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Abstract 

This paper uses comparable international data to examine the extent 

and wage effects of skill mismatches among European university 

graduates. The results show that the mismatched earn on average 

11.7% less than their well-matched counterparts. This effect, however, 

cannot be regarded as constant across the conditional earnings 

distribution: workers with lower unobserved earnings capacity tend to 

be exposed to greater wage loses when they end up in mismatched 

jobs.  
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1. Introduction 

Recently in the literature there has been a shift in emphasis from overeducation to skill 

mismatches. These terms refer to quite different phenomena. Measures of overeducation 

may not capture the extent to which a worker’s skills are utilised in employment and 

workers with excess qualifications may still lack skills that are necessary on the job. The 

rising prevalence of overeducation as we move towards more educated groups contrasts 

with the loose relationship between qualifications and skill mismatches. From an 

individual point of view, the determinants of skill mismatches and overeducation are found 

to differ, and the correlation between these two indicators is weak (Green and McIntosh, 

2007; Battu, 2011).  

 

The goal of this paper is twofold. First, while the impact of overeducation on wages has 

been widely documented in the literature, the labour market effects of skill mismatches are 

less known. Recent evidence based on Australian and UK data suggests that these effects 

may be large (Mavromaras et al., 2009; Mavromaras et al., 2010; McGuinness and Sloane, 

2010). This paper provides a European perspective on the subject by using comparable 

data from the 1994-2001 waves of the European Community Household Panel (ECHP 

henceforth). Although the ECHP is not the most up-to-date dataset available in the 

profession, the survey’s eight-wave panel structure and the inclusion of educational 

mismatch measures makes it appealing for this research purpose
4
. The paper solely focuses 

on workers with a tertiary education. This is a critical group for European educational 

policies insofar as i) the private returns from higher education act to attract prospective 

students, and ii) increasing participation in higher education is one of the main pillars of 

the recently launched European Union Europe 2020 strategy for smart, sustainable and 

inclusive growth (European Commission, 2010). From a practical perspective, neglecting 

lower educational levels avoids mixing workers that may largely differ in terms of 

educational tracks, training participation and acquired skills. 

 

The results are used to test whether a non-trivial interaction exists between skill 

mismatches and unobserved ability. Despite rising education levels in Europe during 

                                                
4 Unfortunately, the successor of the ECHP, the European Union Statistics on Income and Living Conditions, does not 

contain information on skills utilisation nor on the education requirements of jobs.  
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recent decades, the changing demand for specific skills in the labour market and the 

inability of training schemes and educational systems to provide workers with the 

necessary background has resulted in a proportion of individuals reporting skills deficits. 

According to the available evidence, this proportion is impressively large, ranging from 

50% of the working population (Allen and van der Velden, 2001) to nearly two-thirds 

(Green and McIntosh, 2007). This raises the question of to what extent the incidence of 

skill mismatches entails a productivity loss. On the one hand, the mismatch pay penalty 

may reflect a real misadjustment between the worker’s potential and the job’s productivity 

ceiling. In this case, the real economic benefits of such an educational upgrade might be 

lower than previously thought. Alternatively, the mismatched may in some way be less 

able and lack specific abilities required to access jobs that match their skills. In this case, 

the mismatch pay penalty would be a mere statistical trick reflecting an omitted variables 

problem rather than a real economic problem. This paper provides useful insights into this 

debate by using quantile regression (QR). In the QR framework, the estimates at different 

quantiles represent the effects of a given covariate for individuals that have the same 

observable characteristics but, due to unobservable earnings capacity, are located at 

different points of the earnings distribution. Assuming that unexplained earnings capacity 

is given by individuals’ unobserved ability, the results document how workers who are 

mismatched within the various ability segments of the earnings distribution are impacted 

relative to their well-matched counterparts. This approach, which is very similar to that 

used in McGuinness and Bennet (2007) and Budría and Moro-Egido (2008) for the study 

of overqualification, prevents the analysis from comparing higher ability matched 

individuals with lower ability mismatched individuals, thus eliminating the potential bias.  

 

The dataset and variables are presented in Section 2. Section 3 briefly describes the model. 

The results are given in Section 4. Finally, conclusions are drawn in Section 5.  

