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Abstract

In small samples and especially in the case of small true default probabilities,

standard approaches to credit default probability estimation have certain drawbacks.

Most importantly, standard estimators tend to underestimate the true default prob-

ability which is of course an undesirable property from the perspective of prudent

risk management. As an alternative, we present an empirical Bayes approach to

default probability estimation and apply the estimator to a comprehensive sample

of Standard & Poor’s rated sovereign bonds. We further investigate the properties

of a standard estimator and the empirical Bayes estimator by means of a simulation

study. We show that the empirical Bayes estimator is more conservative and more

precise under realistic data generating processes.
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1 Introduction

We consider the estimation of credit default probabilities for obligors with given rating

grades. Assigning default probabilities (PDs) to rating grades is clearly of high relevance

for the purpose of financial risk management and the Basel II Accord has considerably

increased the attention for this task. In this article, our focus is on problems that arise

when sample sizes are rather small. Especially for higher grades, typical samples often

contain only a few, if any, default events. Such portfolios are often referred to as low-

default portfolios in the related literature. Important examples for such sparse datasets

are samples of sovereigns or banks. In a survey of UK banks, ”insufficient default data”

for PD estimation are reported by 90% of the banks with respect to sovereign obligors

while the same figure ist 62% for obligors being banks as well (BBA, 2004).

Standard approaches applied to small samples and especially to samples with few defaults

have serious drawbacks. Besides the obvious effect that estimation uncertainty is high the

skewness of the sampling distribution leads to a high probability of underestimating the

true PD. Intuitively, given small true PDs and small sample sizes, we will very likely

observe no default event in a particular sample leading to a PD estimate of zero under

standard approaches. The likelihood of underestimating the true default probability rises

as i) the true PD decreases, ii) the sample size decreases and iii) the correlation of default

events increases (Kurbat & Korablev, 2002).1 Given these properties, it would be desirable

to improve upon standard estimators by applying a more efficient and more conservative

estimator in small samples. In fact, in the context of Basel II, a conservative approach

is demanded from the regulatory side. In § 416 of Basel II (BCBS, 2006), it is stated

that ”...where limited data are available, a bank must adopt a conservative bias to its

analysis.” Similarly, from § 451: ”In order to avoid over-optimism, a bank must add to its

estimates a margin of conservatism that is related to the likely range of errors.” A certain

degree of conservatism may be seen as a general principle of prudent risk management

but we will further show in section 5 that, given estimation uncertainty, an upward bias

of the PD estimator is necessary to estimate Basel II capital requirements unbiasedly.

PD estimates for a one-year prediction horizon are particularly relevant as inputs for the

calculation of Basel II capital requirements. However, the scope of this article is somewhat

broader in the sense that we will consider a flexible multi-period prediction horizon. Given

the multi-period risk usually faced by lenders, a multi-period time horizon is naturally of

interest and its importance may further rise due to plans of the International Accounting

Standards Board and the Basel Committee on Banking Supervision to base loss provisions

upon the expected loss over the whole life of the credit portfolio (BCBS, 2009). But

even for a one-year prediction horizon a multi-period view is useful since it allows using

1We will provide numerical evidence on the probability to underestimate the true PD in our simulation

study in section 5.
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the information of within-year rating changes and censoring events.2 This should be

of particular importance in the case of small samples. Nevertheless, in this paper we

present results that may also be interesting for the reader who is primarily interested in

a single-period view since this is just a special case of our more general approach.

The problem of low-default portfolios has already received some attention in the literature.

Most approaches employ the idea of confidence intervals by proposing an appropriate

upper confidence bound as a conservative PD estimator (Pluto & Tasche, 2006; Benjamin

et al., 2006). However, these studies consider a fixed one-year prediction horizon and do

not use the aforementioned within-year information. As will be discussed in the upcoming

section, the confidence bound approach is not easily generalized to our more flexible

multi-period setup. Further, confidence intervals for realistic sample sizes are often wide

(Lawrenz, 2008) and would therefore often result in a sharp increase of PD estimates. It

is then doubtful if a bank would be willing to use such an estimate for internal uses such

as pricing, something that is explicitly intended within the Basel II framework and also

monitored by the so-called IRB Use Test.

Alternatively, Kiefer (2009) suggests a Bayesian approach to PD estimation. In the

Bayesian framework, the standard estimator is shrunk towards some prior guess which

potentially leads to more conservative and more accurate estimates. A crucial part of a

Bayesian analysis is the choice of the prior distribution. While Kiefer (2009) proposes to

specify the prior by expert elicitation we will present, apply and evaluate in this paper

an empirical Bayes approach where the prior distribution is estimated from data. Our

estimator has a closed-form representation. In the empirical section, we will apply the em-

pirical Bayes estimator to a comprehensive dataset of Standard & Poor’s rated sovereigns.

To estimate the prior distribution, we will further utilize rating and default histories of

Standard & Poor’s rated North American public firms.

We do not consider models for rating migrations although these could also be used for

PD estimation. For instance, the use of Markovian rating migration models is quite

standard and has the benefit that it can remove PD estimates of zero if the time intervals

are chosen small enough (Lando & Skodeberg, 2002). However, there is strong evidence

against the Markovian assumption as migration probabilities have been found to depend

on the direction of the prior rating action for corporates (Lando & Skodeberg, 2002) and

for sovereigns as well (Fuertes & Kalotychou, 2007). In particular, downgrades are more

often followed by subsequent downgrades than implied by a Markovian model so that

PDs derived from Markovian migration models tend to be downward biased (Hanson &

Schuermann, 2006).3 More sophisticated models like Hidden Markov Models (Christensen

2For instance, when a firm was downgraded from, say, rating A to rating B within a year and subse-

quently defaulted in this year, an approach that uses only year-end data misses the information that a B

rated firm has defaulted.
3Since the cited empirical evidence concerns agency ratings it is of course possible that for any internal

rating system a Markovian approach is appropriate. Still, one has to be aware that any violation of the

Markovian assumption can lead to biased estimates.
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et al., 2004) have been proposed in the literature but come at the cost of considerably

more complexity thereby raising doubts about their appropriateness in the small sample

context we focus on.

