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Does Gibrat’s law hold amongst dairy farmers in Northern Ireland? 

 

 

Abstract 

This paper tests whether the Law of Proportionate Effects (Gibrat, 1931), which states 

that farms grow at a rate that is independent of their size, holds for the dairy farms in 

Northern Ireland.  Previous studies have tended to concentrate on testing whether the law 

holds for all farms.  The methodology used in this study permits investigation of whether the 

law holds for some farms or all farms according to their size.  The approach used avoids the 

subjective splitting of samples, which tends to bias results.  Additionally we control for the 

possible sample selection bias. The findings show that the Gibrat law does hold except in the 

case of small farms.  This is in accordance with previous findings that Gibrat’s law tends to 

hold when only larger farms are considered, but tends to fail when smaller farms are included 

in the analysis. Implications and further extensions, as well as some alternatives to the 

proposed methodology are discussed.  
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1. Introduction 

Farm structural change and the inter-related issue of farm growth continue to attract the 

interest of agricultural economists, academics and policy makers, because of the wide-ranging 

implications for agricultural output, efficiency and inevitably the economic welfare of rural 

communities.  Given the sweeping changes that have occurred in the recent round of CAP 

Reform it is important that the factors affecting structural change in the farm sector are 

understood.  This study will examine some of these factors using data from the period 1997 to 

2003.  During this period, farm incomes reached very low levels (see Figure 1) and this has 

certainly put pressure on the structure of the farm sector. 

Two inter-related components of farm structural change are entry/exit to the farm sector 

and growth/decline in continuing farms (Weiss, 1999).  Historically, there has been a 

tendency for academics to consider these two components separately.  Studies that have 

investigated the factors influencing farm exit include Kimhi and Bollman (1999) and Glauben 

et al. (2003).  A large number of studies have examined the factors affecting farm growth 

(e.g. Upton and Haworth, 1987; Shapiro et al., 1987; Clarke et al., 1992; and, Bremmer et al., 

2002).  However, it has been argued that examining the growth of continuing farms only, 

whilst ignoring exiting farms in the analysis, runs the risk of biasing results (Weiss, 1999).  

Consequently, several more recent studies have considered both farm survival (the opposite of 

exiting) and farm growth (see Weiss, 1998 and 1999; and, Key and Roberts, 2003).   

In a seminal paper that describes the Law of Proportionate Effects, Gibrat (1931) 

provides the starting point for most previous studies of farm growth.  He proposed that the 

growth rate of firms is independent of their initial size at the beginning of the period 

examined.  Gibrat’s law proposes that growth is a stochastic process resulting from the 

random operation of many independent factors.  This stochastic process easily generates 

theoretical farm size distributions (log-normal) that are skewed and similar in shape to the 
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farm size distributions that are observed empirically.  Furthermore, this stochastic process 

also means the variance of the distribution increases over-time mirroring observed increases 

in empirical concentration measures.  It is unsurprising, therefore, that Gibrat’s Law, which is 

not inconsistent with the assumption of constant returns to scale, continues to provide the 

basic foundation for most studies of farm growth.  

Gibrat’s law, however, has been subject to some criticism and theoretical justifications 

for its rejection can be found in the literature, e.g. returns to scale among smaller farms 

(Weiss, 1999).  A number of studies have identified a range of systematic factors that 

influence farm growth and these should be explicitly considered in any model of farm growth, 

rather than being subsumed within the random stochastic process implied by Gibrat’s law.  In 

light of these recent considerations this paper test Gibrat’s law using some determinants of 

farm growth and survival using farm census data for dairy farms in Northern Ireland.  The 

analysis permits examination of Gibrat’s law and considers the influence of such factors as 

profitability, farm type and farmer associated characteristics on farm growth and survival.  An 

outline of the paper is as follows.  A review of previous studies is presented in the next 

section.  The data set and the methodology used in the analysis are outlined in Section 3.  

