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where the firms simultaneously decide on both price and quantity, are

free to supply less than the quantity demanded, and there is discrete

pricing. If firms are symmetric then, for a large class of residual de-

mand functions, there is a unique equilibrium in pure strategies when-

ever, for a fixed grid size, the number of firms is sufficiently large.

Moreover, this equilibrium price is within a grid-unit of the competi-

tive price. The results go through to a large extent when the firms are

asymmetric, or they are symmetric but play a two stage game and the

tie-breaking rule is ‘weakly manipulable’.
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1 Introduction

Let us consider a Bertrand duopoly where the firms decide on both their

price and output levels and the firms are free to supply less than the quantity

demanded. Edgeworth (1897) argues that in such models equilibria in pure

strategies may not exist (see Dixon (1987), or Friedman (1988) for formal

statements of the problem). In the literature this is often referred to as the

Edgeworth paradox. In this paper we seek to provide a resolution of this

paradox.

We focus on the case where the firms make their price and output deci-

sions simultaneously, though we also examine a variant where the firms first

decide on their prices, and then on their output levels (we restrict atten-

tion to pure strategies). We assume that the price level varies over a grid,

where the size of the grid can be arbitrarily small. There are generally two

problems associated with the existence of pure strategy equilibrium under

price competition. The first reason has to do with the well known open-set

problem. The second one has to do with the fact that the profit function

of a firm may not be quasi-concave in its own price. The grid assumption

allows us to side-step the open set problem, and focus on the second one.

This assumption can also be motivated by appealing to the practice of inte-

ger pricing, or to the fact that there are minimum currency denominations.

Other papers that model such discrete pricing include Dixon (1993) and Roy

Chowdhury (1999).

We examine two main classes of residual demand functions, one where

the tie-breaking rule (henceforth TBR) is ‘weakly manipulable’ (and the

rationing rule is satisfied by a parametric class of rationing rules, though

not the proportional one),1 and another where it is ‘strongly manipulable’.

Suppose that several firms are charging the same price. If the TBR is weakly

manipulable, then, up to a level, the residual demand coming to such a firm is

responsive to an increase in its own output level. Beyond this level, however,

the residual demand may be insensitive to an increase in own output (this

1From now on, for ease of exposition, we shall often use the shorthand - weakly manip-

ulable TBR - to refer to this combination of a weakly manipulable TBR along with the

associated restriction on the rationing rule.
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happens whenever the output levels of the other firms charging this price

are ‘reasonably large’). If, however, the TBR is strongly manipulable, then,

irrespective of the output levels of the other firms charging this price, such

a firm can increase the residual demand coming to it by increasing its own

output level. (Later, in Remarks 2 and 6, we argue that there are very few

papers in the literature that analyze the case where the TBR is effectively

strongly manipulable). Further, both kinds of TBRs allow for spill-overs

in the sense that, in the event of a tie in price, it cannot be that there is

unmet demand at this price, while some of these firms have output that they

cannot sell for lack of demand.

We first consider the case where firms are symmetric (we later analyze

the asymmetric case also). To begin with we examine the setup where the

firms simultaneously decide on both their prices and quantities. For both

kinds of TBRs we demonstrate that if, for any given grid-size, the number of

firms (n) is large enough, then there is a unique Nash equilibrium where the

equilibrium price is within a grid-unit of the competitive price. Moreover,

the output levels of individual firms become vanishingly small as n becomes

very large.

The proofs of the existence results work as follows. Suppose all firms

charge the lowest possible price in the grid that is greater than the marginal

cost at zero. If the TBR is weakly manipulable and n is large, then the

residual demand coming to every firm is small, so that it is residual demand

rather than marginal cost which determines firm supply. In that case price

would not equal marginal cost, and firms may have no incentive to increase

their price levels. Next consider strongly manipulable TBRs. For n large,

competition among firms may lead to excess production so that a firm that

deviates and charges a higher price may have no demand at all.

We then turn to the aggregate output level. If the TBR is weakly manip-

ulable, then, in equilibrium, aggregate output equals demand. If, however,

it is strongly manipulable, then interestingly every firm produces more than

what it sells, so that the equilibrium involves excess production. For this

case, consider the limiting value of the aggregate output as n is taken to

infinity. It turns out to be finite if the marginal cost at the origin is strictly

positive. Otherwise, aggregate output diverges to infinity.
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We then examine the case where, for a fixed n, the grid size is taken

to zero. We find that, for all sufficiently small grid sizes, no single price

equilibrium (i.e. equilibrium where all firms that supply a positive output

charge the same price) exists. Whether, for small grid sizes, there exists

equilibria involving different prices is an open question. In case they do, all

such equilibria are bounded away from the competitive price if the grid size

is sufficiently small.

We next examine the case where the firms are asymmetric. The results

for the symmetric case generalize in a natural fashion when the marginal cost

at zero is the same for all firms. Otherwise, the earlier results go through if it

is the number of ‘efficient’ firms (a firm is said to be efficient if its marginal

cost at zero is less than equal to that of any other firm) that is taken to

infinity. Further, the results for the one-stage game ‘go through’ if the TBR

is weakly manipulable and symmetric firms play a two stage game, where,

in stage 1, they decide on their price, and in stage 2 on their output levels.

Next Section 2 describes the basic framework. Section 3 analyzes a one

stage game with symmetric firms, while the asymmetric case is examined

in Section 4. Section 5 analyzes the two stage game. Section 6 relates the

paper to the literature and concludes. Finally, some proofs which are either

too long, or of mainly technical interest, are in the Appendix.

2 The Framework

There are n identical firms, all producing the same homogeneous good. The

market demand function is q = d(p) and the common cost function of all

the firms is c(q).

A1. d : [0,∞) → [0,∞). The function d(p) is continuous on [0,∞).

Further ∃pmax, 0 < pmax < ∞, such that d(p) > 0 if 0 ≤ p < pmax, and

d(p) = 0 if p ≥ pmax. Moreover, ∀ p′, p′′, such that pmax ≥ p′′ > p′ ≥ 0, it is

the case that d(p′) > d(p′′).

A2. c : [0,∞) → [0,∞). The function c(q) is continuous, increasing

and strictly convex on [0,∞) and twice differentiable on (0,∞). Moreover,
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c(0) = 0 and pmax > limq→0+ c′(q) = c′(0).

We assume that prices vary over a grid. The set of feasible prices F =

{p̂0, p̂1, · · ·}, where p̂0 = 0, and p̂j = p̂j−1 + α, ∀j ∈ {1, 2, · · ·}, where α >

0. Let pi (respectively qi) denote the price charged (respectively quantity

produced) by firm i, where pi ∈ F and qi is a continuous variable ranging

over [0,∞).

Let P = (p1, . . . , pn), Q = (q1, . . . , qn) and P,Q = (p1, . . . , pn, q1, . . . , qn).

For any P,Q, let Qpi
(respectively Qpi) denote the vector generated

from Q by deleting all qj , j ∈ {1, 2, · · · , n}, such that pj ≥ pi (respectively

pj ≤ pi). Clearly, Qpi
(respectively Qpi) denotes the output vector of the

firms charging less (respectively more) than pi. Similarly, let P pi denote the

price vector of the firms charging more than pi.

Let Ri(P,Q), Ri : [0,∞)2n → [0,∞), denote the residual demand facing

firm i as a function of the price quantity vector in the market.

If S(j) denotes some statement involving firm j, then
∑

k|S(k) qk denotes

the sum of qk over all k, k ∈ {1, 2, · · · , n}, such that S(k) holds.

A3. (i) ∀p ≥ 0, if
∑

j|pj=p qj ≥ d(p), then Ri(P,Q)|pi>p = 0.

(ii) ∀p ≥ 0,
∑

i|pi=p Ri(P,Q) ≤ d(p).

(iii) For any P,Q, and ∀i, j such that i 6= j, let P ij , Qij = (pij
1 , . . . , pij

n , qij
1 , . . . , qij

n )

satisfy pij
i = pj , pij

j = pi, qij
i = qj , qij

j = qi, and ∀k /∈ {i, j}, pij
k = pk and

qij
k = qk. Then Ri(P,Q) = Rj(P

ij , Qij).

(iv) ∀P,Q, Ri(P,Q) is independent of both Qpi and P pi .

(v) ∀P,Q, Ri(P,Q)|∀j 6=i, pj 6=pi
is continuous in qi. Furthermore,

maxqi
Ri(P,Q)|∀j 6=i, either pj>pi, or pj<pi and qj=0 = d(pi).

(vi) Consider P,Q = (p1, . . . , pn, q1, . . . , qn) and P ′, Q′ = (p′1, . . . , p
′
m, q′1, . . . , q

′
m)

(where m ≥ n) such that pi = p′i for some i ≤ n, no firm other than

i charges pi (respectively p′i) in P,Q (respectively P ′, Q′) and, ∀p < pi,∑
k|pk=p qk =

∑
m|p′m=p q′m. Then the residual demand of firm i is the same

irrespective of whether it faces P,Q or P ′, Q′.

For any price p, A3(i) states that if the total output of all firms charging

p is at least d(p), then all firms who charge prices greater than p obtain

no demand. A3(ii) states that the aggregate residual demand of all the
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firms charging some price p can be at most d(p). A3(iii) is a symmetry

assumption. A3(iv) states that the residual demand of firm i, say, is inde-

pendent of the price and output levels of the firms who charge prices higher

than pi. Next, note that given A3(ii), maxqi≥0 Ri(P,Q)|∀j 6=i, pj 6=pi
equals

maxqi|0≤qi≤d(pi) Ri(P,Q)|∀j 6=i, pj 6=pi
, which, given the continuity assumption

in A3(v), is well defined. A3(v) states that if there is a single firm, say i,

charging the effectively lowest price, then its maximal residual demand is

d(pi). Finally, A3(vi) states that in case firm i is the only firm charging pi,

then the residual demand of firm i remains unchanged at any other price

quantity vector (with possibly different number of firms) where (a) firm i

alone charges pi and, (b) ∀p < pi, the aggregate output of firms charging p

is the same as that under the original vector.

For any P , define P (i) = (p1(i), . . . , pn(i)), such that pj(i)|j 6=i, pj=pi
=

pmax, pi(i) = pi and pk(i)|pk 6=pi
= pk.

Given A3(iii) and A3(v), ∀pi < pmax we can define

Rpi(P,Q) = max
qi

Ri(P (i), Q).

Given any P,Q such that pi < pmax, Rpi(P,Q) denotes the maximal residual

demand for firm i if all other firms charging pi switch to charging pmax, and,

given this new price vector, firm i sets qi appropriately.

Given A3(iii), ∀i, j such that i 6= j, Rpi(P,Q) = maxqi
Ri(P (i), Q) =

max
q

ij
j

Rj(P
ij(j), Qij) = Rp

ij
j (P ij , Qij). Thus Rpi(P,Q) depends on the

magnitude of pi, but not on the identity of the firm charging pi. Hence

we can define

Rp(P,Q) = Rpi(P,Q)|pi=p.

2.1 Weakly Manipulable TBR

In this sub-section we introduce the notion of weakly manipulable TBRs.

Assumption 4(i) below is a restriction on the TBR, whereas 4(ii) is a restric-

tion on both the rationing rule, as well as the TBR. For any set S, let N(S)

denote the number of elements in S.
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A4.(i) ∀p, such that 0 ≤ p < pmax, define Mp = {i| pi = p} and

Kp = {j| pj = p, qj = 0}. Further, let N(Mp) = mp and N(Kp) = kp (≤

mp). Then Ri(P,Q)|i∈Mp−Kp = qi, if either
∑

j|j∈Mp−Kp
qj ≤ Rp(P,Q), or

∑
j|j∈Mp−Kp

qj > Rp(P,Q) and qi ≤
Rp(P,Q)
mp−kp

. Otherwise, Ri(P,Q)|i∈Mp−Kp ≥
Rp(P,Q)
mp−kp

.

Next, ∀pi, p satisfying pmax > pi ≥ p > 0, define

ri(pi, p, n) = max
qi

Ri(P,Q)|
∀j 6=i, pj=p and qj=

d(p)
n

, and pi≥p.
2

Given A3(ii) and the first sentence in A3(v), ri(pi, p, n) is well defined for

pi > p. Moreover, from A4(i), ri(pi, p, n)|pi=p is well defined and, from A3(ii)

and A4(i), equals d(p)
n

.

A4.(ii) Consider P,Q such that ∃p′, p′′, pmax ≥ p′′ > p′ > 0, such

that firm i (≤ n) is charging a price pi, where p′′ ≥ pi ≥ p′, there are

m′ (n − 1 ≥ m′ ≥ 1) firms (other than i) charging p′, and no other

firms charge any price p, p′′ > p ≥ p′. Then maxqi
Ri(P,Q) is twice

differentiable in pi over (p′, p′′), maxqi
Ri(P,Q) is decreasing in pi over

[p′, p′′), and
∂[maxqi

Ri(P,Q)]

∂pi
and

∂2[maxqi
Ri(P,Q)]

∂p2
i

are both (weakly) decreas-

ing in pi over (p′, p′′). Further, define P k, Qk = (pk
1, · · · , p

k
k, q

k
1 , · · · , qk

k)

such that k is some integer satisfying k ≥ n, Pn, Qn = P,Q (where P,Q

is as defined in A4(ii) earlier), and, ∀l ≥ n, we have that pl+1
j = pl

j

∀j ≤ l, pl+1
l+1 = p′, ql+1

k |
k 6=i,pl+1

k
6=p′

= ql
k, ql+1

j |
j 6=i,pl+1

j
=p′

= Rp′ (P l+1,Ql+1)
m′+l+2−n

, and

ql+1
i = max

ql+1
i

Ri(P
l+1, Ql+1). Let Rk

i (P
k, Qk) denote the residual demand

of firm i when facing P k, Qk. Then limpk
i
→p′+

∂[max
qk
i

Rk
i (P k,Qk)]

∂pk
i

is (weakly)

increasing in k and limk→∞ limpk
i
→p′+

∂[max
qk
i

Rk
i (P k,Qk)]

∂pk
i

< 0. Finally, ∀P,Q

s.t. ri(pi, p, n) is well defined, ri(pi, p, n) is (weakly) concave in pi.

