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Abstract

We consider the problem faced by a manager commissioning an inno-

vative product requiring multi-stage sequenced innovation, when innovat-

ing agents have different costs and information transfer is expensive. We

specify their optimisation problem and present a polynomial time solu-

tion method. We use the method to consider how cost networks influence

centre choice switching by solving a series of stochastically generated net-

works and running logistic regressions on switching frequencies. The effect

of expected innovation costs and its standard deviation are shown to be

distribution dependent. Expected transfer costs are shown to have an un-

ambiguous dampening effect on the amount of centre switching. Network

size sensitivity is considered. Transfer costs are found to be far more in-

fluential on switching than innovation costs in a symmetric model. Cost

trends that leave average costs unchanged are shown typically to have a

significant non-zero effect on switching. A cost structure is introduced to

model dichotomous expertise and to link innovation and transfer costs,

and agent switches shown to be highly sensitive to an underlying learning

cost measure. We then consider the set of sequences constrained to reach

each possible final stage agent to reflect managerial specificity. Distribu-

tional parameters are found to have a dampened effect on within series

changes, and their effect on cross series diversity is demonstrated to be

opposite to that on within series changes.

1 Introduction

Information exchange links between innovators have often been found
to change over time (Owen-Smith and Powell, 2004; Powell et al.,
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2005; Schilling and Phelps, 2007). Commercial or non-commercial
partners may enter or leave formal or informal arrangements, and
preliminary investigations may become research, development, or
commercialisation.

Candidate explanations for the fluctuations include variations in
link determinants, such as social proximity (Sorenson, 2003; Cantner
and Graf, 2006), resource complementarity (Frenken, 2000), or past
ties (Beckman et al., 2004). Von Hippel (1994) proposes that when
the cost of acquiring necessary information at an innovation site
is high, the innovation locus may shift to an alternative site that
already has the information, and that the cost of locus transfer may
lead to a further refinement in the process. A common feature of
many explanations is that they present a network of information
exchange links emerging from an antecedent social, geographical, or
information network.

This paper follows Von Hippel (1994) in examining the movement
of the problem solving locus under costly knowledge acquisition and
transfer. We consider the managerial problem of selecting agents
responsible for innovation at each stage of a multistage, sequential
process, while minimising total costs incurred. Agents’ innovation
costs are stage specific, and transfer costs are incurred when different
agents are selected for successive innovation stages. The problem
faced is equivalent to the selection of a path through a network where
nodes represent agent costs and edges represent transfer costs.

For any such cost network, we present a dynamic programming
algorithm that offers a polynomial time solution to the managerial
problem, in contrast to the exponential time exhaustive search solu-
tion. The solution describes the locus of innovation and the move-
ment of information between the loci. The algorithm is used to
examine the effect on agent switching of specific connections within
innovation and transfer cost networks generated stochastically.

We start by examining the effect of parameter variation in in-
dependent identically distributed innovation costs, holding transfer
costs constant. Increased expected innovation costs are found to in-
crease the number of agent switches for a lognormal distribution
but not a uniform distribution when we also allow for standard
deviation, while the cross product of standard deviation and ex-
pectations has a distribution dependent effect. We rationalise the
observations with reference to distribution shapes and a condition
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for agent switching.
We then examine agent switching consequent on transfer cost

distribution parameter variation, with innovation costs generated
by an unchanging uniform distribution. We find greater expected
transfer costs tend to decrease the number of agent changes, as the
savings from locus transfer are less likely to exceed the costs. We
find parameter standard deviation and the cross product are both
significant too, and argue for distribution dependent ambiguity in
their effects.

We then look at whether our results are sensitive to the network
size. We depart from our base assumptions of five agents and thir-
teen innovation steps to examine many agents or many steps or both.
For both the innovation and transfer generated networks, the effect
of expected value did not change in its high significance or sign on
moving to larger networks, and had relatively modest variation in
its size. Standard deviation showed much greater adjustment for the
innovation network, gaining significance and a tendency to reduce
agent switching. For the transfer network, standard deviation be-
came a much less positive influence on switching. The cross product
of expectations and standard deviation similarly had a less positive
effect in large networks, but sign and significance were unaltered.