Model results are presented in Section 4.  These results are discussed in Section 5 and some 

conclusions are drawn in Section 6. 

 

2. Literature review 

There is a wide and extensive literature investigating the growth of firms (for a review 

see Sutton, 1997; and, Lotti et al., 2003).  In comparison the number of studies focusing on 

farm growth is more limited.  The approach used in most studies of farm growth has been to 

test Gibrat’s law.  Many of these studies appear to have reached different conclusions.  

Studies by Weiss (1998, 1999) and Shapiro et al. (1987), based on farm census data, rejected 
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Gibrat’s law of proportionate effects for farm growth.  These studies found that small farms 

tend to grow faster than larger farms. However, Upton and Haworth (1987) and Bremmer et 

al. (2002) using FBS data collected in Great Britain and FADN data collected in the 

Netherlands, respectively, found no evidence to reject Gibrat’s law.  The data sets used in 

these two studies exclude very small farms (i.e. farms <8 European Size Units).  This may 

have affected the results obtained because small rapidly growing farms may have been 

excluded from the analysis.  Clark et al. (1992) also find no evidence to reject Gibrat’s law 

based on analysis using aggregated data. 

An important aspect of the study of farm (size) growth is the definition of farm size.  

Previous studies have used a variety of different measures of farm size (changes in farm size 

indicate growth/decline).  Measures of farm size proposed in the literature include: acreage 

farmed, livestock numbers (cow equivalents), total capital value, net worth, gross sales, total 

gross margins and net income (Allanson, 1992; Clark et al. 1992; and, Shapiro et al. 1987).  

Output value measures such as gross farm sales and input value measures such as net worth 

may be unsatisfactory due to the impact of inflation and changes in relative prices (Weiss, 

1998).  Physical input measures, such as acres under cultivation and number of livestock, are 

also problematic since farms are characterised by a non-linear production technology and 

changes in farm size typically involve changes in factor proportions and changes in 

technology.  Weiss (1998), however, argues that the disadavantages of physical input 

measures are less that those associated with the value of inputs or outputs and as a result the 

former should be preferred.   

A review of empirical studies indicates that most find evidence to conclude that a range 

of variables other than size influence farm growth (e.g. Weiss, 1999; and, Bremmer et al., 

2002).  These other explanatory variables that have been identified in the literature can be 

divided into two sub-groups, namely, farmer-associated characteristics and farm specific 
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factors.  Weiss (1999) identified the following farmer-associated characteristics: off-farm 

employment, age, gender, level of education, family size, age profile of the family, succession 

information and attitude to risk.  Farm (or firm) specific variables that have been suggested as 

factors influencing growth include: size, solvency, profitability, productivity, farm income, 

structure, financial performance, input costs, output mix, farm type, mechanisation and 

location (Bremmer et al. 2002; Hardwick and Adams, 2002; Weiss, 1999).  

 

3. Problem characterisation 

As with the vast majority of studies of farm growth, Gibrat’s law of proportionate effect 

is used as a starting point for the analysis carried out in this paper.  The law states that firm 

(or farm) growth is determined by random factors, independent of size.  This may be tested 

using the following formula: 

 

ln(Si,t)  =  β1 + β2ln(Si,t-1) + ut;  (1) 

 

where Si,t denotes the size of the individual holding in time t and ut is a random 

disturbance term independent of current or past values of the dependent variable.  If β2 = 1, 

then growth rate and initial size are independent and this means that Gibrat’s Law is not 

rejected.  If β2 < 1, small farms tend to grow faster than larger farms – i.e. the effects of 

randomness are offset by negative correlation between growth and size.  If β2 > 1, larger 

farms tend to grow faster than smaller farms.  The above is easily illustrated if one subtracts 

ln(Si,t-1) from both sides of equation (1) above. Then the left hand side logarithmic difference 

is an approximation of the growth.  The right hand side will them be either a random walk, 

when β2 = 1, or a dependent process otherwise. 
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Equation (1) can be generalised augmenting it by farmer associated characteristics and 

farm specific variables, e.g. profitability, denoted by the k explanatory variables kX  below as 

follows: 

 

( ) ( ) t

k

j

jjtiti uXSS +++= ∑
+

=
−−

3

3
21,21, lnln βββ  (2) 

 

There are two problems with using linear regression representations such as equation (2). 

