F]/ ((1 - ¢) (1 - /)

{{P[_' SI CI F]! P[_' S, —|C, F]}, {P[_' SI C, _'F]’ P[_' S, _'Cl _'F]}} ==
flwpf, vii-p)f, {1 -nagAd -fH, 1 -b)(1 - g1 -0H}} /. sol
Cc+fg-@w f(1-<LE)y

I-Hql-n A-bA-/H1-q)

P(=S,CF)  P=S,-CF)
(P(—' §,C,=F) P(=S,-C, ﬂF))

This has in fact be put in a separate routine as well.

ETCTable["TC|-S", {c, r, b}, {f, q}, {w, v}]

Cause - Cause
Confounder c-A=-Ngw f(l _ #q_)v
— Confounder 1-fHgd-n (1-b)(1-/)1-9q)
Sum A=-Ngd=nN+c-0=-NHgw (=D (1= =g)+ [ (1 -

matnots = Take[%, 2, 2]

c=U-Naw f(1-F)y
A-Hq-r A-bA-H1-¢q
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Substraction from the total gives the part for S.

mats = mat — matnots /. sol // Simplify

(—(C+(f—1)q)(w— D (C+f(q—1)—q)(v—1))
-(f=-Dgr b(f-D@-1

And this is the whole matrix again

matsol = {mats // Transpose, matnots // Transpose} // Simplify;

XminusAToAminusX[%];

TableForm[%)]
c=(1=Hq)1-w) —c-fA-q)—q)1-v)
(a=-Naqr bA-H0-9
c-d-Hgw (c+fd-g+qv
(1=Ng-r - -H0-9

A small check:

Add[%] // Simplify

1
Hence, the routine creates that output.

lis = SafetyToETCArrayi{c, r, b}, {f, q}, {w, v}];

TableForm[lis, TableHeadings —» CT["ETC", TableHeadings]]

Cause — Cause
Confounder c-A-Had-w) (—c+fA-q)+q)(1-v)
Success — Confounder (1-f)gr bA-H0-9q
Confounder  (c—(1-f)g)w (mc+f-g@)+q)v
- Success — Confounder (1 - f)q (1 -7) A-bA-H0-q)

Appendix D: Deductions on risk

Recall:
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ETCTable["TC", f, {p, q}]

Cause - Cause Total
Confounder fpr f-p S
- Confounder 1-Nq 1-NH0-9 1-f
Sum Sp+- g —fr+fa-q+1 1

ETCTable["ET", c, {R, B}]

Cause - Cause Total
Success cR B(-¢) B(l-c¢)+cR
= Success c(l-R) (1-B)(1-0¢) cB—B-cR+1
Sum c 1-¢ 1

Instead of these averages we are interested in the driving risks (using above TC table):

r=P[S|C ~F]=P[S, C ~F]/(P[C|~F] P[~F]) =P[S, C, =F] /(¢ (1 - /)

b=P[S|~C, ~F]=P[S, ~C ~F]/ (P[~C | ~F] P[~F]) = P[S, =C, ~F] / ((1 - ¢) (1
-N)

And this allows us to understand what happens in general when the confounder is not
present:

P[S, C|~F]=P[S, C,~F]/P[-F]= rq
P[S, ~C | ~F] =P[S, ~C, ~F]/ P[~F] = b (1 - )

When we consider the group —F as a whole, conditionally, then we find the following
table - which is also the second ratio table printed in the above ETCStatistics output.

m This looks only at the group with —F. All values must be multiplied by 1 - f.
ETCTable["ET", q, {r, b}]

Cause - Cause Total
Success qr b(l1-q) b(l-q)+qr
— Success q(1-r 1-b01-g9g) gb-b—qr+1
Sum q l-q 1

If we substract this result (multiplied by 1 - f) from the earlier total, we get the matrix for
the group with F. Hence we have parameterized the whole 2 x 2 X 2 matrix.

lis = RiskToETCArrayi{c, r, b}, {f, q}, {R, B}];