We next examine the effect of parameter variation when the net-
work is generated simultaneously by innovation and transfer cost
variation. Transfer costs are found to be much more important
than innovation costs for determining agent changes, when the two
cost types are compared over the same parameter ranges. The ob-
servation is rationalised by noting that transition costs have posi-
tive means whereas the difference between two successive innovation
costs is symmetric around zero, so we would expect transition costs
to be more influential on changes.

We then look at parameter influence on agent changes in the pres-
ence of a linear trend in either the innovation or transfer costs. We
find that a trend in innovation costs that averages to one neverthe-
less tends to produce an overall increase in the number of changes.
Trends in transfer costs averaging to one tend to reduce the amount
of agent switching. We reason that the non-neutrality is a result of
the relative distributional concentrations of innovation and transfer
costs.

We next examine two network representations of a more dichoto-
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mous cost structure. The first assumes that some agents have exper-
tise at some steps in the innovation sequence, and other agents have
to pay to acquire the knowledge in order to innovate. We measure
this expense by a learning cost parameter multiplier to a Bernoulli
variable added to innovation costs. Over a given parameter range,
expected learning costs tend to increase agent changes to a much
greater extent than the expected innovation costs. The relation is
explained by the greater dispersion of the learning costs compared
with the innovation costs.

The second dichotomous representation adds the additional as-
sumption that when an agent has to spend money to acquire ex-
pertise for innovation, any transfers to or from them will also be
more costly. The idea is that there will be greater difficulties in
communicating innovation requirements and information about past
developments. We find that learning cost again leads to a very large
increase in switching. The increase is noted to decompose into parts
due to changes in innovation and transfer cost distributions.

We then examine agent switching when innovation sequences are
constrained to be at a certain agent in their last stage, where the
final agent is successively taken to be each possible one. This might
arise if a commissioning agent is the final user or marketer of a new
technology, and there is some freedom from cost competition driving
out inefficient producers. We consider responses to cost parameter
changes within series using aggregated changes, and responses in
the diversity across series using counts of distinct agents. We find
the effects of expectation and standard deviation changes on within
variation tend to be lower than on a single optimal series, while
parameter effects on cross variation tend to act in the opposite di-
rection to the effect on within variation. The difference is explained
by observing that when series are constrained to pass through a
particular agent, factors that tend to reduce within variation also
tend to keep series locked into that agent. Thus they reduce com-
mon agent usage with series constrained to pass through different
agents, and so increase cross diversity.

The rest of the paper has the following structure. Section 2
presents the model and solution method we use. Section 3 presents
particular network structures and their estimation results. Section
4 concludes.
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2 The model and its solution

2.1 Specification

In this section we present our model of the movement of the problem
solving locus. It is characterised by cost minimisation on a network
of innovation loci with heterogeneous transfer and innovation ex-
penses.

There are n agents who can initiate an innovation process while
minimising total costs. Innovation is a sequential process consisting
of s stages. Any initiating agent can be chosen to be responsible for
a particular stage of innovation. The cost of innovation varies by the
agent and the stage. Selecting the agent for the successive stages is
costly with a transfer cost dependent on the stage and on the agent
used in the current and next stage. Both innovation and transfer
costs are stochastic. The sequence ends at the initiating agent. For
most of the analysis, we study the sequence of the initiating agent
with the lowest cost sequence. Later, we look at all of the sequences
together.

We can represent the innovation process as a sequence (p1, p2, . . . , ps)
where each pi is chosen from 1, . . . , n indexing the n possible agents
who can be selected at each stage. The optimal process is the se-
quence minimising the total cost

Ip1,1 + Tp1,p2,1 + Ip2,2 + · · ·+ Tps−1,ps,s−1 + Ips,s

where Ipt,t is the cost of innovation at stage t of the agent with index
pt, and Tpt−1,pt,t−1 is the cost of transferring at the end of stage t-1
from agent indexed pt−1 to agent indexed pt.

2.2 Solution

Our base analysis of the dynamics proceeds by generating random
samples of innovation and transfer costs under various distributional
assumptions and then determining the lowest cost sequence of agents
for each sample. Next we measure the number of agent changes
in the sequence, before logistically regressing the number on the
distribution parameters. We then consider modifying factors.