The rest of the paper is organized as follows. In the next section, we will introduce our

notation and present what we will call the standard estimator. In section 3, we will present

the empirical Bayes approach, which will then be applied - together with the standard

estimator - to our sovereign data in section 4. Section 5 evaluates and compares both

the standard estimator and the empirical Bayes estimator by means of a simulation study

while section 6 concludes.

2 Standard default probability estimation

The standard estimator that we will present in this section is the approach used by the

major rating agencies in their calculation of cumulative default rates (Hamilton & Cantor,

2006) which are the counterparts to PDs.4 Let us first introduce the notation. All the

obligors that have the rating r at time t, t = 1, . . . , T , form a so-called cohort. We denote

by N r
t,1 the number of obligors that comprise the cohort at its beginning (t) and we denote

by N r
t,s those members of the cohort that are still at risk before period t+s. Being at risk

means that an obligor has not defaulted or is not censored in the first s− 1 periods after

the cohort building date t.5 Out of the N r
t,s obligors entering period t + s, let Dr

t,s be the

number of those that default in period t+ s and let Lr
t,s be the number of those which are

lost, i.e. which are censored, in period t + s. Further, let λr
s be the marginal default rate

or discrete-time hazard rate which is the probability that an obligor rated r at a certain

point in time will default s periods later conditional on surviving the first s − 1 periods.

If we define Yit to be the discretely measured lifetime (the time until default) of obligor

i that starts in period t and define Rit to be the corresponding rating, we can write this

probability formally as

λr
s = P (Yit = s|Yit > s − 1, Rit = r) . (1)

Under our notation, the standard estimator of the marginal default rate is

λ̂r
s =

∑T
t=1 Dr

t,s∑T
t=1 N r

t,s − Lr
t,s/2

. (2)

Usually the main interest is on the corresponding cumulative default rates or default

probabilities which we will denote by PDr
s and define as

PDr
s = P (Yit ≤ s|Rit = r) . (3)

4It is also largely equal to the approach of Altman (1989). However, in that study the analysis is

restricted to the cumulative default rates of newly issued bonds.
5Censoring means that the obligor is no longer observed - without defaulting - after some of the s− 1

periods. Censored data are quite common and occur, for instance, due to withdrawals of ratings, the end

of the sample period or gaps in the dataset.
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The estimator for the cumulative default rates is easily constructed from the marginal

default rate estimators:

P̂D
r

s = 1 −

s∏

j=1

(1 − λ̂r
j) (4)

Let us briefly interpret what the estimator actually does. The estimator starts with

the estimation of marginal default rates by taking a weighted average of the marginal

default rates of individual cohorts,
Dr

t,s

Nr
t,s−Lr

t,s/2
. The weights are here the adjusted number

of obligors at risk, N r
t,s − Lr

t,s/2. The adjustment involves the subtraction of half of

the censored observations being based on the assumption that censored obligors have

still survived on average half of the corresponding period. Then, the estimator constructs

estimators for the cumulative default rate from the marginal default rate estimates. While

it would be also possible to take a weighted average of the cumulative default rates of

individual cohorts, averaging marginal default rates results in more efficient estimation as

was already shown by Cutler & Ederer (1958). The presented estimator is also known as

the life-table or actuarial estimator and is approximately equal to the widely-used Kaplan-

Meier or Product-Limit estimator as the period length becomes small. The Product-

Limit estimator has been shown to be a Nonparametric Maximum Likelihood estimator

(Johansen, 1978) but note that in our setting we rather have a pseudo ML estimator

since our observations are not independent. To see this, notice that the same obligor

enters a new cohort every period and that default events are used several times in the

estimation process. For instance, consider an obligor which is rated A in period t, stays

rated A in period t + 1 and subsequently defaults in period t + 2. The same default

event enters the calculation of λ̂A
1 and λ̂A

2 . Put another way, the analysis is based on a

sequence of overlapping lifetimes, Yit, Yi,t+1, . . ., which clearly leads to dependencies. As

the simulation study in section 5 will confirm, these dependencies do not introduce any

relevant bias to the estimator. However, conventional formulas for confidence intervals

will be misleading with standard errors ignoring the dependence usually being downward

biased. This is why it is not easily possible to generalize the confidence bound approach

mentioned in the introduction to a setup with a multi-period prediction horizon. Note

that if a one-period view is employed, i.e. only λr
1 = PDr

1 is estimated, these problems

vanish. However, the scope of the analysis and the amount of information that can be

used are somewhat limited in this case.

What remains to be specified for an empirical analysis is the period length. Rating

agencies differ in this respect. While Moody’s has switched to building cohorts on a

monthly basis since 2005 (Hamilton & Cantor, 2006), Standard & Poor’s uses cohorts

of obligors built at the end of every calendar year (Standard & Poor’s, 2011a). In our

application, we will use monthly cohorts and accordingly construct our PD estimates using

monthly hazard rates in order to use as much sample information as possible. Since more

than one rating change per month for the same obligor occurs only very rarely, almost no

information is lost under a monthly periodicity.
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3 Empirical Bayes estimation

Bayesian parameter estimation is a potentially very useful approach especially in the

case of small samples. The reason for this is that in small samples the data provide

only little information about the parameter of interest so that the incorporation of prior

information can be particularly helpful. To use such prior information, a Bayesian data

analyst specifies a prior distribution of the parameter of interest. This can be done

by different means. One possibility, proposed by Kiefer (2009) in the context of PD

estimation, is to specify the prior by expert elicitation. In this paper, we will alternatively

propose a purely data-driven way to specify the prior distribution by using an empirical

Bayes (EB) approach.6 To enable the estimation of the prior distribution, further datasets

besides the original sample are needed. For instance, in our empirical analysis regarding

sovereigns, we will further use data on firms to estimate the prior distribution. In many

practical situations, such auxiliary datasets will be available. For example, a bank will

typically have a variety of different portfolios and the information from all these portfolios

can be used within the EB approach to estimate the PDs for each particular portfolio.

Similarly, default histories referring to external ratings can be used as a prior for PD

estimation based on internal data. The combination of different datasets is - without any

explicit proposal - also mentioned from the regulatory side as one tool for PD estimation

in the case of low-default portfolios (BCBS, 2005).

