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Abstract

This paper aims at providing a simple economic framework to address
the question of the optimal share of investments in medical R&D in total
public spending. In order to capture the long-run impact of tax-financed
medical R&D on the growth rate, we develop an endogenous growth model
in the spirit of Barro [1990]. The model focuses on the optimal sharing
of public resources between consumption and (non-health) investment,
medical R&D and other health expenditures. It emphasizes the key role
played by the public health-related R&D in enhancing economic growth
and welfare in the long run.
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1 Introduction

The issue of the optimal size of specific components of public expenditures —
such as education, health or defence — has been extensively addressed in the
litterature inspired by the seminal paper of Barro [1990], in the framework of
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endogenous growth models in which government spending plays the role of a
productive externality and determines the growth rate of the economy in the
long run. Nevertheless, even if many empirical and theoretical articles have fo-
cused on the effects of health on economic growth, there is little in the literature
on the specific impact of tax-financed medical R&D on economic growth.

In order to study this question and avoid the so-called public-spending di-
chotomy between utility-enhancing and production-related expenditures, we fo-
cuse on the macroeconomic impact of a tax-financed medical R&D by distin-
guishing two specific components of health spending: tax-financed medical R&D
and other health expenditures. In our model, the R&D externalities play a
twofold role as utility-enhancing and production-related public expenditures:

(i) on the one hand, health-related R&D and its applications improve the
performance of medical equipment, i.e. the quality of the health services pro-
vided by the public health sector and, eventually, the global welfare.

(ii) on the other hand, medical R&D increases the total stock of available sci-
entific and technical knowledge, diffusing sooner or later, to the overall economy
and, eventually, promoting a more efficient production process.

The first mechanism directly affects the consumers’ utility function, while the
second affects the aggregate production function: tax-financed medical R&D,
through innovations diffusion, generates spillovers effects from the health sector
towards the whole productive system.

Even if our main goal is to provide a fine description of the different compo-
nents of public spending from a theoretical point of view and disentangling the
specific effect of health-related R&D public expenditures, the model developed
in the paper not only considers public medical R&D, but also private non-health
R&D. Because individual firms, when making R&D investments, do not take
into account the positive impact of such investments on other firms and the
overall economy, total private R&D spending is far below its socially optimal
level ; the role of the government is thus to design the appropriate incentive
schemes to encourage private firms to sufficiently invest into R&D, to get closer
from the socially optimal level.

Taking into account the two types of R&D — tax-financed medical R&D vs
private (non-medical) R&D — allows us to analyze how the government manages
the optimal allocation of tax resources between public funding of health-related
R&D on the one side, and the provision of subsidies to private R&D on the
other side.

The paper is organized as follows. After the presentation of the model (sec-
tion 2) section 3 is devoted to the dynamic general equilibrium analysis. Sections
4 and 5 address the policy issues, while proofs and technicalities are placed in
the appendices.

2 The model

The purpose of this section is to develop a general equilibrium model to address a
policy issue, namely the optimal share of health R&D investment in total public
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expenditure. An appropriate way to capture the impact of health-related R&D
on the growth rate of the economy is to develop an endogenous growth model in
the spirit of Barro [1990]. In our model the economy is assumed to be populated
by three types of agents: households, firms and the government. Their behavior
is characterized in the following subsections.

2.1 Households

Households live an infinite number of periods during which they consume a
private consumption good c, a public consumption good b and health public
services denoted by e. The overall level of utility reached by the representative
household is given by the intertemporal utility function:

∞∑

t=0

βt [u (ct) + v (bt) + w (et)] (1)

where 0 < β ≡ 1/ (1 + i) < 1 denotes the discount factor and i > 0 the time-
preference rate.

Overall public health expenditures are divided into two components: med-
ical R&D m and other health expenditures n. Viewed as accumulable stocks
these two components produce the health public good et ≡ e (mt, nt) under
constant returns to scale: e (µm, µn) = µe (m,n). The breakdown of public
health spending between medical R&D and other health expenditures enables
us to disentangle the specific role played by health R&D investments in pro-
ducinng social welfare.

Because the public consumption good (b) and the public health services
(e) are supposed to be 100% publicly funded, households expenditures consist
of private consumption good (c), private investment in capital (k), private
investment in R&D (p) and different kinds of taxes. At each period of time the
representative household faces the following budget constraint:

ct+kt+1−∆kkt+pt+1−∆ppt ≤ (1− τk) rktkt+(1− τp) rptpt+(1− τ l)ωtlt (2)

where δi ≡ 1−∆i, with i = k, p, denotes different depreciation rates for private
capital and private R&D from a period to another.

Consumption and investment net expenditures are on the left side of equation
(2) while on the right side figures the disposable income with rk and rp the real
returns on capital and on private R&D, ω the real wage and τk, τp, τ l the tax
rates on capital, private R&D and labor income, respectively.1

For simplicity, labor supply is assumed to be inelastic and normalized to
one:

lt = 1 (3)

In such a framework the consumer’s problem is maximizing the intertemporal
utility function (1) subject to the sequence of constraints (2). Deriving the

1 In this model, the policy maker can take into account the positive externalities associated
with private R&D, by reducing the tax rate on the real returns of private R&D, in order to
raise private R&D investments.
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infinite-horizon Lagrangian function with respect to kt, pt and ct, eliminating
the Lagrange multipliers and rearranging the first-order conditions leads to a
No-Arbitrage Condition, which can be interpreted as an equilibrium condition:

∆k + (1− τk) rkt = ∆p + (1− τp) rpt (4)

to an Euler equation:

u′ (ct)

u′ (ct+1)
= β [∆k + (1− τk) rkt+1] (5)

and to the budget constraint (2), now with equality.
Eventually, the optimal solution must satisfy the transversality condition:

lim
t→∞

λt (kt+1 + pt+1) = 0 (6)

In order to simplify future calculations, and to get tractable equations, we
assume that the utility functions u, v and w are characterized by constant
elasticities of intertemporal substitution in consumption.

Assumption 1 CIES preferences:

h (x) ≡ ch
x1−1/εh − 1

1− 1/εh
if εh 6= 1; h (x) ≡ ch lnx if εh = 1 (7)

where h ≡ u, v, w and, without loss of generality, cu + cv + cw = 1.

2.2 Firms

Technology is represented by a production function which processes six inputs:
three choice variables for the firm — its stock of capital (k), its stock of knowledge
resulting from its past and current investments in R&D (p), the labor demand
(l) — and three externalities — the stock of (health-unrelated) public capital
(a), the stock of knowledge resulting from public investments in medical R&D
(m) and, eventually, the average stock of knowledge resulting from other firms’
private investments in R&D (p̄). The public capital a, viewed as a productive
externality, is simply the result of the accumulation of all past and current public
expenditures generating productive externalities. Health R&D expenditures
also affect the global productivity through a standard R&D externality.

Assumption 2 (i) The production function F (k, p, l, a,m, p̄) exhibits con-
stant returns to scale in capital, private R&D and labor:

F (µk, µp, µl, a,m, p̄) = µF (k, p, l, a,m, p̄)

(ii) The intensive production function f̃ (κ, π, a,m, p̄) ≡ F (κ, π, 1, a,m, p̄), where
κ ≡ k/l and π ≡ p/l is supposed to be homogeneous of degree one with respect
to its arguments:

f̃ (µκ, µπ, µa, µm, µp̄) = µf̃ (κ, π, a,m, p̄)
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Producers maximizes the profit F (kt, pt, lt, at,mt, p̄t) − rktkt − rptpt − ωtlt
with respect to the capital stock kt, the R&D pt and the labor force lt, consid-
ering all the externalities — i.e. a, m and p̄ — as constants. The firm equilibrium
is thus defined by the equality between the real cost and the productivity of
each input i.e. in terms of the intensive production function:

rkt = f̃κ (κt, πt, at,mt, p̄t) (8)

rpt = f̃π (κt, πt, at,mt, p̄t)

ωt = f̃ (κt, πt, at,mt, p̄t)− κtf̃κ (κt, πt, at,mt, p̄t)− πtf̃π (κt, πt, at,mt, p̄t)