Given A4(ii), note that limpi→p′+
∂[maxqi

Ri(P,Q)]

∂pi
, limpi→p′+

∂2[maxqi
Ri(P,Q)]

∂p2
i

and limk→∞ limpk
i
→p′+

∂[max
qk
i

Rk
i (P k,Qk)]

∂pk
i

are well defined, ri(pi, p, n) is de-

creasing in pi and limn→∞ limpi→p+ r′i(pi, p, n) < 0.

2For ease of exposition we suppress the fact that ri(pi, p, n) is a function of qj , j 6= i.
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We next relate Assumption 4 to the literature. We first consider A4(i).

Note that any firm i, i ∈Mp−Kp, can increase the residual demand coming

to it by increasing its output level qi till Rp(P,Q)
mp−kp

(in fact the residual demand

equals qi). Beyond this output level Rp(P,Q)
mp−kp

, however, the residual demand

of firm i may not respond to an increase in its output level. Suppose all

other firms in Mp supply at least Rp(P,Q)
mp−kp

. Then, from A4(i), all these firms

have a residual demand of at least Rp(P,Q)
mp−kp

. Thus, from A3(ii), the residual

demand coming to firm i is at most Rp(P,Q)
mp−kp

. This formalizes the notion that

the TBR is weakly manipulable.

Further, note that A4(i) allows for the possibility that if some of the

firms supply less than Rp(P,Q)
mP−kp

, then the residual demand facing the other

firms may be greater than Rp(P,Q)
mP−kp

. Such spill-over of unmet residual demand

is, in fact, allowed for by Davidson and Deneckere (1986), Deneckere and

Kovenock (1996) and Kreps and Scheinkman (1983). (This TBR is also

discussed in Vives (1999).) Thus the TBR formalized through A4(i) is in

the spirit of the above literature.3

We then claim that the restrictions on ri(pi, p, n) are satisfied by a

parametric class of rationing rules (though not the proportional one). Us-

ing the combined rationing rule introduced by Tasnádi (1999b), suppose

ri(pi, p, n) = max{d(pi) −
n−1

n
d(p)[(1 − λ)d(pi)

d(p) + λ], 0}, where λ ∈ [0, 1].

For λ = 1, this satisfies the efficient rationing rule, whereas for λ = 0, this

satisfies the proportional rationing rule. For intermediate values of λ, other

rationing rules emerge (see Tasnádi (1999b) for an interpretation). Clearly,

if d(pi) is concave then ri(pi, p, n) is decreasing and concave in pi. More-

over, it is the case that limn→∞ limpi→p+ r′i(pi, p, n) = λd′(p). So ∀λ > 0,

and ∀p < pmax, limn→∞ limpi→p+ r′i(pi, p, n) < 0.

2.2 Strongly Manipulable TBR

We then define strongly manipulable TBRs.

3Papers which consider TBRs that do not allow for such spill-over, include Dixon

(1984), Maskin (1986), Levitan and Shubik (1972) and Yoshida (2002).
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A5. Consider any P,Q. Let Mp̃ = {j| pj = p̃} and N(Mp̃) = mp̃. Then

Ri(P,Q)|i∈Mp̃
=





qi, if
∑

j|j∈Mp̃
qj ≤ Rp̃(P,Q),

γ(qi,
∑

j|j∈Mp̃,j 6=i qj)R
p̃(P,Q), if

∑
j|j∈Mp̃

qj > Rp̃(P,Q),

(1)

where γ : [0,∞)×[0,∞)−{(0, 0)} → [0, 1] and
∑

i∈Mp̃
γ(qi,

∑
j|j∈Mp̃,j 6=i qj) =

1.

The first line of Eq. (1) captures the idea that the TBR allows for spill-

overs of unmet residual demand. We assume that γ(qi,
∑

j 6=i qj) satisfies the

following assumption.

A6. (i) γ1(qi,
∑

j 6=i qj), γ11(qi,
∑

j 6=i qj) and γ12(qi,
∑

j 6=i qj) are well de-

fined on (0,∞)× (0,∞).

(ii) γ1(qi,
∑

j 6=i qj) > 0, γ11(qi,
∑

j 6=i qj) < 0 and γ11(qi,
∑

j 6=i qj)< γ12(qi,
∑

j 6=i qj).

Moreover, γ12(qi,
∑

j 6=i qj) < 0 whenever
∑

j 6=i qj > qi.

(iii) γ1(x, (n−1)x) is decreasing in both x and n. Moreover, limx→0 γ1(x, (n−

1)x)→∞ and limx→∞ γ1(x, (n− 1)x) = 0.

(iv) If limr→∞ a(r) = 0 and limr→∞ b(r) = L, where 0 ≤ L < ∞, then

limr→∞ γ1(a(r), b(r)) = 1
L

if L > 0, and limr→∞ γ1(a(r), b(r)) → ∞, if

L = 0.

(v) If limr→∞ a(r) = 0 and limr→∞ b(r)→∞, then limr→∞ γ1(a(r), b(r)) =

0.

(vi) If, for any strictly increasing sequence of natural numbers < nm >,

limm→∞ x(nm) = D > 0, then limm→∞ γ1(x(nm), (nm − 1)x(nm)) = 0.

Consider any price pi such that Rpi(P,Q) > 0. Then, irrespective of the

output levels of the other firms charging pi, any firm charging pi can increase

the residual demand coming to it by increasing its own output level. This

formalizes the idea that the TBR is strongly manipulable.

Papers in the literature that adopt a strongly manipulable TBR include,

for example, Allen and Hellwig (1986, 1993), Osborne and Pitchik (1986),

Maskin (1986) (the first example provided by him) and Tasnádi (1999b).

Appropriately extending the TBRs in these papers to the present context,
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one can write that

γ(qi,
∑

j 6=i

qj) =
qi∑m

j=1 qj
.

Observe that in this case γ1(qi,
∑

j 6=i qj) =

∑
j 6=i

qj

(
∑m

j=1
qj)2

and γ1(x, (n− 1)x) =

(n−1)
n2x

so that A6 goes through.

This paper covers the case where the rationing rule is efficient (and the

TBR is either weakly, or strongly manipulable), as well as the case where

the rationing rule is proportional and the TBR is strongly manipulable.

What happens in case a proportional rationing rule is coupled with a weakly

manipulable TBR is an open question.4

3 One-stage Game: The Symmetric Case

In this section we consider a one-stage game where the i-th firm’s strategy

consists of simultaneously choosing both a price pi ∈ F and an output

qi ∈ [0,∞). All firms move simultaneously. We solve for the set of pure

strategy Nash equilibria of this game.

We follow Edgeworth (1897) in assuming that firms are free to supply less

than the quantity demanded, rather than Chamberlin (1933), who assumes

that firms meet the whole of the demand coming to them.

Next let p∗ be the minimum p ∈ F such that p > c′(0). Thus p∗ is the

minimum price on the grid which is strictly greater than c′(0). We assume

that α is not too large in the sense that p∗ < pmax. Since p∗ ∈ F , let p∗ = p̂j

for some integer j.

Let q∗ = c′−1(p∗)5 and let n∗ be the smallest possible integer such that

∀N ≥ n∗,
d(p∗)

N
< c′−1(p∗) = q∗.

Thus for all N greater than n∗, if a firm charges p∗ and sells d(p∗)
N

, then the

price p∗ is strictly greater than marginal costs.

4While Roy Chowdhury (1999) does consider a similar case, the cost function used is

discontinuous at zero and the TBR does not allow for spill-overs.
5Since, ∀q > 0, c′(q) is well defined and strictly increasing, c′−1(p) is well defined

∀p > c′(0). For p ≤ c′(0), we define c′−1(p) = 0.
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3.1 Weakly Manipulable TBR

For this case we argue that for a given grid size, p∗ can be sustained as the

unique Nash equilibrium price of this game whenever n is sufficiently large.

Let n̂ be the smallest possible integer such that ∀N ≥ n̂,

[p∗ − c′(
d(p∗)

N
)]r′i(pi, p

∗, N)|pi→p∗+ +
d(p∗)

N
< 0.6

Comparing the definitions of n∗ and n̂, we find that n̂ ≥ n∗.

We next define π̃ to be the profit of a firm that charges p∗ and sells d(p∗)
n∗ .

Thus π̃ = p∗d(p∗)
n∗ − c(d(p∗)

n∗ ). Since d(p∗)
n∗ < q∗, it follows that π̃ > −c(0),

where −c(0) denotes the profit of a firm which does not produce at all.

Now consider some p̂i ∈ F , such that p̂i > p∗. Let q̂i satisfy p̂i = c′(q̂i).

Next consider a firm that charges p̂i and sells d(p̂i)
k

. Clearly the profit of

such a firm is p̂i
d(p̂i)

k
− c(d(p̂i)

k
).

We then define ni to be the smallest possible integer such that ∀k ≥ ni,
d(p̂i)

k
< q̂i and

p̂id(p̂i)

k
− c(

d(p̂i)

k
) < π̃.7

Suppose that in any equilibrium the number of firms charging p̂i, say m̃,

is greater than or equal to ni. Then at least one of these firms would have

a residual demand that is less than or equal to d(p̂i)
m̃

. Since d(p̂i)
m̃

< c′−1(p̂i),

this firm would sell at most d(p̂i)
m̃

and have a profit less than π̃.

Let p̂k be the largest price belonging to F such that p̂k ≤ pmax.

Definition. N1 =
∑k

i=j+1 ni + n∗ − 1.8

For the case where the TBR is weakly manipulable, Proposition 1 below

provides a resolution of the Edgeworth paradox.

6Notice that limn→∞[{p∗ − c′( d(p∗)
n

)}r′i(pi, p
∗, n)|pi→p∗+ + d(p∗)

n
] = limn→∞[(p∗ −

c′(0))r′i(pi, p
∗, n)|pi→p∗+]. Since, p∗ > c′(0) and limn→∞[r′i(pi, p

∗, n)|pi→p∗+] < 0 (A4(ii)),

this term is negative.
7Clearly the left hand side of this inequality is decreasing in k. Moreover, as k goes to

infinity, this term goes to −c(0) ≤ 0. Thus ni is well defined.
8Note that the assumption that the demand function intersects the price axis is required

for this definition.
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Proposition 1. Suppose Assumptions 1, 2, 3 and 4 hold. If n ≥

max{n̂, N1}, then the unique equilibrium involves all the firms charging a

price of p∗, and producing d(p∗)
n

.

Proof. Existence. From the definition of p∗, undercutting is not prof-

itable. We then argue that for the i-th firm, charging a higher price, pi,

is not profitable either. We first claim that ri(p
∗, p∗, n) = d(p∗)

n
. From

A3(v) and A4(i), ri(p
∗, p∗, n) ≥ d(p∗)

n
, and ∀j 6= i, Rj(P,Q) ≥ d(p∗)

n
. Thus

∑
k≤n Rk(P,Q) ≥ d(p∗). The claim now follows from A3(ii).

Since n ≥ n̂ ≥ n∗, d(p∗)
n

< c′−1(p∗). Hence for any pi ≥ p∗,

c′−1(pi) ≥ c′−1(p∗) >
d(p∗)

n
= ri(pi, p

∗, n)|pi→p∗+ ≥ ri(pi, p
∗, n), (2)

where the last inequality follows from A4(ii). Since c′−1(pi) > ri(pi, p
∗, n),

for any pi ≥ p∗, the deviant firm supplies the whole of the residual demand

coming to it. Hence the profit of a firm which charges a price pi (≥ p∗)

π(pi, ri(pi, p
∗, n)) = piri(pi, p

∗, n)− c(ri(pi, p
∗, n)). (3)

Clearly

∂π(pi, ri(pi, p
∗, n))

∂pi
= r′i(pi, p

∗, n)[pi − c′(ri(pi, p
∗, n))] + ri(pi, p

∗, n). (4)

Next from equation (1) it follows that ∀pi ≥ p∗, pi > c′(ri(pi, p
∗, n)). Hence

from the concavity of ri(pi, p
∗, n) it follows that π(pi, ri(pi, p

∗, n)) is concave

in pi.
9 Moreover,

∂π(pi, ri(pi, p
∗, n))

∂pi
|pi→p∗+ = [p∗−c′(

d(p∗)

n
)]r′i(pi, p

∗, n)|pi→p∗++
d(p∗)

n
. (5)

Since n ≥ n̂, we have that ∂π(pi,ri(pi,p
∗,n))

∂pi
|pi→p∗+ < 0. Next, from the

concavity of π(pi, ri(pi, p
∗, n)) it follows that ∀pi ≥ p∗, the profit of any

deviant firm is decreasing in pi.

9This follows since

∂2π(pi, ri(pi, p
∗, n))

∂p2
i

= r
′′
i (pi, p

∗
, n)[pi − c

′(ri(pi, p
∗
, n))] + 2r

′
i(pi, p

∗
, n)

− c
′′(ri(pi, p

∗
, n))r

′2
i (pi, p

∗
, n).
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Next, from A3(v) and A4(i), all firms, by producing d(p∗)
n

, can have a

residual demand of at least d(p∗)
n

. Thus, given that d(p∗)
n

< c′−1(q∗), all firms

produce at least d(p∗)
n

. Hence, from A3(ii), the residual demand facing all

firms is exactly d(p∗)
n

.

Uniqueness. Step 1. We first claim that there cannot be an equilibrium

where the output level of some of the firms is zero. This follows since these

firms can always charge p∗ and obtain a residual demand of at least d(p∗)
n

(A3(v) and A4(i)). Since p∗ > c′(0), producing a small enough positive

output would increase their profit from −c(0).

Step 2. We then argue that there cannot be some p̂i (∈ F ) > p∗, such

that some of the firms charge p̂i and supply a positive amount. Suppose to

the contrary that such a price exists. This implies that the total number

of firms charging p∗, say ñ, can be at most n∗ − 1. Otherwise, given A3(v)

and A4(i) and the fact that d(p∗)
ñ

< c′−1(p∗), all firms must be supplying at

least d(p∗)
ñ

. From A3(ii), all firms have a residual demand of d(p∗)
ñ

. Hence all

firms would supply d(p∗)
ñ

and the residual demand at any higher price, p̂i,

would be zero.

Now consider some p̂i > p∗. Clearly, the number of firms charging p̂i is

less than ni. Otherwise, some of these firms would have a profit less than

π̃. Hence such a firm would have an incentive to deviate to p∗, when it can

supply at least d(p∗)
n∗ and earn π̃. Thus the total number of firms producing

a strictly positive amount is less than N1, thereby contradicting step 1.