We will now formally introduce our EB estimator and subsequently give some further

discussion. Like in the case of the standard estimator, we will start with the estimation of

marginal default rates which are then used to construct cumulative default rates. Suppose

that we have G different groups or portfolios where G ≥ 2. We make the parametric

assumption that for each group g, g = 1, . . . , G, the marginal default rates are a priori

beta distributed,

λr,g
s ∼ beta(αr

s, β
r
s) . (5)

Note that each group has the same prior parameters. Further, we assume that the condi-

tional distribution of the number of defaults in period s is binomial,

Dr,g
s |λr,g

s ∼ Bin(Ñ r,g
s , λr,g

s ) , (6)

where we have now, to simplify notation, skipped the index t to indicate aggregation over

the cohort building dates, i.e. Dr,g
s =

∑T
t=1 Dr,g

t,s and Ñ r,g
s =

∑T
t=1 N r,g

t,s − Lr,g
t,s/2. The

presented framework is known as the beta-binomial model and is quite common for the

Bayesian analysis of proportions. The beta distribution is a pretty flexible distribution for

parameters bounded in the interval [0,1] and has also been suggested by Kiefer (2009).7

The crucial part of the binomial assumption is the conditional independence of default

6For an introduction to EB methods we recommend Casella (1985) and Carlin & Louis (2008).
7Kiefer (2010) shows how the beta distribution can be generalized for even more flexibility. Note that

prior distributions with more parameters will increase the minimum number of groups.
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events. Note that although we aggregate over different cohort building dates we do not use

the same default event more than once for fixed s. However, we disregard the dependence

of default events induced by common shocks to keep the analysis as simple as sensibly

possible.In our simulation study of section 5, we will show that the estimator works well

even for data generating processes that involve dependencies through common shocks.

The next step is now to estimate the prior parameters. We do so by using the Method of

Moments hereby essentially following the analysis of Kleinman (1973). For convenience,

we reparameterize the beta distribution setting µr
s = αr

s

αr
s+βr

s
to be the prior mean of λr,g

s

and τ r
s = 1

1+αr
s+βr

s

to be a measure of prior precision. τ r
s is not equal to the variance of

the beta distribution but larger values of τ r
s indicate a higher variance. We estimate µr

s

as a weighted average of the group-specific standard marginal default rate estimates:

µ̂r
s =

G∑

g=1

wr,g
s

Dr,g
s

Ñ r,g
s

=
G∑

g=1

wr,g
s λ̂r,g

s (7)

The formula we use to estimate τ r
s is

τ̂ r
s =

G−1
G

∑G
g=1 wr,g

s (λ̂r,g
s − µ̂r

s)
2 − µ̂r

s(1 − µ̂r
s)

(∑G
g=1 wr,g

s (1 − wr,g
s )/Ñ r,g

s

)

µ̂r
s(1 − µ̂r

s)
(∑G

g=1(1 − 1/Ñ r,g
s )wr,g

s (1 − wr,g
s )

) . (8)

See Kleinman (1973) for a detailed derivation of these formulas. Natural choices for the

weights are equal weights, i.e. wr,g
s = 1/G, or the number of observations for each group

so that wr,g
s = Ñ r,g

s /
∑G

g=1 Ñ r,g
s . Kleinman (1973) shows that the optimal weights depend

on the true parameters and thus proposes to use one iteration to refine the estimates,

namely to set

wr,g
s =

Ñ r,g
s

1 + τ̂ r
s (Ñ r,g

s − 1)

/ G∑

g=1

Ñ r,g
s

1 + τ̂ r
s (Ñ r,g

s − 1)
, (9)

using a preliminary estimate of τ r
s to get improved weights which are subsequently em-

ployed to re-estimate the prior parameters. In our implementation, we used this one-time

iteration step with starting weights wr,g
s = 1/G. However, we also experimented with an

omission of the interation step and found no large sensitivity of the results in this respect.

Since there is no guarantee that τ̂ r
s will be in the interval (0, 1) which is necessary for a

proper prior the estimates of τ̂ r
s should be truncated at zero and one, respectively.

With the estimated prior parameters at hand, we can apply the Bayesian theorem to

arrive at the posterior distribution of our parameters. Since the beta distribution is the

conjugate prior for the binomial distribution, the posterior distribution of λr,g
s is beta as

well. The mean of the posterior distribution minimizes the Bayes risk under quadratic

loss functions and is the standard choice for a Bayesian point estimator. In our case, the

posterior mean, i.e. our EB estimator for λr,g
s , can be written as

λ̂r,g
s,EB =

1 − τ̂ r
s

1 + τ̂ r
s (Ñ r,g

s − 1)
µ̂r

s +
τ̂ r
s Ñ r,g

s

1 + τ̂ r
s (Ñ r,g

s − 1)
λ̂r,g

s . (10)
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The EB estimator is obviously a weighted average of the prior mean (which itself is a

weighted average of the group-specific standard estimates) and the standard marginal de-

fault rate estimate for group g. The estimator can be interpreted as a shrinkage estimator

since it shrinks the standard estimates, λ̂r,g
s , towards the prior means which are equal for

all groups. Note also that the weighting scheme is such that there is a smooth transition

to the standard estimator if Ñ r,g
s grows. Thus, the amount of shrinkage will, in line with

intuition, decline as the sample size of a specific group increases.

Like in the preceding section, our estimate for the PD is constructed from the estimated

marginal default rates,

P̂D
r,g

s,EB = 1 −

s∏

j=1

(1 − λ̂r,g
j,EB) (11)

It is worth mentioning that our estimator minimizes the Bayes risk with respect to the

marginal default rates instead of the cumulative default rates. Doing the latter would

actually be preferable but would considerably increase the complexity of the problem in

our setting since we would have to deal with the dependencies due to overlapping lifetimes.

Note, however, that our estimator can be interpreted as minimizing the Bayes risk for the

PD under a working independence assumption. In this case, our estimator is equal to the

one derived by Hjort (1990) for the discrete-time case.

Although derived from Bayesian theory, EB methods have been shown to be an im-

provement over standard Maximum Likelihood methods in many applications even by

frequentist measures such as Mean Squared Error (Casella, 1985). Usually EB methods

reduce the variance of an estimator at the cost of introducing some bias. Consider for in-

stance our application where we will combine sovereign and corporate datasets. The more

the true PDs for both groups are apart the larger will be the bias introduced by the EB

approach. However, if the differences are rather small the effect of variance reduction will

prevail and lead to smaller Mean Squared Errors. Especially in small samples, where the

variance of the standard estimator is high, the potential gains from variance reduction can

be substantial. In our simulation study in section 5, we will illustrate this bias-variance

trade-off under realistic scenarios. Moreover, if conservativeness is by itself desirable, as

it is stated at least by regulators with respect to PD estimation, a moderate upward bias

induced by EB methods may even be seen as a benefit rather than a weakness.