2.3 Government

The overall stock of public capital g is the sum of the stocks of (i) health-
unrelated public capital a (public networks substructures, education etc.), (ii)
public consumption b, (iii) knowledge m resulting from public investments in
health R&D and (iv) other non-R&D health spending n (medical equipment,
current wages, hospital buildings and so on): gt ≡ at + bt +mt + nt. All these
stocks result from accumulation of flows and depreciation across time.
The government budget constraint at time t is thus given by:

at+1 −∆aat + bt+1 −∆bbt +mt+1 −∆mmt + nt+1 −∆nnt

≤ τkrktkt + τprptpt + τ lωtlt (9)

where δi ≡ 1 −∆i is the depreciation rate of the public capital of type i, the
right-hand side of (9) representing the total amount of tax receipts.2

In such an economy the economic policy of the government is simply de-
scribed by the tax vector (τk, τp, τ l) and the breakdown of the public "capital"
g into its four components:

(σa, σb, σm, σn) ≡ (at/gt, bt/gt,mt/gt, nt/gt) (10)

with, of course,
σa + σb + σm + σn = 1 (11)

Using the sharing (10) and the budget constraint, equation (9) can be rewrit-
ten

gt+1 −∆gt ≤ τkrktkt + τprptpt + τ lωtlt (12)

where the depreciation factor of public capital g can be viewed as a weighted
average of specific depreciation factors:

∆ ≡ σa∆a + σb∆b + σm∆m + σn∆n (13)

2A lag could be introduced between fiscal revenues and public expenditures, but this would
not change the long-term analysis and the stationary state of the model.
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Notice that the "usual" breakdown of the total amount of public spend-
ing into four flow components — investment (excluding health), consumption,
medical R&D and other health expenditures — can be recovered as:3

(σ̃a, σ̃b, σ̃m, σ̃n) ≡

(
at+1 −∆aat
gt+1 −∆gt

,
bt+1 −∆bbt
gt+1 −∆gt

,
mt+1 −∆mmt

gt+1 −∆gt
,
nt+1 −∆nnt
gt+1 −∆gt

)

(14)
still with σ̃a + σ̃b + σ̃m + σ̃n = 1.

3 Equilibrium dynamics

The equilibrium in the labor market is characterized by an inelastic labor supply
(cf. (3)): in order to compute the general equilibrium, we focus on the markets
of inputs and goods. Since all (competitive) firms are identical, we have in
equilibrium: p̄t = pt = πt and, since lt = 1,

4

rktkt + rptpt + ωtlt = rktκt + rptπt + ωt

= f̃ (κt, πt, at,mt, πt) ≡ f (κt, πt, at,mt) (15)

Let us now define five elasticities of interest:

skt ≡
fκ (κt, πt, at,mt)κt
f (κt, πt, at,mt)

=
rktκt

f (κt, πt, at,mt)

spt ≡
f̃π (κt, πt, at,mt, p̄t)πt

f̃ (κt, πt, at,mt, p̄t)
=

rptπt
f (κt, πt, at,mt)

sπt ≡
fπ (κt, πt, at,mt)πt
f (κt, πt, at,mt)

= 1− skt − sat − smt

sat ≡
fa (κt, πt, at,mt) at
f (κt, πt, at,mt)

smt ≡
fm (κt, πt, at,mt)mt

f (κt, πt, at,mt)

The first two elasticities are the shares of capital and private R&D revenues in
total income.

In order to simplify the analytical results, but without a substantial loss of
generality, we assume a common depreciation rate between private research and
capital:

Assumption 3 ∆p = ∆k.

Moreover, we assume also that the shares of capital income and private R&D
in total income are constant as in the case of a Cobb-Douglas technology.

3The link between σ and σ̃ becomes an explicit function at the steady state (see formula
(85) in the Appendix 2).

4We notice that f (κ, π, a,m) is still homogeneous of degree one and fκ (κ, π, a,m) =
f̃κ (κ, π, a,m, π).
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Assumption 4 The elasticities vector (skt, spt, sat, smt) = (sk, sp, sa, sm) is
constant.

In addition, we introduce three variables of interest in order to compute the
endogenous growth dynamics:

xt ≡ κt/gt

yt ≡ ct/gt (16)

γt ≡ gt+1/gt (17)

Finally, we define the tax pressure as an average tax rate

τ ≡ skτk + spτp + (1− sk − sp) τ l (18)

and the intensive production function as follows:

ϕ (xt) ≡ f

(
xt,

1− τp
1− τk

spt
skt
xt, σa, σm

)

The following proposition characterizes the intertemporal equilibrium. The
first equation comes from the Euler equation, while the second from the budget
constraint. The details of the proof are presented in the Appendix 1.

Proposition 1 Under the Assumptions 1-4, an intertemporal equilibrium with
perfect foresight is a sequence (xt, yt)

∞

t=0 that satisfies (i) the initial conditions
(k0, g0), (ii) the transitional dynamics:

[∆ + τϕ (xt)]
yt+1
yt

=

(
β

[
∆k + (1− τk)

sk
sk + sπ

ϕ′ (xt+1)

])εu

(19)

yt +

(
1 +

1− τp
1− τk

sp
sk

)
(∆xt+1 −∆kxt) =

[
1− τ −

(
1 +

1− τp
1− τk

sp
sk

)
τxt+1

]
ϕ (xt)

(20)

for t = 0, 1, . . ., and (iii) the transversality condition (6).

Proof. See the Appendix 1.
We observe that these equations constitute a two-dimensional dynamic sys-

tem in (xt, yt) where only the variable xt is predetermined. yt inherits the status
of jump variable from ct.

3.1 Stationary state

In order to compute the steady state, we solve the system (19-20) after canceling
out the time subscripts:

γ = ∆+ τϕ (x) =

(
β

[
∆k + (1− τk)

sk
sk + sπ

ϕ′ (x)

])εu
(21)

y =

(
1 +

1− τp
1− τk

sp
sk

)
(∆k −∆)x+

[
1− τ −

(
1 +

1− τp
1− τk

sp
sk

)
τx

]
ϕ (x)

(22)
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Growth is balanced (usual arguments of endogenous growth theory apply):
γ ≡ gt+1/gt = ct+1/ct = kt+1/kt = pt+1/pt. Noticing that λt = βtu′ (ct) and
using (7), the transversality condition (6) becomes5 βγ1−1/εu < 1. Thus, we get
γ < ∆k + ρ from (21), where ρ ≡ (1− τk) rk = (1− τk)ϕ

′ (x) sk/ (sk + sπ) is
the after-tax return on capital.

3.2 Local dynamics

Raising the question of saddle-path stability is not a mere theoretical matter.
Indeed, as shown by Blanchard and Quah [1989], saddle-path stability implies
the uniqueness of equilibrium under rational expectations.

In this section, we show, without introducing additional restrictions on the
fundamentals, that the equilibrium is a saddle path and converges to the station-
ary state. Our proof is sufficiently general to show the uniqueness of equilibrium
as a robust feature of Barro-like models.

In the saddle case, the converging path is the unique solution of the dynamic
system under rational expectations because the other trajectories either make
some variable negative, soon or later, or violate the transversality condition.
Since x0 is a predeterminate variable, the control variable y0 jumps to ensure
that the starting point (x0, y0) belongs to the saddle path.

The following proposition proves the uniqueness of equilibrium transition.

Proposition 2 (Saddle-path stability) Under the Assumptions 1-4, the general
equilibrium with rational expectations is unique.

Proof. See the Appendix 1.
Proposition 2 recovers the equilibrium determinacy of Barro [1990] where,

however, dynamics are poorer due to the lack of short-run transitions. The
economy jumps from the very beginning on the steady state because dynamics
are driven by a simple equation with one non-predetermined variable and an
unstable eigenvalue. In our model, determinacy still prevails, but equilibrium
transitions becomes possible.

4 Optimal policy

As seen above, a key issue of this model is to find the optimal (welfare-maximizing)
breakdown of public capital (g) into four components: productive public capital
(a), public consumption (b), stock of knowledge issued from public investments
in medical R&D (m) and other public expenditures on health (n). Until now,
economic agents (households and firms) were supposed to solve their programs,
taking as given the economic policy, i.e. the tax rates and the breakdown of
public capital into these four components. Now the government is supposed
to compute the optimal policy, that is the vector of optimal shares of public
capital and tax rates

(
σ∗a, σ

∗

b , σ
∗

m, σ
∗

n, τ
∗

k, τ
∗

p, τ
∗

l

)
, given the private agents’ best

5Simply, solve the limit: limt→∞ cuc
−1/εu
0

(k0 + p0) γ
(
βγ1−1/εu

)t
= 0.
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responses. As the different shares resulting from the breakdown of public capital
add up to unity (cf. (11)): σa + σb + σm + σn = 1, the number of policy tools
reduces to six endogenous variables and policy making sums up to computing
and announcing an optimal vector

(
σ∗a, σ

∗

m, σ
∗

n, τ
∗

k, τ
∗

p, τ
∗

l

)
.