Step 3. Finally, note that by charging p∗ and, by supplying d(p∗)
n

, all

firms can earn a strictly positive profit. Hence, from step 2, all firms charge

p∗. Moreover, for a firm charging p∗, its profit level is strictly increasing

in the output level till d(p∗)
n

. Thus, given A3(ii), A3(v) and A4(i), all firms

supply exactly d(p∗)
n

.

Note that the equilibrium price is within α of the competitive price. The

idea behind the existence result is simple. Consider a market price of p∗. If

n is large then the residual demand coming to every firm is very small, so

that it is residual demand rather than marginal cost which determines firm

supply. In that case price would not equal marginal cost, and, given A3 and

A4, firms may no longer have an incentive to increase their price levels.

12



3.2 Strongly Manipulable TBR

To begin with define q′(n− 1) as satisfying the following equation:

p∗d(p∗)γ1(q, (n− 1)q) = c′(q). (6)

Thus if the market price is p∗ and all the firms produce q′(n − 1), then,

for all firms, marginal revenue equals marginal cost. It is easy to see that

q′(n− 1) is decreasing in n.10

We are going to argue that for n large, the outcome where all the firms

charge p∗ and produce q′(n − 1), can be sustained as a Nash equilibrium.

We then introduce a series of lemmas that we require for our analysis.11

Lemma 1. limn→∞ p∗d(p∗)γ1(
d(p∗)
n−1 , d(p∗)) > limn→∞ c′(d(p∗)

n−1 ).

Given Lemma 1, define M1 to be the smallest integer such that ∀n ≥M1,

p∗d(p∗)γ1(
d(p∗)

n− 1
, d(p∗)) > c′(

d(p∗)

n− 1
).

Lemma 2. ∀n ≥M1, (n− 1)q′(n− 1) > d(p∗).

Consider an outcome such that all the firms charge p∗ and produce q′(n−

1). Then Lemma 2 suggests that if n ≥M1, then the residual demand facing

any firm that deviates and charges a price greater than p∗ would be zero.

This follows since the total production by the other firms will be enough to

meet d(p∗). Moreover, Lemma 2 also implies that ∀n ≥M1, q′(n− 1) > 0.

Next define

π̂ = max
q

{
p∗d(p∗)γ(q, (n∗ − 1)q∗)− c(q), if q > d(p∗)− (n∗ − 1)q∗,

p∗q − c(q), otherwise.

(7)

Suppose that n∗ of the firms charge p∗, and all other firms charge a higher

price. Moreover, out of the n∗ firms, suppose (n∗ − 1) of the firms produce

10Notice that given A6(iii), q′(n − 1) is well defined. That q′(n − 1) is decreasing in n,

follows from Eq. (6) and the fact that γ1(x, nx) is decreasing in x and n.
11The proofs of lemmas 1-4, as well as Proposition 4 later, are in the appendix. The

proofs of other lemmas and propositions are available from the author.
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q∗ and the remaining firm produces q. Then π̂ denotes the maximum profit

that this firm can earn if it chooses its output level optimally.

Next consider some p̂i (∈ F ) > p∗. Recall that q̂i satisfies p̂i = c′(q̂i).

Let n̂i be the minimum integer such that ∀k ≥ n̂i,
d(p̂i)

k
< q̂i and

p̂id(p̂i)

k
− c(

d(p̂i)

k
) < π̂.

Lemma 3. If the number of firms charging p̂i is greater than or equal

to n̂i, then the profit of some of these firms would be less than π̂.

Lemma 3 provides an interpretation of n̂i. We need a further definition.

Definition. M2 =
∑k

i=j+1 n̂i + n∗ − 1.

We then state and prove the next proposition.

Proposition 2. Suppose Assumptions 1, 2, 3, 5 and 6 hold and, more-

over, let n ≥ max{M1,M2}. Then the unique equilibrium involves all the

firms charging p∗, producing q′(n− 1) and selling d(p∗)
n

.

Proof. Existence. Step 1. Since, from Lemma 2, (n−1)q′(n−1) > d(p∗),

it is not possible for any firm to increase its price and gain, as the deviating

firm will have no residual demand. Of course, from the definition of p∗ it

follows that undercutting is not profitable either.

Step 2. We then argue that none of the firms can change its output

level and gain. Suppose firm i produces qi, while the other firms produce

q′(n− 1). Then the profit of the i-th firm

πi(qi, q
′, p∗) = p∗d(p∗)γ(qi, (n− 1)q′)− c(qi). (8)

Observe that the profit function is concave in qi
12 and ∂πi(qi,q

′,p∗)
∂qi

|qi=0 > 0.13

12This follows since ∂2πi(qi,q′,p∗)

∂q2

i

= p∗d(p∗)γ11(qi, (n − 1)q′) − c′′(qi) < 0.
13Suppose not, i.e. let p∗d(p∗)γ1(0, (n − 1)q′) − c′(0) ≤ 0. Then,

c
′(q′(n − 1)) = p

∗
d(p∗)γ1(q

′(n − 1), (n − 1)q′(n − 1))

< p
∗
d(p∗)γ1(0, (n − 1)q′(n − 1)) (as γ11 < 0) ≤ c

′(0),
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We then notice that

∂πi(qi, q
′, p∗)

∂qi
|qi=q′ = p∗d(p∗)γ1(q

′, (n− 1)q′)− c′(q′) = 0, (9)

where the last equality follows from Eq. (6). Thus none of the firms has an

incentive to change their output levels. Finally, given that γ(qi,
∑

j 6=i qj) is

symmetric, all the firms must be selling an identical amount, i.e. d(p∗)
n

.

Uniqueness. Step 1. We first argue that all the firms must be producing

strictly positive amounts in equilibrium. Suppose to the contrary that firm

i has an output level of zero.

(i) First consider the case where the total production by the firms charg-

ing p∗ is less than d(p∗). (Clearly, all firms charging prices less than p∗ would

have an output level of zero). Let the i-th firm charge p∗. Since p∗ > c′(0),

the profit of firm i would increase if it produces a sufficiently small amount.

(ii) Next consider the case where the total production by the firms charg-

ing p∗ is greater than d(p∗). Without loss of generality let these firms be

1, · · · ,m, where m < i, and let q1 > 0. Note that

∂πi

∂qi
|qi=0 = p∗d(p∗)γ1(0,

m∑

j=1

qj)− c′(0)

> p∗d(p∗)γ1(q1,
m∑

j=2

qj)− c′(q1) (since γ11 − γ12 < 0) =
∂π1

∂q1
= 0.

But then firm i can increase its output slightly from zero and gain.

Step 2. We then argue that there cannot be some p̂i (∈ F ) > p∗ such

that some firms charge p̂i and supply a positive amount.

Suppose to the contrary that such a price exists. This implies that the

total number of firms charging p∗, say ñ, can be at most n∗ − 1. Suppose

not, i.e. let the number of firms be n∗ or more. Moreover, let the aggregate

production by these firms be less than d(p∗). Clearly, all ñ firms must

be producing q∗. (Since there is excess demand at this price, the residual

demand constraint cannot bind, and the output level of all firms must be

such that price equals marginal cost.) But, from the definition of n∗, this

implies that total production is greater than d(p∗), which is a contradiction.

which is a contradiction.
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Now consider some p̂i > p∗. Clearly, the number of firms charging p̂i is

less than n̂i. Since otherwise some of these firms would have a profit less

than π̂. But they can always ensure a profit of π̂ by charging p∗. Thus the

total number of firms producing a strictly positive amount is less than N2,

thus contradicting step 1. Hence all the firms must be charging p∗.

Step 3. Let q̃ = (q̃1, · · · , q̃n), denote the equilibrium output vector. First

note that it cannot be the case that
∑

i q̃i < d(p∗). Since n ≥M2 > n∗ − 1,

for some j, q̃j < c′−1(p∗), and this firm will have an incentive to increase its

output.

We then establish that the equilibrium output vector must be symmetric.

Suppose not, and without loss of generality let q̃2 > q̃1 > 0. Then,

∂π1

∂q1
|q̃ = p∗d(p∗)γ1(q̃1,

∑

i6=1

q̃i)− c′(q̃1)

> p∗d(p∗)γ1(q̃2,
∑

i6=2

q̃i)− c′(q̃2) (as γ11 − γ12 < 0) =
∂π2

∂q2
|q̃.(10)

This, however, is a contradiction, since in equilibrium ∂π1
∂q1
|q̃ = 0 = ∂π2

∂q2
|q̃.

Step 4. Finally, we argue that there cannot be another symmetric equilib-

rium where the (common) output level of the firms is different from q′(n−1).

Clearly, in any symmetric equilibrium, the production level of all the firms

must satisfy Eq. (6) which has a unique solution.

The idea behind the existence result is as follows. If the number of firms

is large enough, then competition will drive all the firms to excess production

in an attempt to manipulate the residual demand. This excess production

ensures that if any of the firms charges a price greater than p∗, then the

residual demand facing this firm will be zero. Thus none of the firms have

an incentive to charge a price which is greater than p∗.

We then turn to the limit properties of the equilibrium output levels as

n becomes large.

Lemma 4. limn→∞ q′(n− 1) = 0.

Lemma 4 demonstrates that the output level of each firm becomes van-
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ishingly small as the number of firms becomes very large. Recall, however,

that the equilibrium involves excess production. The next proposition ex-

amines whether in the limit aggregate production, nq′(n − 1), approaches

the demand level, d(p∗), or not.

Proposition 3. Suppose Assumptions 1, 2, 3, 5 and 6 hold.

(i) If c′(0) = 0, then limn→∞ nq′(n− 1)→∞.

(ii) If c′(0) > 0, then limn→∞ nq′ = d(p∗) p∗

c′(0) .

Therefore the limiting behavior of the aggregate production level, nq′(n−

1), depends on the value of c′(0). If c′(0) = 0, then aggregate production

increases without bounds. Whereas it converges to d(p∗) p∗

c′(0) if c′(0) > 0.

As α goes to zero this term goes to d(c′(0)).

The folk theorem of perfect competition suggests that the perfectly

competitive outcome can be interpreted as the limit of some oligopolistic

equilibrium as the number of firms becomes large. While this issue has

been thoroughly investigated in the context of Cournot competition (e.g.

Novshek (1980), Novshek and Sonnenschein (1983) and Ruffin (1971)), in

the Bertrand framework it remains relatively unexplored.14

The analysis so far allow us to discuss if, in the present framework, the

folk theorem holds or not. From Propositions 1 and 2 we know that, for

a given grid size α, there is a unique equilibrium price that is within α of

the competitive one whenever n is sufficiently large. Also, from Proposition

1 and Lemma 4, the output levels of the individual firms are close to zero

whenever n is large. Furthermore, the aggregate output is well behaved if

the TBR is weakly manipulable, and reasonably so if the TBR is strongly

manipulable and c′(0) > 0.

Hence, for the case where the TBR is weakly manipulable, or it is

strongly manipulable and the marginal cost at the origin is positive, our

results, perhaps, provide a non-cooperative foundation for the theory of

perfect competition, and hence for the folk theorem.

14There are notable exceptions though, e.g. Allen and Hellwig (1986) and Vives (1986).
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3.3 Limit Results for a Fixed n and α Small

Note that, in Propositions 1-3, the analysis is carried out for a given grid

size α, while n is taken to be large. In this sub-section, for a given n, we

focus on examining if, for all sufficiently small α, a single price equilibrium

(defined below) exists. The objective is to examine the sensitivity of the

analysis to the nature of the limiting process.

Definition. A Nash equilibrium PN , QN = (pN
1 , · · · , pN

n , qN
1 , · · · , pN

n ) is

said to be a single price equilibrium (henceforth SPE) if, ∀i 6= j, qN
i > 0

and qN
j > 0 imply that pN

i = pN
j .

We require a few more assumptions and notations. A7(i) below imposes

a lower bound on Ri(P,Q), whereas A7(ii) states that Ri(P,Q) is decreasing

in the output of the other firms charging pi or less.

A7. (i) ∀P,Q, Ri(P,Q) ≥ max{0, d(pi)−
∑

j|j 6=i, pj≤pi
qj}.

(ii) ∀P,Q and j, such that j 6= i and pj ≤ pi, Ri(P,Q) is weakly decreas-

ing in qj .

Assumption 8 is a continuity assumption.

A8. Consider P,Q such that all firms other than i charge p′ and sup-

ply d(p′)
n

, and firm i charges pi ≥ p′ and supplies maxqi
Ri(P,Q). Then

limpi→p′+
∂[maxqi

Ri(P,Q)]

∂pi
is continuous in p′.

Next we define pc(n) as solving p = c′(d(p)
n

).

Given A1 and A2, it is easy to see that pc(n) is well defined, pmax >

pc(n) > c′(0), pc(n) is decreasing in n and limn→∞ pc(n) = c′(0).

Next, ∀n ≥ 2, and ∀p ≥ 0, let πn(p) = pd(p)
n
− c(d(p)

n
).

A9. (i) ∀n ≥ 2, and ∀p s.t. pmax ≥ p ≥ 0, πn(p) is concave in p.

(ii) ∀p s.t. c′(0) ≤ p ≤ pc(n), lim
q→

d(p)
n

+
pd(p)γ1(q, (n−1)d(p)

n
) < c′(d(p)

n
).

A9(i) is a concavity assumption. A9(ii) is satisfied by the example of a

strongly manipulable TBR that follows A6.
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For any vector A = (a1, · · · , am), let A = {a1, · · · , am}. Proposition 4

below is the central result of this sub-section.

Proposition 4. (i) limα→0 p∗(α) = c′(0).

(ii) Suppose Assumptions 1, 2, 3 and 4 hold.

(a) limα→0 N1(α)→∞.

(b) Let Assumptions 7, 8 and 9(i) hold and let n be fixed. (A) ∃α′ > 0,

such that ∀α, 0 < α < α′, no SPE exists. (B) Further, ∃p̃(n) > c′(0)

and α̃(p̃(n)) > 0, such that ∀α, 0 < α < α̃(p̃(n)), in any equilibrium

P,Q, min{P} > p̃(n).

(iii) Suppose Assumptions 1, 2, 3, 5 and 6 hold.

(a) limα→0 M2(α)→∞.