4 Application to sovereign bonds

Sovereign bonds provide possibly the most important application for our methods since

they are among the most important asset classes and sovereign defaults are rare events.

In this study, we use the complete rating and default histories of sovereigns with public
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Figure 1: Rating distribution of S&P rated sovereign bonds, 1975-2011
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ratings from Standard & Poor’s in the period from January 1975 until April 2011.8 The

data are from Standard & Poor’s (2011b) and consist of 130 sovereigns observed over a

total of 23,014 country-months. The dataset may thus appear not that small but the

sample size per rating class is of course considerably lower and, importantly, we observe

only 15 default events. More precisely, these default events are foreign-currency selective

defaults. Accordingly, we will use foreign-currency issuer credit ratings in our analysis

since these have longer rating histories and are probably in most cases more relevant

to investors than local-currency ratings. Figure 1 shows the rating distribution in our

sample. Apart from the data concerning sovereigns, we further utilize S&P rating and

default histories of North American public firms from Compustat covering the period

from January 1981 until April 2011. The corresponding ratings used here are S&P’s long

term issuer credit ratings and are on the same scale and have the same definition as

their sovereign counterparts. The latter can be seen as a justification of our Bayesian

assumption that there is no difference between sovereigns and firms a priori. This second

dataset is large (5355 firms, 563,809 firm-months, 755 defaults) and will be used for the

EB approach as explained in the previous section.

Table 1 shows cumulative default rate estimates for sovereigns using the EB approach in

Panel A and under the standard estimator in Panel B. Further, Panel C shows the standard

estimator applied to our corporate data.9 To start with Panel B, we see that we get PD

estimates of zero throughout all time horizons for the three highest grades and under a

one-year horizon even for BBB rated sovereigns. This is clearly an unpleasant feature

since such estimates are anticonservative and also not in line with market perceptions

8Standard & Poor’s also rates certain sovereigns on a confidential basis. See Standard & Poor’s

(2011a).
9The EB estimator for corporates is, as expected from theory, very close to the standard estimator

and thus not reported here.
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Table 1: Cumulative default rate estimates (1-10 years)

Panel A: Empirical Bayes estimator for sovereigns

1 2 3 4 5 6 7 8 9 10

AAA 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

AA 0.00 0.01 0.05 0.08 0.08 0.09 0.12 0.13 0.17 0.22

A 0.06 0.16 0.33 0.50 0.65 0.79 0.92 1.08 1.26 1.42

BBB 0.20 0.57 1.07 1.65 2.24 2.81 3.40 3.95 4.60 5.34

BB 0.76 2.42 4.24 5.70 7.56 9.40 11.27 13.04 14.74 15.95

B 3.88 7.64 11.43 15.80 19.58 23.07 26.01 28.66 31.04 33.21

CCC-C 24.38 33.66 39.87 43.89 48.02 52.72 66.77 82.27 82.46 82.88

Panel B: Standard estimator for sovereigns

1 2 3 4 5 6 7 8 9 10

AAA 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

AA 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

A 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

BBB 0.00 0.66 1.60 2.62 3.71 4.85 5.27 5.27 5.27 5.27

BB 0.56 1.88 3.06 3.66 5.10 6.75 8.74 10.29 11.23 11.43

B 2.60 5.16 7.59 11.01 13.12 15.48 18.30 22.17 25.44 29.02

CCC-C 32.27 44.50 51.56 55.76 63.45 72.19 83.85 91.92 91.92 91.92

Panel C: Standard estimator for corporates

1 2 3 4 5 6 7 8 9 10

AAA 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

AA 0.00 0.01 0.05 0.08 0.09 0.10 0.13 0.14 0.18 0.24

A 0.06 0.16 0.33 0.51 0.67 0.81 0.95 1.11 1.29 1.45

BBB 0.20 0.57 1.06 1.63 2.20 2.76 3.36 3.92 4.59 5.36

BB 0.77 2.45 4.29 6.15 8.02 9.86 11.72 13.50 15.24 16.89

B 4.47 9.96 14.91 19.21 22.98 26.38 29.22 31.70 33.96 35.97

CCC-C 24.20 33.31 39.49 43.52 47.48 50.60 52.89 53.58 54.07 55.17

given that credit default swaps are traded even for highly rated sovereigns. In contrast,

the EB estimator manages to remove most of the zeroes. Due to the relatively small

size of the sovereign sample the EB estimator is dominated by the standard estimator for

corporates as can be seen by comparing Panel A and Panel C. However, this closeness is

varying. For instance, in the case of sovereigns rated B, where we have relatively much

information in the sense that we have some defaults and not too few sovereigns rated B, we

observe that the sovereign estimates are less close to the corporate estimates as they are

for other grades. Overall, we see that the sovereign PD estimates are more conservative

under the EB approach while the increase in conservativeness seems to be at a reasonable

degree.

We now go on to analyze the economic impact of our different estimators. The two

applications we have chosen are the estimation of expected returns and the calculation

9



Table 2: Expected returns for selected USD denominated sovereign bonds

Expected returns

Country Rating Maturity Max. return Standard estimator Empirical Bayes

USA AAA 2/2021 3.363 3.363 3.363

Qatar AA 1/2020 4.584 4.584 4.576

Poland A 7/2019 4.750 4.750 4.687

Lithuania BBB 3/2021 5.580 5.312 5.335

Egypt BB 4/2020 6.557 5.962 5.766

Argentina B 6/2017 8.783 7.332 6.982

Sovereign bond data are from Boerse Frankfurt. Expected returns are calculated under the assumption of a bond purchase

on May 2, 2011, and a hold-to-maturity strategy.

of economic capital. With respect to the former, we consider sovereign bond investments

with a maturity of up to 10 years. For these bonds, we consider a hold-to-maturity strategy

and calculate expected returns by replacing contractual cash flows with their expected

values and computing the corresponding yield-to-maturity. Besides a term structure of