Under an inelastic labor supply and no restrictions on the tax rates, it is
straightforward that the optimal policy would be a corner solution consisting in
levying taxes on labor income at a full rate (τ∗l = 1) and subsidizing (τ

∗

k, τ
∗

p < 0)
the inputs that generate positive externalities i.e. private capital and private
R&D. In order to rule out such nonsensical policy, we assume the same tax rate
τ q on capital and labor income: τ q ≡ τk = τ l. This restriction is far from being
unrealistic and is compatible with a balanced growth path.6 A common tax rate
on capital and labor implements an interior solution because capital supply is
elastic and the capital is an essential input in the production function (see the
Inada conditions).

This restriction on tax rates brings back to five the number of policy vari-
ables, while leaving the tax rate τp on private R&D an independent tool; we can
freely play with τp in order to evaluate the macroeconomic impact of subsidizing
private investments in R&D.

4.1 Characterization

The shortcut of a representative agent, makes equivalent for the government to
maximize, with respect to the five policy tools (σa, σm, σn, τp, τ q), any social
welfare function — strictly increasing in the individual utilities — or the repre-
sentative agent’s utility function (1).

To keep things as simple as possible, let us focus directly on the case of
regular growth (in the long-run the equilibrium will be sufficiently close to the
steady state).7

We will use a Cobb-Douglas production function not only to satisfy the ho-
mogeneity property (see Assumption 2 and (15)): f (µκ, µπ, µa, µm) = µf (κ, π, a,m),
but also to simplify numerical simulations. Similarly, we assume a Cobb-Douglas
production function for medical care.

Assumption 5 The production functions F and e are specified as follows:

F (k, p, l, a,m, p̄) = θkskpsp l1−sk−spasamsm p̄1−sk−sp−sa−sm

e (σm, σn) ≡ Bσβmm σβnn

with βm + βn = 1.

6Leisure demand is bounded and can not grow as the other arguments in the utility func-
tion, namely private and public consumption. The King-Plosser-Rebelo utility function can
not be considered because of separability.

7 In fact, because of the uniqueness of the equilibrium, we could compute utility along
a transitional path, whenever the starting point stands off the steady state, and maximize
its value with respect to the policy parameters, but it would drive us to hard analytical
computations. As the main goal of the paper is to analyze long-run policy effects, we can
focus on the steady state or transitional equilibria close enough (by continuity, the optimal
rule will change little along an equilibrium path in a neighborhood of the stationary state).
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Eventually, we restrict ourselves to the case of logarithmic utility functions,
which are easier to handle and widespread in the RBC literature.

Assumption 6 u (c) ≡ cu ln c, v (b) ≡ cv ln b, w (e) ≡ cw ln e.

A logarithmic utility function corresponds to the case of a unit elasticity of
intertemporal substitution. The social welfare function becomes,

W =

∞∑

t=0

βtcu ln ct +

∞∑

t=0

βtcv ln bt +

∞∑

t=0

βtcw ln et (23)

where, without loss of generality:

cu + cv + cw = 1 (24)

The following proposition characterizes the optimal policy in terms of first-
order conditions and generalizes the well-known Barro’s (1990) result which
recommends to implement a fiscal pressure equal to the share of public good
externalities in total income (the more productive the public good, the higher
the taxation levied to finance it).

Proposition 3 Under the Assumption 3, 5, 6, the optimal policy which maxi-
mizes the welfare function (23) along the balanced-growth path is a vector

(σa, σb (κ
∗) , σm (κ

∗) , σn (κ
∗) , τk (κ

∗) , τp (κ
∗) , τ q (κ

∗))

where κ∗ = (ϕ, σa)
∗
is solution of a two-dimensional system:

F1 (ϕ, σa) = 0 (25)

F2 (ϕ, σa) = 0 (26)

The explicit form of functions σb, σm, σn, τk, τp, τ q, F1, F2 is provided in the
Appendix 1.

Proof. See the Appendix 1.

4.2 Numerical computation

The purpose of this subsection is to compute the optimal economic policy(
σ∗a, σ

∗

b , σ
∗

m, σ
∗

n, τ
∗

p, τ
∗

q , τ
∗
)
characterized above (see Proposition 3). As the an-

alytical resolution of the system is not possible, we fix plausible values for the
structural parameters and we solve the resulting system.

4.2.1 Parametrization

The yearly rate of time preference is plausibly set equal to 4%. As our model
does not allow us to distinguish between the depreciation rate of private capital
δk and the depreciation rate of private R&D δp, we assume a common 8% annual
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depreciation rate for both types of capital, corresponding approximately to a
50% depreciation after 8.5 years. To avoid any bias in favor of public medical
R&D and to be consistent with the calibration of the other depreciation rates,
we set to 8% the depreciation rate δm of the stock of knowledge issued from
public investments in health-related R&D.

The depreciation rate δa of productive public capital is set to 5% to take
into account that public and private capital usually depreciate at different rates,
reflecting (i) the casual observation that some types of governmentally supplied
infrastructure (e.g. roads, port facilities, nuclear power stations, etc.) are
typically more durable than those provided by private agents, (ii) the fact that
a significant part of public investment is devoted to increase human capital
which is characterized by a lower depreciation rate, often below 2%, than the
depreciation rate of physical capital.

Finally, the depreciation rate δb of public consumption is set at 100% (full
yearly depreciation) whereas the depreciation rate of ordinary health expen-
ditures (δn) — which is a weighted average of a 100% depreciation rate asso-
ciated with public health consumption (wage bill of the public health sector,
drugs/medical consumption refunded by social security administrations, etc.)
and the lower depreciation rates associated with medical equipment, hospital
buildings, etc. — is set at 61%.8 The share sk of capital remuneration in GDP
is set to 75% according to the empirical estimates by Mankiw, Romer & Weil
[1992], Aghion & Howitt [1997] and other empirical estimates. sk is a measure of
both human and physical capital share in total income, while 1−sk = sa+sm+
sp represents the overall weight of the three productive externalities associated
with public capital (a), private R&D (p) and medical R&D (m).

In order to provide a conservative evaluation of the macroeconomic impact
of R&D expenditures and to avoid any overestimation, we minimize the size of
public and private R&D externalities by setting sp = sm = 1%.
With the same thought in mind, we chose (i) to limit the relative weight

of the health public good in the household’s utility function — i.e. the indirect
impact of health-related R&D on social welfare — by considering that households
strongly prefer private consumption and public consumption: cu = cv = 46%
i.e. cw = 8%,9 (ii) to limit the direct role played by medical R&D in the
production of health services: βm = 10%.
This set of conservative and, in a way, pessimistic assumptions, about the

R&D mechanisms at work in the economy, should shield us from criticisms about
a possible overestimation of their effects on the equilibrium growth rate and on
social welfare.

Finally, the productivity parameter θ is set to 0.5631. More precisely, the

8 In France, the amount of public health investment (investment in public hospitals, ex-
cluding consumption of intermediate goods) in 2006, was around 5.2 billions €, representing
approximately 4% of non-R&D public health expenditures. This means that 96% of these
expenditures are in fact pure consumption. In such a case, given a 100% depreciation rate for
the consumption part and a 6% depreciation rate for the investment part, one gets an average
61% depreciation rate for non-R&D public health expenditures.

9Notice that the share of the total amount of public health expenditures in GDP in France
is approximately equal to 9%; setting cw = 8% is a conservative but reasonable hypothesis.
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TFP is revealed by the observed growth rate: we calibrated θ to generate a
growth rate of the economy corresponding to its average yearly value observed
in the French economy during the last decade (2%), while setting the policy
parameters (σ̃a, σ̃b, σ̃m, σ̃n, τp, τ q, τ) to the values experienced in 2006.