(b) Let Assumptions 7, 8 and 9 hold and let n be fixed. (A) ∃α′′ > 0

such that ∀α, 0 < α < α′′, no SPE exists. (B) Further, ∃p̂(n) > c′(0)

and α̂(p̂(n)) > 0, such that ∀α, 0 < α < α̂(p̂(n)), in any equilibrium

P,Q, min{P} > p̂(n).

Let us fix n. Proposition 4 shows that, for all sufficiently small α, no

single price equilibrium exists,15 and all equilibria (in case they exist) are

bounded away from the competitive price. Thus Proposition 4 demonstrates

that for the earlier results to go through, n needs to be increasing at a

‘relatively’ faster rate compared to the rate of decrease in α.

4 One-stage Game: The Asymmetric Case

Deneckere and Kovenock (1996) is one of the very few papers that exam-

ine Bertrand-Edgeworth competition in an asymmetric framework. In a

price-setting duopoly where the firms differ in both their unit costs and ca-

pacities, they characterize the set of equilibria and then, as an application,

re-examine the Kreps and Scheinkman (1983) model with asymmetric costs,

demonstrating that the Cournot equilibrium capacity levels need not emerge

15Whether there can be equilibria that are not single price is an open question. Other

papers to focus on SPE include Dixon (1993).
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in equilibrium. In keeping with our approach, however, in this section we

shall be interested in the case where the number of firms is large.

Let there be m types of firms with the cost function of the l-th type

being cl(q). The number of type l firms is denoted by nl, where
∑

l nl = n.

4.1 Weakly Manipulable TBR

Let p∗l denote the minimum p ∈ F such that p > c′l(0). Let Ril(P,Q) denote

the residual demand function facing the i-th firm of type l. Moreover, let

ril(pi, p, n) = Ril(P,Q), if pi ≥ p, and, ∀j 6= i, pj = p and qj = d(p)
n

. The

residual demand satisfies appropriately modified versions of A3 and A4.16

Next define n∗
l and n̂l in a manner analogous to that of n∗ and n̂ respectively,

only taking care to use the cost function of the l-th type, cl(q), instead of

c(q) in the definitions. (We can argue, as before, that, ∀l, n̂l ≥ n∗
l .)

Definition. N̂ = max{n̂1, · · · , n̂m}.

We require some further notations. Let

π̃l =
p∗l d(p∗l )

maxq n∗
q

− cl(
d(p∗l )

maxq n∗
q

).

Next consider some p̂x ∈ F , such that p̂x > p∗l . Let q̂lx satisfy p̂x =

c′l(q̂lx). Clearly if a type l firm charges p̂x and sells d(p̂x)
r

, then the profit of

such a firm is p̂x
d(p̂x)

r
− cl(

d(p̂x)
r

).

We then define nlx to be the smallest possible integer such that ∀r ≥ nlx,
d(p̂x)

r
< q̂lx and

p̂x
d(p̂x)

r
− cl(

d(p̂x)

r
) < π̃l.

Suppose that in any equilibrium the number of firms charging p̂x, say

m̃, is greater than or equal to maxq nqx. Then at least one of these firms,

say of type l, would have a residual demand that is less than or equal to
d(p̂x)

m̃
. Since d(p̂x)

m̃
< c′−1

l (p̂x), this firm would supply at most d(p̂x)
m̃

and have

a profit less than π̃l.

16A4(ii) should be modified so that, the restrictions are on Ril(P, Q), rather than on

Ri(P, Q). The changes needed in A4(i) and A3 are equally obvious.
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We restrict attention to two cases, though we also briefly discuss the

other cases.

Case (i). c′1(0) = c′2(0) = · · · = c′m(0).

Note that if, at a given price, any firm finds it profitable to produce a

strictly positive amount, then so will all other firms. For this case let us

redefine p∗ = p∗1 = · · · = p∗m.

Definition. Ñ1 =
∑

x=j+1,···,k maxl nlx + maxl n
∗
l − 1.

We can now state our next proposition.

Proposition 5. Suppose Assumptions 1, 2, and appropriately modified

versions of 3 and 4 hold, and let c′1(0) = c′2(0) = · · · = c′m(0). If n ≥

max{N̂ , Ñ1}, then the unique equilibrium involves all the firms charging a

price of p∗, and producing d(p∗)
n

.

Case (ii). c′1(0) < c′2(0) < · · · < c′m(0).

Consider any p such that c′1(0) < p < c′2(0). While at this price pro-

ducing a small enough positive level of output is profitable for type 1 firms,

firms of other types will not find it profitable to supply a positive level of

output. Hence type 1 firms are, in some sense, the most efficient.

Definition. Let p∗1 = p̂h (say). N̂2 =
∑

x=h+1,···,k n1x + n∗
1 − 1.

Proposition 6 below solves for the case when n1 is large.

Proposition 6. Suppose Assumptions 1, 2, and appropriately modified

versions of 3 and 4 hold, and let c′1(0) < c′2(0) < · · · < c′m(0). If α <

c′2(0) − c′1(0) and n1 ≥ max{N1
1 , N̂2}, then there is an equilibrium that

involves all firms of type 1 charging p∗1 and producing
d(p∗1)
n1 , and firms of all

other types charging pmax and having an output level of zero. Furthermore,

any equilibrium involves all firms of type 1 charging p∗1 and producing
d(p∗1)
n1 ,

and all other firms having an output level of zero.

In any equilibrium, note that all firms producing a positive amount (i.e.
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type 1 firms) have the same strategies. Further, interpreting c′1(0) as the

perfectly competitive price, p∗1 is within α of the competitive price.

Next suppose that c′1(0) = c′2(0) = · · · = c′j(0) < c′j+1(0) ≤ · · · ≤ c′m(0).

From Propositions 5 and 6, for a given α, if the number of firms of type 1 to

j is large enough, then there is an equilibrium where all such firms charge

p∗1, and all other firms charge pmax and have an output of zero. Furthermore,

any equilibrium involves all firms of type 1 charging p∗1, and all other firms

having an output level of zero.

Finally, consider the case when n1, · · · , nj are exogenously given. In this

case one can construct examples where no equilibrium may exist even if the

number of firms of type j + 1 to m is very large.17

4.2 Strongly Manipulable TBR

Let A1, A2, an appropriately modified version of A3, A5, and A6 hold for

this case.18

We then define q∗l , q̂il, q′l(n
l − 1), n̂l

i, M l
1 and M l

2 in a manner similar to

that of q∗, q̂l, q′(n− 1), n̂i, M1 and M2 respectively, only taking care to use

the cost function of the l-th type, cl(q), instead of c(q).

We restrict attention to two cases, though we briefly consider the other

cases.

Case (i). c′1(0) = c′2(0) = · · · = c′m(0) = c′(0) (say).

Let (q′11, · · · , q
′
n11, · · · , q

′
1m, · · · , q′nmm) solve

p∗d(p∗)γ1(qil,
∑

j

∑

k

qjk − qil)− c′l(qil) = 0, ∀i, l, (11)

where q′il denote the output level of the i-th firm of type l.

If, ∀i, l,
∑

a

∑
b qab − qil > qil > 0, then we can use the Gale-Nikaido

(1965) univalence theorem to show that Eq. (11) has a unique solution (the

17The proof is available from the author.
18Thus γ(qi,

∑
j 6=i

qj) is assumed to be independent of firm type. This is for nota-

tional reasons alone. Let γl(qi,
∑

j 6=i
qj), the gamma function for type l firms, satisfy

appropriately modified versions of A5 and A6. Under the additional assumption that

lima→0 γl
1(a, X) = lima→0 γk

1 (a, X), X > 0, it is simple to check that all our results in this

sub-section go through.
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proof is available from the author). Moreover, the solution is symmetric, i.e.

∀l, q′1l = · · · = q′
nll

= q′l. Thus (q′1, · · · , q
′
m) solves:

p∗d(p∗)γ1(ql, (n
l − 1)ql +

∑

j 6=l

njqj)− c′l(ql) = 0, ∀l. (12)

The proofs of these lemmas 1′ − 4′ below are very similar to that of the

corresponding lemmas 1-4 earlier, and hence omitted.

Lemma 1′. limn→∞ p∗d(p∗)γ1(
d(p∗)
n−1 , d(p∗)) > limn→∞ c′l(

d(p∗)
n−1 ),∀l.

Given Lemma 1′, we can define M̂1 to be the smallest possible integer

such that ∀l and ∀n ≥ M̂1,

p∗d(p∗)γ1(
d(p∗)

n− 1
, d(p∗)) > c′l(

d(p∗)

n− 1
).

Lemma 2′. If
∑

l n
l ≥ M̂1, then, ∀l, (nl − 1)q′l +

∑
j 6=l n

jq′j > d(p∗).

We need some more notations.

n∗∗ = max n∗
l .

q̃ = maxn′
1,···,n′

m

∑
l n

′
lq

∗
l such that

∑
l n

′
lq

∗
l < d(p∗).

πl = max
q

{
p∗d(p∗)γ(q, q̃)− cl(q), if q > d(p∗)− q̃,

p∗q − cl(q), otherwise.
(13)

Note that πl represents the least possible profit that an l type firm can obtain

by charging p∗ when the aggregate output level of the other firms charging

p∗ is q̃, or less. Since q̃ < d(p∗), πl > −cl(0). Moreover, let π = minl πl.

Next consider some p̂i ∈ F , such that p̂i > p∗. Let n̂il be the minimum

integer such that ∀k ≥ n̂il,
d(p̂i)

k
< q̂il and

p̂id(p̂i)

k
− cl(

d(p̂i)

k
) < π̂.

Lemma 3′ below provides an interpretation of n̂il.

Lemma 3′. If the number of type l firms charging p̂i (∈ F ) > p∗ is

greater than or equal to n̂il, then the profit of some of these firms would be

less than π.
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Definition. M̂2 = n∗∗ − 1 +
∑k

i=j+1 maxl n̂il.

Proposition 7. Suppose Assumptions 1, 2, an appropriately modified

version of 3, 5 and 6 hold and c′1(0) = c′2(0) = · · · = c′m(0) = c′(0). If,
∑

l n
l ≥ max{M̂1, M̂2}, then there is a unique Nash equilibrium where all

firms of type l charge p∗ and produce q′l. Moreover, all firms of the same

type sell the same amount.

We then turn to the limit properties of the equilibrium outputs. We

first impose some structure on the limiting process. Let us fix some vector

(n1, · · · , nm). We then define an r-economy to be one where the number of

type l firms is rnl. Let (q′1(r), · · · , q
′
m(r)) solve an appropriately modified

version of Eq. (12) for the r-economy.

Lemma 4′. limr→∞ q′l(r) = 0, ∀l.

We then examine whether in the limit the aggregate production,
∑

j rnjq′j(r),

approaches the demand level d(p∗) or not.

Proposition 8. Suppose Assumptions 1, 2, an appropriately modified

version of 3, 5 and 6 hold and c′1(0) = c′2(0) = · · · = c′m(0) = c′(0).

(i) If c′(0) = 0, then limr→∞
∑

j rnjq′j(r)→∞.

(ii) If c′(0) > 0, then limr→∞
∑

j rnjq′j(r) = d(p∗) p∗

c′(0) .

Therefore, as in the case with symmetric firms, if c′(0) = 0, then ag-

gregate production increases without bounds, whereas if c′(0) > 0, then

aggregate production converges to d(p∗) p∗

c′(0) .

It is natural to ask if Lemma 4′ and Proposition 8 go through in case,

say, nl is taken to infinity, while ∀j 6= l, nj is kept constant. We can mimic

the proof of Lemma 4′ to show that limnl→∞ q′l = 0. Moreover, we can

mimic the proof of Proposition 8 to demonstrate that if c′(0) = 0, then

limnl→∞

∑
j njq′j(n

l) → ∞, and, if c′(0) > 0, then limnl→∞

∑
j njq′j(n

l) =

d(p∗) p∗

c′(0) .
19 However, what happens to q′j(n

l)|j 6=l, as nl is taken to infinity,

19This is true since, for a corresponding version of Proposition 8 to go through, it is

sufficient that limnl→∞ q′l = 0.
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is an open question.

Case (ii). c′1(0) < c′2(0) < · · · < c′m(0).

Proposition 9 below examines the case when n1 is large.

Proposition 9. Let Assumptions 1, 2, an appropriately modified version

of 3, 5 and 6 hold and c′1(0) < c′2(0) < · · · < c′m(0). Moreover, suppose that

α < c′2(0)−c′1(0) and n1 ≥ max{M1
1 ,M1

2 }. Then there is an equilibrium that

involves all firms of type 1 charging p∗1, producing q′1(n
1−1) and selling

d(p∗1)
n1 ,

and all other firms charging pmax and having an output of zero. Furthermore,

any equilibrium involves all firms of type 1 charging p∗1, producing q′1(n
1−1)

and selling
d(p∗1)
n1 , and all other firms having an output of zero.

Next suppose c′1(0) = c′2(0) = · · · = c′j(0) < c′j+1(0) ≤ · · · ≤ c′m(0).

Combining Propositions 7 and 9, it is easy to see that if
∑j

1 nl is large

enough, then there is an equilibrium where all firms of type 1 to j charge

p∗1, and all other firms have an output of zero. What happens in case there

are a large number of firms of type j + 1 to m, and firms of type 1 to j are

relatively few in number, is an open question.

5 Two-stage Model

We then examine the case where the firms are symmetric and play a two

stage game where, in stage 1, the firms simultaneously announce their prices,

and in stage 2, they simultaneously decide on their output levels. Moreover,

in stage 2, the price vector announced in stage 1 is common knowledge.

Fudenberg and Tirole (1987) and Tirole (1988) both employ such two-

stage models to provide a game-theoretic foundation of contestability. In

a two stage framework with continuous prices, convex costs, and costs of

turning customers away, Dixon (1990) finds that if the industry is large

enough, then the competitive price will be an equilibrium. Moreover, if costs

of turning consumers away are small, then all equilibria will be close to the

competitive one. Maskin (1986) shows that under a two-stage framework

an equilibrium exists (for general TBRs). Whereas in a symmetric two-

stage framework with strictly convex costs, efficient rationing, and the equal-
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shares TBR, Yoshida (2002) characterizes the symmetric mixed strategy

equilibrium.

5.1 Weakly Manipulable TBR

We then solve for the subgame perfect Nash equilibrium (spNe) of this game.