PDs, this requires an assumption for the recovery rate, i.e. the proportion of the face value

of the bond that is recovered if default occurs. For our calculations, we assume a recovery

rate of 0.55 which is the middle of the interval [0.5, 0.6] reported in Standard & Poor’s

(2011c) as the estimated historical average sovereign recovery rate. Our choice for the

recovery rate also coincides with the loss given default (= 1− recovery rate) assumption

of 0.45 which is prescribed in the foundation Internal Ratings Based (IRB) approach of

Basel II (BCBS, 2006, §287). For the results shown in Table 2, we have selected one

USD denominated bond for each rating grade with the exception of the CCC-C grades

since no sovereign had such a rating on May 2, 2011 (the hypothetical bond purchase

date). By comparing the maximum return, i.e. the return that an investor will receive

if no default occurs, with the expected returns we can see which part of the maximum

return an investor can expect to lose on average by taking the risk of the corresponding

bond investment. Under each estimator, the results are in line with the basic risk-return

paradigm in the sense that expected returns monotonically rise as ratings worsen. Further,

with the exception of the BBB class, the reward for risk is estimated to be lower under

the EB approach which is, of course, directly follows from its relative conservatism.

Our second application is to use our one-year PD estimates as inputs to the Basel II

capital formula (BCBS, 2006, §272).10 Besides the PD, the formula requires as an input

an estimate of the loss given default which we again set to 0.45. The correlations which

are also part of the formula are defined by the regulators as a function of the PD. Fur-

10Under the new regulatory initiative called Basel III the capital formula is not intended to be changed

in its structure. However, the capital requirements are likely to be scaled up. See BCBS (2010) for

details.

10



Table 3: Basel II capital requirements

ST SE EB EB∗ % of MP

AAA 0.00 0.00 0.00 0.00 46.6

AA 0.00 0.00 0.00 0.77 35.7

A 1.60 0.00 1.69 1.69 8.4

BBB 4.00 0.00 3.48 3.48 5.8

BB 8.00 5.88 6.66 6.66 2.8

B 8.00 9.87 11.06 11.06 0.7

CCC-C 12.00 19.85 19.67 19.67 0.0

MP 0.65 0.23 0.61 0.88

Numbers in percentage points. ST: Basel II Standardised Approach; SE: Standard estimator; EB: Empirical Bayes estimator;

EB∗: Empirical Bayes estimator with one-year AA PD calculated by scaling down the associated three-year PD. MP refers

to an approximate market portfolio (see the text for details).

ther, under the advanced IRB approach there are potential maturity adjustments if the

effective maturity differs from 2.5 years. To facilitate comparisons, we assume the stan-

dard maturity of 2.5 years. Table 3 shows the results for the capital requirements. The

first column contains the capital requirements under the standardised approach of Basel

II where banks do not estimate PDs themselves and use instead fixed ratings-based risk

weightings (BCBS, 2006, §53). The corresponding capital requirements are intended to

be conservative in order to give banks an incentive to intensify their own risk analysis and

to move eventually to the IRB approach. Comparing the first with the second column,

we see that indeed under an IRB approach that uses our standard estimator the capital

requirements are considerably lower than under the standardised approach. However, the

capital ratios for this case seem to be very liberal since no capital at all is needed for BBB

or better rated sovereigns including, for instance, Portugal and Ireland at the end of our

sample period. In contrast, the EB estimates are more conservative thereby not imply-

ing unrealistically high levels of capital as is seen by their closeness to the standardised

approach. In the column of Table 3 which is labelled by EB∗, we have kept the original

EB estimates with the exception of the AA category. To get a non-zero estimate for this

class, we used a proposal from BCBS (2005) to scale down multi-year PDs in the case of

sparse data. Specifically, we used the non-zero AA three-year PD estimated under the EB

approach to calculate the one-year PD under the assumption of constant marginal default

rates, i.e. P̂D
AA,∗

1 = 1− (1− P̂D
AA

3 )1/3 = 0.015%. At first sight, the new AA capital ratio

of 0.77% seems to be negligibly small. However, matters change if we analyze the impact

on the capital requirements of a bank which holds an approximate market portfolio. The

composition of the market portfolio is given in the last column of Table 3 and is calculated

from data of the Bank for International Settlements on the total amounts of outstanding
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debt in government securities.11 Holding the market portfolio, a bank would increase its

capital requirement to 0.88% from 0.61% under the unadjusted EB approach and from

0.23% under the standard estimator. These differences are of course substantial and show

the high sensitivity of capital ratios to PD estimates. Moreover, it is obvious that the

standard PD estimator is far from being conservative in this respect.

5 Simulation study

While we have seen that EB estimators have nice theoretical properties and give reasonable

results in our empirical application it is clearly of interest to study the performance of

the EB estimator and the standard estimator in more detail. Out-of-sample tests are no

appropriate option in our case since our small sample size would not allow us to draw

meaningful conclusions. Instead, we will evaluate our estimators by means of a simulation

study. The specification of our data generating process is as follows. With respect to the

sample size, we stick to the data used in the previous section. More precisely, we drop

all observations from our datasets with the exception of the observations where a firm or

sovereign first entered the dataset. For instance, the United States enter our dataset in

January 1975 with a AAA rating which remains constant until the end of our sample.

For our simulation, we keep only the rating in January 1975 whereas the subsequent

ratings are now filled up in the simulation process.12 We choose a Markovian rating

migration model (again on a monthly basis) to simulate rating transitions. While we

have argued that the Markovian model has serious drawbacks for PD estimation it should

nevertheless be suitable for our simulations since none of our estimators relies on the

Markovian assumption. We tested several structures for the data-generating migration

matrix and found the following one to lead to a realistic migration behavior as well as

reasonable levels of pseudo-true PDs:13

11The data are available under http://bis.org/statistics/secstats.htm. We aggregated the outstand-

ing amounts of international and domestic debt securities per government (Tables 12D and 16A) as of

December 2010. The corresponding S&P ratings for the same date were used to compute aggregated

amounts of debt per rating class. Note that no government was rated CCC or lower at this point in time

so that the CCC-C category estimates do not influence the market portfolio calculations.
12In our corporate sample, we have firms that are not observed for some periods and then return at a

later point in time. To account for these censoring events, we keep the first rating of these firms after

their return for our simulations and treat them as if they were new firms.
13These are calculated by exponentiating the migration matrix and are presented below together with

the simulation results.
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AAA AA A BBB BB B CCC − C D/SD