The first is the assumed linear effect of the additional explanatory variables kX . Weiss (1999) 

for example applied non-linear functional form for these and detected significant non-

linearities. Specifying an ad-hoc non-linear functional form however is not a viable strategy, 

since it may impact on the final results in an unpredictable way and often there is little or no 

information on the way these additional variables may impact on farm growth. 

This consideration aside, even in the simple model (1), there is an underlying assumption 

that the Gibrat’s law holds (or is violated) globally. It is difficult to ascertain whether for 

example small farms obey this law as opposed to large farms. It is in principle possible to split 

the sample into smaller subsamples and locally estimate the relationships. This would 

however involve some subjective criteria about how to do the latter partitioning further 

casting doubt on the final results.  If we want to test whether Gibrat’s law holds for some 

farms and not for others, the linear regression framework is too restrictive. Such a test can 

nevertheless be designed using quantile regression methods, implemented in this paper. 

Alternatives and extensions to the adopted approach are also discussed. 

In order to measure farm growth, farm size must be compared between two specific 

points in time.  However, measures of farm growth are meaningful only for surviving farms.  

Farms exiting between the points in time over which growth is measured are normally 
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excluded from the sample (as non-surviving farms).  However, there is a greater probability 

that slower growing small farms will be non-survivors compared with slower growing larger 

farms (Weiss. 1999).  Thus, if non-surviving (exiting) farms are excluded from the sample, 

the estimates of β may be biased downward, which may result in incorrect rejection of 

Gibrat’s law, giving the impression that smaller farms tend to grow faster than larger farms 

(Hardwick and Adams, 2002; Lotti et al. 2003; Shapiro et al. 1987; Sutton, 1997; and, Weiss, 

1999).  Ignoring exiting farms in the analysis is known as the problem of sample selection 

bias.  Various options are available to account for selection bias and these are briefly 

discussed in the methodology section.  

 

4. Data 

The data set used in this study is based on the 1997 and 2003 farm census for Northern 

Ireland and a structural survey of farms in Northern Ireland that was conducted in 1997.  The 

farm census provided information for individual farms on farm type, acreage farmed and 

stock numbers (total standard gross margin for each farm can also be inferred from this data).  

The 1997 structural survey provided additional information on a range of farmer associated 

characteristics such as gender, age, management status and time spent working on the farm 

for a subset of the farms included in the farm census (31 % of dairy farms).  The individual 

farm information from the structural survey was matched to the information from the 1997 

farm census.   

Matching these data sets yielded a total of 1648 dairy farms in 1997.  Of these farms, 112 

had exited farming by 2003.  Of the remaining 1536 farms, 1290 remained in dairy, while the 

other 246 moved to cattle and sheep.  In this study we are specifically interested in farms 

which remain in dairying and thus the latter farms are treated as farms which exited the dairy 
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sector.  Thus, in total 358 exited the dairy sector between 1997 and 2003 (farms which exited 

farming altogether plus farms which switched from dairy to cattle and sheep). 

The measure of farm size used in this study is the livestock numbers measured in cow 

equivalents per farm. This measure (unlike e.g. land area) is directly proportionate to the final 

output of dairy farm. Using the dairy farm sector allows us to avoid complications associated 

with farm entry and thus simplify the sample selection problem. 

The following explanatory variables are employed: (logarithm of the ) initial (i.e. in 

1997) size  - LNCE97; an indicator variable denoting whether the farm holder is also a 

manager of the farm – MSHOLD, indicator of other gainful activities – HAGA3 and a 

variable showing the age of the farmer – HAGE1. Note that we use a limited set of 

conditioning variables, since our purpose is to test Gibrat’s Law, rather than provide a 

comprehensive model of farm growth, which would have involved additional behavioural 

assumptions and theoretical model. 