We need some further notations. Consider some P,Q. Given A3(iv),

∀pi < pmax we can define Rpi(P,Qpi
) = Rpi(P,Q).

Next let (p1, . . . , pn, q1(P ), . . . , qn(P )) denote a spNe, where pi denotes

firms i’s stage 1 strategy and qi(P ) denotes its stage 2 strategy (as a function

of the stage 1 price vector P ).

Finally, if ∀i, firm i produces qi(P ), then let Qpi
(P ) denote the output

vector of all firms charging less than pi.

Proposition 10. Suppose Assumptions 1, 2, 3, and 4 hold. If n ≥

max{n̂, n∗ + 1, N1}, then, the unique spNe of the two stage game involves

pj = p∗ and qj(P ) = min{
R

pj (P, Qpj
(P ))

mj(P ) , c′−1(pj)}, ∀j, where mj(P ) denotes

the number of firms charging pj.

Note that along the equilibrium path, in stage 1 all firms charge p∗, and

in stage 2, all firms produce d(p∗)
n

.

5.2 Strongly Manipulable TBR

In this case we find that a subgame perfect equilibrium may not exist. The

problem is as follows. In stage 1, suppose that there are m (> 1) firms

charging the lowest (say) price p. In case c′−1(p) > d(p)
m

then, given that the

strategy space is not bounded, an equilibrium for the stage 2 game may not

exist. Since m can be small, we cannot use the techniques used in Section

3.2 to resolve this problem.

Example. Suppose n = 2, d(p) = a − p, γ(qi, qj) = qi

q1+q2
and c(q) =

q2

2 . Suppose that both firms charge p, where a/2 > p > a/3. Let q′(p, 1)

solve pd(p)γ1(q, q) = c′(q). Observe that 2q′(p, 1) =
√

p(a− p) < a − p, so

that both firms producing q′(p, 1) cannot be an equilibrium. Whereas since
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c′−1(p) = p > a−p
2 , both firms producing c′−1(p) cannot be an equilibrium

either. Finally, suppose to the contrary there is an asymmetric equilibrium,

where firm i produces qi. Clearly, q1 + q2 > d(p). Thus, from the first order

conditions, pd(p)γ1(q1, q2) = c′(q1) and pd(p)γ1(q2, q1) = c′(q2). But taken

together, these equations imply that q1 = q2.

6 Conclusion

To begin with we discuss the relationship of this paper to the literature. For

convenience the discussion is organized around a few remarks.

Remark 1. Our results are consistent with Shubik (1959, Chapter

5) who demonstrates that, under Bertrand-Edgeworth competition (both

one stage and two stage) with continuous prices and strictly convex cost

functions, any pure strategy equilibrium must involve the competitive price.

In general of course, no pure strategy equilibrium exists. Dixon (1987,

1993) solves the non-existence problem for one stage games by introducing

various rigidities, e.g. menu costs (formalized through the notion of epsilon-

equilibrium in Dixon (1987)), and integer pricing (Dixon (1993)). In a two

stage game, Dixon (1990) introduces rigidities that take the form of costs

involved in turning consumers away. These papers demonstrate that, in the

presence of the appropriate rigidities, there are “equilibrium” prices which

are arbitrarily close to the competitive price whenever the industry is large

enough, results that are close in spirit to the present one.

Remark 2. Next consider price competition with linear and capacity

constrained cost functions. In a model with the efficient rationing rule, Vives

(1986, proposition 2(iii)) shows that, for a given firm size, one obtains the

perfectly competitive price as the number of firms goes to infinity. For

the parallel rationing rule Börgers (1992) shows that iterated elimination of

dominated strategies yields prices close to the competitive price.

For the proportional rationing rule, however, Allen and Hellwig (1986)

demonstrate that in general, there is no pure strategy equilibrium. More-

over, in the limit, the mixed strategy equilibrium does not converge in the

support. Since the cost functions are linear and capacity constrained, firms

produce till capacity if at all (provided there is demand), but not beyond
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that. Thus, given the nature of the cost functions, the TBR is effectively

weakly manipulable. Since in this paper we do not consider the case where

a proportional rationing rule is coupled with a weakly manipulable TBR,

the results in Allen and Hellwig (1986) are not inconsistent with ours.

Remark 3. In the present paper the limiting procedure involves taking

the number of firms to infinity, while keeping the grid-size constant.20 Ar-

guably there are other papers in the literature that follow a similar limiting

procedure, e.g. Dixon (1987, 1990, 1993) and Roy Chowdhury (1999). All

these papers use limiting procedures that involve taking the number of firms

to infinity, while keeping constant the size of some relevant rigidity in the

model. In Dixon (1993) and Roy Chowdhury (1999) this rigidity takes the

form of grid-pricing. While prices are modeled continuously in Dixon (1987,

1990), both involve rigidities (described in Remark 1 above).

Remark 4. Next note that in Allen and Hellwig (1986), Dixon (1987,

1990, 1993) and Vives (1986), the limiting procedure not only involves taking

the number of firms to infinity, but also involves taking “firm size”, relative

to market demand, to zero. In Allen and Hellwig (1986) and Vives (1986)

this is done by taking the capacity level of the firms to zero, while in Dixon

(1987, 1990, 1993) this is done by replicating the market demand function.

Under our approach, however, relative firm size is kept unchanged.

The idea is as follows. Under our approach the number of firms is exoge-

nous (so that there is no exit) and there are no setup costs, so that one can as-

sume, without loss of generality, that c(0) = 0. Moreover, since the cost func-

tion is strictly convex, the efficient scale of production is zero.21 Hence, given

that the firms are already ‘very small’ compared to market demand, the lim-

iting procedure only involves taking the number of firms to infinity. Other

papers to employ a similar limiting procedure include, Tasnádi (1999a) and

Roy Chowdhury (1999) (Bertrand-Edgeworth), Novshek and Roy Chowd-

hury (2003) (Bertrand-Chamberlin) and Ruffin (1971) (Cournot).

Dixon (1993) shows that if one replicates both demand and firms, then

20Of course, in Section 3.3 we also examine the effect on equilibrium outcomes if the

grid-size is taken to zero.
21Alternatively, given that there is no exit, the appropriate measure of efficient scale in

this paper is argminq
c(q)−c(0)

q
= 0.
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in a one stage model with weakly manipulable TBRs, Nash equilibria are

non-unique. This demonstrates the importance of the replication procedure.

Remark 5. In this paper the equilibrium profit levels of the firms de-

pend on the TBR. Given that there is grid-pricing and there is a unique

single price equilibrium such that the residual demand binds strictly, this

dependence is to be expected. In the context of grid-pricing, such depen-

dence is not new in the literature though, e.g. Harrington (1989) and Maskin

and Tirole (1988, footnote 13). Of course, the TBR will not affect the profit

levels if the equilibrium is in atomless mixed strategies (e.g. Vives (1986),

and Allen and Hellwig (1993) for the symmetric case).22

Remark 6. Interestingly, for strongly manipulable TBRs the equilib-

rium involves excess production, which is inefficient. Given the nature of

the TBR, this result is, perhaps, only to be expected. While Allen and

Hellwig (1986, 1993), Osborne and Pitchik (1986), and Tasnádi (1999b), all

have srongly manipulable TBRs, these papers assume that the cost func-

tions are linear and capacity constrained. Hence these TBRs are, in effect,

not strongly manipulable, so that a similar effect does not appear in these

papers. Thus the present paper is one of the very few that deal with strongly

manipulable TBRs, in particular the limit properties of equilibrium when

the TBR is strongly manipulable.

In conclusion, in this paper we re-examine the non-existence problem

associated with pure strategy Nash equilibrium under price competition (i.e.

the Edgeworth paradox). We consider a model of Bertrand-Edgeworth price

competition with strictly convex costs and discrete pricing. If firms are

symmetric than, for a large class of residual demand functions there is a

unique equilibrium in pure strategies whenever, for a fixed grid size, the

number of firms is sufficiently large. Moreover, the equilibrium price is

within a grid unit of the competitive price. Our analysis also has interesting

implications for the folk theorem of perfect competition. To a large extent,

the results go through when the firms are asymmetric, or they are symmetric

but play a two stage game and the TBR is weakly manipulable.

22Deneckere and Kovenock (1996) show that, for the classical Bertrand-Edgeworth

model, equilibrium profits are invariant with respect to the TBR.
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7 Appendix

Proof of Lemma 1. Notice that

lim
n→∞

p∗d(p∗)γ1(
d(p∗)

n− 1
, d(p∗)) = p∗d(p∗)

1

d(p∗)
(from A6(iv))

= p∗ > c′(0) = lim
n→∞

c′(
d(p∗)

n− 1
).

Proof of Lemma 2. Suppose not, i.e. let q′(n− 1) ≤ d(p∗)
n−1 . Observe that

p∗d(p∗)γ1(q
′(n− 1), (n− 1)q′(n− 1))

≥ p∗d(p∗)γ1(
d(p∗)

n− 1
, d(p∗)) (since γ1(x, nx) is decreasing in x)

> c′(
d(p∗)

n− 1
) (since n ≥M1)

≥ c′(q′(n− 1)) (since q′(n− 1) ≤
d(p∗)

n− 1
).

This, however, violates Eq. (6).

Proof of Lemma 3. Let the number of firms charging p̂i be k, where

k ≥ n̂i. First consider the case where none of the other firms charge prices

that are less than p̂i. Clearly, if all the firms charging p̂i produce identical

amounts then the maximum profit of all such firms is p̂id(p̂i)
k
−c(d(p̂i)

k
). Since

k ≥ n̂i, this is less than π̂.

Now consider the case where the output level of the firms charging p̂i

are not the same. Clearly, if the aggregate production by all such firms

are less than equal to d(p̂i), then some of the firms would be producing

and selling less than d(p̂i)
k

, and consequently would have a profit less than
p̂id(p̂i)

k
− c(d(p̂i)

k
) < π̂. Whereas, if the aggregate production of such firms

is greater than d(p̂i), then some firms would sell less than d(p̂i)
k

, while their

production would be larger. Again their profit would be less than p̂id(p̂i)
k
−

c(d(p̂i)
k

).

Finally, if some of the other firms charge less than p̂i, then the residual

demand at p̂i would be even less than d(p̂i). We can now mimic the earlier
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argument to claim that some of the firms charging p̂i would have a profit

less than p̂id(p̂i)
k
− c(d(p̂i)

k
).

Proof of Lemma 4. Suppose to the contrary that limn→∞ q′(n− 1) = D,

where D > 0. Then

lim
n→∞

p∗d(p∗)γ1(q
′(n− 1), (n− 1)q′(n− 1)) = 0 (from A6(vi))

< c′(D) = lim
n→∞

c′(q′(n− 1)).

This, however, violates Eq. (6).

Proof of Proposition 4. (i) Follows since c′(0) < p∗(α) ≤ c′(0) + α.

(ii)(a) Define n∗∗(α) = d(p∗(α))
c′−1(p∗(α))

. Since n∗∗(α) ≤ n∗(α) ≤ N1(α), from

Proposition 4(i) it is sufficient to observe that limα→0 n∗∗(α)→∞.

(ii)(b)(A). To begin with, consider a candidate SPE where all firms

charge pc(n). Clearly, the optimal quantity decisions must involve all firms

supplying d(pc(n))
n

. We argue that such an outcome cannot be sustained as an

equilibrium. Consider P,Q such that all firms other than i charge pc(n) and

supply d(pc(n))
n

, and firm i charges pi ≥ pc(n) and supplies maxqi
Ri(P,Q).

Let πi(pi,maxqi
Ri(P,Q)) = pi maxqi

Ri(P,Q) − c(maxqi
Ri(P,Q)). Since,

pc(n) = c′(d(pc(n))
n

), it follows that
∂πi(pi,maxqi

Ri(P,Q))

∂pi
|pi→pc(n)+ = [pc(n) −

c′(d(pc(n))
n

)]
∂[maxqi

Ri(P,Q)]

∂pi
|pi→pc(n)+ + d(pc(n))

n
= d(pc(n))

n
> 0. Thus, by in-

creasing its price from pc(n) by a sufficiently small amount, firm i can

increase its profits. Next consider a SPE where all firms charge p′. For

p′ < pc(n), the outcome must involve all firms producing c′−1(p′), whereas

for p′ > pc(n), the outcome must involve all firms producing d(p′)
n

. Clearly,

as p′ converges to pc(n), these output levels converge to d(pc(n))
n

. Hence,

from A8, there exist −→α > 0 and ǫ > 0, such that ∀0 < α < −→α and

∀p ∈ [pc(n) − ǫ, pc(n) + ǫ] such that p ∈ F (α), in any candidate SPE

where all firms charge p, firm i can deviate to p + α and gain.

Note that dπn(p)
dp
|p→pc(n)+ =

∂πi(pi,maxqi
Ri(P,Q))

∂pi
|pi→pc(n)+ = d(pc(n))

n
> 0.

Let p′(n) be a global maximizer of πn(p) over [pc(n), pmax], such that πn(p)

is strictly increasing for p ∈ [pc(n), p′(n)). Hence pc(n) < p′(n) < pmax.

Next, ∀p ≥ 0, let π(p) = p min{c′−1(p), d(p)} − c(min{c′−1(p), d(p)}) (given

A1 and A2, π(p) and πn(p) are continuous in p). Note that (a) ∀p such
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that pmax ≥ p > pc(n), c′−1(p) > d(p)
n

, so that π(p) > πn(p), and (b)

π(pc(n)) = πn(pc(n)) (since c′−1(pc(n)) = d(pc(n))
n

).

Next we consider a sequence < pn > such that p1 = p′(n) and ∀i ≥ 2,

pi is the minimum p such that π(p) = πn(pi−1). From property (a) in the

earlier paragraph, < pn > is a decreasing sequence. (Consider some pi,

p′(n) ≥ pi > pc(n), i ≥ 1. Thus π(pi) > πn(pi) > πn(pc(n)) = π(pc(n)).

Hence, from the intermediate value theorem, there exists some p < pi, such

that π(p) = πn(pi). Clearly, p′(n) ≥ pi+1 > pc(n).) Further, from property

(b), < pn > is bounded below by pc(n), so that it converges to pc(n).

(Suppose it converges to some p′′, p′(n) > p′′ > pc(n). Then πn(p′′) = π(p′′),

which contradicts property (a).) Thus, whenever pc(n+ǫ < p′(n) (where

ǫ > 0 is as defined earlier in the first paragraph of this proof of Proposition

4(ii)(b)(A)), there exists N > 1 such that pN−1 ≥ pc(n) + ǫ > pN .