2. Data and measurement of skill mismatch 

The paper uses data from 12 countries included in the 1994-2001 waves of the ECHP. The 

dataset and the variables are described in Appendix A. The estimating sample consists of 

tertiary-educated, private-sector males aged 24 to 60 years old who normally work 

between 15 and 80 hours a week and are not employed in the agricultural sector. Self-
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employed individuals, as well as those whose main activity is paid apprenticeship or 

training and unpaid family workers have been excluded from the sample
5
. The final 

sample consists of 15,658 observations.  

Workers are classified as either matched or mismatched depending on whether they have 

acquired or not the necessary skills through training and education. This information is 

taken from the following ECHP question “Have you had formal training or education 

that has given you skills needed for your present type of work?”
6
. Although not 

comparable, this question is similar to other questions used in complementary research
7
.   

 

Table 1 shows that the incidence of skill mismatches ranges from 10.7% in Germany to 

43.3% in Italy, with an average of 20.9%. These figures are below the estimates based on 

the total population (second column) but still quite impressive among university 

graduates.   

---------- Insert Table 1 about here ------- 

3. The model 

The earnings equation is estimated using Koenker and Basset’s (1978) quantile regression: 

θiii θθi  iθ1iθθi βX  )X| w(lnQuant      withemismatchβXδα wln =+++=  

 

where ln wi is the logarithm of the net hourly wage, Xi is a vector of controls and βθ is the 

vector of parameters. Quantθ(ln wi| Xi) denotes the θth conditional quantile of ln w given 

X. All the estimates control for personal characteristics (labour market experience and 

squared, unemployment experience, marital status, immigrant condition, and health status), 

                                                
5 The case of women is disregarded on account of the added complication of potential selectivity bias. 
6 There might be individuals who have not had formal education and training for unskilled jobs, but who have acquired 

the necessary background through other sources, including peer observation, learning by doing and general work 

experience. Although these channels are typically less relevant, they might be important for a small fraction of 

uneducated individuals working in low level jobs. By restricting the sample to tertiary educated workers we preclude 

this concern.  
7 Thus, for example, in Battu (2011) the central question is ‘Your current job offers you sufficient scope to use your 

knowledge and skills’. In Mavromaras et al. (2009), overskilling in Australia is measured according to the responses on 

a 1-7 scale to ‘I use many of my skills and abilities in my current job’. An alternative question in Mavromaras et al. 

(2010) is ‘How well do the skills you personally have match the skills you need to do your present job?’.  
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job characteristics (supervisory role, establishment size, training provided by employer, 

job tenure, hours of work, industry and occupation), and year dummies
8
. 

4. Empirical Results 

Table 2 shows that the wage effects of skill mismatch in the European labour market are 

generally large and statistically significant. According to the average (OLS) estimates 

reported in the first row, the mismatched earn on average 11.7% less than their well-

matched counterparts. By countries, this pay-penalty ranges from 5.6% in France to 26.8% 

in Austria, and only fails to be statistically significant in Italy.  

---------- Insert Table 2 about here ------- 

 

Interestingly, inspection of the QR estimates warns that these effects cannot be simply 

described in an average sense. In Europe as a whole, the incidence of mismatch entails a 

wage penalty that decreases from 14.7% to 9.7% when moving from the bottom to the top 

quintile of the earnings distribution. This can be better seen in Figure 1, where the 

estimates by quantiles are depicted, along with the 5% confidence interval and the OLS 

estimate. This observation suggests that a non-trivial interaction exists between skills 

mismatches and unobserved earnings capacity. Conditional on observable characteristics, 

low ability workers (i.e. those located at the lower quintiles) are exposed to higher 

earnings loses if they end up in mismatched work. Indeed, this is the case of most 

countries in the sample: Belgium, Denmark, Finland, France, Ireland and the UK. The 

opposite applies to Austria, Germany, and Spain, where the mismatch effect tends to be 

lower and less significant in the lower segments of the distribution. Finally, in Greece and 

Portugal the higher and more significant effects are concentrated in the intermediate 

quantiles. In auxiliary calculations, we tested whether such variations across the 

distribution are significant at conventional confidence levels. This resulted in a large set 

of pair-wise tests between estimates. The results, available upon request, show that in 

most countries (Austria, Belgium, Denmark, France, Germany, Greece, Portugal and 

Europe as a whole) the equality of coefficients between selected quantiles must be 

rejected.  