72 2007-05-29-ETC222-45.nb

TableForm[lis, TableHeadings —» CT["ETC", TableHeadings]] // Simplify

Cause - Cause
S Confounder (f-1)gr+cR —cB+B+b(—qf+f
uceess - Confounder —(f —1)gqr b(f-D@-1
S Confounder —Rc+c+q(-rf+f+r-1) Ble-1)—-c+f+b(f-1D(g
- Success — Confounder (f —1)g(r—1) -b-DH(f-1@g-D

lis2 = SafetyToETCArrayi{c, r, b}, {f, q}, {w, v}];

TableForm[lis2, TableHeadings —» CT["ETC", TableHeadings]] // Simplify

Cause - Cause
Confounder —(c+(f-Dgw-1) c+f@-D-gq(v-1)
Success - Confounder —(f—-1)gqr b(f-D@-1
Confounder (c+(f-1)q)w (mc+f-fq+qv
- Success - Confounder (f —1)q(r—1) -b-D(f-D@-1

eqs = Thread[Flatten[lis] == Flatten[lis2]] /. True :> Sequence[];

sol = Solveleqs, {R, B}] // Simplify // XminusAToAminusX

{{R%_(l—f)lI(:’—W+1) —wtl.Bo b(f—1)(¢I—1)+(—1C_+Cf(1—CI)‘HI)(I—V)}}

Hence the routine reproduces that.

rs = ETCAverageRisksFromSafetyi{c, r, b}, {f, q}, {w, v}]

{_W+ (l—f)q(cr+w—1) il b(f—l)(q—l)+(—16_+cf(1—q)+q)(1—V)}

Incasec=q:R=r(1-H)+f(1-w),B=b(1-H)+f(-v):
R=rd-H+f1-w),B=b(1-f)+f(1-v)} /. sol[[1]] /. ¢ » q// Simplify

{True, True}

PM. The risk parameterization using safety simplifies to the one using risk, when we
substitute the risks created from safety.

lis = SafetyToETCArrayi{c, r, b}, {f, q}, {w, v}];
lis2 = RiskToETCArrayi{c, r, b}, {f, q}, rs];

lis == lis2 // Simplify

True
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Appendix E: The risk difference

Schield (2003) provides evidence that the risk difference would be instructive to identify
a Simpson paradox, not only algebraically but also psychologically.

Schield (2003:5): “Consider two hospitals: a city hospital and a rural hospital. The death
rate is 3% of cases at the city hospital versus 2% at the rural. The combined death rate is
2.7%. Thus, it seems that the rural hospital is safer than the city hospital. (...) Now
consider a plausible confounding factor: the condition of the patient’s health. We find
that overall the death rate among patients in poor condition is 3.8% while that among
patients in good condition is 1.2%. Here the simple difference in death rates by patient
condition (2.6 percentage points) is greater than the simple difference in death rates by
hospital (1 percentage point). Thus we have strong reason to be concerned about a
possible Simpson’s Paradox reversal of the association between hospital and death rate.
To guard against such a reversal we can take into account (control for) patient condition
when comparing the death rates for these two hospitals.”

As we have seen, the mathematics of the ETC problem is fairly simple, but translation
remains a stumble block. In above story, the true cause is the health condition while
Schield labels it the “confounder”. So we would first translate the text to the EZX
situation and then invert to EXZ again. Let us try to do this in one step. The second
element in the translation is that the discussion is indiscriminate about “death rates”
while some are marginals (averages) while other might be parameters. There are no
clearly stated marginals s, ¢ and f'so we have to infer those from the averages. The third
snitch is that epidemiologists assume {R, B} = {r, b}, for otherwise they could not keep
the number of variables down. The fourth problem is that Schield refers to the Simpson
paradox and uses Cornfield’s condition R - B = Rp - Br to solve it, which is needlessly
strong. A fifth point is that the Simpson paradox would not occur in a truly causal
model. Admittedly, though, the distinction between city and rural hospitals is hardly a
causal one, so that this is indeed a model of aggregating subpopulations, which is the
habitat of the Simpson paradox. A sixth issue is that “to control” is not really defined so
that it is not really clear what the solution is. If we had the solution then it would also
become clear what the original problem was (what we lacked in knowledge).