Next, since pc(n) − ǫ < pc(n), ∃
︷︸︸︷
α > 0 be such that ∀0 < α <

︷︸︸︷
α ,

d(pc(n) − ǫ + α) − (n − 1)c′−1(pc(n) − ǫ) > c′−1(pc(n) − ǫ + α). Consider

p < pc(n)− ǫ. Then d(p + α)− c′−1(p + α) > d(pc(n)− ǫ + α)− c′−1(pc(n)−

ǫ + α) > (n − 1)c′−1(pc(n) − ǫ) > (n − 1)c′−1(p). Hence, ∀α <
︷︸︸︷
α and

p ≤ pc(n)− ǫ, d(p + α)− (n− 1)c′−1(p) > c′−1(p + α).

Define α′ = min{pN−pN−1,
︷︸︸︷
α , −→α } and consider 0 < α < α′. Consider

some candidate single price equilibrium where the active firms charge p ∈

F (α). Since firms can always charge p∗(α) and sell d(p∗(α))
n

, all firms must

be active in this equilibrium.

First, we can rule out any candidate SPE p, such that p < pc(n)−ǫ. Since

α <
︷︸︸︷
α , we can show that a firm can deviate to p+α and make a gain. The

output levels of the other firms who charge p, are c′−1(p). Given A7(i), the

residual demand facing the deviating firm is at least d(p+α)−(n−1)c′−1(p).

Next note that since α <
︷︸︸︷
α ,

d(p + α)− (n− 1)c′−1(p) > c′−1(p + α).

Thus, if a firm charging p deviates to p+α, then it can supply till its marginal

cost. Since p + α > p, its profit will increase.

Next, consider a candidate SPE p, such that p ∈ [pc(n) − ǫ, pc(n) + ǫ].

Since α < −→α , a firm can charge p + α and gain. Next consider p such

that p′(n) ≥ p > pc(n) + ǫ. Since α < pN − pN−1, a firm can undercut by
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charging p − α and gain. (Of course, if pc(n) + ǫ ≥ p′(n), then this step is

redundant.) Next, for pc(n) ≤ p < p′(n), let p(p) be the maximum price

such that πn(p) = πn(p(p)) and p(p) > p. For some candidate SPE where

all firms charge p, where p′(n) < p ≤ p(pc(n) + ǫ), a firm can deviate to

p−1(p)−α, and gain. Finally, for any candidate SPE where all firms charge

p, where p > p(pc(n) + ǫ), a firm can deviate to p′α, where p′α ∈ F (α) is the

price on the grid which is closest to p′(n), and gain.

(ii)(b)(B). Fix n. Let p̃(n) (p̃ from now on) satisfy c′−1(p̃) < d(p̃)
2(n−1) .

Such a p̃ exists since (n− 1)c′−1(c′(0)) < d(c′(0))
2 . Let p̃α denote the smallest

p ∈ F (α) such that p > p̃. Next, let α̃(p̃) be such that, ∀α < α̃(p̃), (n −

1)c′−1(p̃α) < d(p̃α)
2 (such an α̃(p̃) exists since limα→0 p̃α = p̃).

Suppose to the contrary there is an equilibrium where the lowest price

charged p′ ≤ p̃. The profit of a firm charging p′ is at most p̃c′−1(p̃) −

c(c′−1(p̃)). Now suppose a firm charging this price deviates to p̃α ≤ p̃ + α.

The output levels of the other firms who charge p̃α or less, are at most

c′−1(p̃α). Given A7, the residual demand facing the deviating firm is at

least d(p̃α)− (n− 1)c′−1(p̃α). Next note that

d(p̃α)− (n− 1)c′−1(p̃α) >
d(p̃α)

2
> (n− 1)c′−1(p̃α) ≥ c′−1(p̃α).

Thus, if a firm charging p′ deviates to p̃α, then it can supply till its marginal

cost. Since p̃α > p′, its profit will increase.

(iii)(a) The proof mimics that of Proposition 4(ii)(a).

(iii)(b) The proof is similar to that of Proposition 4(ii)(b) and is available

from the author.
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8 Some Additional Proofs

Proof that n̂ ≥ n∗. Suppose that N ≥ n̂. Then, from the definition of n̂,

it follows that r′i(pi, p, n)(p∗ − c′(d(p∗)
N

)) < 0. Since r′i(pi, p, n) < 0, p∗ −

c′(d(p∗)
N

) > 0, so that N ≥ n∗.

Proof of Proposition 3. From Lemma 4, limn→∞ q′(n − 1) = 0. Hence

limn→∞ nq′(n−1) = limn→∞(n−1)q′(n−1). Moreover, from Eq. (6), A6(ii)

and the fact that q′(n− 1) is decreasing in n, it follows that (n− 1)q′(n− 1)

is increasing in n.23

(i) Let c′(0) = 0, and suppose to the contrary that limn→∞(n− 1)q′(n−

1) = l, where l is finite. Then

lim
n→∞

p∗d(p∗)γ1(q
′(n− 1), (n− 1)q′(n− 1))

=
p∗d(p∗)

l
(from A6(iv))

> 0 = c′(0) = lim
n→∞

c′(q′(n− 1)),

where the last equality follows from Lemma 4. But this contradicts Eq. (6).

(ii) Let c′(0) > 0 and suppose to the contrary that limn→∞(n−1)q′(n−1)

diverges to infinity. In that case

lim
n→∞

p∗d(p∗)γ1(q
′(n− 1), (n− 1)q′(n− 1)) = lim

n→∞
c′(q′(n− 1)),

which, from A6(v) and Lemma 4, implies that c′(0) = 0. But this is a

contradiction. Hence let limn→∞(n− 1)q′(n− 1) = L, where L is finite. We

then mimic the earlier argument to show that L = d(p∗) p∗

c′(0) .

23Suppose the number of firms increase from n to n + 1, so that q′(n) < q′(n− 1). Now

suppose to the contrary that (n − 1)q′(n − 1) ≥ nq′(n). Then

p
∗
d(p∗)γ1(q

′(n), nq
′(n)) > p

∗
d(p∗)γ1(q

′(n − 1), nq
′(n − 1)) (since γ1(x, nx) is decreasing in x)

> p
∗
d(p∗)γ1(q

′(n − 1), (n − 1)q′(n − 1)) (since γ1(x, nx) is decreasing in n)

= c
′(q′(n − 1)) (from Eq. (6)) > c

′(q′(n)),

which contradicts Eq. (6).
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Properties of pc(n). (i) Note that c′(d(0)/n) > 0, c′(d(pmax)/n) = c′(0) <

pmax, and c′(q) is continuous and increasing in q. Hence pc(n) is well defined.

(ii) Suppose pc(n) ≥ pmax. Then pmax ≤ pc(n) = c′(d(pmax)/n) =

c′(0), which contradicts A2. Next suppose pc(n) = c′(0). Then, c′(0) =

c′(d(c′(0))/n), so that d(c′(0)) = 0, which is a contradiction.

(iii) Since d(p) is decreasing in p, and c(q) is convex, pc(n) is decreasing

in p.

(iv) Since pc(n) is decreasing in n, and bounded below by c′(0), limn→∞ pc(n) =

p is well defined. Thus p = limn→∞ c′(d(p)/n) = c′(0).

Proof of Proposition 4(iii)(b)(A). Consider a P,Q where all firms charge

pc(n). We then argue that, given P , the optimal quantity decisions must

involve all firms supplying d(pc(n))
n

.

Suppose not. Then the aggregate output must be greater than demand

at pc(n) (otherwise one of the firms will have an incentive to change its

output). Hence the quantity decisions must be symmetric (we can mimic

the argument in step 3 of Proposition 2 to show this), so that all firms

supply q′(pc(n), n − 1). Thus q′(pc(n), n − 1) > d(pc(n))
n

. Hence, from Eq.

(6), pc(n)d(pc(n))γ1(
d(pc(n))

n
, (n− 1)d(pc(n))

n
) > pc(n)d(pc(n))γ1(q

′(pc(n), n−

1), (n−1)q′(pc(n), n−1)) = c′(q′(pc(n), n−1)) > c′(d(pc(n))
n

). Note, however,

that this contradicts A9(ii).

Now suppose all firms other than i charge pc(n) and supply c′−1(pc(n)),

and firm i charges pi ≥ pc(n) and supplies maxqi
Ri(P,Q). Next suppose

πi(pi, maxqi
Ri(P,Q)) = pi maxqi

Ri(P,Q) − c(maxqi
Ri(P,Q)). Since, at

pc(n), price equals marginal cost,
∂πi(pi,maxqi

Ri(P,Q))

∂pi
|pi→pc(n)+ = d(pc(n))

n
>

0.

Next, from A9(ii), pc(n)d(pc(n))γ1(
d(pc(n))

n
, (n−1)d(pc(n))

n
) < c′(d(pc(n))

n
).

Hence, from continuity, for p′ close enough to pc(n), p′d(p′)γ1(
d(p′)

n
, (n −

1)d(p′)
n

) < c′(d(p′)
n

). Consider some SPE where all firms charge such a p′

close to pc(n), p′ 6= pc(n), but the output vector do not involve every firm

producing min{c′−1(p′), d(p′)
n
}. Then the output vector must involve excess

supply, and hence, mimicing step 3 of Proposition 2, be symmetric. Thus all

firms supply q′(p′, n− 1) > d(p′)
n

. This is a contradiction since, from A6(iii)
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and A9(ii), p′d(p′)γ1(q
′(p′, n−1), (n−1)q′(p′, n−1)) < c′(q′(p′, n−1)), which

violates Eq.(6). Hence, for all such p′ > pc(n), the only possible equilibrium

involves the firms supplying d(p′)/n. Whereas, for p′ < pc(n), the outcome

must involve all firms producing less than equal to d(p′)
n

. Since there is excess

demand, all firms must supply c′−1(p′). Then, from continuity (A8), ∃←−α > 0

and ǫ′ > 0, such that ∀0 < α ≤ ←−α and ∀p ∈ [pc(n)− ǫ′, pc(n)+ ǫ′] such that

p ∈ F (α), in any candidate single price equilibrium where all firms charge p,

firm i can deviate to p+α and gain. Next define pN−pN−1 as in Proposition

4(ii)(b)(A). (We can adopt the same notation since we can assume, w.l.o.g.,

that ǫ = ǫ′, where ǫ is as defined in Proposition 4(ii)(b)(A)).

Next consider a candidate SPE P,Q such that all firms charge p <

pc(n)− ǫ′. We then argue that such a candidate SPE must involve all firms

supplying c′−1(p). (Suppose not. Then the aggregate output must be greater

than demand at p (otherwise one of the firms will have an incentive to change

its output). Hence the quantity decisions must be symmetric (we can mimic

the argument in step 3 of Proposition 2 to show this), so that all firms supply

q′(p, n− 1). Thus q′(p, n− 1) > d(p)
n

. Hence, from Eq. (6), pd(p)γ1(q
′(p, n−

1), (n − 1)q′(p, n − 1)) = c′(q′(p, n − 1)). Since p < c′(d(p)
n

), from A9(ii) it

follows that pd(p)γ1(
d(p)
n

, (n − 1)d(p)
n

) < c′(d(p)
n

). Since q′(p, n − 1) > d(p)
n

,

it must be that pd(p)γ1(q
′(p, n − 1), (n − 1)q′(p, n − 1)) < c′(q′(p, n − 1)),

which is a contradiction.) Next, since pc(n)−ǫ′ < pc(n), ∃ α︸︷︷︸ > 0 such that

∀0 < α < α︸︷︷︸, d(pc(n)−ǫ′+α)−(n−1)c′−1(pc(n)−ǫ′) > c′−1(pc(n)−ǫ′+α).

Consider p < pc(n)− ǫ′. Then d(p + α)− c′−1(p + α) > d(pc(n)− ǫ′ + α)−

c′−1(pc(n) − ǫ′ + α) > (n − 1)c′−1(pc(n) − ǫ′) > (n − 1)c′−1(p). Hence,

∀α < α︸︷︷︸ and p ≤ pc(n)− ǫ′, d(p + α)− (n− 1)c′−1(p) > c′−1(p + α).

Next define α′′ = min{pN − pN−1,←−α , α︸︷︷︸}, and let α < α′′.

To begin with since α < α︸︷︷︸, we can rule out SPE where firms charge

p < pc(n) − ǫ′. This follows since in this case a firm can deviate to p + α

and gain. This follows since such a firm can sell c′−1(p + α), and charge

p + α > p. Whereas for any p ∈ [pc(n) − ǫ′, pc(n) + ǫ′], one of the firms

can increase its price to p + α and gain (since α < ←−α ). Finally, for any

candidate SPE where the firms charge p, such that p ∈ [pc(n) + ǫ′, pmax],

we can mimic the argument in Proposition 4(ii)(b)(A) to show that a firm
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can undercut and gain. This follows since in any such equilibrium the profit

of the firms are bounded above by πn(p) and α < pN − pN−1.

4(iii)(b)(B). Fix n. As in Proposition 4(ii)(b)(B), let p̃(n) (p̃ from now

on) satisfy (n− 1)c′−1(p̃) < d(p̃)
2 .

Next let q′(p, n−1) solve pd(p)γ1(q, (n−1)q) = c′(q). Let p(n) > c′(0) (p

from now on) be such that, ∀c′(0) ≤ p ≤ p, (n− 1)q′(p, 1) < d(p)− c′−1(p).

Such a p exists since, from A6(iii) and A9(ii), c′(0)d(c′(0))γ1(
d(c′(0))

n−1 , (n −

1)d(c′(0))
n−1 ) < c′(d(c′(0))

n−1 ). Thus, d(c′(0))
n−1 > q′(c′(0), 1). (Such a q′(c′(0), 1) exists

since, from A6(iii), limq→0 c′(0)d(c′(0))γ1(q, (n− 1)q)→∞ > c′(0).) Hence

the claim.

Define p̂(n) = min{p̃(n)/β, p(n)/β}, where β > 1 (p̂ from now on).

Let p̂α denote the smallest p ∈ F (α) such that p > p̂. Next, let α̂(p̂)

be such that, ∀α < α̂(p̂), (n − 1)c′−1(p̂α) < d(p̂α)
2 , and (n − 1)q′(p̂α, 1) <

d(p̂α)− c′−1(p̂α).

