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Abstract. The paper deals with a mathematical model of a surveillance
system based on a net of sensors. The signals acquired by each node of
the net are Markovian process, have two different transition probabilities,
which depends on the presence or absence of a intruder nearby. The
detection of the transition probability change at one node should be
confirmed by a detection of similar change at some other sensors. Based
on a simple game the model of a fusion center is then constructed. The
aggregate function defined on the net is the background of the definition
of a non-cooperative stopping game which is a model of the multivariate
disorder detection.

Keywords: voting stopping rule, majority voting rule, monotone voting
strategy, change-point problems, quickest detection, sequential detection,
simple game.

1 Introduction

The aim of this consideration is to construct the mathematical model of a mul-
tivariate surveillance system. It is assumed that there is net N of p nodes which
register (observe) signals modeled by discrete time multivariate stochastic pro-
cess. At each node the state is the signal at moment n ∈ N which is at least one
coordinate of the vector −→x n ∈ E ⊂ ℜm. The distribution of the signal at each
node has two forms and depends on a pure or a dirty environment of the node.
The state of the system change dynamically. We consider the discrete time ob-
served signal as m ≥ p dimensional process defined on the fixed probability space
(Ω,F ,P). The observed at each node process is Markovian with two different
transition probabilities (see [18] for details). In the signal the visual consequence
of the transition distribution changes at moment θi, i ∈ N is a change of its
character. To avoid false alarm the confirmation from other nodes is needed.
The family of subsets (coalitions) of nodes are defined in such a way that the
decision of all member of some coalition is equivalent with the claim of the net
that the disorder appeared. It is not sure that the disorder has had place. The
aim is to define the rules of nodes and a construction of the net decision based on
individual nodes claims. Various approaches can be found in the recent research
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for description or modeling of such systems (see e.g. [24], [17]). The problem is
quite similar to a pattern recognition with multiple algorithm when the fusions
of individual algorithms results are unified to a final decision. The proposed so-
lution will be based on a simple game and the stopping game defined by a simple
game on the observed signals. It gives a centralized, Bayesian version of the mul-
tivariate detection with a common fusion center that it has perfect information
about observations and a priori knowledge of the statistics about the possible
distribution changes at each node. Each sensor (player) will declare to stop when
it detects disorder at his region. Based on the simple game the sensors’ decisions
are aggregated to formulate the decision of the fusion center. The sensors’ strate-
gies are constructed as an equilibrium strategy in a non-cooperative game with
a logical function defined by a simple game (which aggregates their decision).

The general description of such multivariate stopping games has been for-
mulated by Kurano, Yasuda and Nakagami in the case when the aggregation
function is defined by the voting majority rule [9] or the monotone voting strat-
egy [25] and the observed sequences of the random variables are independent,
identically distributed. It was Ferguson [5] who substituted the voting aggrega-
tion rules by a simple game. The Markov sequences have been investigated by
the author and Yasuda [22].

The model of detection the disorder at each sensor are presented in the next
section. It allows to define the individual payoffs of the players (sensors). It is
assumed that the sensors are distributed in homogeneous way in the guarded
area and the intruders behavior are well modeled by symmetric random walk. By
these assumptions in Section 2 the a priori distribution of the disorder moment
at each node can be chosen in such a way that it gives the best model of the
structure of sensors and the behavior of intruder . Section 3 introduces the
aggregation method based on a simple game of the sensors. Section 4 contains
derivation of the non-cooperative game and existence theorem for equilibrium
strategy. The final decision based on the state of the sensors is given by the fusion
center and it is described in Section 6. The natural direction of further research
is formulated also in the same section. A conclusion and resume of an algorithm
for rational construction of the surveillance system is included in Section 7.

2 Detection of Disorder at Sensors

Following the consideration of Section 1, let us suppose that the process {
−→
Xn, n ∈

N}, N = {0, 1, 2, . . .}, is observed sequentially in such a way that each sensor, e.g.

r (gets its coordinates in the vector
−→
Xn at moment n). By assumption, it is a

stochastic sequence that has the Markovian structure given random moment θr,
in such a way that the process after θr starts from state

−→
Xn θr−1. The objective

is to detect these moments based on the observation of
−→
Xn · at each sensor

separately. There are some results on the discrete time case of such disorder
detection which generalize the basic problem stated by Shiryaev in [19] (see e.g.
Brodsky and Darkhovsky [2], Bojdecki [1],Poor and Hadjiliadis [16], Yoshida [26],
Szajowski [21]) in various directions.
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Application of the model for the detection of traffic anomalies in networks has
been discussed by Tartakovsky et al. [23]. The version of the problem when the
moment of disorder is detected with given precision will be used here (see [18]).