AAA 1 − 7

4
m m m/2 m/4 0 0 0 0

AA m 1 − 11

4
m m m/2 m/4 0 0 0

A m/2 m 1 − 13

4
m m m/2 m/4 0 0

BBB m/4 m/2 m 1 − 7

2
m m m/2 m/4 0

BB 0 m/4 m/2 m 1 − 7

2
m m m/2 m/4

B 0 0 m/4 m/2 m 1 − 13

4
m m m/2

CCC − C 0 0 0 m 2m 4m 1 − 15m 8m

D/SD 0 0 0 0 0 0 0 1

The entry in the ith row of the jth column is the probability to migrate from class i to

j over the next month. m is a parameter that refers to the basic migration rate into

the neighboring classes and has to be specified. We choose m = 0.003 for sovereigns.

Based on the empirical finding that firms have higher migration rates (resulting in higher

PDs) we simply rescale the migration matrix for corporates by multiplying m with some

constant k. In our simulations, we will consider k = 1, 1.25, 1.5. While the migration

rates for the upper six categories follow the same pattern it was necessary to introduce

higher migration rates for the CCC-C category to mirror the high CCC-C default rates

observed empirically.

At first sight it might seem more appropriate to simply choose a migration matrix based

on historical migration rates for the data-generating process. However, we have chosen

not to do so because of two reasons. First, for reasons which we have discussed in the

introduction, the implied pseudo-true PDs would be at an unrealistically low level. For

instance, in this case we would have implied pseudo-true PDs of 0.06% for BB rated

sovereigns at a one-year horizon and 0.13% for BBB rated sovereigns at a five-year horizon.

Second, we want to investigate different scenarios for the difference between sovereigns

and firms (specified by different choices for k) which is more straightforward within our

setting.

Sovereign and corporate default and migration rates are very likely to be affected by

common shocks like, for instance, recessions. We account for this kind of dependence by

applying a CreditMetricsTM -type approach (Gupton et al., 1997). The procedure involves

simulating observations from a multivariate normal distribution and mapping these re-

alizations to rating changes. Consider for example a AAA rated sovereign which has a

probability to remain AAA over the next month of 1− 7
4
0.003 = .99475 and a probability

to migrate to AA of 0.003. If the corresponding realization of the normal distribution is

smaller than Φ−1(.99475) ≈ 2.5589 the rating for the next month is set to AAA again. If

instead the realization is in the interval [Φ−1(.99475), Φ−1(.99775)] ≈ [2.5589, 2.8408] the

sovereign migrates to AA, and so on. The correlations of the corresponding multivariate

normal distribution have the same meaning as the so-called asset correlations that are

part of the IRB formula in the Basel II framework.14 There, the asset correlations are

14In both cases, they can be thought of as the correlations between the asset values of firms. Once

these asset values cross a certain lower threshold, a default event occurs.
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Table 4: Evaluation of the standard estimator

Panel A: Pseudo-true PDs (%) Panel B: Relative bias

1 year 3 years 5 years 10 years 1 year 3 years 5 years 10 years

AAA 4.7e-4 0.014 0.061 0.414 -0.213 0.044 0.083 0.058

AA 0.005 0.067 0.223 1.069 0.085 0.059 0.032 0.018

A 0.018 0.203 0.609 2.414 0.070 0.022 0.011 0.003

BBB 0.132 0.981 2.245 6.101 0.005 0.016 0.007 -0.001

BB 1.082 3.905 6.958 14.124 0.001 -0.005 -0.006 -0.008

B 2.122 7.355 12.615 23.544 0.007 0.004 0.001 -0.010

CCC-C 22.786 44.379 52.797 60.227 0.038 0.014 -0.004 -0.019

Panel C: Relative RMSE Panel D: % P̂D < PD

1 year 3 years 5 years 10 years 1 year 3 years 5 years 10 years

AAA 15.393 5.722 3.680 2.105 99.62 94.98 88.48 74.02

AA 7.271 3.529 2.525 1.693 97.06 87.98 80.08 68.32

A 3.685 1.871 1.440 1.123 89.68 71.64 63.90 59.30

BBB 1.358 0.914 0.801 0.719 61.74 56.62 56.56 56.50

BB 0.561 0.498 0.479 0.478 53.52 53.74 53.70 54.30

B 0.453 0.415 0.407 0.428 53.22 52.44 53.14 52.72

CCC-C 0.378 0.355 0.352 0.356 49.50 50.24 50.54 51.52

Relative bias and Relative Root Mean Squared Error (RMSE) are calculated as
“

dPD − PD
”

/PD and RMSE/PD, re-

spectively. % dPD < PD is the percentage of simulations for which the estimated PD was below the pseudo-true PD. The

number of simulations is 5000.

specified as a function of the one-year PD (BCBS, 2006, §272). We adopt this approach

to specifiy the correlations of our multivariate normal distribution.

For the sake of illustration, we will from now on concentrate on prediction horizons of

1, 3, 5 and 10 years. All upcoming results are based on 5000 simulations. We start

the presentation of our simulation results with the evaluation of the standard estimator

which is given in Table 4. Panel A of Table 4 shows the pseudo-true PDs implied by

our data-generating process which are of similar magnitude as our empirical estimates

but, importantly, are not zero even for the highest rating grades. In Panel B we see

the estimated bias of the standard estimator relative to the pseudo-true values. While

we know that the standard estimator is consistent it is interesting to see that there is

also no significant bias (with the exception of the CCC-C category) in small samples.15

The accuracy of the standard estimator as measured by the Root Mean Squared Error

(RMSE) relative to the pseudo-true PDs is shown in Panel C of Table 4. It is clearly

visible that the estimation uncertainty rises in relative terms as the pseudo-true values

15We explored the significance of the bias by using Monte Carlo standard errors. At a confidence level

of γ = 0.05, the bias was only significant for the CCC-C PDs at horizons of 1, 3 and 10 years. The special

role of the CCC-C category is not too surprising given that it has the smallest sample size.
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Table 5: Precision of the empirical Bayes estimator