 

 

5. Methodology 

In the least-squares regression framework the conditional mean function, i.e. the function 

that describes how the mean of y changes with the covariates x, is almost all we need to know 

about the relationship between y and x. The crucial aspect about this view is that the error is 

assumed to have exactly the same distribution irrespectively of the values taken by the 

components of the vector x. This can be viewed as a pure ‘location shift’ model since it 

assumes that x affects only the location of the conditional distribution of y, not its scale, or 

any other aspect of its distributional shape. If this is the case, we can be fully satisfied with an 

estimated model of the conditional mean function. 
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The above described location shift model is however rather restrictive. Covariates may 

influence the conditional distribution of the response in many other ways: expanding its 

dispersion (as in traditional models of heteroscedasticity), stretching one tail of the 

distribution, compressing the other tail (as in volatility models), and even inducing 

multimodality. Explicit investigation of these effects can provide a more nuanced view of the 

stochastic relationship between variables, and therefore a more informative empirical 

analysis. The quantile regression is a method that allows us to do so. 

 

Given a random variable Y and its distribution function F, we denote by 

 

))(|inf()( ττ ≥= yFyQ  (3) 

 

the  τ th quantile of Y . The sample analogue q of Q(τ ) is called the τ th sample quantile. 

It may be formulated as the solution of the following optimisation problem, given a random 

sample (yn), n=1;…;N : 

 

{ }
( )

{ } 







−−+− ∑∑
<≥ qyn

n

qyn

n

nn

qyqy
||

1min ττ
 (4) 

 

There exist a number of alternative quantile regression estimators. Here we will only 

describe the linear programming type of estimator, since there are asymptotic theory results 

for it (Koenker and Bassett, 1978). Just as we can define the sample mean as the solution to 

the problem of minimizing a sum of squared residuals, we can define the median (which is the 

50% quantile, i.e. τ =0.5) as the solution to the problem of minimizing a sum of absolute 

residuals (which follows directly from (4) above).  
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For any 0 < τ  < 1, we denote ( ) [ ]( )0<+= uIuu τρτ , where I[.] is the indicator function. 

Following Koenker and Bassett (1978) ( )uτρ  is usually referred to as a check function.  The 

problem may then be formulated as follows: 

 

( )qyn

N

n

−∑
=1

min τρ
 (5) 

 

which yields a natural generalization to the regression context. 

 

( )( )βξρτ ,min
1

Xyn

N

n

−∑
=  (6) 

 

where ( )βξ ,X  is some parametric function of the covariates. When this is a linear 

function, the above minimisation procedure is actually a linear programming problem. Then it 

may be estimated using some form of simplex algorithm. Koenker and d'Orey’s (1987, 1993) 

adaptation of the Barrodale and Roberts (1974) median regression algorithm to general 

quantile regression is particularly influential. The Barrodale and Roberts approach belongs to 

the class of exterior point algorithms for solving linear programming problems. Alternatively, 

Portnoy and Koenker (1997) have shown that a combination of interior point methods and 

effective problem preprocessing is very well suited for large-scale quantile regression 

problems. This is the approach used in this paper (it is often referred to as Frisch- Newton 

method), although the former (Barrodale-Roberts) method yields similar results, which are 

available from the authors upon request. 

It would be beneficial at this point to clarify a fundamental difference between the 

quantile regression and the mean regression methods. Could we achieve the same result by 
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simply segmenting the response variable into subsets according to its unconditional 

distribution and then doing least squares fitting on these subsets?  Clearly, this form of 

truncation on the dependent variable would yield disastrous results in the present example. In 

general, such strategies are doomed to failure for all the reasons so carefully laid out in 

Heckman (1979). It is thus worth emphasizing that even for the extreme quantiles all the 

sample observations are actively used in the process of quantile regression fitting.  