Translating we find S = death, C = bad health, F' = city hospital, s = 2.7%, Rr = 3%, Br
=2%,r =R =3.8%, b = B =1.2%. From the section above on the relative freedom of
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the variables we know that R =p r + (1 - p) b and Br =g r + (1 - q) b. There is only
one way that these numerical values can fit our equations.

vals = {s » 0.027, r » 0.038, b —» 0.012, Rf - .03, Bf —» .02};
eqgs = {s ==cR + (1 -¢)B,

s == fRf + (1 - f)Bf,

C == pf+q(1—f),

Rf =pr+(1-p)b} /. {R->r B - b} /. vals

{0.027 = 0.012 (1 — ¢) + 0.038 ¢, 0.027 = 0.02 (1 — ) + 0.03 f,
c=fp+(l-7£)g, 0.03=0012(1 - p)+0.038 p}

sol = Solvelegs, {c, f, p, q}]
{{c » 0.576923, p - 0.692308, ¢ — 0.307692, f — 0.7}
lis = RiskToETCArrayi{c, r, b}, {f, q}, {r, b}] /. vals /. sol[[1]];

TableForm[lis, TableHeadings —» CT["ETC", TableHeadings]] /.
{"Cause" - "Bad health",
"Confounder" — "City hospital”, "Success" — "Death"}

Bad health - Bad health
Death City hospital ~ 0.0184154 0.00258462
ca ~ City hospital 0.00350769 0.00249231
City hospital ~ 0.4662 0.2128
~ Death — City hospital 0.0888 0.2052

The reason why we took Schield’s example is to follow his suggestion on the risk
difference. The Schield plot shows the differences between the four parameters with the
total average at the center of gravity. Since the risk difference of the cause (bad health)
is larger than the risk difference of the seeming cause (city hospital), the Cornfield
condition is satisfied. Indeed, if you had a reverse state of mind, and thought that the true
cause was the difference in quality in city and rural hospitals, then you would have to
worry about confounding and the Simpson paradox. Our analysis shows that we should
not stick to just these risk rates but consider the whole ETC 2 x 2 x 2 table. The
assumption that {R, B} = {r, b} is too quick and likely hides the true relations. (Thus
there is no reason to further investigate the issue of the relative performance of the
hospitals.)



2007-05-29-ETC222-45.nb 75

" {R B} ={rbj}
SchieldShow[0.027, 0.038, 0.012, .03, .02, "R - B vs Rf - Bf"];

R - B vs Rf - Bf

0.035 0.035
0.03 A 0.03
0.025 .0.025
0.02 0.02
0.015 0.015

Appendix F: A counterfactual in Pearl (2000)

Pearl (2000:35-36) gives a wonderful example on counterfactuals. The problem situation
differs from our ETC world since this example may have two causes. But a short
discussion will clarify both the ETC assumptions and a bit about the counterfactual. Let
us first re-create the problem and then summarize our finding. There are two random
variables #; and u, that can take values {1, 0} with a flip of a coin (P = 1/2). The
variables are S = death, C = uy, F = Yes = u;.There are two models:

Model 1: S=C
Model 2: S=C F+(1-C)(1-F)

The reader will note that Pearl (2000) calls F' = u; the “treatment” variable, which
suggests that it would be the cause. But from the structure of Model 1 we can see that u;
is the cause. Perhaps one might better call u, the “treatment”. Thus it seems that this
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example on counterfactuals is a bit confounded with treating a EZX model instead of a
EXZ model. To allow the comparison with Pearl (2000) we stick to his label F = u;=
“treatment”.

lab = {"Success" —» "Death", "Cause" —» "u," , "Confounder" -» "Treatment"};
m This is Model 1. It is a perfectl simple causal model.

func[x_, y_, z_] := lf[x == vy, .25, 0]

lis = Outer[func, {1, 0}, {1, 0}, {1, 0}];

TableForm[lis, TableHeadings —» CT["ETC", TableHeadings]] /. lab

U =y
Deah e 025 0
“Deah RO 0 08
ETCSquare[lis];