10

4.2.2 Results

In order to compute the optimal policy, we solve numerically the implicit system
in Proposition 3. The optimal values we are looking for are:

(i) the breakdown of the public capital into the four components: σa, σb,
σm and σn,

(ii) the breakdown of the total amount of public spending into the four
components: σ̃a, σ̃b, σ̃m and σ̃n,
(iii) the tax pressure (average tax rate) τ and its breakdown into the tax

rate on labor and capital income τ q and the specific tax rate on private R&D
τp,
(iv) the growth rate of the economy: γ − 1,
(v) the social welfare: W .
Concerning the growth rate and fiscal pressure, results are somewhat usual,

in line with the endogenous growth literature à la Barro [1990]. The overall tax
rate of the economy stands to 15.2% and generates an equilibrium growth rate
of the economy equal to 9.3%; these findings are consistent with those generally
found in the endogenous growth literature where an optimal tax rate under 20%
can sustain a 10% growth rate of the economy.11 The specific tax rate on labor
and capital income stands at 15.5%, i.e. above the overall tax rate, allowing the
government to save fiscal resources in order to subsidize private R&D through
an appropriate transfer characterized by a negative −13.1% tax rate on private
R&D income. The usual breakdown of the total amount of public spending
into the four components — investment (46.6%), consumption (44.6%), health
R&D (2.6%) and other health expenditures (6.2%) — highlights the central roles
played by public medical research and development. Despite a pessimistic set of
assumptions concerning the role played by the R&D in the global economy, 2.6%
of the total amount of public spending should be devoted to medical R&D, in
order for the government to implement an optimal fiscal policy. This result can
be usefully compared to the real value observed in France during the year 2006.12

In that year public health R&D amounted to 2.95 billions € for a total amount
of fiscal revenues of 792.49 billions €, which corresponds to a 0.37% share of
medical R&D into public spending. According to our numerical simulation, the

10An extensive calibration of the model and the evaluation of (σ̃a, σ̃b, σ̃m, σ̃n, τp, τq , τ) are
provided in the next subsection.
11 In Barro [1990] the second best fiscal pressure has to be equal to the production elasticity

w.r.t. the externality of public spending, that is, under a Cobb-Douglas technology, to 1− α,
where α is the capital share in total income. 1 − α can be small under weak externalities
(according to empirical estimates), consistently with the assumption (usually retained in the
endogenous growth literature) that capital includes human capital (as in Mankiw, Romer and
Weil [1992]).
12See Fenina & Geffroy [2007] and Appendix 3.
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public investment in medical R&D, is 17.6 billions € under its socially optimal
level.

With regard to the sensitivity of the optimal policy to the deep parameters,
one can clearly distinguish two subsets of parameters:

(i) Our main conclusions are relatively insensitive to certain parameters in
the households’ utility function (weights cu, cv and cw), to the parameters in the
provision of public health services (elasticities βm and βn) or to the depreciation
rates (δk, δa, δb, δm and δn).
(ii) Our results are sensitive to the assumptions made on the main pro-

duction function (parameters sk, sa, sm and sp). An increase of the size of
the externality associated with medical R&D (resp. public investment) leads
the government to reallocate its fiscal receipts in favor of medical R&D (resp.
public investment). Symmetrically reducing externalities associated with public
spending (medical R&D or public investment) leads the government to reallo-
cate spending in favor of public consumption.

5 Raising public investment in medical R&D:
an evaluation

The purpose of this section is to to calibrate our model using French data
and to present the results of additional numerical simulations that use these
data. In particular, we analyze the macroeconomic impact on the GDP and
the growth rate of the economy of increasing public investment in medical R&D
and compare the results with another possible public policy: subsidizing private
R&D. The first part of this section is devoted to the calibration of the model
using French data which includes the current economic policy. The second part
presents the main results of our numerical simulations.

5.1 Calibration

The calibration process consists to set the values of two types of parameters
needed to implement the numerical simulations:

(i) The structural parameters of the model. These deep parameters have
been already defined in the previous section; in order to draw a coherent picture,
we use in this section the same values that the ones employed to compute the
optimal policy.

(ii) Other parameters which were endogenous in the optimal policy section
(see above), are made exogenous and fixed according to the observed policy
practice in the French economy. These parameters are the proportion in the
total amount of tax receipts of public investment, public consumption, health
R&D and other health expenditures; the tax rate on labor and capital incomes
and the tax rate on private R&D income; and the GDP growth rate. The level of
GDP, expressed in €, is also used as a convenient basis for providing a monetary
evaluation of the impact on the French economy of increasing public investments
in medical R&D (rather than providing only the impact on the growth rate).
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All theses parameters are taken from French national accounts for the year
2006. The shares, in the total amount of fiscal revenues, of public investment
(σ̃a), public consumption (σ̃b), health-related R&D (σ̃m) and other (unproduc-
tive) health expenditures (σ̃n), are derived from Table 6 (see Appendix 3). For
instance, the amount of health-related public R&D, is 2.95 billions € for the
year 2006. This represents 0.37% of the total amount of fiscal receipts; thus
we obtain σ̃m = 0.37. The same method was used to compute: σ̃a = 7.58%,
σ̃b = 75.88% and σ̃n = 16.17%.

The ratio of the total amount of taxes (792.49 billions € in 2006) to the
French 2006 GDP (1792 billions €) determines the French fiscal pressure in
2006, namely τ = 44, 22%. Since the overall tax rate of the economy τ is defined
in equation (18) as a weighted average of the specific tax rates applied to private
capital incomes (τk) , private R&D incomes (τp), and labor incomes (τ l), one
gets immediately τ q ≡ (τ − spτp) / (1− sp), where τ q denotes the common tax
rate on capital and labor income. This formula allow us to compute the tax rate
applied to capital and labor incomes as a function (i) of the overall tax rate of
the economy τ and (ii) of the specific tax rate applied to private R&D incomes.

In order to be consistent with the parametrization of the aggregate produc-
tion, we assume that private R&D returns represents, approximately, 1% of the
GDP, i.e. 17.92 billions € for the year 2006. Such incomes would generate,
if taxed at the average level τ , a total amount of taxes equal to 44.22% times
17.92 billions €, that is 7.92 billions.
Considering that the so-called Research Tax Credit (RTC), the main tax

measure aimed at supporting the development of private R&D, represents an
annual cost of about 1.1 billion € for the government budget for year 2006,
one can calculate that the total amount of taxes on private R&D incomes is
about 7.92 − 1.1 = 6.82 billions €. Dividing this latter amount of taxes by
the corresponding amount of incomes (17.92 billions), one can approximate the
value of the specific tax rate on private R&D incomes: τp = 38, 09% and, finally,
compute τ q = 44, 29%.
The yearly real growth rate of the economy has been set equal to 2%,

corresponding to the average value observed in the French economy during
the last decade, as explained above. In order to have a coherent representa-
tion of the economy, we need to calibrate the productivity parameter θ (TFP)
which implements the observed growth rate. Using the observed policy values
(σ̃a, σ̃b, σ̃m, σ̃n, τp, τ q, τ) derived above from the national accounts, and the cali-
bration of the structural parameters presented in Table 1, we obtain: θ = 0.5631.
The details of this procedure are provided in the Appendix 2.

5.2 Results

In this section, we proceed to numerical simulations of the model to address the
following questions:
(i) What is the macroeconomic impact on the growth rate of the economy

and the GDP of an increase of public investment in medical R&D?
(ii) Does this impact depend on the way it is financed?

14



(iii) Is it better, from a public policy point of view, to use public money to
increase public medical R&D or to subsidize private R&D?

5.2.1 Increasing public investment in medical R&D

• First, we assume that the government keeps constant the (ex-ante) total
amount of fiscal receipts and just switches some fiscal resources (1 billion €)
from somewhat "unproductive" public consumption to investments in medical
R&D. In this case, the policy change we simulate, is a permanent transfer of an
amount of 1 billion € from public consumption to public medical R&D. Such a
transfer raises the share of public spending in medical R&D from σ̃m = 0.372%
to about σ̃′m = 0.498%, while the public consumption share decreases from
σ̃b = 75.873% to σ̃′b = 75.747% (σ̃a and σ̃n remaining constants). This change
in policy corresponds to an extra-investment in medical R&D of one billion
euros under the balanced-budget constraint σ̃a + σ̃

′

b + σ̃
′

m + σ̃n = 1.
In the first year the growth rate increases from 2% to about 2.24 %. Over a

decade, the GDP discounted total benefit associated with the policy change is
more than 60 billions €, corresponding to 3.42% of the 2006 GDP, i.e. about 1.7
years of economic growth; after ten years the amount of annual fiscal receipts is
5.157 billions € higher that it would have been without the policy adjustment.
In the long run, using public money previously devoted to public consumption,
to increase medical R&D public investment, generates an increase of the growth
rate of the economy equal to +0.048%.