It is of course possible to construct local quantile regression estimates using some sort of 

segmentation (see Knight et al., 2002). Some preliminary results about the conditions where 

local quantile regression is useful are outlined in Costinot et al. (2000). However we will not 

pursue this option for reasons given further below. 

There are several useful properties of the quantile regression approach. Above we have 

described the quantile regression for a given quantile. If however one takes the whole range of 

quantiles, a picture of the overall distribution emerges. Note that  in the latter case we obtain a 

variable coefficients model. In contrast to most variable coefficient methods which usually 

assume coefficients independence however, in the quantile regression setting, the coefficients 

are functionally dependent. In the light of the farm growth problem, this is evidently a 

desirable property, The determinant of the farm growth for slightly different sizes of farms are 

related in a quantile regression context, while paradoxically they will be assumed independent 

in most other variable coefficients models. Even the simplest linear quantile regression we 

adopt here produces a rather flexible non-linear model. Note furthermore that the non-

linearities are explicitly formulated with regard to the dependent variables, i.e. with regard to 

the farm size, which is exactly what ids necessary for testing Gibrat’s law. Nevertheless, the 

quantile regression has to be viewed as a workable approximation to a possibly more general 

non-linear model. The availability of pointwise convergence results for the quantile regression 



 

 

13

 

estimates facilitates the analysis and inference compared to other non and semi-parametric 

methods. 

The potential problem of bias due to sample attrition is known in the literature as a 

sample selection problem. Its initial description is due to Heckman (1979) who devised a two 

step procedure for controlling it. The Heckman procedure consists of estimating at step one a 

survival model. This is typically a probit (although a logit can be used alternatively) equation 

on the probability of farm survival from the complete sample (including surviving and non-

surviving farms). This equation is subsequently used to obtain an additional variable, where 

the values represent the inverse Mill’s Ratio for each observation.  In step-two, the additional 

variable is introduced as a correcting factor into the least squares regression that is based upon 

a sample that excludes non-surviving farms. The probit model, used in the first step typically 

has the same explanatory variables as the main equation, though this is not mandatory and 

variables that are only relevant to the farm survival may be included, as well as some of the 

variables included in the main equation may be dropped. The Heckman procedure assumes 

joint normality of the error terms in the two equations. The latter distributional assumption, 

which can also be employed to construct a more efficient Full Information Maximum 

Likelihood (FIML) estimator that jointly estimates both equations, however can have serious 

implications on the robustness of the final results when it is violated.  Therefore various 

alternative estimators have been suggested to circumvent the problem of inadequate 

distributional assumptions. These can be broadly described as semi-parametric model 

selection methods. 

The problem of sample selection in mean regression model can be broadly defined as 

problem of the distributional assumptions, which can be controlled for. This is basically done 

by various methods to relax the parametric specifications employed in the seminal work of 

Heckman (1979).  
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The sample selection for quantile regression however remains a challenging and still 

under-researched problem. Buchinsky (1998, 2001) provided some important contributions to 

this issue. Unfortunately the method Buchinsky (1998,2001) used in the selection step, 

namely the Ishimura’s (1993) semiparametric least squares requires that the selection 

equation includes at least one covariate that is not included in the main equation. This 

condition is difficult to ensure with the available data set. Therefore a different strategy is 

followed in this paper. On the first step we estimate an ordinary probit selection equation 

similarly to Heckman (1979) and from there derive the bias correcting factor (i.e. the inverse 

Mill’s ratio). In the second step a linear quantile regression is performed instead of the mean 

regression by additionally including the derived correcting factor.  The resulting model is 

tested for model correctness, which also validates the sample selection step.  