2.1 Formulation of the Problem

The observable random variables {
−→
Xn}n∈N are consistent with the filtration Fn

(or Fn = σ(
−→
X 0,

−→
X 1, . . . ,

−→
Xn)). The random vectors

−→
Xn take values in (E,B),

where E ⊂ ℜm. On the same probability space there are defined unobservable
(hence not measurable with respect to Fn) random variables {θr}m

r=1 which have
the geometric distributions:

P(θr = j) = pj−1
r qr, qr = 1 − pr ∈ (0, 1), j = 1, 2, . . .. (1)

The sensor r follows the process which is based on switching between two,
time homogeneous and independent, Markov processes {X i

rn}n∈N, i = 0, 1, r ∈ N

with the state space (E,B), both independent of {θr}m
r=1. Moreover, it is assumed

that the processes {X i
rn}n∈N have transition densities with respect to the σ-finite

measure µ, i.e., for any B ∈ B we have

Pi
x(X i

r1 ∈ B) = P(X i
r1 ∈ B|X i

r0 = x) =

∫

B

f ri
x (y)µ(dy). (2)

The random processes {Xrn}, {X0
rn}, {X

1
rn} and the random variables θr are

connected via the rule: conditionally on θr = k

Xrn =

{

X0
rn, if k > n,

X1
r n+1−k, if k ≤ n,

where {X1
rn} is started from X0

r k−1 (but is otherwise independent of X0
r ·).

For any fixed dr ∈ {0, 1, 2, . . .} we are looking for the stopping time τ∗
r ∈ T

such that
Px(|θr − τ∗

r | ≤ dr) = sup
τ∈SX

Px(|θr − τ | ≤ dr) (3)

where SX denotes the set of all stopping times with respect to the filtration
{Fn}n∈N. The parameters dr determines the precision level of detection and
it can be different for too early and too late detection. These payoff functions
measure the chance of detection of intruder.

2.2 Construction of the Optimal Detection Strategy

In [18] the construction of τ∗ by transformation of the problem to the optimal

stopping problem for the Markov process
−→
ξ has been made, such that

−→
ξ rn =

(
−→
X r n−1−dr,n, Πn), where

−→
X r n−1−dr,n = (

−→
X r n−1−dr

, . . . ,
−→
X r n) and Πrn is the

posterior process:

Πr0 = 0,

Πrn = Px (θr ≤ n | Fn) , n = 1, 2, . . .
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which is designed as information about the distribution of the disorder in-
stant θr. In this equivalent the problem of the payoff function for sensor r is
hr(−→x r dr+2, α).

3 The Aggregated Decision via the Cooperative Game

There are various methods combining the decisions of several classifiers or sen-
sors. Each ensemble member contributes to some degree to the decision at any
point of the sequentially delivered states. The fusion algorithm takes into account
all the decision outputs from each ensemble member and comes up with an en-
semble decision. When classifier outputs are binary, the fusion algorithms include
the majority voting [10], [11], näıve Bayes combination [3], behavior knowledge
space [7], probability approximation [8] and singular value decomposition [12].

The majority vote is the simplest. The extension of this method is a simple
game.

3.1 A Simple Game

Let us assume that there are many nodes absorbing information and make deci-
sion if the disorder has appeared or not. The final decision is made in the fusion
center which aggregates information from all sensors. The nature of the system
and their role is to detect intrusion in the system as soon as possible but without
false alarm.

The voting decision is made according to the rules of a simple game. Let us
recall that a coalition is a subset of the players. Let C = {C : C ⊂ N} denote
the class of all coalitions.

Definition 1. (see [15], [5]) A simple game is coalition game having the char-
acteristic function, φ(·) : C → {0, 1}.