• Let us now compare the previous results to what is obtained if the govern-
ment finances the one billion € increase in medical-R&D public investment, by
increasing the tax rate on labor and capital incomes (i.e. not keeping constant
the total amount of fiscal receipts). In this case, the policy change we analize,
is a permanent €1 billion increase of public medical-R&D expenditures, totally
funded by a rise of the tax rate on labor and capital incomes.
First we compute the increase of the tax rate τ q on labor and capital

income in order to compensate the 1 billion € increase of public medical-
R&D expenditures and keep a balanced budget. We know that total fiscal
receipts are given by T = τY = [τpsp + τ q (1− sp)]Y . Then, the variation
of T associated with an increase of the tax rate from τ q to τ

′

q is given by

∆T =
(
τ ′q − τ q

)
(1− sp)Y . Setting ∆T = 1 (billion €), we can easily compute

the increase of the tax rate τ q on labor and capital income which ensures a
balanced budget: τ ′q = τ q + 1/ [(1− sp)Y ] = 44.34%, since Y , the 2006 GDP,
is 1792 billions €. The new proportions, for the four components of the total
amount of fiscal revenues (public consumption, public investment, health-related
R&D and "other" health expenditures) are given by:

(
σ̃′a, σ̃

′

b, σ̃
′

m, σ̃
′

n

)
=

(
σ̃aT

T + 1
,
σ̃bT

T + 1
,
σ̃mT + 1

T + 1
,
σ̃nT

T + 1

)
= (7.57, 75.78, 0.5, 16.15)%

since T , the 2006 tax receipt, is 792.49 billions €.
In the first year the growth rate increases from 2% to about 2.21% (i.e.

+0.21%) , which is less than what we got with the first scenario. Over a decade
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the GDP discounted total benefit associated with the policy change is close to
55 billions € corresponding approximately to 3% of 2006 GDP i.e. 1.5 year of
economic growth. In the long run the growth rate of the economy stands to
2.043% (+0.043%).

• Results associated with the two scenarios are in fact close to each others.
The macroeconomic impact on the GDP of a 1 billion € increase in public in-
vestment in medical-R&D is clearly positive and strong, whatever the funding
process. However, the impact of increasing publicly funded medical-R&D ap-
pears to be higher when the supplementary investment is financed by a transfer
from public consumption, than when it is financed by increasing the tax rate
on labor and capital incomes. Unsurprisingly, in the latter case, the increase in
the overall tax rate of the economy adversely affects, first, labor and investment
incentives and then the GDP and fiscal revenues.

5.2.2 Subsidizing private R&D

• We assume here that the government, in order to stimulate private R&D,
switches some fiscal resources (1 billion €) from public consumption to the
Research Tax Credit (RTC) tool. In this case, the policy change we simulate,
is a permanent 1 billion € decrease of taxes on private R&D incomes, totally
funded by a decrease of the same amount of public consumption. Such a change
decreases the total amount of taxes on private R&D incomes from 6.82 to 5.82
billions € driving the specific tax rate on private R&D incomes from τp =
38, 09% to τ ′p = 32, 51%. The tax rate τ q on labor and capital incomes being
constant (τ q = 44, 29%), we easily compute the new average taxe rate of the
economy τ ′ = τ ′psp+τ q (1− sp) = 44.17% and the new proportions, for the four
components of the total amount of fiscal revenues:

(
σ̃′a, σ̃

′

b, σ̃
′

m, σ̃
′

n

)
=

(
σ̃aT

T − 1
,
σ̃bT − 1

T − 1
,
σ̃mT

T − 1
,
σ̃nT

T − 1

)
= (7.59, 75.85, 0.37, 16.19)%

where T = 792.49 denotes the initial level of taxes.
In the first year the growth rate of the economy increases from 2% to about

2.02% (i.e. +0.02%), far less that what one gets by rising public investment
in medical R&D (whatever the funding process). Over a decade the GDP dis-
counted total benefit associated with the policy change, stands under 11 billions
€ corresponding approximately to 0.61% of 2006 GDP i.e. 0.3 year of economic
growth; after ten years the amount of annual fiscal receipts is only 0.128 billions
€ higher that it would have been without the policy adjustment. In the long
run, using public money previously devoted to public consumption, to subsidize
private R&D, generates an increase of the growth rate of the economy equal to
+0.014%.

•We now compare the previous results with what we get if the governement
— instead of decreasing public consumption in order to keep a balanced budget
— decides to finance the 1 billion € increase of the RTC, by increasing the tax
rate on labor and capital incomes. The policy change we analize, is thus a
permanent €1 billion decrease of the amount of taxes on private R&D incomes,
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totally offset by a increase of the amount of taxes on labor and capital incomes.
Like before, the total amount of taxes on private R&D incomes shifts from
6.82 to 5.82 billions € driving the specific tax rate on private R&D incomes
to τ ′p = 32, 51%, but now the total amount of taxes (T = 792.49 billions €)
remains constant and it is the same for the average taxe rate of the economy
(τ = 44, 22%); we thus easily compute the new tax rate on labor and capital
incomes τ ′q ≡

(
τ − spτ

′

p

)
/ (1− sp) = 44.34%. Futhermore it is straightforward

that the vector (σ̃a, σ̃b, σ̃m, σ̃n) remains the same.
The impact of this policy shock on the growth rate of the economy is

about +0.03% in the short run (one year), but is close to zero in the long
run (+0.002%); once again far less that what one gets by promoting medical
R&D public investment. Over a decade the GDP discounted total benefit asso-
ciated with the policy change is under 5 billions € corresponding approximately
to 0.3% of 2006 GDP i.e. less than 2 months of economic growth.
• Like in the previous subsection, results associated with the two scenarios

are close to each others and, once again, the funding process seems to play a
second order role : the macroeconomic impact on the GDP of a 1 billion €
decrease of of taxes on private R&D incomes is positive but weak, whatever the
funding process.

6 Conclusion

The general equilibrium endogenous growth model presented in this paper em-
phasizes the key role played by public health R&D investments in determining
the long-run rate of economic growth and welfare.

From a theoretical point of view we found four main results: (i) the equi-
librium path is unique, (ii) market imperfections — externalities and taxes —
make the equilibrium inefficient under arbitrary policies, (iii) an appropriate
fiscal policy (tax rate and public spending shares) can achieve the second best,
(iv) health R&D matters more than other health expenditures in achieving the
social welfare target in the long run. This last point is crucial as it stresses
how the health-related research and development, as a productive externality,
is a powerful engine for growth compared to alternative policies such as, for
example, public consumption.

The numerical simulations provided in the paper can be seen as an illustra-
tion of possible benefits associated with a permanent increase of medical R&D
public investment. More precisely, we found that such an increase has a strong
impact on the growh rate of the economy, whatever the funding process (reallo-
cating public money from "unproductive" public consumption to medical R&D
or rising the tax rate on labor and capital incomes) ; moreover, for the same
amount of public money, the long run benefit of increasing public investment in
medical R&D, is always higher that the one associated with subsidizing private
R&D.
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7 Appendix

7.1 Appendix 1: Proofs of propositions

Proof of Proposition 1 Since at = σagt and mt = σmgt, the representative
agent budget constraint (2) rewrites as an aggregate resources constraint:

ct + κt+1 −∆kκt + πt+1 −∆pπt

≤ [(1− τk) skt + (1− τp) spt + (1− τ l) (1− skt − spt)] f (κt, πt, σagt, σmgt)

(27)

On its side, the government budget constraint (12) becomes:

gt+1 −∆gt = [τkskt + τpspt + τ l (1− skt − spt)] f (κt, πt, σagt, σmgt) (28)

Substituting (8) in the Euler equation (5), one gets:

u′ (ct)

u′ (ct+1)
= β [∆k + (1− τk) fκ (κt+1, πt+1, at+1,mt+1)] (29)

Observing that the homogeneity property of the intensive production func-
tion implies that its derivatives are homogeneous of degree zero: fκ (µκ, µπ, µa, µm) =
fκ (κ, π, a,m), it follows immediately fκ (κt, πt, σagt, σmgt) = fκ (κt/gt, πt/gt, σa, σm).
NAC (4) becomes:

∆k + (1− τk) fκ (κt, πt, at,mt) = ∆p + (1− τp)
κt
πt

spt
skt
fκ (κt, πt, at,mt)

since rpt = (κt/πt) (spt/skt) fκ (κt, πt, at,mt).
Under this Assumption 3, we find:

πt =
1− τp
1− τk

spt
skt
κt (30)

Then

rkt = fκ (κt, πt, at,mt) = fκ

(
κt
gt
,
πt
gt
, σa, σm

)
= fκ

(
κt
gt
,
1− τp
1− τk

spt
skt

κt
gt
, σa, σm

)