Panel A: k = 1.25

Pseudo-true PD ratio RMSE ratio

1 year 3 years 5 years 10 years 1 year 3 years 5 years 10 years

AAA 1.94 1.90 1.86 1.79 0.841 0.737 0.708 0.735

AA 1.65 1.68 1.67 1.61 0.814 0.656 0.608 0.642

A 1.61 1.62 1.58 1.50 0.650 0.584 0.621 0.648

BBB 1.52 1.45 1.40 1.34 0.555 0.597 0.611 0.605

BB 1.29 1.29 1.27 1.23 0.627 0.672 0.662 0.616

B 1.29 1.27 1.24 1.18 0.688 0.705 0.666 0.560

CCC-C 1.18 1.09 1.05 1.03 0.559 0.480 0.487 0.580

Panel B: k = 1.5

Pseudo-true PD ratio RMSE ratio

1 year 3 years 5 years 10 years 1 year 3 years 5 years 10 years

AAA 3.32 3.19 3.07 2.83 0.848 0.819 0.881 1.056

AA 2.49 2.57 2.52 2.34 0.830 0.746 0.819 0.955

A 2.39 2.38 2.27 2.04 0.696 0.884 0.965 0.980

BBB 2.13 1.94 1.83 1.67 0.826 0.930 0.946 0.883

BB 1.60 1.59 1.53 1.43 0.944 1.005 0.964 0.845

B 1.58 1.54 1.47 1.34 1.082 1.081 0.975 0.732

CCC-C 1.34 1.16 1.09 1.06 0.798 0.543 0.509 0.574

The pseudo-true PD ratio is calculated as PD(corporate)/PD(sovereign) and the RMSE ratio is defined as

RMSE(EB)/RMSE(standard estimator). The number of simulations is 5000.

decline. Therefore, especially in these cases there should be potential to improve upon the

standard estimator. Finally, in Panel D we report the proportions of the simulations where

the pseudo-true PD has been underestimated by the standard estimator. The fact that

we observe values well above 50% is caused by the highly skewed sampling distribution of

the standard estimator in small samples and especially under small true PDs. Note that

this feature can also be interpreted as a kind of bias called median bias in the statistics

literature. Following Birnbaum (1963), the median bias of a PD estimator is given as

P (P̂D > PD|PD) − P (P̂D < PD|PD), and the estimator is called median-unbiased if

the median bias is equal to zero. Under this concept, although being mean-unbiased, the

standard estimator is clearly downward median-biased which is an obvious drawback at

least if conservativeness is among the criteria to evaluate an estimator.

We now turn to the evaluation of the EB estimator. Table 5 shows its precision as

measured by the ratio of the RMSEs of the EB and the standard estimator so that values

smaller than 1 indicate a superior performance of the EB estimator. We report results

for two scenarios, k = 1.25 in Panel A and k = 1.5 in Panel B. To provide insight into

the relative level of PDs implied by these specifications we show in the left parts of Table
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Table 6: Conservativeness of the empirical Bayes estimator

% P̂D < PD for k = 1 % P̂D < PD for k = 1.25

1 year 3 years 5 years 10 years 1 year 3 years 5 years 10 years

AAA 95.6 73.5 60.4 52.5 91.2 54.9 38.3 28.7

AA 64.7 53.9 49.3 46.1 50.2 27.6 20.2 16.1

A 53.2 46.3 47.3 46.9 27.3 13.3 11.6 13.0

BBB 47.3 51.5 53.6 53.2 10.0 12.9 19.0 21.9

BB 53.3 53.7 53.7 53.6 19.5 19.5 21.4 25.7

B 54.3 54.8 53.8 53.7 16.5 16.8 18.8 24.4

CCC-C 53.2 50.7 46.9 40.6 12.8 23.3 30.5 31.3

% dPD < PD is again the percentage of simulations for which the estimated PD was below the pseudo-true PD. The number

of simulations is 5000.

5 the ratio of the pseudo-true PDs of corporates and sovereigns. For instance, the BBB

one-year PD is 52% higher for corporates than for sovereigns under k = 1.25. Still, in

this case the RMSE of the EB estimator is 44.5% lower than the RMSE of the standard

estimator. Overall, we observe an improvement by using the EB estimator in nearly

all cases with a few exceptions at k = 1.5. The relative strength of the EB estimator

increases i) as the sample size decreases (as can be seen by the large improvements for the

CCC-C category), ii) as the pseudo-true PDs decrease (see the robust EB performance

with respect to the AAA and AA one-year PDs) and iii) as the distance between the

corporate and the sovereign pseudo-true PDs decreases (Panel A vs. Panel B). Case i) is

expected from theory and further confirmed by additional simulations which we do not

report here but are available on request. In these simulations, we randomly dropped half

of our sample from the simulations which is still likely to be a practically realistic sample

size. Under this reduced sample the relative EB performance is even better. For instance,

under k = 1.5, the RMSE ratio of the A one-year PD then decreases from 0.696 to 0.520.

With respect to iii), it is important to note that beyond some point the EB estimator

begins to get worse than the standard estimator. For example, when we set k = 1.75, the

RMSE ratio is not in all but in most cases larger than 1.

Depending on the true data generating process, the EB estimator may or may not be

more precise than the standard estimator. More clearly, we can ascribe the EB estimator

to be more conservative which can be seen from the results in Table 6. To evaluate the

conservativeness of the EB estimator, we have chosen the scenarios k = 1 and k = 1.25.

For larger values of k the conservativeness of the EB estimator will obviously further

rise. But even for k = 1, the relative frequency of underestimating the pseudo-true PD

is distinctively lower than for the standard estimator which was given in Table 4. Since

no bias is introduced in the case of k = 1 the reason for this finding is just the less

skewed sampling distribution of the EB estimator, an effect similar to the effect of an

increasing sample size. In the case of k = 1.25, an additional upward bias is present so
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that underestimation of the pseudo-true PD happens only in less than 50% of all cases

with a few exceptions for very small pseudo-true PDs.