We start by assuming five agents participating in an innovation
process with thirteen steps. Costs are positive and are either drawn
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from a lognormal or uniform distribution with specified mean and
standard deviation. For the lognormal distribution, cost samples are
generated for means and standard deviations taking evenly spaced
values. For the uniform distribution, the mean and lower bound
are similarly generated. The cost of transfer from an agent to itself
is fixed at zero, and the other transfer costs are generally of the
same magnitude as the innovation cost. The relative rather than
the absolute values of the costs are of interest for determining the
dynamics, and reflect the possibility of a high expense of technology
transfer compared with innovation. The assumptions relating to the
numbers of agents and steps, and the cost distributions are varied
in subsequent simulations.

An exhaustive check on the lowest cost sequence from all n possi-
ble choices of agent at each of the s stages is O(ns), which becomes
prohibitively time-consuming for large n and s. We therefore pro-
pose a dynamic programming algorithm for use here. We know the
costs for optimal series up to the first stage, conditional on the final
agent at the first stage - they are just the innovation costs of each
vertex. We can then calculate the costs for the optimal series up
to the second stage conditional on the final agent at that stage, by
comparing for each possible first stage precursor the sum of the costs
of being at that first stage and the costs of transferring from that
agent to the second stage agent. We repeat the process for later
stages, and finally we compare total costs for sequences at each pos-
sible stage s end point to find the lowest cost one. The comparisons
from the second stage onwards are O(n2), the final comparison is
O(n), and the whole procedure is O(n2s).

Once we have the optimal sequences we calculate the number of
agent changes within each of them. These numbers together with the
cost distribution parameters form the determined and determinant
variables in a logistic regression. We implement the data generation,
solution algorithm, and MLE estimation in R code forthcoming on
our website.
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3 Network structures and their estimation

3.1 Innovation costs

In this section we examine the influence of innovation cost distribu-
tion parameters on the number of change points for costs generated
by lognormal and uniform innovation cost distributions. Lognor-
mal cost samples are generated for innovation cost means and stan-
dard deviations taking values from one to ten by increments of 0.2.
Uniform distribution cost samples are generated for innovation cost
means that are similarly defined, and lower bounds running from
0.2 to the mean less 0.2 at intervals of 0.2, so there are 462 = 2, 116
datapoints in each regression. Transfer costs are held constant at
five.

Table 1 shows regressions of the number of agent changes on
expected innovation costs and their standard deviation, where the
cost variation is generated in innovation alone. In column one, a
lognormal distribution of costs is used. Rises in expected innova-
tion costs increase the number of agent changes. The effect is highly
significant. In column two, the standard deviation also increases the
number of changes as a distinct effect to expectation changes, with
a highly significant coefficient. The operation of standard devia-
tion on changes seems to operate more directly through the cross
product with expectations, as shown in column three. Standard
deviation loses its significance to a highly significant cross product
effect. Column four introduces a uniform cost distribution, again
finding expected costs increase the number of changes. In column
five, expected costs have minimal effect when compared with stan-
dard deviation’s positive effect. Expectations lose any significance in
the regression. Column six finds expectations, standard deviation,
and their cross product are all highly significant influences.

The influence of expected innovation costs and their standard
deviation may be explained by reference to the selection algorithm
and the cost distribution function. The criteria for a series showing
no vertex change (staying at vertex p) at stage t rather than one
showing a change from vertex q to vertex r is

Cp,t−1 + Ip,t < Cq,t−1 + Tq,r,t−1 + Ir,t

where Cp,t is the cumulative cost to stage t ending at agent p.
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Table 1: Logistic regression of number of changes on innovation cost distribution parameters

Lognormal Lognormal Lognormal Uniform Uniform Uniform

Expected costs 0.239 *** 0.242 *** 0.126 *** 0.302 *** -0.0131 0.253 ***
0.00832 0.00837 0.0207 0.0156 0.0205 0.0413

St. dev. costs 0.117 *** -0.0119 0.853 *** 1.88 ***
0.00785 0.0227 0.0293 0.132

Expectation * st. dev 0.0193 *** -0.121 ***
0.0032 0.0152

Constant -3.54 *** -4.24 *** -3.46 *** -4.47 *** -4.34 *** -6.51 ***
0.0596 0.0779 0.145 0.126 0.13 0.327

Pseudo R
2 0.3 0.38 0.39 0.18 0.63 0.66

* denotes ten percent significance, ** denotes five percent significance, and *** denotes one percent
significance. Asymptotic standard errors are reported below the coefficients.
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Thus
(Cp,t−1 − Cq,t−1) + (Ip,t − Ir,t) < Tq,r,t−1 (1)