Under Assumption 4, we obtain:

ϕ′ (xt) = fκ +
1− τp
1− τk

sp
sk
fπ =

sk + sπ
sk

fκ

(
xt,

1− τp
1− τk

sp
sk
xt, σa, σm

)

since (30) holds and

fπ =
sπ
sk

κt
πt
fκ =

1− τk
1− τp

sπ
sp
fκ

where sπ = 1− sk − sa − sm. Therefore,

rkt = fκ (κt, πt, at,mt) =
sk

sk + sπ
ϕ′ (xt)
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Using the average tax pressure (18), under Assumptions 3 and 4, equations
(27), (28) and (29) write:

ct +

(
1 +

1− τp
1− τk

sp
sk

)
(κt+1 −∆kκt) ≤ (1− τ) gtϕ (xt) (31)

gt+1 −∆gt = τgtϕ (xt) (32)

u′ (ct)

u′ (ct+1)
= β

[
∆k + (1− τk)

sk
sk + sπ

ϕ′ (xt+1)

]

since

f (κt, πt, σagt, σmgt) = gtf

(
κt
gt
,
πt
gt
, σa, σm

)
= gtϕ (xt)

Under definitions (16) and (17), dividing both sides of (31) and (32) by gt,
one eventually gets:

yt +

(
1 +

1− τp
1− τk

sp
sk

)
(γtxt+1 −∆kxt) ≤ (1− τ)ϕ (xt) (33)

γt = ∆+ τϕ (xt) (34)

On the other hand, the Euler equation can be revisited under Assumption
1:

ct+1
ct

=

(
β

[
∆k + (1− τk)

sk
sk + sπ

ϕ′ (xt+1)

])εu

So, we have:

yt+1
yt
γt =

(
β

[
∆k + (1− τk)

sk
sk + sπ

ϕ′ (xt+1)

])εu
(35)

Substituting (34) into (35) and (33) gives the dynamic system (19)-(20).

Proof of Proposition 2 In the following, (1) we linearize the dynamic
system (19-20) around the steady state and we compute the Jacobian matrix,
then (2) we prove the saddle-path stability entailing the equilibrium uniqueness
under rational expectations.

(1) Differentiating (19) with respect to dynamic variables (xt+1, yt+1, xt, yt)
and using (21-22), one gets,

γεu
ρ

ρ+∆k

xϕ′′

ϕ′
dxt+1
x

− γ
dyt+1
y

= τϕ′x
dxt
x
− γ

dyt
y

(36)

where the differentials are relative to the stationary state.
Linearizing now equation (20) around the steady state, one has:

ηγ
dxt+1
x

= [η (∆k − τxϕ
′) + (1− τ)ϕ′]

dxt
x
−
y

x

dyt
y

(37)

where,

η ≡ 1 +
sp
sk

1− τp
1− τk

(38)

19



We observe that (38) implies:

y = η (∆k −∆)x+ (1− τ − ητx)ϕ (x) (39)

Let ε2 ≡ xϕ
′′/ϕ′ < 0 denote the elasticity of the interest rate with respect to

the ratio κ/g (capital per head over public spending). The linear system (36-37)
rewrites equivalently:

[
dxt+1
x

dyt+1
y

]

=

[
γεuε2

ρ
ρ+∆k

−γ

γη 0

]−1 [
τxϕ′ −γ

∆kη + (1− τ − τxη)ϕ
′ − y

x

][ dxt
x
dyt
y

]

The trace (sum of eigenvalues) and the determinant (product of eigenvalues)
of the Jacobian matrix evaluated at the steady state are given by

D =
1

γ

[
∆k +

ϕ′

η

(
1− τ − τxη − τ

y

γ

)]
(40)

T = 1 +D +
1

γ

y

xη

(
ϕ′

γ
τx−

ρ

ρ+∆k
ε2εu

)
(41)

(2) We want to prove that the steady state is a saddle point. Since the system
is two-dimensional with one predetermined variable, saddle-path stability entails
equilibrium uniqueness under rational expectations (with or without transition).

In the (T,D)-plane, the saddle points match with the two cones:

−T − 1 < D < T − 1

T − 1 < D < −T − 1

As ε2 < 0, (41) implies:

D = T − 1−
1

γ

y

xη

(
ϕ′

γ
τx−

ρ

ρ+∆k
ε2εu

)
< T − 1 (42)

To show that the stationary state is a saddle point, one needs only to prove
that D > −T − 1.

Substituting formulas (40) and (41) into D > −T −1, one gets the following
condition:

D >
1

2

1

γ

y

xη

(
ρ

ρ+∆k
ε2εu −

ϕ′

γ
τx

)
− 1

or, equivalently,

γ +∆k +
ϕ′

η

(
1− τ − τxη −

τ

2

y

γ

)
>
1

2

y

xη

ρ

ρ+∆k
ε2εu

Since ε2 < 0, it is sufficient to prove that

γ +∆k +
ϕ′

η

(
1− τ − τxη −

τ

2

y

γ

)
> 0 (43)
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From equation (22) and definition (38), using γ = ∆+ τϕ we observe that

y = ϕ (1− τ)− ηx (γ −∆k) (44)

Replacing (44) in (43), we get:

γ +∆k +
ϕ′

η

(
1− τ − τxη −

τ

2

y

γ

)

= ∆+ (1− τ)
ϕ′

η

(
1−

1

2

τϕ

∆+ τϕ

)
+

(
1

2

∆ + τϕ−∆k
∆+ τϕ

− 1

)
ϕ′x

ϕ
τϕ+ τϕ+∆k

≥ ∆+ (1− τ)
ϕ′

η

(
1−

1

2

τϕ

∆+ τϕ

)
+

(
1

2

∆ + τϕ−∆k
∆+ τϕ

− 1

)
ε1τϕ+ ε1 (τϕ+∆k)

= ∆+ (1− τ)
ϕ′

η

(
1−

1

2

τϕ

∆+ τϕ

)
+

(
1

2
τϕ+

(
1−

1

2

τϕ

∆+ τϕ

)
∆k

)
ε1 > 0

where

ε1 ≡
ϕ′x

ϕ
∈ (0, 1)

Proof of Proposition 3 Before maximizing the welfare function (23),
we need to transform it in an appropriate form. We compute the welfare
function (utility function) along the balanced growth path: (ct, bt,mt, nt) =
(c0, b0,m0, n0) γ

t, where γ is the common (regular) growth factor: et ≡ e (mt, nt) =
e (m0γ

t, n0γ
t) = e (m0, n0) γ

t = e0γ
t (notice that the health good produc-

tion function is supposed to be homogeneous of degree one). Denoting e0 ≡
e (m0, n0), one gets under restriction (24):

W = cu

∞∑

t=0

βt ln
(
c0γ

t
)
+ cv

∞∑

t=0

βt ln
(
b0γ

t
)
+ cw

∞∑

t=0

βt ln
(
e0γ

t
)

= (cu ln c0 + cv ln b0 + cw ln e0)

∞∑

t=0

βt + (cu + cv + cw) ln γ

∞∑

t=0

βtt

=
1

1− β

(
cu ln c0 + cv ln b0 + cw ln e0 +

β

1− β
ln γ

)

Equilibrium uniqueness under rational expectations (Proposition 2) requires
c0, b0, e0 to be compatible with the regular growth factor γ. Definition (10)
details the economic policy and implies at the beginning: (a0, b0,m0, n0) =
(σa, σb, σm, σn) g0 and e0 = e (m0, n0) = e (σmg0, σng0) = e (σm, σn) g0. From
definition (16) one gets c0 = yg0. The endogenous growth of steady state
implies a regular growth path; under restriction (24), we obtain:

W =
1

1− β

(
cu ln (yg0) + cv ln (σbg0) + cw ln [e (σm, σn) g0] +

β

1− β
ln γ

)

=
1

1− β

[
cu ln y + cv lnσb + cw ln e (σm, σn) + ln g0 +

β

1− β
ln γ

]
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where g0 ≡ a0 + b0 +m0 + n0 is an initial condition.
As β and g0 are not choice variables, the problem of maximizing W turns

out to be equivalent to the following:

max

[
cu ln y + cv lnσb + cw ln e (σm, σn) +

β

1− β
ln γ

]
(45)

Under Assumption 4, the policy of public spending (10) entails:

f̃ (κt, πt, at,mt, p̄t) = θκskt π
sp
t a

sa
t m

sm
t p̄

1−sk−sp−sa−sm
t

f (κt, πt, at,mt) = θκskt π
1−sk−sa−sm
t asat m

sm
t

ϕ (x) =
f (κt, πt, at,mt)

gt
= f (x, (η − 1)x, σa, σm)