The analysis of our estimators on a portfolio basis provides further insights. We again

stick to our approximate market portfolio (see section 4) and consider the estimation

of expected losses and capital requirements again assuming a recovery rate of 0.55. As

was briefly mentioned in the introduction, the estimation of expected losses over the

whole life of the portfolio to calculate loan loss reserves may gain importance due to

recent regulatory efforts (BCBS, 2009). Panel A of Table 7 shows the performance of

our estimators in predicting expected losses over various time horizons. Differently to

the expected return calculations in section 4, since we now do not refer to any specific

bond, we do not consider any coupon payments instead assuming only one hypothetical

cash flow at the end of the prediction horizon. Interestingly, the standard estimator now

improves relative to the EB estimator. The RMSE of the EB estimator is now lower than

that of the standard estimator only for the scenario with k = 1.25, whereas the RMSE is

now higher for k = 1.5. This is because, when estimating expected losses for a portfolio,

there is a kind of variance reducing effect as compared to estimating expected losses for a

single obligor.16 No such reduction effect holds for the bias of the estimators. Since the EB

estimators benefits hinge on its ability to reduce variance at the cost of some bias, the EB

estimators merits diminish somewhat in this case. As far as conservativeness is concerned,

the standard estimator is still liberal underestimating the pseudo-true expected losses in

more than 50% of all simulations. In contrast, the EB estimator tends to overestimate

pseudo-true expected losses.

Similarly to section 4, we also analyze our estimators with respect to implied Basel II

capital requirements. More precisely, we investigate how good our estimators perform

in estimating pseudo-true economic capital which we define as the capital requirements

which follow from our pseudo-true PDs and, again, the IRB formula. The results of Panel

B of Table 7 are astonishing. Now, the standard estimator has a large downward bias

as pseudo-true economic capital is underestimated by 45% on average.17 This finding

can be explained by the concavity of the IRB formula. Denote by K(·) the function that

calculates economic capital using the PD as an argument. Then, by a simple second-order

Taylor series expansion:

E[K(P̂D) − K(PD)] ≈ K ′(PD) · E[P̂D − PD] +
1

2
K ′′(PD) · E[(P̂D − PD)2]

≈
1

2
K ′′(PD) · V [P̂D] < 0

The equation holds for an approximately unbiased estimator. Since the IRB function is

concave we have K ′′(PD) < 0 which results in a downward biased estimate for economic

16Note that the standard error of the weighted average of some estimators is lower than the weighted

average of their standard errors. This effect works here since the estimated portfolio-wide expected losses

are weighted averages of the estimated rating-specific losses.
17The bias of the standard estimator in our expected loss calculations is, in contrast, negligibly small.
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Table 7: Portfolio evaluation of estimators

Panel A: Estimation of expected losses for market portfolio

Relative RMSE % ÊL < EL

Pseudo-true SE EB EB SE EB EB

EL (%) (k=1.25) (k=1.5) (k=1.25) (k=1.5)

1 year 0.06 0.49 0.45 0.66 55.9 12.5 4.2

3 years 0.26 0.54 0.52 0.78 58.6 10.7 2.0

5 years 0.57 0.57 0.54 0.84 59.3 11.1 1.7

10 years 1.69 0.60 0.59 0.92 57.6 12.4 2.3

Panel B: Estimation of capital requirements for market portfolio

Relative Bias Relative RMSE % ÊC < EC

Pseudo-true SE EB EB SE EB EB SE EB EB

EC (%) (k=1.25) (k=1.5) (k=1.25) (k=1.5) (k=1.25) (k=1.5)

0.79 -0.45 -0.01 0.16 0.57 0.32 0.36 94.6 57.8 32.4

The composition of the market portfolio is given in Table 3. Relative RMSE is defined as RMSE/Pseudo-true EL and

RMSE/Pseudo-true EC, respectively, where EL means expected losses and EC means economic capital. % dEL < EL and

% dEC < EC are the relative frequencies of simulations where pseudo-true EL/EC was underestimated. Relative bias is

the estimated bias divided by pseudo-true EC. SE is the abbreviation for the standard estimator whereas EB refers to the

empirical Bayes estimator. The number of simulations is 5000.

capital under an unbiased estimate for the PD.18 The bias is proportional to the variance

of the estimator, V [P̂D], and may thus only be negligible if estimation uncertainty is low.

However, the results of Table 7 show that the opposite case is true and that the bias is

substantial under a realistic scenario. In contrast, the upward bias of the EB estimator

now compensates this effect and leads to nearly unbiased estimation for k = 1.25 and

only slightly upward biased estimation for k = 1.5. Further, the precision of the EB

estimator is now higher than for the standard estimator, even for k = 1.5. On top of that,

the standard estimator now underestimates pseudo-true economic capital at an extremely

high rate of 94.6% whereas the same figures are 57.8% and 32.4% for the EB estimator.

Evidently, the EB estimator is more appropriate for economic capital calculations in our

scenario.

18This type of bias has already been explored by Kiefer & Larson (2003). In that study, the authors

also calculate the second derivative of the IRB economic capital function.
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6 Conclusions

The EB methods proposed in this paper offer an attractive combination of possible gains

in precision and a pronounced increase in conservativeness as compared to standard ap-

proaches. This is remarkable since more conservative methods (like estimators based on

upper confidence bounds) are usually connected with distinctively less precision when

used as a point estimator. The crucial advantage of the EB estimator is that it adds valu-

able information from similar datasets to the analysis. Our simulation results back the

hypothesis that the improvements of the EB estimator can be substantial and economi-

cally meaningful. Moreover, there are likely to be practical situations where the relative

performance of the EB estimator is even better than in the cases studied by us. For in-

stance, a larger number of different datasets, i.e. G > 2, will usually make the estimation

of the prior parameters and thus the EB estimator more efficient. As we have already

mentioned before, smaller sample sizes will also make the EB estimator more valuable in

relative terms.

With respect to our application to sovereign bonds, we conclude that the zero default rates

usually reported for AAA-A rated sovereigns should be interpreted with care. As our sim-

ulation study shows it is quite likely to observe no default event if the corresponding true

PDs are small but posititive. More generally, our simulation results confirm the hypoth-

esis that the standard estimator is anticonservative for sovereign PD estimation thereby

failing to fulfill the Basel II requirements mentioned in section 1. Among our applications

to credit portfolio risk, the results regarding the calculation of capital requirements are

most notably. In section 4 we showed that small increases in (sovereign) PD estimates

(by using the EB estimator) lead to large rise of implied capital requirements well above

the level calculated under standard approaches. Then, in section 5, we have seen that

the EB estimator leading to these increasing capital requirements is likely to be a better

estimator for this purpose.
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