Under the lognormal distribution the distribution around the mean
depends on the mean and variance. Changing the mean can vary
the distribution of the cumulative difference (the first bracketed
term), and the size of the incremental difference in costs (the sec-
ond bracketed term). This alters the probability of the transfer
function being sufficiently large to make movement inefficient, and
so the probability of a switch. If we have a translation-invariant
innovation cost distribution such as the uniform distribution sat-
isfying Prob(Ip,t,m+c > a) = Prob(Ip,t,m + c > a) where Ip,t,m is
Ip,t with its dependence on the mean m made explicit and c is
any constant, then Prob(Ip,t,m − Ip,t,m > k) for any constant k is
Prob(Ip,t,m + c− (Ip,t,m + c) > k) = Prob(Ip,t,m+c − Ip,t,m+c > k), so
that altering the mean does not alter the distribution function of the
incremental difference. Writing the cumulative function C in terms
of its components and then differencing shows that the mean adjust-
ment also leaves the cumulative difference unchanged. For general
cost distributions the effect is potentially negative or positive, while
the standard deviation does alter the distribution around the mean
and hence the difference’s distribution.

3.2 Transfer costs

This section regresses agent changes on transfer cost distribution pa-
rameters. Transfer costs are generated from lognormal and uniform
distributions with parameters varying as in section 3.1. Innovation
costs are generated from a uniform distribution on (1,9); if we held
innovation costs constant, no changes would occur for any transfer
costs.

Table 2 shows the effect of transfer cost determinants on agent
shifts when transfer costs are stochastic and innovation costs are
stochastic with fixed parameters. Column one finds expected trans-
fer costs are negatively associated with change frequency, with a
highly significant coefficient. Column two finds that standard de-
viation has a distinct positive effect, while column three shows the
cross product has a significant positive effect. Columns four to six
repeat the regressions with a uniform distribution and find similar
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Table 2: Logistic regression of number of changes on transfer cost distribution parameters

Lognormal Lognormal Lognormal Uniform Uniform Uniform

Expected costs -0.357 *** -0.374 *** -0.544 *** -0.296 *** -0.499 *** -0.53 ***
0.00601 0.00622 0.0162 0.0104 0.0157 0.0197

St. dev. costs 0.182 *** 0.0504 *** 0.56 *** 0.389 ***
0.00574 0.0125 0.0275 0.0711

Expectation * st. dev 0.0282 *** 0.0228 ***
0.0024 0.00867

Constant 1.17 *** 0.222 *** 0.984 *** 0.0469 0.164 ** 0.369 ***
0.0321 0.0433 0.0783 0.0643 0.0655 0.101

Pseudo R
2 0.53 0.66 0.67 0.31 0.49 0.49

* denotes ten percent significance, ** denotes five percent significance, and *** denotes one percent
significance. Asymptotic standard errors are reported below the coefficients.
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results differing in the magnitude but not the direction or signifi-
cance of the coefficients.

Inequality 1 again is helpful for explaining the observed results.
Conditional on the costs to stage n− 1, an increase in the transfer
costs unambiguously decreases the likelihood of a change. The effect
of transfer costs to stage n− 1 is potentially ambiguous, which may
offset the contemporaneous effect. The standard deviation of costs
may also have an ambiguous effect, dependent on the innovation
and transfer cost distributions.

3.3 Size sensitivity

This section regresses agent changes on innovation and transfer cost
distribution parameters, when the number of agents or number of
steps or both is much larger than the base case. The number of
agents is varied up to 50 and the number of steps up to 100. We
repeat the innovation and transfer estimations of Tables one and
two for the full specification including cross products. Costs are
generated from the lognormal distribution.