Let us denote W = {C ⊂ N : φ(C) = 1} and L = {C ⊂ N : φ(C) = 0}. The
coalitions in W are called the winning coalitions, and those from L are called
the losing coalitions.

Assumptions 2. By assumption the characteristic function satisfies the prop-
erties:

1. N ∈ W;
2. ∅ ∈ L;
3. (the monotonicity): T ⊂ S ∈ L implies T ∈ L.

3.2 The Aggregated Decision Rule

When the simple game is defined and the players can vote presence or absence,
xi = 1 or xi = 0, i ∈ N, of the intruder then the aggregated decision is given by
the logical function

π(x1, x2, . . . , xp) =
∑

C∈W

∏

i∈C

xi

∏

i/∈C

(1 − xi). (4)
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For the logical function π we have (cf [25])

π(x1, . . . , xp) = xi · π(x1, . . . ,
i

1̆, . . . , xp) + xi · π(x1, . . . ,
i

0̆, . . . , xp).

4 A Non-cooperative Stopping Game

Following the results of the author and Yasuda [22] the multilateral stopping
of a Markov chain problem can be described in the terms of the notation used
in the non-cooperative game theory (see [14], [4], [13], [15]). Let (

−→
Xn, Fn,Px),

n = 0, 1, 2, . . . , N , be a homogeneous Markov chain with state space (E,B). The
horizon can be finite or infinite. The players are able to observe the Markov chain
sequentially. Each player has their utility function fi : E → ℜ, i = 1, 2, . . . , p,
such that Ex|fi(

−→
X 1)| < ∞. If process is not stopped at moment n, then each

player, based on Fn, can declare independently their willingness to stop the
observation of the process.

Definition 3. (see [25]) An individual stopping strategy of the player i (ISS) is
the sequence of random variables {σi

n}
N
n=1, where σi

n : Ω → {0, 1}, such that σi
n

is Fn-measurable.

The interpretation of the strategy is following. If σi
n = 1 then player i declares

that they would like to stop the process and accept the realization of Xn. Denote
σi = (σi

1, σ
i
2, . . . , σ

i
N ) and let Si be the set of ISSs of player i, i = 1, 2, . . . , p.

Define

S = S1 × S2 × . . . × Sp.

The element σ = (σ1, σ2, . . . , σp)T ∈ S will be called the stopping strategy (SS).
The stopping strategy σ ∈ S is a random matrix. The rows of the matrix are the
ISSs. The columns are the decisions of the players at successive moments. The
factual stopping of the observation process, and the players realization of the
payoffs is defined by the stopping strategy exploiting p-variate logical function.
Let π : {0, 1}p → {0, 1}. In this stopping game model the stopping strategy is the
list of declarations of the individual players. The aggregate function π converts
the declarations to an effective stopping time.

Definition 4. A stopping time tπ(σ) generated by the SS σ ∈ S and the aggre-
gate function π is defined by

tπ(σ) = inf{1 ≤ n ≤ N : π(σ1
n, σ2

n, . . . , σp
n) = 1}

(inf(∅) = ∞). Since π is fixed during the analysis we skip index π and write
t(σ) = tπ(σ).

We have {ω ∈ Ω : tπ(σ) = n} =
⋂n−1

k=1{ω ∈ Ω : π(σ1
k, σ2

k, . . . , σ
p
k) = 0} ∩ {ω ∈

Ω : π(σ1
n, σ2

n, . . . , σp
n) = 1} ∈ Fn, then the random variable tπ(σ) is stopping
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time with respect to {Fn}N
n=1. For any stopping time tπ(σ) and i ∈ {1, 2, . . . , p},

let

fi(Xtπ(σ)) =

{

fi(Xn) if tπ(σ) = n,
lim supn→∞ fi(Xn) if tπ(σ) = ∞

(cf [20], [22]). If players use SS σ ∈ S and the individual preferences are con-
verted to the effective stopping time by the aggregate rule π, then player i gets
fi(Xtπ(σ)).

Let ∗σ = (∗σ1, ∗σ2, . . . , ∗σp)T be fixed SS. Denote

∗σ(i) = (∗σ1, . . . , ∗σi−1, σi, ∗σi+1, . . . , ∗σp)T .