The last piece of the jigsaw is therefore to identify appropriate model validity test, 

applicable to the quantile regression. What is needed is a test on validity of the functional 

form. Up to our knowledge there are only two appropriate candidates for this. The first is the 

Zheng’ (1998) approach based on weighted kernel regression estimation and the other one is 

an extension to the Bierens and Ploberger’s (1997) Integrated Conditional Moment (ICM) test 

for the quantile regression case due to Bierens and Ginther (2001). They discuss explicitly 

only the median case, but the necessary modifications for the general quantile regression case 

are provided in an appendix. We have chosen the latter due to some desirable properties, such 

as boundness of the test statistic, good local power and relative conservatism of the test 

statistic.  We briefly describe the ICM test below: 

Let us have the following expectation model: 

( ) ( )| ,j j jE y x g x β=  (7) 

then the ICM statistic 
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= Φ∑ , ( )ˆˆ ,j j ju y g x β= −  being weighted non-linear residuals, 

( ).Φ - bounded one to one mapping and ( ).ω  - appropriate weight function, can be used to test 

the null hypothesis that the probability of the expectation given above in (7) is one, against 

the alternative of being the less than one. In simple words, this amounts to testing that the 

expectational model (7) is the right one. Practical implementation of the ICM test involves 

choice for the weight function and the bounded mapping as well as some computational issue 

surrounding the computation of the two integrals in (8). For brevity of the exposition we will 

not discuss these here. Full details on the procedure, which roughly speaking follows Bierens 

and Ginther (2001)1, are available from the authors. 

There is another point to note. Since we are computing a two-step estimator, the 

confidence intervals obtained during the quantile regression estimated at the second step will 

not be valid even asymptotically. The reasons for this are similar to the instrumental variables 

case and the endogeneity problems.  In the sample –selection case analysed here, in general 

the quantile regression  estimated at the second step is actually: 

( ) ( )( ) , (.) / 1 (.)Q g X k f Fτ ττ β ε = + − +   (9) 

The additional regressor ( )(.) / 1 (.)f F−  can be interpreted as a ‘non-selection hazard’, 

that corrects for the effect of the sample selection bias. The pdf (.)f  and the cdf (.)F  are 

obtained from the auxiliary model estimated at step one. Note that (9) is the expression when 

the auxiliary model models non-selection. If the auxiliary model is the one of selection the 

                                                
1 They do not provide sufficient information on the exact quantile regression estimation algorithm they use or the 
method of obtaining standard errors, thus full replication was not possible. 
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natural candidate for the non-selection hazard would be (.) / (.)f F . In the case of symmetric 

distributional assumptions used in the auxiliary model (such as the Gaussian used in the probit 

model), modelling selection or non-selection would be equivalent. This would not however be 

the case for semiparametric estimators, and thus it is preferable to use the non-lecetion model 

in the first step for such cases. The “inverse Mill’s ratio” is the representation of the above 

non-selection hazard obtained from the normal distribution (or the logistic, if a logit model 

was estimated instead of probit). If one estimates a non-parametric model at step one the 

empirical pdf and cdf, obtained from it could be used. 

The Heckman type of procedure ignores the correlation between the residuals in the first 

and second step models. Since the first-step residuals are used to compute the non-selection 

hazard, the latter would therefore be correlated with the residuals in the second-step equation. 

With a probit equation estimated in step one, the standard errors in the following linear 

regression can be adjusted (see Heckman, 1979) obtain asymptotically valid standard errors. 

An alternative (applicable with any pair of parametric models for the two steps) is to estimate 

jointly both equations by Full Information Maximum Likelihood, which by accounting for the 

correlation between the error terms should yield consistent standard errors. Note however that 

this is not applicable in this case because the quantile regression is a semi-parametric method, 

which does not make any distributional assumptions. To obtain valid standard errors , which 

are necessary for testing the Gibrat’s law, we adopt a different approach. We consider both 

equations as a whole and bootstrap the whole two-stage estimator (instead of only the QR 

estimates). An adapted quantile regression implementation of the XY (also known as pair, or 

case) bootstrap is used for this purpose. 
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6. Results. 