In Table 3, we examine the sensitivity of the previous results
to the number of agents and steps. Columns one to four examine
the effect of innovation distribution parameters on agent changes,
where the data generation is by changes in innovation parameters
and not transfer parameters. Column one replicates the estimation
in column three of Table one with few (five) agents and few (thir-
teen) steps, with some small variations due to a different random
seed. Column two has few agents and many (one hundred) steps,
and the change effects of expected costs and standard deviation
fall. They have the same level of significance, and their explana-
tory power increases sharply. Column three has many (fifty) agents
and few steps. The change effects here increase for expected costs,
while standard deviation and its product with expectations have a
negative and less positive effect, respectively. Explanatory power in-
creases a moderate amount. The many agents and many steps case
is handled in column four. The overall effect of expected innovation
costs is slightly more positive than for the few agents, few steps
case. Standard deviation decreases the number of changes through
its significant direct action, in contrast to the few agents, few steps
case, while the product’s effect is less positive.
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Table 3: Logistic regression of number of changes on innovation (columns one to four) and transfer (columns five to eight) cost distribution
parameters with generation by variation in single parameter sets

Innovation Transfer

Few, few Few, many Many, few Many, many Few, few Few, many Many, few Many, many
Expected costs 0.117 *** 0.0821 *** 0.211 *** 0.139 *** -0.542 *** -0.48 *** -0.505 *** -0.475 ***

0.0209 0.00652 0.0202 0.00593 0.0161 0.00531 0.0148 0.00501
St. dev. costs 0.0066 0.00193 -0.0536 ** -0.0517 *** 0.0468 *** 0.0562 *** 0.218 *** 0.21 ***

0.0225 0.00689 0.024 0.00672 0.0125 0.00427 0.0154 0.00536
Expectation * st. dev 0.0189 *** 0.0168 *** 0.0157 *** 0.0152 *** 0.0267 *** 0.0218 *** 0.0133 *** 0.0114 ***

0.0032 0.00101 0.00327 0.00096 0.0024 0.0008 0.00245 0.00084
Constant -3.51 *** -3.01 *** -3.62 *** -2.83 *** 1.06 *** 0.892 *** 1.54 *** 1.58 ***

0.146 0.0441 0.147 0.041 0.0783 0.0266 0.0847 0.0294

Pseudo R
2 0.38 0.71 0.51 0.79 0.67 0.88 0.79 0.94

* denotes ten percent significance, ** denotes five percent significance, and *** denotes one percent significance. Asymptotic standard
errors are reported below the coefficients. ”Few, few” means few agents and few steps, and so on.
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Columns five to eight regress agent changes on transfer distri-
bution parameters, where the generation is by variation in those
parameters alone. Column five replicates the estimation in Table
two, column three for few agents and few steps. Column six looks
at few agents and many steps. The effects of transfer distribution
parameters are broadly similar to the base case, with a slightly less
negative expectations effect and a slightly greater standard devia-
tion effect. Explanatory power increases from its already high base
level to a very high level as measured by R2. In column seven, the
many agents and few steps regression finds an expected transfer cost
effect that is similar to the few agents, few steps case, and standard
deviation and product effect that are over fifty percent lower. Signs
and significance are retained, and overall explanatory power rises
moderately. Column eight’s many agents, many steps regression
has a fall in the magnitude of the expected value effect, and large
declines in the standard deviation and product effects. Again, signs
and significance are retained. Almost all the variation in the data
is explained by the determinant variables.

3.4 Innovation and transfer cost interaction

This section regresses agent changes on cost distribution parameters
when the data is generated by parameter variation in both innova-
tion and transfer costs. Costs are generated from a lognormal dis-
tribution. Owing to the large number of parameter combinations,
the cost distribution parameters are spaced at 1 rather than 0.2,
meaning there are 10,000 datapoints.

In Table 4, we generate data by varying both innovation and
transfer cost distribution parameters simultaneously. Column one
regresses changes in the data on innovation distribution determi-
nants alone. Expected innovation costs have a less positive effect
on change numbers than when the data is generated by innovation
parameter variation alone, as estimated in Table 3.1, column three.
Increased standard deviation reduces the number of changes, and the
effect is significant. The product’s effect is roughly the same. The
regression’s explanatory power is low. Column two shows the results
of regression on transfer distribution determinants alone. Compared
with the results in Table 3.2, column three where the data is gen-
erated by transfer parameter variation alone, there is a moderate

13



Table 4: Logistic regression of number of changes on innovation and transfer
cost distribution parameters with generation by variation in both parameter
sets