SCf Scf
0.25 0
0.25 0
SCF | ScF
sCF | scF
0 0.25
0 0.25
sCf scf

m This is Model 2.
func2[x_,y ,z ]l =[x == yz+ (1 -y (1-2), .25, 0]

lis2 = Outer[func2, {1, 0}, {1, 0}, {1, 0}];
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TableForm[lis2, TableHeadings —» CT["ETC", TableHeadings]] /. lab

U ouy
LS P
ETCSquare[lis2];
SCf Scf
0 0.25
0.25 0
SCF| ScF
sCF | scF
0 0.25
0.25 0
sCf scf

One may check that both matrices have the same marginal distribution {{.25, .25}, {.25,
25} when C = uy or F = u; is summed out. Thus the relative risks for both cause and
confounder are 1.

Pearl (2000:36): “Model 1 corresponds to treatment (X) that has no effect on any of the
subjects; in model 2, every subject is affected by treatment. The reason that the two
models generate the same distribution is that model 2 describes a mixture of two
subpopulations. In one (u, = 1), each subject dies (y = 1) if and only if treated; in the
other (u; = 0), each subject recovers (y = 0) if and only if treated.”

Pearl is interested at this point in the counterfactual. For lack of a better notation we can
write Q=P[(y=0|x=0)|(y =1, x = 1)] for the counterfactual that a person who died
under treatment (the outer condition) would have recovered under non-treatment (the
inner condition).

Pearl (2000:36): “The value of Q differs from these two models. In model 1, O evaluates
to zero, because subjects who died correspond to u; = 1 and, since the treatment has no
effect on y, changing X from 1 to 0 would still yield y = 1. In model 2, however, O
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evaluates to unity, because subjects who died under treatment must correspond to u; = 1
(i.e. those who die if treated), meaning they would recover if and only if not treated.”

We can capture the counterfactual also in the basic statistics. This corresponds with
Pearl’s remark: “knowledge about the actual process behind P(y | x) is needed for the
computation”. Once we have the full crosstable with all 8 entries then we have full
information about the table, and then also the counterfactuals can be calculated. But it is
not entirely clear why we should link this issue to counterfactuals. Having the full table
allows us to calculate all kinds of things, including counterfactuals. But we want the full
table for various purposes, not only counterfactuals. To put disproportionate emphasis
on counterfactuals might be a “confusus counterfactualis”.

When we run the statistics then we get (using Hold[SafetyToETCArray] to identify the
parameters):

SafetyToETCArray{] /. ETCStatistics[lis, Print » False]

Hold[Safety ToETCArrayl[{0.5, 1., 0}, {0.5, 0.5}, {0, 1.}, 1.]

SafetyToETCArray{] /. ETCStatistics[lis2, Print —» False]

Hold[SafetyToETCArray][{0.5, 0, 1.}, {0.5, 0.5}, {0, 1.}, 1.]

Thus:

m Model 1 is a perfect model for a simple cause, withr=1,56=0, w=0and v=
1.

m Model 2 describes a perverse simple cause, albeit withw=0and v=1, but r =
0, b = 1. The background risk determines all and the “cause” is totally
ineffective. Though u, was correctly identified as the cause for Model 1 we
mistakenly believed, purely on its name, that we have a related kind of causal
structure in Model 2. Indeed, we have the same u, and we also see deaths, so,
there must be something constant. But the only thing that is constant is “there is
a probability distribution”. What we did not notice is that between Model 1 and
Model 2 there was a huge shift in the actual probabilities, notably on the risks
for the cause and the background. It is like a movie that is hugely popular
amongst teenagers and then assuming that will be similarly popular amongst the
elderly too, just because it still is the same movie.
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= We may try to do the EZX transformation to see whether Treatment now is the

true cause. But transponation gives us the same data format.