Definition 5. (cf. [22]) Let the aggregate rule π be fixed. The strategy ∗σ =
(∗σ1, ∗σ2, . . . , ∗σp)T ∈ S is an equilibrium strategy with respect to π if for each
i ∈ {1, 2, . . . , p} and any σi ∈ Si we have

Exfi(
−→
X tπ(∗σ)) ≥ Exfi(

−→
X tπ(∗σ(i))). (5)

The set of SS S, the vector of the utility functions f = (f1, f2, . . . , fp) and the
monotone rule π define the non-cooperative game G = (S,f ,π). The construction
of the equilibrium strategy ∗σ ∈ S in G is provided in [22]. For completeness this
construction will be recalled here. Let us define an individual stopping set on the
state space. This set describes the ISS of the player. With each ISS of player i

the sequence of stopping events Di
n = {ω : σi

n = 1} combines. For each aggregate
rule π there exists the corresponding set value function Π : F → F such that
π(σ1

n, σ2
n, . . . , σp

n) = π{ID1
n
, ID2

n
, . . . , IDp

n
} = IΠ(D1

n,D2
n,...,Dp

n). For solution of the
considered game the important class of ISS and the stopping events can be
defined by subsets C i ∈ B of the state space E. A given set C i ∈ B will be called
the stopping set for player i at moment n if Di

n = {ω : Xn ∈ C i} is the stopping
event.

For the logical function π we have

π(x1, . . . , xp) = xi · π(x1, . . . ,
i

1̆, . . . , xp) + xi · π(x1, . . . ,
i

0̆, . . . , xp).

It implies that for Di ∈ F

Π(D1, . . . , Dp) = {Di ∩ Π(D1, . . . ,
i

Ω̆, . . . , Dp)}

∪{D
i
∩ Π(D1, . . . ,

i

∅̆, . . . , Dp)}.

(6)

Let fi, gi be the real valued, integrable (i.e. Ex|fi(X1)| < ∞) function defined
on E. For fixed Dj

n, j = 1, 2, . . . , p, j �= i, and C i ∈ B define

ψ(C i) = Ex

[

fi(X1)IiD1(Di
1
) + gi(X1)IiD1(Di

1
)

]

where iD1(A) = Π(D1
1, . . . , D

i−1
1 , A, Di+1

1 , . . . , D
p
1) and Di

1 = {ω : Xn ∈ C i}.
Let a+ = max{0, a} and a− = min{0,−a}.
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Lemma 1. Let fi, gi, be integrable and let C j ∈ B, j = 1, 2, . . . , p, j �= i, be
fixed. Then the set ∗C i = {x ∈ E : fi(x) − gi(x) ≥ 0} ∈ B is such that

ψ(∗C i) = sup
C i∈B

ψ(C i)

and

ψ(∗C i) = Ex(fi(X1) − gi(X1))
+

IiD1(Ω) (7)

−Ex(fi(X1) − gi(X1))
−

IiD1(Ω) + Exgi(X1).

Based on Lemma 1 we derive the recursive formulae defining the equilibrium
point and the equilibrium payoff for the finite horizon game.

4.1 The Finite Horizon Game

Let horizon N be finite. If the equilibrium strategy ∗σ exists, then we denote
vi,N (x) = Exfi(Xt(∗σ)) the equilibrium payoff of i-th player when X0 = x. For
the backward induction we introduce a useful notation. Let Si

n = {{σi
k}, k =

n, . . . , N} be the set of ISS for moments n ≤ k ≤ N and Sn = S1
n×S2

n×. . .×Sp
n.

The SS for moments not earlier than n is nσ = (nσ1, nσ2, . . . , nσp) ∈ Sn, where
nσi = (σi

n, σi
n+1, . . . , σ

i
N ). Denote

tn = tn(σ) = t(nσ) = inf{n ≤ k ≤ N : π(σ1
k, σ2

k, . . . , σ
p
k) = 1}

to be the stopping time not earlier than n.

Definition 6. The stopping strategy n∗σ = (n∗σ1, n∗σ2, . . . , n∗σp) is an equilib-
rium in Sn if

Exfi(Xtn(∗σ)) ≥ Exfi(Xtn(∗σ(i))) Px − a.e.

for every i ∈ {1, 2, . . . , p}, where

n∗σ(i) = (n∗σ1, . . . , n∗σi−1, nσi, n∗σi+1, . . . , n∗σp).