Suppose to the contrary there is an equilibrium where the lowest price

charged p′ ≤ p̂. The profit of a firm charging p′ is at most p̂c′−1(p̂) −

c(c′−1(p̂)). Now suppose a firm charging this price deviates to p̂α ≤ p̂ + α,

where p̂α is smallest price on the grid that is greater that p̂. The output levels

of the other firms who charge less than p̂α, are at most max{c′−1(p̂α), q′(p̂α, 1)}.

The argument is as follows. Consider some other firm j. If it produces

less than or equal to c′−1(pj), then there is nothing to prove. Hence suppose

it is producing more that c′−1(pj). Then there must be other firms charging

this price, and the total output of all such firms must exceed the residual

demand at pj . Since this residual demand is bounded above by d(pj), we

assume, without loss of generality, that the residual demand equals d(pj).

We can mimic the argument in step 3 of Proposition 2 to show that the

output level of all such firms are symmetric. Clearly, given A6(iii), q′(p, n−1)

is decreasing in n, and for p ≤ p, increasing in p. Hence the output of such

a firm is bounded above by q′(p̂α, 1).

Given A7, the residual demand facing this firm is at least d(p̂α) − (n −

1) max{c′−1(p̂α), q′(p̂α, 1)}. Since α < α̂(p̂), note that

d(p̂α)− (n− 1) max{c′−1(p̂α), q′(p̂α, 1)} > c′−1(p̂α).
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Thus, if a firm charging p′ deviates to p̂α, then it can supply till its marginal

cost. Since p̂α > p′, its profit will increase.

Proof of Proposition 5. Existence. Undercutting p∗ is clearly not prof-

itable. We then argue that for the i-th firm of type l, charging a higher

price, pi, is not profitable either.

As in Proposition 1, d(p∗)
n

= ril(p
∗, p∗, n). Notice that since n ≥ n∗

l ,
d(p∗)

n
< c′−1

l (p∗). Hence for any pi ≥ p∗,

c′−1
l (pi) ≥ c′−1

l (p∗) ≥ ril(pi, p
∗, n). (14)

Since c′−1
l (pi) > ril(pi, p

∗, n), the deviant firm supplies the whole of the

residual demand coming to it. Hence for a firm charging pi (≥ p∗)

πl(pi, ril(pi, p
∗, n)) = piril(pi, p

∗, n)− cl(ril(pi, p
∗, n)). (15)

∂πl(pi, ril(pi, p
∗, n))

∂pi
= r′il(pi, p

∗, n)[pi−c′l(ril(pi, p
∗, n))]+ril(pi, p

∗, n). (16)

Next from equation (5) it follows that ∀pi ≥ p∗, pi > c′l(ril(pi, p
∗, n)).

Hence from the concavity of ril(pi, p
∗, n) it follows that πl(pi, ril(pi, p

∗, n))

is concave in pi. Moreover,

∂πl(pi, ril(pi, p
∗, n))

∂pi
|pi→p∗+ = r′il(pi, p

∗, n)|pi→p∗+[p∗ − c′l(
d(p∗)

n
)] +

d(p∗)

n
.

(17)

Since n ≥ n̂l, we have that ∂πl(pi,ril(pi,p
∗,n))

∂pi
|pi→p∗+ < 0. Next, from the

concavity of πl(pi, ril(pi, p
∗, n)) it follows that ∀pi ≥ p∗, the profit of any

deviant firm is decreasing in pi.

Next, from Assumption 4(i), all firms have a residual demand of at least
d(p∗)

n
. Thus, given d(p∗)

n
< c′−1

l (q∗), all firms produce at least d(p∗)
n

. Hence,

from A3(ii), A3(v) and A4(i), the residual demand of all firms is d(p∗)
n

.

Uniqueness. Step 1. We can first mimic the proof of Proposition 1 to

argue that there cannot be an equilibrium where the output level of some

of the firms is zero.

Step 2. We then demonstrate that there cannot be some p̂y (∈ F ) > p∗,

such that some of the firms charge p̂y and supply a positive amount.
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Suppose to the contrary that such a price exists. This implies that

the total number of firms charging p∗, say ñ, can be at most maxq n∗
q − 1.

Otherwise, ñ ≥ maxq n∗
q and the residual demand facing all these firms

would be exactly d(p∗)
ñ

.24 Since d(p∗)
ñ

< c′−1
l (p∗), ∀l, all such firms would

supply d(p∗)
ñ

and the residual demand at any higher price would be zero.

Now consider some p̂y > p∗. Clearly, the number of firms charging p̂y

is less than maxq nqy. Otherwise, some of these firms, say of type l, would

have a profit less than π̃l. Hence such a firm would have an incentive to

deviate to p∗, when it can supply at least d(p∗)
maxq n∗

q
and earn π̃l. Thus the

total number of firms producing a strictly positive amount is less than Ñ1,

thereby contradicting step 1.

Step 3. We can finally mimic step 3 of Proposition 1 to argue that all

firms have an output level of d(p∗)
n

.

Proof of Proposition 6. Step A. Existence. Notice that since α < c′2(0)−

c′1(0), it follows that ∀i ≥ 2, p∗1 < c′i(0). Thus no firm of type i, where i ≥ 2

can profitably charge a price of p∗1 and produce a strictly positive output

level. For type 1 firms we can simply mimic the proof in Proposition 1 to

claim that they cannot have a profitable deviation.

Step B. We first argue that in equilibrium all firms of type 1 charge p∗

and produce
d(p∗1)
n1 , and all other firms have zero output.

First note that there cannot be an equilibrium where the output level of

some of the type 1 firms is zero.

We then argue that there cannot be some p̂x (∈ F ) > p∗1, such that some

of the type 1 firms charge p̂x and supply a positive amount. Suppose to the

contrary that such a price exists.

This implies that the total number of type 1 firms charging p∗1, say ñ, can

be at most n∗
1 − 1. Otherwise the residual demand facing these firms would

be exactly
d(p∗1)

ñ
.25 Since ñ ≥ n∗

1, we have that
d(p∗1)

ñ
< c′−1

1 (p∗1). Hence all

24Given that d(p∗)
ñ

< c′−1
l (p∗), ∀l, all firms must be supplying at least d(p∗)

ñ
. The

assertion now follows from an analogue of Assumption 4(i).
25First note that firms of type j > 1, even if they charge p∗

1, would have an output of

zero. Thus the residual demand facing all firms of type 1 charging p∗
1 is at least

d(p∗

1
)

ñ
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such firms would supply d(p∗)
ñ

and the residual demand at any higher price,

px, would be zero.

Next consider some p̂x > p∗1. Clearly, the number of type 1 firms charging

p̂x is less than n1x. Otherwise, one of the type 1 firms would have a residual

demand that is less than or equal to d(p̂x)
n1x

. Since d(p̂x)
n1x

< c′−1
l (p̂x), this firm

would supply at most d(p̂x)
n1x

and have a profit less than π̃1. Hence such a firm

would have an incentive to deviate to p∗1, when it can supply at least
d(p∗1)
n∗

1

and earn π̃1. Thus the total number of firms producing a strictly positive

amount is less than N̂2, a contradiction.

We can then mimic step 3 of Proposition 1 to argue that all type 1 firms

have an output level of d(p∗)
n1 . Finally, since type 1 firms exhaust the demand

at p∗1, producing a positive amount is not profitable for other firms.

Proof of the example following Proposition 6. Let there be two

types of firms with c1(q) = q2 and c2(q) = q + q2, so that c′1(0) < c′2(0).

There are 2 firms of type 1 and n2 firms of type 2. The demand function is

q = 4− p, and the residual demand function is as follows:

Suppose there are m firms charging pi. Then Ri(P,Q) = qi, if ei-

ther
∑

pj=pi
qj ≤ max[0, d(pi) −

∑
pk<pi

qk], or
∑

pj=pi
qj > max[0, d(pi) −

∑
pk<pi

qk] and qi ≤
max[0,d(pi)−

∑
pk<pi

qk]

m
. Otherwise, Ri(P,Q) ≥

max[0,d(pi)−
∑

pk<pi
qk]

m
.

Let α = 0.01, so that p∗1 = 0.01 and p∗2 = 1.01.

Step 1. We first argue that for n2 large enough, any possible equilibrium

must involve all firms of type 2 charging the price p∗2 and supplying the

whole of the residual demand coming to them.

1a. We first claim that there cannot be an equilibrium where the output

level of some of the type 2 firms is zero. This follows since these firms can

always charge p∗2 and obtain a residual demand of at least
d(p∗2)−2c′−1

2 (p∗2)

n2+2
> 0

(follows from the nature of the residual demand function).

(from A3(ii)), A3(iv) and A4(i)). Given that
d(p∗

1
)

ñ
< c′−1

1 (p∗), all such firms of type 1

must be supplying at least
d(p∗

1
)

ñ
. The assertion now follows from an analogue of A3(ii).
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Next let

π′ = p∗2
d(p∗2)− 2c′−1

2 (p∗2)

n∗
2 + 2

− c(
d(p∗2)− 2c′−1

2 (p∗2)

n∗
2 + 2

).

1b. We then argue that there cannot be some p̂i (∈ F ) > p∗2, such that

some of the type 2 firms charge p̂i and supply a positive amount. Suppose to

the contrary that such a price exists. This implies that the total number of

type 2 firms charging p∗2, say ñ, can be at most n∗
2−1. Otherwise, the residual

demand facing these firms would be less than
d(p∗2)

ñ
. Since

d(p∗2)
ñ

< c′−1
2 (p∗2),

all such firms would supply the demand coming to them and the residual

demand at any higher price, p̂i, would be zero.

Now consider some p̂i > p∗. Clearly, if the number of firms charging p̂i

is large, then some of these firms would have a profit less than π′. Hence

such a firm would have an incentive to deviate to p∗2, when it can earn at

least π′. Thus, if the total number of type 2 firms is large, then all of them

must be charging p∗2.

Step 2. Next consider type 1 firms. For n2 large, neither of these firms

can be charging p∗2, since, in that case, the profit of the type 1 firm will be

small, and it can do better by charging c′2(0).

Step 3. Given step 2, the only possible equilibrium must involve both

the type 1 firms charging c′2(0) = 1 and supplying c′−1
1 (1) = 0.5 when they

have a profit of 0.25 each.

3a. Given that all type 2 firms are charging p∗2, in equilibrium the type

1 firms cannot be charging a price strictly greater than p∗2, since in that case

the type 1 firms will have no demand.

3b. Whereas if they charge a price strictly lower than c′2(0), then their

profit will be lower compared to what they obtain from charging c′2(0). This

follows since the maximum possible output of the other type 1 firm is c′2(0),

so that for all p ≤ c′2(0), the residual demand facing this type 1 firm is less

than c′−1(0).

Step 4. We finally argue that both the type 1 firms charging c′2(0) cannot

be an equilibrium. Since both the type 1 firms supply c′−1
1 (1) = 0.5, the total

amount supplied by the type 2 firms will be 1.99 (= 4−p∗2−1). Next suppose

that a type 1 firms deviates to 1.02 (= p∗2+α). Given that the rationing rule
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is efficient, it can supply the residual demand 0.49 (= 4−p∗2−α−1.99−0.5)

and increase its profit level to 0.2597. Hence no equilibrium exists.

Proof that Eq. (11) has a unique solution. Consider the negative of

the Jacobian of Eq. (11), [J ], where the first row refers to the first firm

of type 1, the second row refers to the second firm of type 1, and so

on. Clearly, jkk = c′′l (qil) − p∗d(p∗)γ11(qil,
∑

a

∑
b qab − qil) and jkz|z 6=k =

−p∗d(p∗)γ12(qil,
∑

a

∑
b qab − qil), such that k refers to the appropriate firm

i of type l. Let [J11
n−1] denote the n− 1× n− 1 matrix obtained from [J ] by

deleting the first row and the first column.

For the Gale-Nikaido (1965) univalence theorem to hold, it is sufficient

to show that [J ] is positive definite. (The other condition that ∀i, l, qil is

defined over a convex domain, is clearly satisfied.) Note that ∀k, jkz = jk,

whenever z 6= k. Moreover, ∀k, jkk > jk > 0 (this follows since ∀i, l,
∑

a

∑
b qab− qil > qil > 0, so that γ12(qi,

∑
j 6=i qj) < 0, and γ11(qi,

∑
j 6=i qj)−

γ12(qi,
∑

j 6=i qj) < 0).

Define [J̃ ], such that, j̃11 = j1, and, ∀kl 6= 11, j̃kl = jkl. Let [J̃22
n−1]

denote the n − 1 × n − 1 matrix obtained by deleting the second row and

second column of [J̃ ]. Moreover, ∀i, define ci = jii − ji > 0. Finally, let

[Z] denote the matrix where, ∀a 6= 1, 2, zab = jab and, ∀b, z1b = z2b = 1.

Clearly, |Z| = 0.

The proof is by induction on the size of the matrix.

Induction Hypothesis: All principal minor of order m of [J ] are positive.

Moreover, all principal minor of order m of [J̃ ] such that the first row is kept

unchanged, are positive.

Clearly the induction hypothesis holds for m = 2. Next suppose that

it holds for m ≤ n − 1. To show that it holds for m = n. Note that

|J̃n| = c2|J̃
22
n−1|+j1j2|Z| > 0, where the inequality follows from the induction

hypothesis and the fact that |Z| = 0. Next, |Jn| = c1|J
11
n−1|+ |J̃n| > 0, where

the inequality follows from the induction hypothesis and the previous step.

The argument for the principal minors of [J ], and principal minors of [J̃ ]

where the first row is kept unchanged, are similar.
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Proof of Lemma 1′. Notice that

lim
n→∞

p∗d(p∗)γ1(
d(p∗)

n− 1
, d(p∗)) = p∗d(p∗)

1

d(p∗)
(from Assumption 6(iv))

= p∗ > c′l(0) = lim
n→∞

c′l(
d(p∗)

n− 1
).