CT[Set, Label -» "Pearl2",

Dimensions —» CT[Dimensions], Data - lis2, Source —» "Created"];

CT[Order, {"Effect”, "Confounding"}, "Pearl2"] /. lab

Treatment — Treatment
up 0.25 0
Death —u 0 0.25
up 0 0.25
~ Death —u 025 0

= [ndeed, also if we try Treatment as the cause then we still have the perverse r

=0and b=1.
SafetyToETCArray{] /. ETCStatistics[%, Print —» False]

Hold[Safety ToETCArrayl[{0.5, 0, 1.}, {0.5, 0.5}, {0, 1.}, 1.]

m A solution is to call absence of the cause to be the true cause, with » =1 and b

= 0 though at a price of w =1 and v =0.
CT[Switch, "Pearl-Invert"”, "Pearl2", "Truth"” - {Not["Cause"],

- Cause Cause
S Confounder 0 0.25
uccess = Confounder 0.25 0
S Confounder  0.25 0
- Success - Confounder 0 0.25

SafetyToETCArray{] /. ETCStatistics[%, Print —» False]

Hold[SafetyToETCArray][{0.5, 1., 0}, {0.5, 0.5}, {1., 0}, 1.]

"Cause"}]

A strong conclusion would be that Pearl’s Model 2 may very well be a possible model
with nice probabilities in a 2 X 2 x 2 table, but it does not fit the ETC mold. For ETC we
have been considering a cause and a confounder, but in Model 2 we meet with two

causes, and we have not modelled such a case including their interaction. We may have
suffered a bit from the “confusus definitionis”, mistaking a 2 x 2 x 2 table for the ETC

problem, just because it was a 2 X 2 x 2 table.

It may well be that Pearl’s comment on the subpopulations is relevant. That would

introduce a fourth variable. It all depends upon the problem. The fourth variable should

explain why the same cause from Model 1 should suddenly get perverse effects.
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But another solution is to stick to the three-variable world and pay closer attention to the
actual definition of the probability distribution for Model 2. There we find that there is
only a success if we have, in logical terms, the true cause C=(C A F)V (— CA — F).
Thus instead of going into the fourth dimension we actually have a smaller model from
the 2 x 2 world with a perfect simple causal structure:

ET C -C
Death 0.5 O
Life 0 0.5

This only goes to show that the human mind might work best when it can reduce
complex reality to the simple causal model or logical relations. If we would meet
phenomena with that particular reaction as in Model 2 then we would quickly find a new
word for the particular combination and include it under the list of dangerous events.

Appendix G: Routines

This discussion uses The Economics Pack, Cool (2001).

?ETCArrayQ

ETCArrayQ[x] returns True if x is a {2, 2, 2} array, and otherwise False

? SafetyToETCArray

SafetyToETCArray{{c, 1, b}, {f, q}, {x, y}, n:1] is an
application of TOETCArray so that {x, y} is interpreted as {w, v}
SafetyToETCArray|] contains in Hold how the output of
ETCStatistics could be used to create the same input array

SafetyToETCArray{{c, 1, b}, {f, q}, {x, y}, n:1] is an
application of TOETCArray so that {x, y} is interpreted as {w, v}

?RiskToETCArray

RiskToETCArray{{c, r, b}, {f, q}, {X, y}, n:1] is an
application of ToETCArray so that {x, y} is interpreted as {R, B}
RiskToOETCArray|] contains in hold how the output of
ETCStatistics could be used to create the same input matrix
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?ToETCArray

ToETCArrayl{c, r, b}, {f, q}, {x, y}, n:1] gives a 2 x 2 x 2 table with the
order Effect, Truth, Confounding. Option ETCParms determines how x
and y are interpreted. Method —> Safety is default, the alternative is Risk:
ToETCArray[Safety, {c, r, b}, {f, q}, {w, v}, n:1]
ToETCArray[Risk, {c, r, b}, {f, q}, {R, B}, n:1]
The meaning of the parameters is
¢ = Pr[C] = marginal of the cause =p f + q (1 — f);
f = Pr[F] = marginal of the confounder
p = Pr[C | F] = chance that the cause occurs given F (solved from c)
q = Pr[C | IF] = chance that the cause occurs given F
r=Pr[S | C, F] =risk
b =Pr[S | !C, !F] = background risk
R = Pr[S | C] = average risk
B = Pr[S | IC] = average background risk
w = Pr[Not[S] | C, F] = miraculous = wunderbar
v = Pr[Not[S] | Not[C], F] = background safety
e = 1 —r = exceptional safety (the cause's failure rate)
a =1 —b = background safety (all absent)
n = total number of cases
Option "Round" controls rounding, default it does.
Substitute p = q = c iff ¢ and f are marginally independent.
ToETCArray[Confounder, {c, r, b},
{p, a}, {R, B}, n:1] uses f = (¢ — @)/(p — q) for p <> q.
Enter r > b otherwise reverse the definition of what is the cause, absence rather than presence.
But R > B is not tested though this essentially would also better relabelled if it is not so.
One would use p > q as well.