Denote

vi,N−n+1(Xn−1) = Ex[fi(Xtn(∗σ))|Fn−1] = EXn−1
fi(Xtn(∗σ)).

At moment n = N the players have to declare to stop and vi,0(x) = fi(x). Let us
assume that the process is not stopped up to moment n, the players are using the
equilibrium strategies ∗σi

k, i = 1, 2, . . . , p, at moments k = n + 1, . . . , N . Choose
player i and assume that other players are using the equilibrium strategies ∗σj

n,
j �= i, and player i is using strategy σi

n defined by stopping set C i. Then the
expected payoff ϕN−n(Xn−1,C

i) of player i in the game starting at moment n,
when the state of the Markov chain at moment n − 1 is Xn−1, is equal to

ϕN−n(Xn−1,C
i) = EXn−1

[

fi(Xn)Ii∗Dn(Di
n) + vi,N−n(Xn)Ii∗Dn(Di

n)

]

,

where i∗Dn(A) = Π(∗D1
n, . . . , ∗Di−1

n , A, ∗Di+1
n , . . . , ∗Dp

n).
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By Lemma 1 the conditional expected gain ϕN−n(XN−n,C i) attains the max-
imum on the stopping set ∗C i

n = {x ∈ E : fi(x) − vi,N−n(x) ≥ 0} and

vi,N−n+1(Xn−1) = Ex[(fi(Xn) − vi,N−n(Xn))+Ii∗Dn(Ω)|Fn−1]
−Ex[(fi(Xn) − vi,N−n(Xn))−Ii∗Dn(∅)|Fn−1]
+Ex[vi,N−n(Xn)|Fn−1]

(1)

Px−a.e.. It allows to formulate the following construction of the equilibrium
strategy and the equilibrium value for the game G.

Theorem 1. In the game Gwith finite horizon N we have the following solution.

(i) The equilibrium value vi(x), i = 1, 2, . . . , p, of the game G can be calculated
recursively as follows:
1. vi,0(x) = fi(x);
2. For n = 1, 2, . . . , N we have Px−a.e.

vi,n(x) = Ex[(fi(XN−n+1) − vi,n−1(XN−n+1))
+

Ii∗DN−n+1(Ω)|FN−n]

−Ex[(fi(XN−n+1) − vi,n−1(XN−n+1))
−

Ii∗DN−n+1(∅)|FN−n]

+Ex[vi,n−1(XN−n+1)|FN−n],

for i = 1, 2, . . . , p.

(ii) The equilibrium strategy ∗σ ∈ S is defined by the SS of the players ∗σi
n,

where ∗σi
n = 1 if Xn ∈ ∗C i

n, and ∗C i
n = {x ∈ E : fi(x) − vi,N−n(x) ≥ 0},

n = 0, 1, . . . , N .

We have vi(x) = vi,N (x), and Exfi(Xt(∗σ)) = vi,N (x), i = 1, 2, . . . , p.

5 Infinite Horizon Game

In this class of games the equilibrium strategy is presented in Definition 5 but
in class of SS

S∗
f = {σ ∈ S∗ : Exf−

i (Xt(σ)) < ∞ for every x ∈ E, i = 1, 2, . . . , p}.

Let ∗σ ∈ S∗
f be an equilibrium strategy. Denote

vi(x) = Exfi(Xt(∗σ)).

Let us assume that (n+1)∗σ ∈ S∗
f,n+1 is constructed and it is an equilibrium

strategy. If players j = 1, 2, . . . , p, j �= i, apply at moment n the equilibrium
strategies ∗σj

n , player i the strategy σi
n defined by stopping set Ci and (n+1)∗σ at

moments n + 1, n + 2, . . ., then the expected payoff of the player i, when history
of the process up to moment n − 1 is known, is given by

ϕn(Xn−1,C
i) = EXn−1

[

fi(Xn)Ii∗Dn(Di
n) + vi(Xn)Ii∗Dn(Di

n)

]