Proof of Lemma 2′. Suppose not, i.e. there is some l such that

(nl − 1)q′l +
∑

j 6=l

njq′j ≤ d(p∗). (18)

Then

q′l ≤
d(p∗)

(nl − 1)
≤

d(p∗)

n− 1
. (19)

Next observe that

p∗d(p∗)γ1(q
′
l, (n

l − 1)q′l +
∑

j 6=l

njq′j)

≥ p∗d(p∗)γ1(q
′
l, d(p∗)) (from Eq. (18) and since in this case γ12 < 0)

≥ p∗d(p∗)γ1(
d(p∗)

n− 1
, d(p∗)) (from Eq. (19) and the fact that γ11 < 0)

> c′l(
d(p∗)

n− 1
) (since n ≥ M̂1)

≥ c′l(q
′
l) (from Eq. (19)). (20)

However, this violates Eq. (12).

Proof of Lemma 3′. Let the number of type l firms charging p̂i be k,

where k ≥ n̂il. First consider the case where none of the other firms charge

prices that are less than p̂i. Clearly, if all the type l firms charging p̂i

produce identical amounts then the maximum profit of all such firms is
p̂id(p̂i)

k
− c(d(p̂i)

k
). Since k ≥ n̂iil, this is less than π̂.

Now consider the case where the output level of all the firms charging

p̂i are not the same. Clearly, if the aggregate production by all such firms

is less than equal to d(p̂i), then some of the firms would be producing and
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selling less than d(p̂i)
k

, and consequently would have a profit less than p̂id(p̂i)
k
−

cl(
d(p̂i)

k
) < π̂. Whereas, if the aggregate production of such firms is greater

than d(p̂i), then some firms would sell less than d(p̂i)
k

, while their production

would be larger. Again their profit would be less than p̂id(p̂i)
k
− cl(

d(p̂i)
k

).

Finally, if some of the other firms charge less than p̂i, then the residual

demand at p̂i would be even less than d(p̂i). We can now mimic the earlier

argument to claim that some of the firms charging pi would have a profit

less than p̂id(p̂i)
k
− cl(

d(p̂i)
k

).

Proof of Proposition 7. Step 1. We first argue that all the firms must be

producing strictly positive amounts in equilibrium. Suppose to the contrary

that firm i of type l has an output level of zero.

(i) If the total production by the firms charging p∗ is less than d(p∗) then

firm i of type l can charge p∗. Since p∗ > c′(0), its profit would increase if

it produces a sufficiently small amount.

(ii) Next consider the case where the total production by the firms charg-

ing p∗ is greater than d(p∗). Without loss of generality let firms 1 to m

charge p∗, and, moreover, let firm 1 (of type k) have a strictly positive level

of output, i.e. q1k > 0. Note that

∂πil(qil,
∑

a

∑
b qab − qil)

∂qil

|qil=0 = p∗d(p∗)γ1(0,
m∑

j=1

qj)− c′l(0)

= p∗d(p∗)γ1(0,
m∑

j=1

qj)− c′k(0) (since c′l(0) = c′m(0))

> p∗d(p∗)γ1(q1k,
m∑

j=2

qj)− c′k(q1k) (since γ11 − γ12 < 0),

=
∂π1k(q1k,

∑
a

∑
b qab − q1k)

∂q1k

= 0.

But then firm i of type l can charge p∗ and, by producing a sufficiently small

level of output, increase its profit level.

Step 2. We then argue that there cannot be some p̂i (∈ F ) > p∗ such

that some firms charge p̂i and supply a positive amount.

Suppose to the contrary that such a price exists. Then the total number
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of firms charging p∗ can be at most n∗∗ − 1. Suppose not. Clearly, the

aggregate production by these firms be less than d(p∗). Hence, all firms

of type l must be producing q∗l . But this implies that total production is

greater than d(p∗). (This follows from the definition of n∗∗). But this is a

contradiction. Thus the total number of firms is at most n∗∗− 1. Moreover,

the aggregate output of these firms can be at most q̃ (this follows from the

definition of q̃).

Now consider some p̂i > p∗. Clearly, the number of firms charging p̂i is

less than maxl n̂il. Since otherwise some of the firms charging p̂i would have

a profit less than π. But such a firm can ensure a profit of at least π by

charging p∗ (since the aggregate output of the firms charging p∗ is at most

q̃). Thus the total number of firms producing a strictly positive amount is

less than M̂2, thus contradicting step 1. Hence all firms charge p∗.

Step 3. We can mimic step 3 of the uniqueness part of Proposition 2

to claim that any equilibrium must be symmetric. Then, assuming that ∀l,

nl ≥ 2, we have that ∀i, l,
∑

a

∑
b qab − qil > qil.

Note that given steps 1 and 3, we can restrict attention to qil such that,

∀i, l,
∑

a

∑
b qab − qil > qil > 0, while solving Eq. (11).

Step 4. Next consider the game where all firms charge p∗ and compete

over quantities. Note that the profit function of the i-th firm of type l,

p∗d(p∗)γ(qil,
∑

k

∑
m qkm − qil) − cl(qil), is continuous in the output levels

and strictly concave in qil. Moreover, note that we can restrict attention to

strategy spaces of the form [0, q̂l], where q̂l is such that p∗d(p∗) − cl(q) <

0, ∀q > q̂l. Since these are non-empty, compact and convex subsets of

Euclidean spaces, we can use the Debreu (A social equilibrium existence

theorem, Proceedings of the National Academy of Sciences 38, 1952, 886-

893.) fixed point theorem to argue that this game has a solution in pure

strategies. From step 1, this equilibrium must be interior. Moreover, given

that
∑

l n
l ≥ M̂1, the equilibrium must involve an aggregate output greater

than d(p∗), and hence will be characterized by Eq. (11). Therefore Eq. (11)

has a solution. Moreover, the solution is symmetric and characterized by

Eq. (12).

Step 5. We finally argue that the outcome described in Proposition 7

indeed constitutes an equilibrium.
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(i) Given Lemma 2′, no firm can increase its price and gain, as the

deviating firm will have no residual demand. Clearly, undercutting is not

profitable either.

(ii) We then argue that none of the firms can change its output level and

gain. Suppose firm i of type l produces qil, while the other firms stick to

the suggested output. We can argue as before that

πil(qil, (n
l − 1)q′l +

∑

j 6=l

njq′j) = p∗d(p∗)γ(qil, (n
l − 1)q′l +

∑

j 6=l

njq′j)− cl(qil)

is concave in qil and
∂πil(qil,(n

l−1)q′
l
+
∑

j 6=l
njq′j)

∂qil
|qil=0 > 0. Then

∂πil(qil, (n
l − 1)q′l +

∑
j 6=l n

jq′j)

∂qil

|qil=q′
l
= p∗d(p∗)γ1(q

′
l, (n

l−1)q′l+
∑

j 6=l

njq′j)−c′l(q
′
l).

(21)

Given Eq. (12), the firms have no incentive to change their output. Finally,

given that γ(qi,
∑

j 6=i qj) is symmetric, all the firms of the same type must

be selling an identical amount.

Proof of Lemma 4′. Suppose not, i.e. ∃l such that limr→∞ q′l(r) = D > 0.

Then we have that

lim
r→∞

γ1(q
′
l(r), (rn

l − 1)q′l(r) +
∑

j 6=l

rnjq′j(r))

≤ lim
r→∞

γ1(q
′
l(r), (rn

l − 1)q′l(r)) (since for rnl − 1 > 1, γ12 < 0)

= 0 (from Assumption 6(vi))

< c′l(D) = lim
r→∞

c′l(q
′
l(r)).

However, this is a contradiction.

Proof of Proposition 8. Recall, from Lemma 4′, that limr→∞ q′l(r) = 0,

∀l. Hence limr→∞
∑

j rnjq′j(r) = limr→∞(rnl − 1)q′l(r) +
∑

j 6=l rn
jq′j(r), ∀l.

(i) Suppose to the contrary that for some l, < (rnl−1)q′l(r)+
∑

j 6=l rn
jq′j(r) >

does not diverge. Then there is a convergent subsequence < rk > such that
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limk→∞(rkn
l − 1)q′l(rk) +

∑
j 6=l rkn

jq′j(rk) = X, where X is finite. Then

lim
k→∞

p∗d(p∗)γ1(q
′
l(rk), (rkn

l − 1)q′l(rk) +
∑

j 6=l

rkn
jq′j(rk))

=
p∗d(p∗)

X
(from Assumption 6(iv))

> 0 = c′(0) = lim
k→∞

c′l(q
′
l(rk)),

where the last equality follows from Lemma 4′. But this is a contradiction.

(ii) We show that for all l, there cannot be any subsequence of < (rnl −

1)q′l(r)+
∑

j 6=l rn
jq′j(r) > that either diverges, or converges to some limit dif-

ferent from d(p∗) p∗

c′(0) . To begin with suppose that for some l, limr→∞(rnl−

1)q′l(r) +
∑

j 6=l rn
jq′j(r) diverges to ∞. From Eq. (12) it follows that

lim
r→∞

p∗d(p∗)γ1(q
′
l(r), (rn

l − 1)q′l(r) +
∑

j 6=l

rnjq′j(r)) = lim
r→∞

c′l(q
′
l(r)).

Given Assumption 6(v) and Lemma 4′, the above equation implies that

c′(0) = 0, which is a contradiction. We can then mimic the earlier ar-

gument to claim that all convergent subsequences of < (rnl − 1)q′l(r) +
∑

j 6=l rn
jq′j(r) > converge to d(p∗) p∗

c′(0) .

Proof of Proposition 9. The idea of the proof is very similar to that in

Proposition 2.

Step A. Existence. Notice that since α < c′2(0) − c′1(0), it follows that

p∗1 < c′i(0), for all i ≥ 2. Thus no firm of type j, where j ≥ 2 can profitably

charge a price of p∗1. For type 1 firms we can simply mimic the proof in

Proposition 2 to claim that they cannot have a profitable deviation.

Step B. We first argue that in equilibrium all firms of type 1 charge p∗,

produce q′1(n
1 − 1) and sell

d(p∗1)
n1 .

must be producing strictly positive amounts in equilibrium. The proof

is in several steps.

Step 1. We first argue that all the firms of type 1 must be producing

strictly positive amounts in equilibrium. Suppose to the contrary that firm

i (of type 1) has an output level of zero. Consider the aggregate output

produced by all the firms charging p∗1.
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(i) Suppose its less than d(p∗1). Let the i-th firm charge p∗1. Since p∗1 >

c′(0), for a sufficiently small output level, the profit of firm i would increase.

(ii) Next consider the case where the total production by the firms charg-

ing p∗1 is greater than d(p∗1). Without loss of generality let these firms be

1, · · · ,m, where m < i, and let q1 > 0. Note that

∂πi

∂qi
|qi=0 = p∗1d(p∗1)γ1(0,

m∑

j=1

qj)− c′(0)

> p∗1d(p∗1)γ1(q1,
m∑

j=2

qj)− c′(q1) (since γ11 − γ12 < 0),

=
∂π1

∂q1
= 0.

But this implies that firm i can increase its output slightly and gain.

Step 2. We then argue that there cannot be some p̂i (∈ F ) > p∗1 such

that some firms of type 1 charge pi and supply a positive amount.

Suppose to the contrary that such a price exists. This implies that the

total number of type 1 firms charging p∗1, say ñ, can be at most n∗
1 − 1.

Suppose not, i.e. let the number of such type 1 firms be n∗
1 or more. In that

case, if the aggregate production by these ñ firms is less than d(p∗1), then

all ñ firms must be producing q∗1. But this implies that total production is

greater than d(p∗1). (This follows from the definition of n∗
1). But this is a

contradiction.

Now consider some p̂i > p∗1. Clearly, the number of type 1 firms charging

p∗1 is less than n̂1
i . Thus the total number of type 1 firms producing a strictly

positive amount is less than M1
2 , thus contradicting step 1. Hence all firms

of type 1 must be charging p∗1.

Step 3. Let q̃, denote the equilibrium output vector of type 1 firms. We

first establish that this vector must be symmetric. Suppose not, and without

loss of generality let q̃2 > q̃1 > 0, where both the firms are of type 1. Then,

∂π1

∂q1
|q̃ = p∗1d(p∗1)γ1(q̃1,

∑

i6=1

q̃i)− c′(q̃1)

> p∗1d(p∗1)γ1(q̃2,
∑

i6=2

q̃i)− c′(q̃2) (since γ11 − γ12 < 0)
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=
∂π2

∂q2
|q̃. (22)

This, however, is a contradiction, since in equilibrium ∂π1
∂q1
|q̃ = 0 = ∂π2

∂q2
|q̃.

Step 4. Finally, we argue that there cannot be another symmetric equi-

librium where the (common) output level of the firms is different from

q′1(n
1 − 1). Clearly, in any symmetric equilibrium, the production level

of all the firms must satisfy

p∗1d(p∗1)γ1(q, (n
1 − 1)q) = c′1(q).

It is easy to see that this equation has a unique solution. The argument is

similar to that for the uniqueness of q′(n− 1).

Finally, since type 1 firms exhaust the demand at p∗1, the output level of

all firms of other types must be zero.

Proof of Proposition 10. Existence. We first argue that the quantity

decisions are optimal. Let p′ denote the lowest price in {P}. Given A3(v),

Rp′(P,Qp′(P )) is well defined. Next, given the quantity decisions of the

other firms, the output decisions of the firms charging p′ are clearly optimal.

Next from A3(iv), Rpi(P,Qpi
) is well defined. Moreover, given the quantity

decisions of the other firms, the output decisions of the firms charging pi are

clearly optimal.

Next note that the stage 2 strategy implies that if, in stage 1, all the

firms charge p∗, then, in stage 2, all the firms produce d(p∗)
n

. Similarly, if

in stage 1, (n − 1) of the firms charge p∗, while one of the firms charges a

price strictly greater than p∗, then, in stage 2, the firms charging p∗ produce
d(p∗)
n−1 , while the output level of the other firm is zero.

The pricing decision is also optimal since if any of the firms increase its

price then, in stage 2, the output level of the other firms are such that the

deviant firm has zero residual demand.

Uniqueness. It is easy to see that we cannot have an equilibrium where

the output level of some of the firms is zero, since it can always charge p∗

in stage 1 and supply d(p∗)
n

in stage 2.
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Next observe that the definitions of π̃, ni and n∗ are valid for this case

also. Hence we can mimic step 2 of the uniqueness part of Proposition 1 to

argue that the only price that is sustainable in equilibrium is p∗. Finally,

we can mimic step 3 of Proposition 2 to argue that all firms supply exactly
d(p∗)

n
.
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