                                                
8 Training, firm size and unemployment experience were not available for France, Germany, Greece or the UK. 
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All in all, the results have important implications for the interpretation of the 

phenomenon. When the labour market is segmented by ability deciles with individual 

ability indexed by the individual’s position in the conditional distribution, the estimates at 

different quantiles provide snapshots of how mismatched individuals within the different 

ability groups are impacted. A distinct feature of the analysis is that it does not rely on 

test scores or degree classification to proxy for ability. Rather, it exploits a broad 

definition of ability, including all those unmeasured characteristics that actually affect the 

worker’s position in the wage distribution. If skill mismatches are a consequence of low 

ability and the lack of marketable skills, then their influence should be restricted to the 

lower segments of the earnings distribution. This seems to be the case in most countries. 

Still, individuals with high unobservable earnings capacity are also exposed to significant 

wage losses if they end up in jobs for which they lack the necessary skills. The estimated 

coefficients in the 70, 80 and 90 quintiles fail to be statistically significant only in 

Portugal and France.  

5. Conclusions 

The mismatch estimates can be criticised for being ‘ex-post’ rather than ‘ex-ante’ effects. 

Even though quantile regression allows for a non-trivial interaction between 

unobservable characteristics and the mismatch status, it would be informative to test 

whether the results change much when the mismatch variable is instrumented. 

Admittedly, the international scope of the paper comes at the cost of abstracting from 

endogeneity issues that can be properly addressed only by means of more extensive 

datasets at the national level.  
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Appendix A. Description of data source and estimating samples 

 

The European Community Household Panel (ECHP) is a sample of households and 

individuals who are interviewed over time. It is available from 1994 to 2001 for fifteen 

European countries. Workers with a monthly wage rate that is less than 10% or over 10 

times the national average wage were dropped from the analysis. Sweden, the 
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Netherlands and Luxembourg were also excluded due to item non-response in crucial 

variables. The construction of the variables used in the paper is described in Budría and 

Moro-Egido (2009). 
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Appendix B. Figures and Tables 

Figure 1. Quantile-return profile of the skill mismatch pay penalty – Europe 
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Panel a. Notes: Grey area: 5% confidence intervals; Solid line: quantile estimates; Dashed line: OLS estimate. 

 

 
Table 1. The incidence of skill mismatches 

 

University 

Graduates 
Total population 

Europe 0.209 0.519 
 (0.407) (0.500) 

Austria 0.122 0.324 

 (0.328) (0.468) 

Belgium 0.128 0.338 

 (0.334) (0.473) 

Denmark 0.179 0.324 
 (0.384) (0.468) 

Finland 0.118 0.326 
 (0.323) (0.469) 

France 0.318 0.513 

 (0.466) (0.500) 

Germany 0.107 0.256 

 (0.309) (0.437) 

Greece 0.385 0.669 

 (0.487) (0.471) 

Ireland 0.121 0.420 

 (0.326) (0.494) 

Italy 0.433 0.729 
 (0.496) (0.444) 

Portugal 0.102 0.751 
 (0.302) (0.433) 

Spain 0.208 0.512 

 (0.406) (0.500) 

UK 0.115 0.370 

 (0.319) (0.483) 

 

Notes: Source: ECHP 1994-2001. Standard errors are in parenthesis.  
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Table 2. The skill mismatch effect at different segments of the wage distribution - Tertiary education 

  EUROPE AUSTRIA BELGIUM DENMARK FINLAND FRANCE GERMANY GREECE IRELAND ITALY PORTUGAL SPAIN UK 

OLS -0.117*** -0.268*** -0.075*** -0.150*** -0.166*** -0.056** -0.096** -0.174*** -0.205*** -0.039 -0.165** -0.166*** -0.182*** 

 (0.016) (0.053) (0.025) (0.021) (0.034) (0.026) (0.044) (0.029) (0.040) (0.026) (0.079) (0.020) (0.063) 

Q10 -0.147*** -0.063 -0.107*** -0.200*** -0.152*** -0.066 -0.087 -0.041 -0.326** -0.050 -0.145* -0.145*** -0.169*** 

 (0.012) (0.083) (0.031) (0.033) (0.040) (0.044) (0.069) (0.049) (0.155) (0.045) (0.083) (0.037) (0.063) 

Q20 -0.132*** -0.135* -0.142*** -0.205*** -0.153*** -0.063** -0.082 -0.119*** -0.172* -0.039 -0.201*** -0.117*** -0.219*** 