= θσsaa σ
sm
m (η − 1)

1−sk−sa−sm x1−sa−sm (46)

ϕ′ (x) = (1− sa − sm) θσ
sa
a σ

sm
m (η − 1)

1−sk−sa−sm x−sa−sm

where now η ≡ 1 + (sp/sk) [(1− τp) / (1− τ q)]. Still under Assumption 4 we
have: ε1 ≡ xϕ

′/ϕ = 1− sa − sm.
Since εu = 1, one gets from (21) an implicit equation defining the stationary

state x:

∆+ τθσsaa σ
sm
m (η − 1)

1−sk−sa−sm x1−sa−sm

= β
[
∆k + (1− τ q) skθσ

sa
a σ

sm
m (η − 1)

1−sk−sa−sm x−sa−sm
]

(47)

where, according to (18):

τ = spτp + (1− sp) τ q (48)

Taking into account that τϕ = γ −∆, equation (21) becomes

γ = β

[
∆k +

sk
sk + sπ

1− τ q
τ

1

x

xϕ′

ϕ
(γ −∆)

]
(49)

Substituting ε1 into equation (49), noticing that sπ ≡ 1 − sk − sa − sm and
solving for γ, the growth factor is now explicitly computed:

γ = β
∆sk (1− τ q)−∆kτx

βsk (1− τ q)− τx
(50)

Under Assumption 4, the implicit equation (47) becomes,

θσsaa σ
sm
m (η − 1)

1−sk−sa−sm =
(∆− β∆k)x

sa+sm

βsk (1− τ q)− τx
(51)

Instead of maximizing the welfare with respect to policy tools (σa, σm, σn, τp, τ q),
one maximizes it indirectly with respect to an alternative vector (σa, σm, σn, η, h),
where h is given by

h ≡ γ −∆k (52)
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and finally compute (τp, τ q)
∗
using (σa, σm, σn, η, h)

∗
.

σb is given by (11) and program (45) becomes

max

[
cu ln y + cv ln (1− σa − σm − σn) + cw ln e (σm, σn) +

β

1− β
ln γ

]
(53)

Let us express y in terms of (σa, σm, σn, η, h).
Using (38) and (48), we find that

1− τp =
1− τ

1− sp + (η − 1) sk

sk
sp
(η − 1)

1− τ q =
1− τ

1− sp + (η − 1) sk
(54)

From (46) and (51), we know that

ϕ (x) =
(∆− β∆k)x

βsk (1− τ q)− τx
(55)

From (21), we know also that

τ =
γ −∆

ϕ (x)
(56)

or, equivalently,

ϕ (x) =
γ −∆

τ
(57)

Replacing (54) in (55) and (55) so modified in (56) and solving for τ , we get

τ =

[
1 + x

γ − β∆k
γ −∆

1− sp + (η − 1) sk
βsk

]−1
(58)

Substituting (57) and (58) in (39), we get

y = x

[
1− sp + (η − 1) sk

βsk
(γ − β∆k)− η (γ −∆k)

]
(59)

Replacing (59) in (53) and using (52), we obtain

W̃ (σa, σm, σn, η, h)

≡ cu lnx+ cu ln

[
1− sp + (η − 1) sk

βsk
(h+ (1− β)∆k)− ηh

]

+cv ln (1− σa − σm − σn) + cw ln e (σm, σn) +
β

1− β
ln (h+∆k)

We observe that x is determined by (51), where we have substituted (52),
(54) and (58):

θσsaa σ
sm
m (η − 1)

1−sk−sa−sm x1−sa−sm = h+∆k−∆+x (h+ (1− β)∆k)
1− sp + (η − 1) sk

βsk
(60)
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where
∆ = ∆b + σa (∆a −∆b) + σm (∆m −∆b) + σn (∆n −∆b) (61)

From (60), according to the Implicit Function Theorem, we locally define
x = x (σa, σm, σn, η, h) with partial derivatives:

(xa, xm, xn, xη, xh) =

(
∂x

∂σa
,
∂x

∂σm
,
∂x

∂σn
,
∂x

∂η
,
∂x

∂h

)

These partial derivatives can be computed by totally differentiating (60).

xa
x

=
∆a −∆b + ϕ

sa
σa

(sa + sm)ϕ− z
(62)

xm
x

=
∆m −∆b + ϕ

sm
σm

ϕ (sa + sm)− z
(63)

xn
x

=
∆n −∆b

ϕ (sa + sm)− z
(64)

xη
x

=
ϕ 1−sk−sa−smη−1 − (z +∆− β∆k)

x
β

ϕ (sa + sm)− z
(65)

xh
x

= −
1 +

1−sp+(η−1)sk
sk

x
β

ϕ (sa + sm)− z
(66)

where z ≡ γ −∆ = h+∆k −∆.
The optimal policy implements a vector (σa, σm, σn, η, z)

∗
satisfying the fol-

lowing system: (
∂W̃

∂σa
,
∂W̃

∂σm
,
∂W̃

∂σn
,
∂W̃

∂η
,
∂W̃

∂h

)

= 0

Noticing that, under Assumption 2,

∂e

∂σm

1

e
=
βm
σm
,
∂e

∂σn

1

e
=
βn
σn

we obtain

∂W̃

∂σa
= cu

xa
x
− cv

1

1− σa − σm − σn
= 0

∂W̃

∂σm
= cu

xm
x
− cv

1

1− σa − σm − σn
+ cw

βm
σm

= 0

∂W̃

∂σn
= cu

xn
x
− cv

1

1− σa − σm − σn
+ cw

βn
σn

= 0

∂W̃

∂η
= cu

xη
x
+ cu

1
β (z +∆− β∆k)− (z +∆−∆k)

1−sp+(η−1)sk
βsk

(z +∆− β∆k)− η (z +∆−∆k)
= 0

∂W̃

∂h
= cu

xh
x
+ cu

1−sp+(η−1)sk
βsk

− η

1−sp+(η−1)sk
βsk

(z +∆− β∆k)− η (z +∆−∆k)
+

β

1− β

1

z +∆
= 0

24



Substituting equations (62-66) and taking into account equation (60), we
get the following system. The optimal policy is a vector (σa, σm, σn, η, z)

∗
such

that (σa, σm, σn, η, z, ϕ)
∗
is solution of:

θσsaa σ
sm
m (η − 1)

1−sk−sa−sm x1−sa−sm = ϕ (67)

cu
∆a −∆b +

sa
σa
ϕ

(sa + sm)ϕ− z
− cv

1

1− σa − σm − σn
= 0 (68)

cu
∆m −∆b +

sm
σm
ϕ

(sa + sm)ϕ− z
− cv

1

1− σa − σm − σn
+ cw

βm
σm

= 0 (69)

cu
∆n −∆b

(sa + sm)ϕ− z
− cv

1

1− σa − σm − σn
+ cw

βn
σn

= 0 (70)

1−sk−sa−sm
η−1 ϕ− x (z +∆− β∆k)

1
β

(sa + sm)ϕ− z
+

(1− β) (z +∆)
1−sp−sk

sk
(z +∆− β∆k) + η (1− β) (z +∆)

= 0

(71)

−cu
1 + x

1−sp+(η−1)sk
βsk

(sa + sm)ϕ− z
+ cu

1−sp+(η−1)sk
βsk

− η

1−sp+(η−1)sk
βsk

(z +∆− β∆k)− η (z +∆−∆k)
+

β

1− β

1

z +∆
= 0

(72)

where

ϕ = h+∆k −∆+ x (h+ (1− β)∆k)
1− sp + (η − 1) sk

βsk
(73)

Replacing (67) in (68) and (69), we obtain

σm =
βm

cw
cu
((sa + sm)ϕ− z) + smϕ

∆a −∆m + ϕ
sa
σa

(74)

σn =
βn

cw
cu
((sa + sm)ϕ− z)

∆a −∆n + ϕ
sa
σa

(75)

Substituting (74) and (75) in (67) and solving for z, we find

z (ϕ, σa) ≡ ϕ (sa + sm)−
cu

(
∆a −∆b + ϕ

sa
σa

)(
1− σa −

ϕsm
∆a−∆m+ϕ

sa
σa

)

cv + cw

(
∆a −∆b + ϕ

sa
σa

)(
βm

∆a−∆m+ϕ
sa
σa

+ βn
∆a−∆n+ϕ

sa
σa

)