Innovation Transfer Both

Expected costs (innovation) 0.0499 *** 0.0597 ***
0.00493 0.00546

St. dev. costs (innovation) -0.0434 *** -0.0548 ***
0.00517 0.00568

Expectation * st. dev (innovation) 0.0144 *** 0.0183 ***
0.00079 0.00088

Expected costs (transfer) -0.42 *** -0.438 ***
0.00652 0.00668

St. dev. costs (transfer) 0.0926 *** 0.0993 ***
0.00492 0.00505

Expectation * st. dev (transfer) 0.0127 *** 0.0128 ***
0.00096 0.00098

Constant -1.34 *** 0.35 *** -0.222 ***
0.0319 0.0312 0.0468

Pseudo R
2 0.1 0.54 0.66

* denotes ten percent significance, ** denotes five percent significance, and
*** denotes one percent significance. Asymptotic standard errors are reported
below the coefficients.

reduction in the negative effect of expected costs, a near doubling
of the effect of standard deviation, and a rough halving of the prod-
uct’s effect. The explanatory power of the transfer regression is
moderate, with an R2 of 0.54. In column three, we regress changes
on both the innovation and transfer cost parameters. There is some
modest difference between the innovation cost distribution coeffi-
cients of columns one and three, and the transfer cost distribution
coefficients are very similar. The explanatory power is quite high.

We can see that transfer costs will often be more important than
innovation costs as influences on change points by examining the
change criteria 1. The left hand side consists of the sum of two
zero mean variables, by symmetry. The dispersion may be altered
by the expected innovation cost and its standard deviation. By
contrast, the right hand side variable is a positive mean random
variable. Altering the expected transfer cost alters the mean as well
as possibly the dispersion. For distributions where the mean shifting
effect is more important than the dispersion effect, expected transfer
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costs will typically have a greater explanatory power than expected
innovation costs.

3.5 Trends

This section looks at cost parameter influence on agent changes,
when costs are subject to a linear trend. Incremental innovation
and transfer costs are generated as for sections 3.1 and 3.2, and the
trend is applied as a multiplier to them that equals one when at
the midpoint of the step sequence. Thus, the expected cost over
the mean trended sequence is the same as the expected cost over
the mean untrended series. Costs are generated from the lognormal
distribution. Cost and trend series are each split into 19 parts for
generating the data, giving 6,859 datapoints.

Table 5: Logistic regression of number of changes on
innovation and transfer cost distribution parameters
and trends with generation by variation in single
parameter sets

Innovation Transfer

Expected costs 0.139 *** -0.461 ***
0.0114 0.00801

St. dev. costs 0.0301 ** 0.0618 ***
0.0122 0.00644

Expectation * st. dev 0.015 *** 0.0194 ***
0.00171 0.00121

Trend 1.24 *** -1.2 ***
0.124 0.0863

Constant -3.7 *** 0.849 ***
0.0807 0.0402

Pseudo R
2 0.39 0.66

* denotes ten percent significance, ** denotes five
percent significance, and *** denotes one percent
significance. Asymptotic standard errors are re-
ported below the coefficients.

Table 5 contains regressions of agent switches on cost distribu-
tion determinants including a trend in estimation and generation.
Column one looks at innovation cost determinants, and finds that
the innovation cost trend has a large positive coefficient. We might

15



think that the trend might have a positive effect over part of the
series since it would increase expected costs at some point, so that
it should share the same sign as expectations. On the other hand, it
would be tend to have a negative effect over the rest of the series, so
it is not immediately transparent to us why the overall effect should
be positive. Column two examines transfer cost determinants. The
transfer cost trend has a large negative effect, in common with the
expected costs. Once again, it is not a priori clear to us why aver-
aging to zero of the trend effect does not occur.

We may reason for a non-zero average effect by reference to cost
distribution shapes, taking an extreme example for illustration. If
the sum of expected cumulative costs and current innovation costs
is slightly greater than the transfer costs and has low variance, and
the transfer costs also have low variance, then by the inequality 1
there should be many agent changes. If we then introduce a transfer
cost trend, then some of the transfer costs will be larger than the
sum, and so no changes will occur for them. The other transfer
costs will fall, so changes will still occur, and the overall effect is a
reduction in the number of changes.