The first-step estimates are presented in Table 1. Note that since we use probit model, 

and thus the choice of auxiliary criterion is not instrumental, we model selection (i.e. we use 1 

for farms that remain in dairying)2. This leads to a more natural interpretation of the estimated 

coefficients, if this is necessary. We use the same variables as in the subsequent quantile 

regression model. The farm size is important determinant of the farm exits, in that larger 

farms are more likely to remain in dairying. Owing to this if the selection process was not 

controlled for, one would have obtained biased estimates in the main equation 

 

Insert Table 1. 

 

The discussion in the methodology section concentrated on estimation and testing of a 

quantile regression model at a given quantile. It is clear that the adopted framework for testing 

the Gibrat’s law involves estimating multiple quantile regression models. It is in principle 

possible to estimate the whole quantile process (i.e. estimating a quantile regression for every 

observation, in this case 1290 models). To simplify the process however only a subset of 

quantile regression models is estimated. This subset consist of all percentiles excluding the 

lower and the upper 9%. In other words the 81 regression models for the 0.10, 0.07,   ,0.89, 

and  the 0.90 quantiles were estimated. The reason we exclude the extreme quantiles is that 

the conventional quantile regression estimates for these are unreliable. Asymptotic theory and 

estimation methods for extreme quantiles are developed in Chernozhukov (2000a,b) and 

Chernozhukov and Umantsev (2001). The main interest of the current paper lies in the overall 

distribution of the estimated on the logged size in the initial period (1997) and thus we will 

ignore the extreme quantiles.  

                                                
2 Correspondingly the additional variable used in the subsequent quantile regressions is f(x)/F(x). 
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Plotting the corresponding estimates for the same parameter across the quantile range 

provides a useful graphical device to informally ascertain the scale invariance hypothesis. 

Strict formal tests on this are available and results from such tests can be provided by the 

authors upon request. The conventional approach to such tests (Koenker and Xiao, 2000) uses 

the Khmaladze (1981) transformation and introduces additional computational burden. 

Although we omit it here for brevity and simplicity, rigorous modelling practices would 

require one to implement such tests. Graphical representation of the overall quantile 

regression is presented on Figure 2.  

 

Insert Figure 2. 

 

The main point of interest here however, is the way the estimate of the logged lagged size 

varies over the quantile range. For this reason we will not comment on the overall results and 

will focus our attention to this particular coefficient. The estimates for the coefficient of the 

initial farm size from the estimated set of quantile regressions are presented on Figure 3, 

together with the associated 95% confidence intervals. Where the horizontal line drawn at the 

value of 1 falls within the range defined by these confidence intervals we may say with 95% 

confidence level, that the Gibrat law holds. These results suggest the following. The Gibrat’s 

law speaking holds except for the small (up to the 0.16 quantile) dairy farms. These smaller 

farms grow slower than the rest of the sector.  Interestingly the coefficient estimate declines 

for the largest farms, but this decline is not statistically significant. If we also include the 

extreme quantiles, the largest farms do show slower growth than the rest (results available 

from the authors). Nevertheless such a result is difficult to verify, since the ICM test statistic 

is unreliable at the extreme quantiles. 
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Insert Figure 3. 

 

The smaller growth in the segment of smaller dairy farms is in concordance with farm 

growth results from Census and farm business surveys data, since, the latter are generally 

based on larger farms, and thus will tend to support the Gibrat’s law as opposed to the latter 

where the peculiarity of the smaller farms would lead to its rejection. The use of dairy sector 

data is advantageous in that it reduces the possibility for heterogeneity problems due to 

different production technologies and farm types being pooled together. McErlean et al. 

(2004) argue that this heterogeneity needs to be dealt with by explicitly modelling the 

different farm types instead of using dummies for them. Note that the possible effects of such 

heterogeneity will manifest themselves in terms of heteroscedasticity problems. The 

distribution of the ICM test we use to test the model validity however is not affected by 

neglected heteroscedasticity (Bierens and Ploberger, 1997). 