(76)
Replacing (76) in (74) and (75), we obtain

σn (ϕ, σa) =
βn

∆a −∆n + ϕ
sa
σa

cw

(
∆a −∆b + ϕ

sa
σa

)(
1− σa −

ϕsm
∆a−∆m+ϕ

sa
σa

)

cv + cw

(
∆a −∆b + ϕ

sa
σa

)(
βm

∆a−∆m+ϕ
sa
σa

+ βn
∆a−∆n+ϕ

sa
σa

)

(77)

σm (ϕ, σa) ≡
ϕsm

∆a −∆m + ϕ
sa
σa

+ σn (ϕ, σa)
βm
βn

∆a −∆n + ϕ
sa
σa

∆a −∆m + ϕ
sa
σa

(78)
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From (73), we get

x =
ϕ− z

z +∆− β∆k

βsk
1− sp + (η − 1) sk

(79)

Replacing in (72) and solving for η, we have

η (ϕ, σa) ≡
1

1− β

1− sp − sk
sk

1− ϕ+∆(ϕ,σa)−β∆k

ϕ(sa+sm)−z(ϕ,σa)
+ 1

cu

β
1−β

z(ϕ,σa)+∆(ϕ,σa)−β∆k

z(ϕ,σa)+∆(ϕ,σa)

ϕ+∆(ϕ,σa)−β∆k

ϕ(sa+sm)−z(ϕ,σa)
z(ϕ,σa)+∆(ϕ,σa)

z(ϕ,σa)+∆(ϕ,σa)−β∆k
− 1

cu

β
1−β − 1

(80)
where

∆(ϕ, σa) ≡ ∆b + σa (∆a −∆b) + σm (ϕ, σa) (∆m −∆b) + σn (ϕ, σa) (∆n −∆b)

Substituting (79) in (70), we find F1 (ϕ, σa) = 0, where

F1 (ϕ, σa) ≡ ϕ− θσsaa σm (ϕ, σa)
sm [η (ϕ, σa)− 1]

1−sk−sa−sm

×
(

ϕ−z(ϕ,σa)
z(ϕ,σa)+∆(ϕ,σa)−β∆k

βsk
1−sp+[η(ϕ,σa)−1]sk

)1−sa−sm (81)

Eventually, replacing (79) in (71), we obtain F2 (ϕ, σa) = 0, where

F2 (ϕ, σa) ≡
ϕ
1−sk−sa−sm
η(ϕ,σa)−1

−[ϕ−z(ϕ,σa)]
sk

1−sp+[η(ϕ,σa)−1]sk

ϕ(sa+sm)−z(ϕ,σa)

+ (1−β)[z(ϕ,σa)+∆(ϕ,σa)]
1−sp−sk

sk
[z(ϕ,σa)+∆(ϕ,σa)−β∆k]+η(ϕ,σa)(1−β)[z(ϕ,σa)+∆(ϕ,σa)]

(82)

The optimal policy (ϕ, σa)
∗
is solution of the two-dimensional system (25-

26), where the functions z (ϕ, σa), σm (ϕ, σa), σn (ϕ, σa), η (ϕ, σa) are given by
(76), (77), (78) and (80), respectively.

After this system has been solved, we get σa, σm, σn, η, z, ϕ and ∆; then we
compute σb = 1− σa − σm − σn, the growth factor γ ≡ z +∆ and, using (79),
x. Finally, τ is computed using (58), while τp and τ q are obtained as follows:

τp = 1−
1− τ

1− sp + (η − 1) sk

sk
sp
(η − 1)

τ q = 1−
1− τ

1− sp + (η − 1) sk

7.2 Appendix 2: Calibration procedures

Calibrating θ. Using (21) and (46), we get

θ =
γ −∆

τσsaa σ
sm
m (η − 1)

1−sk−sa−sm x1−sa−sm
(83)
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Replacing in (47) and solving for x, we obtain

x = βsk
1− τ q
τ

γ −∆

γ − β∆k

Replacing in (83), we find

θ =
γ −∆

τσsaa σ
sm
m (η − 1)

1−sk−sa−sm
(
βsk

1−τq
τ

γ−∆
γ−β∆k

)1−sa−sm (84)

that is the right way of calibrating the unobserved θ, given the observed γ.
From (14), the breakdown of the total amount of public spending into its

four components (investment without health, consumption, health R&D and
other health expenditures) takes the form:

(σ̃a, σ̃b, σ̃m, σ̃n) =

(
at+1/at −∆a
gt+1/gt −∆

σa,
bt+1/bt −∆b
gt+1/gt −∆

σb,
mt+1/mt −∆m
gt+1/gt −∆

σm,
nt+1/nt −∆n
gt+1/gt −∆

σn

)

At the steady state (regular growth), we obtain

(σ̃a, σ̃b, σ̃m, σ̃n) =

(
γ −∆a
γ −∆

σa,
γ −∆b
γ −∆

σb,
γ −∆m
γ −∆

σm,
γ −∆n
γ −∆

σn

)
(85)

Using (13) and solving for (σa, σb, σm, σn), we obtain (σa, σb, σm, σn)
T
=M (σ̃a, σ̃b, σ̃m, σ̃n)

T
,

where

M ≡ γ






γ − (1− σ̃a)∆a σ̃a∆b σ̃a∆m σ̃a∆n
σ̃b∆a γ − (1− σ̃b)∆b σ̃b∆m σ̃b∆n
σ̃m∆a σ̃m∆b γ − (1− σ̃m)∆m σ̃m∆n
σ̃n∆a σ̃n∆b σ̃n∆m γ − (1− σ̃n)∆n






−1

Numerically, we set γ = 1.02, σ̃a = 0.0758432283057199, σ̃b = 0.758 728 816
8, σ̃m = 0.00371613521937185, σ̃n = 0.161711819707504, ∆a = 1 − δa, ∆b =
1− δb, ∆m = 1− δm, ∆n = 1− δn, ∆k = 1− δk, δa = 0.05, δb = 1, δm = 0.08,
δn = 0.61, δk = 0.08, in order to find σa = 0.510 790 285 2, σb = 0.350 679 408 5,
σm = 0.017 519 244 2, σn = 0.121 011 062 1. Notice that σa + σb + σm + σn = 1.
Using (13) and setting also τ = 0.442 237 723 3, τ q = 0.442857763, τp =

0.38085379464, sk = 0.75, sa = 0.23, sm = 0.01, sp = 0.01, β = 0.961 538 461 5
and using (38) with τk = τ q, eventually, we get from (84): θ = 0.563096 6639.

7.3 Appendix 3: Public spending in France

Public spending and percentages in 2006.
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YEAR 2006 Billions €
% of Overall

Taxes
Type of Public Expenditures

National Budget
(3)

280,75 35,43%

After transfers to Local Public Administrations Health expenditures
(2)

3,70 0,47%

including      Medical R&D expenditures
(1)

2,95 0,37% Medical R&D

Other health expenditures 0,76 0,10% Health expenditures (excl. R&D)

Other expenditures 277,05 34,96%

          including  Investment
(4)

10,27 1,30% Public investment

Consumption 266,79 33,66% Public consumption

Local Public Administrations
(3)

101,32 12,79%

Health expenditures
(2)

1,50 0,19% Health expenditures (excl. R&D)

Other expenditures 99,82 12,60%

          including                  Investment
(4)

43,51 5,49% Public investment

Consumption 56,31 7,11% Public consumption

Social Security Administrations
(3)

405,75 51,20%

Health expenditures
(2)

125,90 15,89% Health expenditures (excl. R&D)

Other expenditures 279,85 35,31%

including      Investment
(4)

6,33 0,80% Public investment

Consumption 273,52 34,51% Public consumption

European Union (U.E.)
(3)

4,67 0,59% Public consumption

Overall Taxes
(3)

792,49 100,00%

Table 6. Breakdown of taxes paid by French citizens by type of expenditures (2006)

Sources:

(1) Ministry of National Education, Advanced Instruction, and Research, quoted

in Fenina & Geffroy [2007], p. 43.

(2) National Institute for Statistics and Economic Studies, INSEE, National ac-

counts (base 2000), in http://www.insee.fr/fr/themes/comptes-nationaux/.

(3) Report on 2006 National Accounts, quoted in Ministère de l’intérieur, de

l’outre-mer et des collectivités territoriales [2008], p. 34.
(4) 2006 National Accounts, quoted in Ministère de l’intérieur, de l’outre-mer et

des collectivités territoriales [2008], p. 40.
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