 (0.011) (0.072) (0.033) (0.026) (0.042) (0.030) (0.059) (0.031) (0.093) (0.040) (0.080) (0.027) (0.084) 

Q25 -0.135*** -0.177*** -0.155*** -0.203*** -0.156*** -0.067*** -0.105** -0.129*** -0.155** -0.049 -0.253*** -0.127*** -0.279*** 
 (0.010) (0.072) (0.035) (0.022) (0.039) (0.027) (0.050) (0.029) (0.072) (0.037) (0.083) (0.023) (0.088) 

Q30 -0.142*** -0.159** -0.137*** -0.210*** -0.166*** -0.078*** -0.073 -0.157*** -0.168*** -0.028 -0.217*** -0.129*** -0.289*** 

 (0.010) (0.070) (0.034) (0.019) (0.037) (0.027) (0.063) (0.029) (0.052) (0.028) (0.074) (0.021) (0.094) 

Q40 -0.140*** -0.223*** -0.093*** -0.208*** -0.192*** -0.085*** -0.056 -0.169*** -0.173*** -0.035 -0.222*** -0.122*** -0.169* 

 (0.010) (0.084) (0.029) (0.031) (0.034) (0.027) (0.047) (0.031) (0.039) (0.026) (0.074) (0.021) (0.094) 

Q50 -0.144*** -0.295*** -0.112*** -0.159*** -0.194*** -0.079*** -0.101*** -0.173*** -0.185*** -0.063** -0.283*** -0.146*** -0.198*** 

 (0.011) (0.092) (0.032) (0.035) (0.039) (0.029) (0.039) (0.032) (0.040) (0.030) (0.071) (0.021) (0.078) 

Q60 -0.144*** -0.333*** -0.085*** -0.117*** -0.148*** -0.070** -0.152*** -0.210*** -0.193*** -0.068** -0.266*** -0.157*** -0.210*** 

 (0.011) (0.089) (0.030) (0.025) (0.043) (0.029) (0.049) (0.034) (0.050) (0.031) (0.106) (0.021) (0.070) 

Q70 -0.143*** -0.277*** -0.086** -0.105*** -0.188*** -0.051 -0.100** -0.172*** -0.191*** -0.061* -0.137 -0.202*** -0.165** 
 (0.011) (0.079) (0.035) (0.023) (0.045) (0.042) (0.050) (0.038) (0.056) (0.033) (0.134) (0.027) (0.080) 

Q75 -0.136*** -0.299*** -0.063** -0.112*** -0.160*** -0.041 -0.125*** -0.155*** -0.176*** -0.051 -0.149 -0.190*** -0.131 
 (0.009) (0.083) (0.030) (0.024) (0.053) (0.047) (0.048) (0.042) (0.055) (0.040) (0.129) (0.029) (0.081) 

Q80 -0.134*** -0.329*** -0.052 -0.104*** -0.172** -0.016 -0.127** -0.149*** -0.138*** -0.047 -0.134 -0.206*** -0.144* 

 (0.011) (0.094) (0.034) (0.029) (0.070) (0.047) (0.058) (0.044) (0.050) (0.046) (0.137) (0.033) (0.086) 

Q90 -0.097*** -0.402*** -0.069* -0.124*** -0.085 0.044 -0.092 -0.080 -0.137 0.043 -0.156 -0.198*** -0.191 

  (0.016) (0.109) (0.038) (0.039) (0.061) (0.043) (0.082) (0.068) (0.089) (0.061) (0.168) (0.038) (0.212) 

              
OLS R-squared 

R- 

0.9522 0.3547 0.2146  0.2346 0.1673 0.2248 0.1951 0.3444 0.4350 0.3278 

 

 0.2547 0.2668 

 

0.1429 

Notes: i) * denotes significance at the 10% level, ** denotes significance at the 5% level, and *** denotes significance at the 1% level; ii) standard errors are in brackets; iii) 

OLS estimates are heteroskedastic-robust; iv) standard errors of quantile estimates have been calculated using a bootstrap method of 500 replications; v) All results control 

for completed education, labour market experience and squared, unemployment experience, marital status, immigrant condition, health status, supervisory role in the job, 

training provided by the employer, hours of work, job tenure, establishment size, industry, occupation and year-specific effects; vi) The results for ‘Europe’ control for 

country-specific effects. 

 