? ETCAverageRisksFromSafety

ETCAverageRisksFromSafety({c, r, b}, {f, q}, {w, v}] gives {R, B}.
w = P[Not[S] | C, F], w from wunderbar = miraculous
v = P[Not[S] | Not[C], F] safety (from Dutch "veiligheid")

See ETCStatistics and ToETCArray for the other parameters
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? ETCStatistics

ETCStatistics[mat] for a 2 x 2 x 2 matrix with the ETC layout of Effect, Truth,
Confounding, generates summary statistics. See ETCPrTable and ETCTable.
ETCStatistics[opts] uses default CT["ETC", Data]
Subtables and probabilities in output are
ETCStatistics["Cause"] for the average cause for Success, with
R = Pr[Success | Cause]
B = Pr[Success | Not[Cause]].
ETCStatistics["Confounder"] for the confounding probabilities
p = Pr[Cause | Confounder]
q = Pr[Cause | Not[Confounder]].
ETCStatistics["Seeming"] for the erroneous
view where the success is related to the confounder, with
Rf = Pr[Success | Confounder]
Bf = Pr[Success | Not[Confounder]]
Option Print —> (default True) controls printing of subtables, Simplify —> (default True)
simplifies tables in printing, N —> (default True) applies to the rate table in printing

?ETCRiskTable

ETCRiskTable[res] uses res = ETCStatistics|...] to make
a table of the various risks and their values, difference and ratio's
ETCRiskTable[res] uses res = Results|[ ETCStatistics] that are
default present after the statistics routine has been called

?ETCPrTable

ETCPrTable[] lists the table of key risks
and probabilities of the Effect, Truth, Confounding table

?ETCTable

ETCTable[22, lab] takes CT[lab, Data] that
must be 2 by 2, adds border sums, and prints with TableForm
The following are border matrices:
ETCTable["ET", c, {R, B}] for marginal
probability of the cause c, risk R and background risk B
ETCTable["EC", f, {Rf, Bf}] for the marginal probability of the
confounder f, seeming risk Rf and seeming background risk Bf
ETCTable["TC", f, {p, q}] for the marginal probability of the confounder
f, p = Pr[cause | confounder] and q = Pr[Cause | !confounder]
ETCTable["-S|TC", {c, 1, b}, {f, q}, {w, v}] shows the table for truth and confounding,
given that there is no success, with w and v the strong and weak safety
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? ETCSquare

ETCSquare[] shows ETCSquare[CT[Data]]
ETCSquare[string] shows ETCSquare[CT[string, Data]]
ETCSquareflis] shows the 2 x 2 x 2 square. For the ETC model, the effect
is in the rows, the truth in the columns and the confounder in the triangle
ETCSquare[Label] just shows the labels
Options are:
Show —> (default True) show the labels
N —> {positions} for the positions of x and the labels
Position —> {a, b} for the position when there are no labels. A position is just a
pair of numbers between 0 and 1, because the other positions are symmetric
TableHeadings —> (default Automatic) the list of labels, and if Automatic, it uses:
First —> {3 strings} for labels of an event
Last —> {3 strings...} for labels of the absence of the event

?ETCSimpson

ETCSimpsonl[{c, 1, b}, {f, q}, {w, v}] gives the necessary and sufficient conditions for the
Simpson paradox to arise, by regarding the F and !F groups for which the risk difference >
0 while the total has risk difference < 0. NB. The output terms are in quotes. NB.
The sufficient conditions are all True if the paradox occurs (only for the stated case)
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