3.6 Dichotomous costs

In this section, we perform our regressions introducing a more di-
chotomous cost structure which links the distributional parameters
in innovation and transfer costs. The first representation is that
some agents at some steps have specific expertise that is necessary
for innovation, whereas others lack the skills entirely. We model the
assumption as a Bernoulli variable addition to all innovation costs,
where the Bernoulli variable has probability 0.5 and is multiplied
by a non-stochastic learning cost variable. The second representa-
tion makes the same assumption as the first, and additionally that
any agent who has a non-zero learning cost will also have additional
costs from receiving or transferring the innovation locus to another
agent at the same stage. The rationale is that the same lack of inno-
vation skills will lead to difficulties in communicating the innovation
requirements and the specification of past innovation. The mathe-
matical model is that for any agent who has non-zero learning cost
we add the same amount to the transfer cost inwards or outwards
from the agent.
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We generate the first model with lognormal stochasticity in the
innovation costs and fixed transfer costs, as in section 3.1. The in-
novation cost mean, its standard deviation, and the learning cost
parameters are split at 0.5 intervals over (1,10) for the simulation,
giving 6,859 datapoints. For the second model, we generate data
using variation in the innovation and transfer cost distribution pa-
rameters, as well as in the learning cost. For generation purposes,
the parameters are spaced at unit intervals over (1,10), giving 3,125
datapoints.

Table 6 shows regression results for the two models. Column one
regresses agent changes on innovation cost determinants including
learning cost, where these generate the data under the first model.
The learning cost variable tends to increase the number of agent
changes, and is highly significant. Expected costs have a much
smaller positive effect compared with the results in Table 1, column
three. The learning cost variable adds both to the expected inno-
vation cost and its standard deviation. We would therefore expect
it to have the same broad effect as these variables. Their different
distributional assumptions present an explanation of the different
coefficients and significances of the effects.

Columns two to four regress agent changes on cost parameters
under the second model. Column two regresses agent changes on
innovation parameters alone. Learning cost increases the number
of agent changes, and is highly significant. Expected cost loses its
significance compared to the no-learning case in Table 4 column
one, while standard deviation and the product have significant neg-
ative and positive effects respectively, representing no qualitative
and small quantitative changes from Table 4. Explanatory power is
very low. Column three regresses agent changes on transfer cost dis-
tribution parameters alone. Learning cost increases agent changes,
and is highly significant, while the other coefficients are comparable
to Table 4, column two where there is no learning cost. A little over
half the data’s variation is explained by the model. In column four,
both innovation and transfer cost parameters are determinants, and
the estimated coefficients are very similar to those of the separate
models. Explanatory power is barely greater than the transfer cost
alone model.

Under the second model, learning cost increases both expected
innovation cost and its product (tending to increase the number
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Table 6: Logistic regression of number of changes on innovation and transfer cost distribution pa-
rameters and learning costs with generation by variation in single (column one) and both parameter
sets (columns two to four)

VH1 VH2 innovation VH2 transfer VH2 both

Expected costs (innovation) 0.0127 * 0.0106 0.0119
0.00716 0.0176 0.0188

St. dev. costs (innovation) -0.0118 -0.0413 ** -0.0475 **
0.00726 0.0177 0.0189

Expectation * st. dev (innovation) 0.0118 *** 0.0265 *** 0.0305 ***
0.00114 0.00529 0.00566

Expected costs (transfer) -0.649 *** -0.653 ***
0.0205 0.0206

St. dev. costs (transfer) 0.0993 *** 0.1 ***
0.0186 0.0186

Expectation * st. dev (transfer) 0.0431 *** 0.0433 ***
0.00596 0.00598

Learning cost 0.176 *** 0.139 *** 0.158 *** 0.159 ***
0.0032 0.00749 0.00801 0.00804

Constant -2.59 *** -0.915 *** 0.376 *** 0.211 **
0.0495 0.063 0.066 0.0904

Pseudo R
2 0.42 0.06 0.56 0.58

* denotes ten percent significance, ** denotes five percent significance, and *** denotes one percent
significance. Asymptotic standard errors are reported below the coefficients.

18



of change points), and expected transfer costs (tending to decrease
change points) and its product (tending to increase change points).
Here the net effect is positive.

3.7 Distinct fixed final agents

Previous sections have studied the single series of agents with the
lowest overall costs. In this section we take the last agent in the se-
ries to be each possible agent in turn, so that five different series are
generated. We can then look at variation within series to measure
the number of agent changes, and variation across series to measure
the divergence of paths.