Due to the considerable computational burden of estimating the ICM test statistic (details 

on the exact procedure available upon request) we only estimate it for the quantiles from 0.1 

through to 0.9 with 0.1 steps). The ICM test results are presented in Table 2 

 

Insert Table 2 

. 

The reason for using several values for c is as follows. The ICM statistic is a ratio of two 

probability measures estimated over a hypercube whose dimensions are 2c. ((i.e. in the 

intervals [-c, c]). In principle asymptotically any choice for c is equivalent. In principle 

however, this choice may have dramatic effects on the small sample properties of the test. In 

general too small or too large values will reduce the power of the test. (see Bierens and 

Ginther, 2001 for a more detailed discussion on this in the quantile regression case). 
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Therefore a range of such values was used to estimate the ICM test. All test statistics 

estimated fail to reject the null of validity of the estimated quantile regression. The results for 

c=0.1 similarly to Bierens and Ginther (2001) are probably spuriously low. Nevertheless the 

range of values for the hypercube dimension is rather extensive (as a comparison Bierens and 

Ginther (2001) only use values of 1, 5 and 10) and everywhere the ICM test statistic is well 

below the critical values. This provides conclusive evidence in support of the estimated 

quantile regression model and its conclusions. 

 

7. Conclusions and further research agenda 

Previous studies show that Gibrat’s law tends to hold when only larger farms are 

considered, but tends to fail when smaller farms are included in the analysis.  This study is 

based on a data set that covers the full range of dairy farm sizes in Northern Ireland. The 

analysis takes account of possible bias due to exiting farms. Our results indicate that the farm 

growth does not depend on initial size, except for the smaller farms. Small Northern Ireland 

dairy farms relying on family labour, probably experience resources shortage and have 

insufficient funds to expand under milk quota restrictions. On the other hand the largest farms 

seem to grow slower than the rest, hinting a possible a saturation effect, but the latter is 

inconclusive. The relatively small average dairy farm size in Northern Ireland may explain 

such an effect.  

The use of rather homogeneous data set consisting of only dairy farms have prevented 

some complications such as possible heterogeneity, but the general approach outlined in the 

paper is readily applicable to more complex data sets. In such cases the simple probit sample 

selection step may not be appropriate and alternative semi-parametric formulations may be 

used instead. The linear quantile regression proved to be sufficient to describe the growth 

process in the NI dairy sector. In some other cases however the linear assumption may be 
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inadequate. Then nonlinear and non-parametric versions of the quantile regression could be 

employed instead 
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Figure 1. Net farm income of Northern Ireland dairy farms 
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Figure 2. Graphical representation of the overall quantile regression results 
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Figure 3. Quantile regression estimates on the lagged size coefficient  
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Table 1.First-step equation estimates  

 

Variable Coefficient Standard Error 

 

Constant 

 

0.197 0.092 

 

LNCE97 0.180 0.013 

 

MSHOLD -0.043 0.023 

 

HAGA3 -0.009 0.050 

 

HAGE1 

 

-0.003 

 

0.001 
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Table 2. ICM test results 

 

Quantile  c=1 c=3 c=5 c=10 c=15 c=20 

0.1 0.050 0.247 0.363 0.674 0.698 0.665 

0.2 0.110 0.531 0.628 0.746 0.791 0.817 

0.3 0.119 0.500 0.521 0.718 0.827 0.810 

0.4 0.364 1.683 1.580 1.485 1.336 1.150 

0.5 0.338 1.466 1.409 1.655 1.348 1.148 

0.6 0.398 1.571 1.231 1.229 1.115 1.025 

0.7 0.389 1.076 0.882 0.712 0.755 0.834 

0.8 0.179 0.758 0.639 0.797 0.815 0.959 

0.9 0.068 0.264 0.399 0.674 0.734 0.733 

 

Critical values (Bierens and Ploberger, 1997): 

10% 3.23 

5% 4.26 

 