,

where i∗Dn(A) = Π(∗D1
n, . . . , ∗Di−1

n , A, ∗Di+1
n , . . . , ∗Dp

n), ∗Dj
n = {ω ∈ Ω : ∗σj

n =
1}, j = 1, 2, . . . , p, j �= i, and Di

n = {ω ∈ Ω : σi
n = 1} = 1} = {ω ∈ Ω : Xn ∈ C〉}.
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By Lemma 1 the conditional expected gain ϕn(Xn−1,C
i) attains the maximum

on the stopping set ∗C i
n = {x ∈ E : fi(x) ≥ vi(x)} and

ϕn(Xn−1,
∗C i) = Ex[(fi(Xn) − vi(Xn))+Ii∗Dn(Ω)|Fn−1]

−Ex[(fi(Xn) − vi(Xn))−Ii∗Dn(∅)|Fn−1]

+Ex[vi(Xn)|Fn−1].

Let us assume that there exists solution (w1(x), w2(x), . . . , wp(x)) of the equa-
tions

wi(x) = Ex(fi(X1) − wi(X1))
+

Ii∗D1(Ω) (1)

−Ex(fi(X1) − wi(X1))
−

Ii∗D1(∅) + Exwi(X1),

i = 1, 2, . . . , p. Consider the stopping game with the following payoff function
for i = 1, 2, . . . , p.

φi,N (x) =

{

fi(x) if n < N,

vi(x) if n ≥ N.

Lemma 2. Let ∗σ ∈ S∗
f be an equilibrium strategy in the infinite horizon game

G. For every N we have
Exφi,N (Xt∗) = vi(x).

Let us assume that for i = 1, 2, . . . , p and every x ∈ E we have

Ex[supn∈N
f+

i (Xn)] < ∞. (2)

Theorem 2. Let (Xn, Fn,Px)∞n=0 be a homogeneous Markov chain and the pay-
off functions of the players fulfill (2). If t∗ = t(∗σ), ∗σ ∈ S∗

f then Exfi(Xt∗) =
vi(x).

Theorem 3. Let the stopping strategy ∗σ ∈ S∗
f be defined by the stopping sets

∗C i
n = {x ∈ E : fi(x) ≥ vi(x)}, i = 1, 2, . . . , p, then ∗σ is the equilibrium strategy

in the infinite stopping game G.

6 Determining the Strategies of Sensors

Based on the model constructed in Sections 2–4 for the net of sensors with
the fusion center determined by a simple game, one can determine the rational
decisions of each nodes. The rationality of such a construction refers to the
individual aspiration for the highest sensitivity to detect the disorder without
false alarm. The Nash equilibrium fulfills requirement that nobody deviates from
the equilibrium strategy because its probability of detection will be smaller. The
role of the simple game is to define wining coalitions in such a way that the
detection of intrusion to the guarded area is maximal and the probability of false
alarm is minimal. The method of constructing the optimum winning coalitions
family is not the subject of the research in this article. However, there are some
natural methods of solving this problem.
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The research here is focused on constructing the solution of the non-
cooperative stopping game as to determine the detection strategy of the sensors.
To this end, the game analyzed in Section 4 with the payoff function of the play-
ers defined by the individual disorder problem formulated in Section 2 should
be derived.

The proposed model disregards correlation of the signals. It is also assumed
that the fusion center has perfect information about signals and the information
is available at each node. The further research should help to qualify these real
needs of such models and to extend the model to more general cases. In some
type of distribution of sensors, e.g. when the distribution of the pollution in the
given direction is observed, the multiple disorder model should work better than
the game approach. In this case the a priori distribution of disorder moment
has the form of sequentially dependent random moments and the fusion decision
can be formulated as the threshold one: stop when k∗ disorder is detected. The
method of a cooperative game was used in [6] to find the best coalition of sensors
in the problem of the target localization. The approach which is proposed here
shows possibility of modelling the detection problem by multiple agents at a
general level.

7 Final Remarks

In a general case the consideration of this paper leads to the algorithm of con-
structing the disorder detection system.

7.1 Algorithm

1. Define a simple game on the sensors.
2. Describe signal processes and a priori distribution of the disorder moments

at all sensors. Establish the a posteriori processes:
−→
Πn = (Π1n, . . . , Πmn),

where Πkn = P(θ ≤ n|Fn).
3. Solve the multivariate stopping game on the simple game to get the individ-

ual strategies of the sensors.
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