We generate data as in sections 3.1 and 3.2, arising from inno-
vation and transfer parameter variation respectively. We then run
our dynamic programming algorithm to identify the lowest cost se-
quences conditional on the end agents, and do not perform the final
selection step. For the within variation, the number of agent changes
is summed across all series over all periods and divided by the num-
ber of possible changes to give the dependent variable in the logistic
regression. The measure of the cross variation is the sum across the
first to penultimate step of the number of distinct agents in each
step, divided by the maximum number possible of differences. This
is the corresponding logistic dependent variable.

Table 7 shows regressions of agent changes on cost distribution
parameters, when the final step agents are constrained to be each of
the possible ones in turn. Column one shows the regression of within
series variation on the innovation cost distribution parameters when
these are used to generate the variation in the data. Expected in-
novation costs have a much smaller positive effect than when the
optimal series alone is examined in Table 3.1, column three, while
the product has a little smaller effect. They both remain highly
significant. Explanatory power is moderately high.

Column two looks at within series variation for data generated by
and estimated for transfer cost parameter variation. The effects of
expectations and standard deviations are slightly reduced compared
with the non constrained case in Table 3.2, column three. Signs and
significance are unchanged, and explanatory power is high.

Column three regresses cross series diversity on innovation cost
distribution determinants. Expectations and the product both tend
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Table 7: Logistic regression of the aggregate number of changes (columns one and two) or the
aggregate number of distinct cross series agents (columns three and four) on innovation and transfer
cost distribution parameters with generation by variation in single parameter sets

Innovation within Transfer within Innovation cross Transfer cross

Expected costs 0.0664 *** -0.463 *** -0.0313 *** 0.111 ***
0.00781 0.00667 0.00393 0.00439

St. dev. costs 0.00444 0.0613 *** 0.00382 -0.00196
0.00815 0.00548 0.00378 0.00491

Expectation * st. dev 0.0151 *** 0.0196 *** -0.00864 *** -0.00509 ***
0.00121 0.00102 0.00067 0.00074

Constant -2.73 *** 0.913 *** -15.9 *** -16.9 ***
0.0519 0.0339 0.0225 0.0294

Pseudo R
2 0.47 0.73 0.36 0.47

* denotes ten percent significance, ** denotes five percent significance, and *** denotes one percent
significance. Asymptotic standard errors are reported below the coefficients.

20



to reduce diversity, and are highly significant. The standard devia-
tion is not significant. Explanatory power is moderate. Column four
regresses diversity on transfer cost determinants. Expected costs in-
crease diversity, while the product reduces it. Again they are highly
significant, and the standard deviation is not significant.

The significant variables explaining the cross series diversity have
the opposite effect on within series agent changes. Factors that tend
to lock innovation managers into a given innovation agent reduce
within variability. If the various innovation series are constrained to
pass through different agents at some stage, as here, the same factors
will tend to make those agents persist over the series increasing cross
series diversity.

4 Conclusion

This paper examines the movement of the innovation locus when
a cost minimising manager selects agents to innovate at each step
of a multistage process. We present a dynamic programming al-
gorithm able to solve the manager’s problem in manageable time,
and use it to analyse the effects of cost network structure on inno-
vation locus selection. We show that the effect on agent switching
of expected innovation costs and their standard deviation depends
on the cost distribution shape. Increasing expected transfer costs
tends to decrease switching, with a potentially ambiguous higher
moment effect. The sensitivity to network size is demonstrated,
with a general tendency to reduce the predicted parameter-induced
increases in switching in large networks. Transfer cost effects are
shown to dominate innovation cost effects in influencing switching.
Trends are considered, and a neutral linear trend averaging to one
is shown to have a non-zero effect on agent changes under many
distributional assumptions. Two representations of cost structures
with dichotomous expertise are presented, and the effects of learning
costs for non-experts are shown to be much larger than the effects of
normal innovation expected costs. When series are constrained so
that innovation series are generated with each ending at a different
agent, we find that parameter sensitivity of average within series
variation is reduced compared with the single series case. We find
that when distributional parameters tend to increase within series
changes, they tend to decrease cross series diversity and vice versa.
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This paper has generated a number of theoretical predictions
without empirical investigation. Some of the predictions such as the
offsetting between within variation and cross diversity lend them-
selves to immediate testing, whether on survey data or more aggre-
gated data. We leave such testing to future work.
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